metadata
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: >-
IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia,
augmented with noise
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 32.01
- name: Wer
type: wer
value: 62.76452048626745
Whisper Medium GA-EN Speech Translation
This model is a fine-tuned version of openai/whisper-medium on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia, augmented with noise dataset. The datasets are augmented in two ways: noise augmentation, and truncating low-amplitude samples. The best model checkpoint (this version) based on ChrF is at step 2900, epoch 0.6349, and it achieves the following results on the evaluation set:
- Loss: 1.1883
- Bleu: 32.88
- Chrf: 51.52
- Wer: 62.0441
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.02
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer |
---|---|---|---|---|---|---|
2.4487 | 0.0219 | 100 | 1.9518 | 8.34 | 24.49 | 117.2445 |
2.11 | 0.0438 | 200 | 1.6630 | 15.32 | 32.12 | 84.0612 |
1.9757 | 0.0657 | 300 | 1.5366 | 10.86 | 33.42 | 131.7875 |
1.7964 | 0.0876 | 400 | 1.4825 | 19.81 | 36.71 | 81.9451 |
1.6422 | 0.1095 | 500 | 1.4432 | 18.83 | 40.4 | 84.0162 |
1.3839 | 0.1314 | 600 | 1.4169 | 24.91 | 40.87 | 69.0230 |
1.352 | 0.1533 | 700 | 1.4340 | 25.01 | 41.57 | 71.5894 |
1.2434 | 0.1752 | 800 | 1.3813 | 24.05 | 41.29 | 73.7506 |
1.2223 | 0.1970 | 900 | 1.3578 | 25.89 | 41.61 | 70.5988 |
1.0414 | 0.2189 | 1000 | 1.3075 | 27.45 | 44.17 | 68.2575 |
0.9199 | 0.2408 | 1100 | 1.3022 | 23.14 | 44.3 | 84.1513 |
0.8648 | 0.2627 | 1200 | 1.3050 | 23.36 | 43.37 | 72.4448 |
0.8469 | 0.2846 | 1300 | 1.2853 | 28.37 | 45.97 | 67.1319 |
0.7649 | 0.3065 | 1400 | 1.2755 | 28.56 | 46.76 | 66.0964 |
0.7321 | 0.3284 | 1500 | 1.2750 | 27.23 | 46.1 | 69.3381 |
0.6541 | 0.3503 | 1600 | 1.2557 | 30.02 | 48.06 | 65.6011 |
0.6107 | 0.3722 | 1700 | 1.2520 | 30.41 | 49.23 | 64.2954 |
0.5738 | 0.3941 | 1800 | 1.2435 | 32.45 | 50.27 | 63.4399 |
0.4983 | 0.4160 | 1900 | 1.2007 | 31.17 | 48.58 | 64.0702 |
0.4439 | 0.4379 | 2000 | 1.2140 | 32.29 | 50.37 | 60.6033 |
0.367 | 0.4598 | 2100 | 1.2230 | 29.54 | 49.14 | 67.7172 |
0.2807 | 0.4817 | 2200 | 1.2277 | 33.1 | 51.21 | 62.9446 |
0.2621 | 0.5036 | 2300 | 1.2441 | 30.59 | 49.49 | 64.8807 |
0.2965 | 0.5255 | 2400 | 1.1969 | 31.82 | 49.67 | 63.5299 |
0.236 | 0.5473 | 2500 | 1.2275 | 31.17 | 50.29 | 65.1959 |
0.229 | 0.5692 | 2600 | 1.2008 | 30.02 | 50.27 | 70.6439 |
0.164 | 0.5911 | 2700 | 1.2192 | 31.37 | 50.57 | 63.6200 |
0.1786 | 0.6130 | 2800 | 1.1965 | 31.81 | 50.13 | 62.8546 |
0.1987 | 0.6349 | 2900 | 1.1883 | 32.88 | 51.52 | 62.0441 |
0.1633 | 0.6568 | 3000 | 1.1903 | 32.01 | 50.38 | 62.7645 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.0.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1