SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yinong333/finetuned_MiniLM")
# Run inference
sentences = [
'What legal action did the Federal Trade Commission take against Kochava regarding data tracking?',
'ENDNOTES\n75. See., e.g., Sam Sabin. Digital surveillance in a post-Roe world. Politico. May 5, 2022. https://\nwww.politico.com/newsletters/digital-future-daily/2022/05/05/digital-surveillance-in-a-post-roe\xad\nworld-00030459; Federal Trade Commission. FTC Sues Kochava for Selling Data that Tracks People at\nReproductive Health Clinics, Places of Worship, and Other Sensitive Locations. Aug. 29, 2022. https://\nwww.ftc.gov/news-events/news/press-releases/2022/08/ftc-sues-kochava-selling-data-tracks-people\xad\nreproductive-health-clinics-places-worship-other\n76. Todd Feathers. This Private Equity Firm Is Amassing Companies That Collect Data on America’s\nChildren. The Markup. Jan. 11, 2022.\nhttps://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies\xad\nthat-collect-data-on-americas-children\n77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In job databases used by',
'DATA PRIVACY \nEXTRA PROTECTIONS FOR DATA RELATED TO SENSITIVE\nDOMAINS\n•\nContinuous positive airway pressure machines gather data for medical purposes, such as diagnosing sleep\napnea, and send usage data to a patient’s insurance company, which may subsequently deny coverage for the\ndevice based on usage data. Patients were not aware that the data would be used in this way or monitored\nby anyone other than their doctor.70 \n•\nA department store company used predictive analytics applied to collected consumer data to determine that a\nteenage girl was pregnant, and sent maternity clothing ads and other baby-related advertisements to her\nhouse, revealing to her father that she was pregnant.71\n•\nSchool audio surveillance systems monitor student conversations to detect potential "stress indicators" as\na warning of potential violence.72 Online proctoring systems claim to detect if a student is cheating on an',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7214 |
cosine_accuracy@3 | 0.8786 |
cosine_accuracy@5 | 0.95 |
cosine_accuracy@10 | 0.9714 |
cosine_precision@1 | 0.7214 |
cosine_precision@3 | 0.2929 |
cosine_precision@5 | 0.19 |
cosine_precision@10 | 0.0971 |
cosine_recall@1 | 0.7214 |
cosine_recall@3 | 0.8786 |
cosine_recall@5 | 0.95 |
cosine_recall@10 | 0.9714 |
cosine_ndcg@10 | 0.8515 |
cosine_mrr@10 | 0.8122 |
cosine_map@100 | 0.8142 |
dot_accuracy@1 | 0.7214 |
dot_accuracy@3 | 0.8786 |
dot_accuracy@5 | 0.95 |
dot_accuracy@10 | 0.9714 |
dot_precision@1 | 0.7214 |
dot_precision@3 | 0.2929 |
dot_precision@5 | 0.19 |
dot_precision@10 | 0.0971 |
dot_recall@1 | 0.7214 |
dot_recall@3 | 0.8786 |
dot_recall@5 | 0.95 |
dot_recall@10 | 0.9714 |
dot_ndcg@10 | 0.8515 |
dot_mrr@10 | 0.8122 |
dot_map@100 | 0.8142 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 760 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 760 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 20.96 tokens
- max: 36 tokens
- min: 21 tokens
- mean: 167.91 tokens
- max: 256 tokens
- Samples:
sentence_0 sentence_1 What is the purpose of the AI Bill of Rights mentioned in the context?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022When was the Blueprint for an AI Bill of Rights published?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?
About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
published by the White House Office of Science and Technology Policy in October 2022. This framework was
released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
world.” Its release follows a year of public engagement to inform this initiative. The framework is available
online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
About the Office of Science and Technology Policy
The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology
Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office
of the President with advice on the scientific, engineering, and technological aspects of the economy, national - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 128 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 30per_device_eval_batch_size
: 30num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 30per_device_eval_batch_size
: 30per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 26 | 0.7610 |
1.9231 | 50 | 0.8047 |
2.0 | 52 | 0.8051 |
3.0 | 78 | 0.8116 |
3.8462 | 100 | 0.8142 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yinong333/finetuned_MiniLM
Base model
sentence-transformers/all-MiniLM-L6-v2Space using yinong333/finetuned_MiniLM 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.721
- Cosine Accuracy@3 on Unknownself-reported0.879
- Cosine Accuracy@5 on Unknownself-reported0.950
- Cosine Accuracy@10 on Unknownself-reported0.971
- Cosine Precision@1 on Unknownself-reported0.721
- Cosine Precision@3 on Unknownself-reported0.293
- Cosine Precision@5 on Unknownself-reported0.190
- Cosine Precision@10 on Unknownself-reported0.097
- Cosine Recall@1 on Unknownself-reported0.721
- Cosine Recall@3 on Unknownself-reported0.879