|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-patch16-224-finetuned-main-gpu-20e-final-1 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9917517006802721 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-finetuned-main-gpu-20e-final-1 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0272 |
|
- Accuracy: 0.9918 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.4776 | 1.0 | 551 | 0.4399 | 0.8125 | |
|
| 0.3207 | 2.0 | 1102 | 0.2645 | 0.8978 | |
|
| 0.2292 | 3.0 | 1653 | 0.1388 | 0.9468 | |
|
| 0.1811 | 4.0 | 2204 | 0.0943 | 0.9662 | |
|
| 0.1633 | 5.0 | 2755 | 0.0740 | 0.9723 | |
|
| 0.1355 | 6.0 | 3306 | 0.0744 | 0.9727 | |
|
| 0.1413 | 7.0 | 3857 | 0.0548 | 0.9813 | |
|
| 0.1257 | 8.0 | 4408 | 0.0442 | 0.9844 | |
|
| 0.1057 | 9.0 | 4959 | 0.0517 | 0.9821 | |
|
| 0.1 | 10.0 | 5510 | 0.0376 | 0.9868 | |
|
| 0.0873 | 11.0 | 6061 | 0.0410 | 0.9866 | |
|
| 0.0974 | 12.0 | 6612 | 0.0430 | 0.9861 | |
|
| 0.0673 | 13.0 | 7163 | 0.0421 | 0.9852 | |
|
| 0.0913 | 14.0 | 7714 | 0.0339 | 0.9882 | |
|
| 0.0594 | 15.0 | 8265 | 0.0327 | 0.9896 | |
|
| 0.0608 | 16.0 | 8816 | 0.0379 | 0.9885 | |
|
| 0.0725 | 17.0 | 9367 | 0.0288 | 0.9904 | |
|
| 0.0742 | 18.0 | 9918 | 0.0284 | 0.9906 | |
|
| 0.0708 | 19.0 | 10469 | 0.0273 | 0.9916 | |
|
| 0.0648 | 20.0 | 11020 | 0.0272 | 0.9918 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|