whisper-small-eu / README.md
Xabi Ezpeleta
Fine-tuned with CV17.0
d206943
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: openai/whisper-small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 11.838103265051853

openai/whisper-small

This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1845
  • Wer: 11.8381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2458 1.0296 1000 0.2480 18.0723
0.1099 2.0592 2000 0.1976 13.6355
0.0403 3.0888 3000 0.2002 12.7249
0.0211 4.1184 4000 0.2101 12.4327
0.0609 5.148 5000 0.1845 11.8381

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2.dev0
  • Tokenizers 0.20.0