grok-1-tiny-random / README.md
yujiepan's picture
Upload folder using huggingface_hub
342a4ac verified
metadata
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
library_name: transformers

This model is randomly initialized, using the config from hpcai-tech/grok-1 but with smaller size. Note the model is in float16.

Codes:

import transformers
import torch
import os
from huggingface_hub import create_repo, upload_folder

source_model_id = 'hpcai-tech/grok-1'
tiny_random_name = 'grok-1-tiny-random'
save_path = f'/tmp/yujiepan/{tiny_random_name}'
repo_id = f'yujiepan/{tiny_random_name}'

config = transformers.AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True)
config.hidden_size = 4
config.intermediate_size = 8
config.num_attention_heads = 2
config.num_key_value_heads = 1
config.num_hidden_layers = 2
config.torch_dtype = torch.float16

model = transformers.AutoModelForCausalLM.from_config(
    config, trust_remote_code=True, torch_dtype=torch.float16)
model = model.half()

tokenizer = transformers.AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True)

result = transformers.pipelines.pipeline(
    'text-generation',
    model=model, tokenizer=tokenizer,
    device=0,
    max_new_tokens=16,
)('Hello')
print(result)
# model = model.cuda()
# response, history = model.chat(tokenizer, "Hi", history=[], max_length=32)
# print(response)

model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)

os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)