中文 | English
Introduce
Llama3-Chinese is a large model trained on 500k high-quality Chinese multi-turn SFT data, 100k English multi-turn SFT data, and 2k single-turn self-cognition data, using the training methods of DORA and LORA+ based on Meta-Llama-3-8B as the base.
Github: https://github.com/seanzhang-zhichen/llama3-chinese
Download Model
Model | Download |
---|---|
Meta-Llama-3-8B | 🤗 HuggingFace 🤖 ModelScope |
Llama3-Chinese-Lora | 🤗 HuggingFace 🤖 ModelScope |
Llama3-Chinese (merged model) | 🤗 HuggingFace 🤖 ModelScope |
Merge LORA Model (Skippable)
1、Download Meta-Llama-3-8B
git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B.git
2、Download Llama3-Chinese-Lora
From ModelScope
git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese-Lora.git
From HuggingFace
git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese-Lora
3、Merge Model
python merge_lora.py \
--base_model path/to/Meta-Llama-3-8B \
--lora_model path/to/lora/Llama3-Chinese-Lora \
--output_dir ./Llama3-Chinese
Download Llama3-Chinese (Merged Model)
From ModelScope
git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese.git
From HuggingFace
git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese
Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "zhichen/Llama3-Chinese"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好"},
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.95,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
CLI DEMO
python cli_demo.py --model_path zhichen/Llama3-Chinese
WEB DEMO
python web_demo.py --model_path zhichen/Llama3-Chinese
VLLM WEB DEMO
1、Use vllm deploy model
python -m vllm.entrypoints.openai.api_server --served-model-name Llama3-Chinese --model ./Llama3-Chinese(Replace it with your own merged model path)
2、This command is executed on the CLI
python vllm_web_demo.py --model Llama3-Chinese
Train Dataset
LICENSE
This project can only be used for research purposes, and the project developer shall not bear any harm or loss caused by the use of this project (including but not limited to data, models, codes, etc.). For details, please refer to DISCLAIMER。
The License agreement of the Llama3-Chinese project code is the Apache License 2.0. The code is free for commercial use, and the model weights and data can only be used for research purposes. Please attach a link to Llama3-Chinese and the licensing agreement in the product description.
Citation
If you used Llama3-Chinese in your research, cite it in the following format:
@misc{Llama3-Chinese,
title={Llama3-Chinese},
author={Zhichen Zhang, Xin LU, Long Chen},
year={2024},
howpublished={\url{https://github.com/seanzhang-zhichen/llama3-chinese}},
}
Acknowledgement
meta-llama/llama3
hiyouga/LLaMA-Factory
Star History
- Downloads last month
- 365