|
--- |
|
base_model: BAAI/bge-m3 |
|
datasets: [] |
|
language: |
|
- es |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2947 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Es uso privativo el que determina la ocupación de una porción del |
|
dominio público, de modo que se limita o excluye la utilización del mismo por |
|
otros interesados. |
|
sentences: |
|
- ¿Qué es el uso privativo de los bienes de dominio público? |
|
- ¿Qué es la sanidad ambiental? |
|
- ¿Qué información básica debe contener la información que se facilita al afectado |
|
cuando se obtienen datos personales de él? |
|
- source_sentence: 'Las retribuciones básicas, que se fijan en la Ley de Presupuestos |
|
Generales del Estado, estarán integradas única y exclusivamente por: a) El sueldo |
|
asignado a cada Subgrupo o Grupo de clasificación profesional, en el supuesto |
|
de que éste no tenga Subgrupo. b) Los trienios, que consisten en una cantidad, |
|
que será igual para cada Subgrupo o Grupo de clasificación profesional, en el |
|
supuesto de que éste no tenga Subgrupo, por cada tres años de servicio.' |
|
sentences: |
|
- ¿Qué se entiende por retribuciones básicas? |
|
- ¿Cuál es el título competencial de esta ley orgánica? |
|
- ¿Qué se aprueba a propuesta del Ministro de Hacienda? |
|
- source_sentence: Se reconoce el valor social de las niñas, niños y adolescentes |
|
como personas que realizan un aporte afectivo, cultural y ético al caudal social, |
|
y cuyo protagonismo, creatividad y posicionamiento activo enriquecen la vida colectiva. |
|
sentences: |
|
- ¿Qué sucede si se produce un incumplimiento de las actuaciones establecidas en |
|
el Plan de inclusión sociolaboral? |
|
- ¿Qué se reconoce en cuanto al valor social de la infancia? |
|
- ¿Cuál es el plazo de prescripción de las infracciones? |
|
- source_sentence: Las empresas y las universidades podrán promover y participar en |
|
programas de voluntariado que cumplan los requisitos establecidos en esta Ley. |
|
sentences: |
|
- ¿Cuál es la consideración de las infracciones muy graves? |
|
- ¿Qué tipo de empresas pueden promover y participar en programas de voluntariado? |
|
- ¿Qué tipo de entidades están obligadas a cumplir con las obligaciones de publicidad |
|
activa? |
|
- source_sentence: Artículo 6. Definiciones. 1. Discriminación directa e indirecta. |
|
b) La discriminación indirecta se produce cuando una disposición, criterio o práctica |
|
aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja |
|
particular con respecto a otras por razón de las causas previstas en el apartado |
|
1 del artículo 2. |
|
sentences: |
|
- ¿Cuál es el papel del Consejo de Salud de Área? |
|
- ¿Qué se considera discriminación indirecta? |
|
- ¿Qué tipo de información se considera veraz? |
|
model-index: |
|
- name: BGE large Legal Spanish |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 1024 |
|
type: dim_1024 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5335365853658537 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7926829268292683 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8475609756097561 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8810975609756098 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5335365853658537 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26422764227642276 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1695121951219512 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08810975609756097 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5335365853658537 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7926829268292683 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8475609756097561 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8810975609756098 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7186522230387037 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6652003484320559 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6705758430588792 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5365853658536586 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7987804878048781 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8445121951219512 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8871951219512195 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5365853658536586 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.266260162601626 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16890243902439023 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08871951219512193 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5365853658536586 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7987804878048781 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8445121951219512 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8871951219512195 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7219693426433157 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6678172183507551 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6724989076281951 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5396341463414634 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7987804878048781 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8414634146341463 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8841463414634146 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5396341463414634 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.266260162601626 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16829268292682925 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08841463414634146 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5396341463414634 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7987804878048781 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8414634146341463 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8841463414634146 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7234708981888988 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6705732191250486 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.675333785038191 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5487804878048781 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7865853658536586 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8201219512195121 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8780487804878049 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5487804878048781 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2621951219512195 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16402439024390242 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08780487804878048 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5487804878048781 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7865853658536586 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8201219512195121 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8780487804878049 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.72218275626782 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6713293650793652 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6765227617116516 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5274390243902439 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7713414634146342 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8201219512195121 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8628048780487805 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5274390243902439 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.25711382113821135 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16402439024390242 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08628048780487804 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5274390243902439 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7713414634146342 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8201219512195121 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8628048780487805 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7052427974875376 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6535327138985677 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6594048434747166 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5060975609756098 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7378048780487805 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.801829268292683 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8597560975609756 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5060975609756098 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2459349593495935 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16036585365853656 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08597560975609755 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5060975609756098 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7378048780487805 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.801829268292683 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8597560975609756 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6884036058438198 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6329074719318624 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6380929161741958 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE large Legal Spanish |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** es |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-3") |
|
# Run inference |
|
sentences = [ |
|
'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.', |
|
'¿Qué se considera discriminación indirecta?', |
|
'¿Qué tipo de información se considera veraz?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_1024` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5335 | |
|
| cosine_accuracy@3 | 0.7927 | |
|
| cosine_accuracy@5 | 0.8476 | |
|
| cosine_accuracy@10 | 0.8811 | |
|
| cosine_precision@1 | 0.5335 | |
|
| cosine_precision@3 | 0.2642 | |
|
| cosine_precision@5 | 0.1695 | |
|
| cosine_precision@10 | 0.0881 | |
|
| cosine_recall@1 | 0.5335 | |
|
| cosine_recall@3 | 0.7927 | |
|
| cosine_recall@5 | 0.8476 | |
|
| cosine_recall@10 | 0.8811 | |
|
| cosine_ndcg@10 | 0.7187 | |
|
| cosine_mrr@10 | 0.6652 | |
|
| **cosine_map@100** | **0.6706** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5366 | |
|
| cosine_accuracy@3 | 0.7988 | |
|
| cosine_accuracy@5 | 0.8445 | |
|
| cosine_accuracy@10 | 0.8872 | |
|
| cosine_precision@1 | 0.5366 | |
|
| cosine_precision@3 | 0.2663 | |
|
| cosine_precision@5 | 0.1689 | |
|
| cosine_precision@10 | 0.0887 | |
|
| cosine_recall@1 | 0.5366 | |
|
| cosine_recall@3 | 0.7988 | |
|
| cosine_recall@5 | 0.8445 | |
|
| cosine_recall@10 | 0.8872 | |
|
| cosine_ndcg@10 | 0.722 | |
|
| cosine_mrr@10 | 0.6678 | |
|
| **cosine_map@100** | **0.6725** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5396 | |
|
| cosine_accuracy@3 | 0.7988 | |
|
| cosine_accuracy@5 | 0.8415 | |
|
| cosine_accuracy@10 | 0.8841 | |
|
| cosine_precision@1 | 0.5396 | |
|
| cosine_precision@3 | 0.2663 | |
|
| cosine_precision@5 | 0.1683 | |
|
| cosine_precision@10 | 0.0884 | |
|
| cosine_recall@1 | 0.5396 | |
|
| cosine_recall@3 | 0.7988 | |
|
| cosine_recall@5 | 0.8415 | |
|
| cosine_recall@10 | 0.8841 | |
|
| cosine_ndcg@10 | 0.7235 | |
|
| cosine_mrr@10 | 0.6706 | |
|
| **cosine_map@100** | **0.6753** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5488 | |
|
| cosine_accuracy@3 | 0.7866 | |
|
| cosine_accuracy@5 | 0.8201 | |
|
| cosine_accuracy@10 | 0.878 | |
|
| cosine_precision@1 | 0.5488 | |
|
| cosine_precision@3 | 0.2622 | |
|
| cosine_precision@5 | 0.164 | |
|
| cosine_precision@10 | 0.0878 | |
|
| cosine_recall@1 | 0.5488 | |
|
| cosine_recall@3 | 0.7866 | |
|
| cosine_recall@5 | 0.8201 | |
|
| cosine_recall@10 | 0.878 | |
|
| cosine_ndcg@10 | 0.7222 | |
|
| cosine_mrr@10 | 0.6713 | |
|
| **cosine_map@100** | **0.6765** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5274 | |
|
| cosine_accuracy@3 | 0.7713 | |
|
| cosine_accuracy@5 | 0.8201 | |
|
| cosine_accuracy@10 | 0.8628 | |
|
| cosine_precision@1 | 0.5274 | |
|
| cosine_precision@3 | 0.2571 | |
|
| cosine_precision@5 | 0.164 | |
|
| cosine_precision@10 | 0.0863 | |
|
| cosine_recall@1 | 0.5274 | |
|
| cosine_recall@3 | 0.7713 | |
|
| cosine_recall@5 | 0.8201 | |
|
| cosine_recall@10 | 0.8628 | |
|
| cosine_ndcg@10 | 0.7052 | |
|
| cosine_mrr@10 | 0.6535 | |
|
| **cosine_map@100** | **0.6594** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5061 | |
|
| cosine_accuracy@3 | 0.7378 | |
|
| cosine_accuracy@5 | 0.8018 | |
|
| cosine_accuracy@10 | 0.8598 | |
|
| cosine_precision@1 | 0.5061 | |
|
| cosine_precision@3 | 0.2459 | |
|
| cosine_precision@5 | 0.1604 | |
|
| cosine_precision@10 | 0.086 | |
|
| cosine_recall@1 | 0.5061 | |
|
| cosine_recall@3 | 0.7378 | |
|
| cosine_recall@5 | 0.8018 | |
|
| cosine_recall@10 | 0.8598 | |
|
| cosine_ndcg@10 | 0.6884 | |
|
| cosine_mrr@10 | 0.6329 | |
|
| **cosine_map@100** | **0.6381** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 32 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 32 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.8649 | 10 | 1.5054 | - | - | - | - | - | - | - | |
|
| 0.9514 | 11 | - | 0.8399 | 0.6684 | 0.6148 | 0.6574 | 0.6770 | 0.5281 | 0.6691 | |
|
| 1.7297 | 20 | 1.0127 | - | - | - | - | - | - | - | |
|
| 1.9892 | 23 | - | 0.5057 | 0.6757 | 0.6596 | 0.6715 | 0.6738 | 0.6017 | 0.6719 | |
|
| 2.5946 | 30 | 0.5708 | - | - | - | - | - | - | - | |
|
| 2.9405 | 34 | - | 0.4593 | 0.6781 | 0.6551 | 0.6795 | 0.6806 | 0.6165 | 0.6697 | |
|
| 3.4595 | 40 | 0.2618 | - | - | - | - | - | - | - | |
|
| 3.9784 | 46 | - | 0.4122 | 0.6787 | 0.6607 | 0.6842 | 0.6795 | 0.6227 | 0.6793 | |
|
| 4.3243 | 50 | 0.1079 | - | - | - | - | - | - | - | |
|
| 4.9297 | 57 | - | 0.3717 | 0.6827 | 0.6609 | 0.6810 | 0.6868 | 0.6277 | 0.6769 | |
|
| 5.1892 | 60 | 0.0574 | - | - | - | - | - | - | - | |
|
| 5.9676 | 69 | - | 0.3394 | 0.6824 | 0.6493 | 0.6777 | 0.6784 | 0.6344 | 0.6685 | |
|
| 6.0541 | 70 | 0.0342 | - | - | - | - | - | - | - | |
|
| **6.9189** | **80** | **0.0211** | **0.3379** | **0.6771** | **0.6627** | **0.6764** | **0.6766** | **0.6395** | **0.6723** | |
|
| 7.7838 | 90 | 0.0136 | - | - | - | - | - | - | - | |
|
| 7.9568 | 92 | - | 0.3128 | 0.6790 | 0.6536 | 0.6789 | 0.6782 | 0.6279 | 0.6730 | |
|
| 8.6486 | 100 | 0.0087 | - | - | - | - | - | - | - | |
|
| 8.9946 | 104 | - | 0.3163 | 0.6811 | 0.6542 | 0.6716 | 0.6744 | 0.6413 | 0.6758 | |
|
| 9.5135 | 110 | 0.0073 | - | - | - | - | - | - | - | |
|
| 9.9459 | 115 | - | 0.2937 | 0.6730 | 0.6569 | 0.6735 | 0.6747 | 0.6380 | 0.6710 | |
|
| 10.3784 | 120 | 0.0049 | - | - | - | - | - | - | - | |
|
| 10.9838 | 127 | - | 0.2927 | 0.6701 | 0.6578 | 0.6772 | 0.6724 | 0.6355 | 0.6738 | |
|
| 11.2432 | 130 | 0.0044 | - | - | - | - | - | - | - | |
|
| 11.9351 | 138 | - | 0.2837 | 0.6720 | 0.6558 | 0.6791 | 0.6752 | 0.6376 | 0.6783 | |
|
| 12.1081 | 140 | 0.0035 | - | - | - | - | - | - | - | |
|
| 12.9730 | 150 | 0.0031 | 0.2897 | 0.6746 | 0.6610 | 0.6708 | 0.6739 | 0.6375 | 0.6769 | |
|
| 13.8378 | 160 | 0.0027 | - | - | - | - | - | - | - | |
|
| 13.9243 | 161 | - | 0.2961 | 0.6733 | 0.6562 | 0.6692 | 0.6704 | 0.6402 | 0.6740 | |
|
| 14.7027 | 170 | 0.0026 | - | - | - | - | - | - | - | |
|
| 14.9622 | 173 | - | 0.2934 | 0.6734 | 0.6557 | 0.6720 | 0.6720 | 0.6368 | 0.6726 | |
|
| 15.5676 | 180 | 0.0025 | - | - | - | - | - | - | - | |
|
| 16.0 | 185 | - | 0.2932 | 0.6735 | 0.6561 | 0.6718 | 0.6744 | 0.6414 | 0.6773 | |
|
| 16.4324 | 190 | 0.0023 | - | - | - | - | - | - | - | |
|
| 16.9514 | 196 | - | 0.2912 | 0.6708 | 0.6582 | 0.6761 | 0.6794 | 0.6367 | 0.6753 | |
|
| 17.2973 | 200 | 0.0021 | - | - | - | - | - | - | - | |
|
| 17.9892 | 208 | - | 0.2925 | 0.6726 | 0.6582 | 0.6747 | 0.6773 | 0.6357 | 0.6737 | |
|
| 18.1622 | 210 | 0.0022 | - | - | - | - | - | - | - | |
|
| 18.9405 | 219 | - | 0.2965 | 0.6688 | 0.6563 | 0.6758 | 0.6769 | 0.6372 | 0.6765 | |
|
| 19.0270 | 220 | 0.002 | - | - | - | - | - | - | - | |
|
| 19.8919 | 230 | 0.0019 | - | - | - | - | - | - | - | |
|
| 19.9784 | 231 | - | 0.3010 | 0.6697 | 0.6563 | 0.6768 | 0.6775 | 0.6380 | 0.6730 | |
|
| 20.7568 | 240 | 0.0018 | - | - | - | - | - | - | - | |
|
| 20.9297 | 242 | - | 0.3025 | 0.6728 | 0.6564 | 0.6764 | 0.6757 | 0.6367 | 0.6728 | |
|
| 21.6216 | 250 | 0.0019 | - | - | - | - | - | - | - | |
|
| 21.9676 | 254 | - | 0.3043 | 0.6707 | 0.6533 | 0.6733 | 0.6750 | 0.6352 | 0.6729 | |
|
| 22.4865 | 260 | 0.0018 | - | - | - | - | - | - | - | |
|
| 22.9189 | 265 | - | 0.3029 | 0.6706 | 0.6554 | 0.6734 | 0.6757 | 0.6355 | 0.6715 | |
|
| 23.3514 | 270 | 0.0018 | - | - | - | - | - | - | - | |
|
| 23.9568 | 277 | - | 0.3046 | 0.6706 | 0.6586 | 0.6733 | 0.6740 | 0.6383 | 0.6731 | |
|
| 24.2162 | 280 | 0.0018 | - | - | - | - | - | - | - | |
|
| 24.9946 | 289 | - | 0.3045 | 0.6722 | 0.6553 | 0.6740 | 0.6752 | 0.6364 | 0.6735 | |
|
| 25.0811 | 290 | 0.0016 | - | - | - | - | - | - | - | |
|
| 25.9459 | 300 | 0.0017 | 0.3061 | 0.6703 | 0.6564 | 0.6770 | 0.6736 | 0.6371 | 0.6724 | |
|
| 26.8108 | 310 | 0.0016 | - | - | - | - | - | - | - | |
|
| 26.9838 | 312 | - | 0.3023 | 0.6694 | 0.6581 | 0.6790 | 0.6771 | 0.6375 | 0.6731 | |
|
| 27.6757 | 320 | 0.0015 | - | - | - | - | - | - | - | |
|
| 27.9351 | 323 | - | 0.3035 | 0.6701 | 0.6585 | 0.6748 | 0.6787 | 0.6366 | 0.6729 | |
|
| 28.5405 | 330 | 0.0016 | - | - | - | - | - | - | - | |
|
| 28.9730 | 335 | - | 0.3017 | 0.6686 | 0.6568 | 0.6748 | 0.6710 | 0.6357 | 0.6713 | |
|
| 29.4054 | 340 | 0.0016 | - | - | - | - | - | - | - | |
|
| 29.9243 | 346 | - | 0.3043 | 0.6683 | 0.6549 | 0.6722 | 0.6762 | 0.6367 | 0.6712 | |
|
| 30.2703 | 350 | 0.0017 | - | - | - | - | - | - | - | |
|
| 30.4432 | 352 | - | 0.3056 | 0.6706 | 0.6594 | 0.6765 | 0.6753 | 0.6381 | 0.6725 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.2.0+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |