Gokulapriyan's picture
update model card README.md
b628bbb
|
raw
history blame
3.03 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-main-gpu-20e-final-1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9917517006802721

vit-base-patch16-224-finetuned-main-gpu-20e-final-1

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0272
  • Accuracy: 0.9918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4776 1.0 551 0.4399 0.8125
0.3207 2.0 1102 0.2645 0.8978
0.2292 3.0 1653 0.1388 0.9468
0.1811 4.0 2204 0.0943 0.9662
0.1633 5.0 2755 0.0740 0.9723
0.1355 6.0 3306 0.0744 0.9727
0.1413 7.0 3857 0.0548 0.9813
0.1257 8.0 4408 0.0442 0.9844
0.1057 9.0 4959 0.0517 0.9821
0.1 10.0 5510 0.0376 0.9868
0.0873 11.0 6061 0.0410 0.9866
0.0974 12.0 6612 0.0430 0.9861
0.0673 13.0 7163 0.0421 0.9852
0.0913 14.0 7714 0.0339 0.9882
0.0594 15.0 8265 0.0327 0.9896
0.0608 16.0 8816 0.0379 0.9885
0.0725 17.0 9367 0.0288 0.9904
0.0742 18.0 9918 0.0284 0.9906
0.0708 19.0 10469 0.0273 0.9916
0.0648 20.0 11020 0.0272 0.9918

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2