ID
stringlengths 5
9
| name
stringlengths 5
102
| description
stringlengths 207
4.68k
| created
stringlengths 11
17
| domain
stringclasses 1
value | tactics
stringclasses 30
values | detection
stringlengths 89
3.21k
⌀ |
---|---|---|---|---|---|---|
T1003.002 | OS Credential Dumping: Security Account Manager | Adversaries may attempt to extract credential material from the Security Account Manager (SAM) database either through in-memory techniques or through the Windows Registry where the SAM database is stored. The SAM is a database file that contains local accounts for the host, typically those found with the <code>net user</code> command. Enumerating the SAM database requires SYSTEM level access.
A number of tools can be used to retrieve the SAM file through in-memory techniques:
* pwdumpx.exe
* [gsecdump](https://attack.mitre.org/software/S0008)
* [Mimikatz](https://attack.mitre.org/software/S0002)
* secretsdump.py
Alternatively, the SAM can be extracted from the Registry with Reg:
* <code>reg save HKLM\sam sam</code>
* <code>reg save HKLM\system system</code>
Creddump7 can then be used to process the SAM database locally to retrieve hashes.(Citation: GitHub Creddump7)
Notes:
* RID 500 account is the local, built-in administrator.
* RID 501 is the guest account.
* User accounts start with a RID of 1,000+.
| 11 February 2020 | enterprise-attack | Credential Access | Hash dumpers open the Security Accounts Manager (SAM) on the local file system (<code>%SystemRoot%/system32/config/SAM</code>) or create a dump of the Registry SAM key to access stored account password hashes. Some hash dumpers will open the local file system as a device and parse to the SAM table to avoid file access defenses. Others will make an in-memory copy of the SAM table before reading hashes. Detection of compromised [Valid Accounts](https://attack.mitre.org/techniques/T1078) in-use by adversaries may help as well. |
T1083 | File and Directory Discovery | Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from [File and Directory Discovery](https://attack.mitre.org/techniques/T1083) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Many command shell utilities can be used to obtain this information. Examples include <code>dir</code>, <code>tree</code>, <code>ls</code>, <code>find</code>, and <code>locate</code>.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the [Native API](https://attack.mitre.org/techniques/T1106). Adversaries may also leverage a [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) on network devices to gather file and directory information (e.g. <code>dir</code>, <code>show flash</code>, and/or <code>nvram</code>).(Citation: US-CERT-TA18-106A)
Some files and directories may require elevated or specific user permissions to access. | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Collection and Exfiltration, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). Further, [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands may also be used to gather file and directory information with built-in features native to the network device platform. Monitor CLI activity for unexpected or unauthorized use of commands being run by non-standard users from non-standard locations. |
T1537 | Transfer Data to Cloud Account | Adversaries may exfiltrate data by transferring the data, including through sharing/syncing and creating backups of cloud environments, to another cloud account they control on the same service.
A defender who is monitoring for large transfers to outside the cloud environment through normal file transfers or over command and control channels may not be watching for data transfers to another account within the same cloud provider. Such transfers may utilize existing cloud provider APIs and the internal address space of the cloud provider to blend into normal traffic or avoid data transfers over external network interfaces.(Citation: TLDRSec AWS Attacks)
Adversaries may also use cloud-native mechanisms to share victim data with adversary-controlled cloud accounts, such as creating anonymous file sharing links or, in Azure, a shared access signature (SAS) URI.(Citation: Microsoft Azure Storage Shared Access Signature)
Incidents have been observed where adversaries have created backups of cloud instances and transferred them to separate accounts.(Citation: DOJ GRU Indictment Jul 2018) | 30 August 2019 | enterprise-attack | Exfiltration | Monitor account activity for attempts to share data, snapshots, or backups with untrusted or unusual accounts on the same cloud service provider. Monitor for anomalous file transfer activity between accounts and to untrusted VPCs.
In AWS, sharing an Elastic Block Store (EBS) snapshot, either with specified users or publicly, generates a ModifySnapshotAttribute event in CloudTrail logs.(Citation: AWS EBS Snapshot Sharing) Similarly, in Azure, creating a Shared Access Signature (SAS) URI for a Virtual Hard Disk (VHS) snapshot generates a "Get Snapshot SAS URL" event in Activity Logs.(Citation: Azure Blob Snapshots)(Citation: Azure Shared Access Signature) |
T1590.005 | Gather Victim Network Information: IP Addresses | Adversaries may gather the victim's IP addresses that can be used during targeting. Public IP addresses may be allocated to organizations by block, or a range of sequential addresses. Information about assigned IP addresses may include a variety of details, such as which IP addresses are in use. IP addresses may also enable an adversary to derive other details about a victim, such as organizational size, physical location(s), Internet service provider, and or where/how their publicly-facing infrastructure is hosted.
Adversaries may gather this information in various ways, such as direct collection actions via [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Phishing for Information](https://attack.mitre.org/techniques/T1598). Information about assigned IP addresses may also be exposed to adversaries via online or other accessible data sets (ex: [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)).(Citation: WHOIS)(Citation: DNS Dumpster)(Citation: Circl Passive DNS) Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593)), establishing operational resources (ex: [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) or [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)), and/or initial access (ex: [External Remote Services](https://attack.mitre.org/techniques/T1133)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1574.001 | Hijack Execution Flow: DLL Search Order Hijacking | Adversaries may execute their own malicious payloads by hijacking the search order used to load DLLs. Windows systems use a common method to look for required DLLs to load into a program. (Citation: Microsoft Dynamic Link Library Search Order)(Citation: FireEye Hijacking July 2010) Hijacking DLL loads may be for the purpose of establishing persistence as well as elevating privileges and/or evading restrictions on file execution.
There are many ways an adversary can hijack DLL loads. Adversaries may plant trojan dynamic-link library files (DLLs) in a directory that will be searched before the location of a legitimate library that will be requested by a program, causing Windows to load their malicious library when it is called for by the victim program. Adversaries may also perform DLL preloading, also called binary planting attacks, (Citation: OWASP Binary Planting) by placing a malicious DLL with the same name as an ambiguously specified DLL in a location that Windows searches before the legitimate DLL. Often this location is the current working directory of the program.(Citation: FireEye fxsst June 2011) Remote DLL preloading attacks occur when a program sets its current directory to a remote location such as a Web share before loading a DLL. (Citation: Microsoft Security Advisory 2269637)
Phantom DLL hijacking is a specific type of DLL search order hijacking where adversaries target references to non-existent DLL files.(Citation: Adversaries Hijack DLLs) They may be able to load their own malicious DLL by planting it with the correct name in the location of the missing module.
Adversaries may also directly modify the search order via DLL redirection, which after being enabled (in the Registry and creation of a redirection file) may cause a program to load a different DLL.(Citation: Microsoft Dynamic-Link Library Redirection)(Citation: Microsoft Manifests)(Citation: FireEye DLL Search Order Hijacking)
If a search order-vulnerable program is configured to run at a higher privilege level, then the adversary-controlled DLL that is loaded will also be executed at the higher level. In this case, the technique could be used for privilege escalation from user to administrator or SYSTEM or from administrator to SYSTEM, depending on the program. Programs that fall victim to path hijacking may appear to behave normally because malicious DLLs may be configured to also load the legitimate DLLs they were meant to replace. | 13 March 2020 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | Monitor file systems for moving, renaming, replacing, or modifying DLLs. Changes in the set of DLLs that are loaded by a process (compared with past behavior) that do not correlate with known software, patches, etc., are suspicious. Monitor DLLs loaded into a process and detect DLLs that have the same file name but abnormal paths. Modifications to or creation of `.manifest` and `.local` redirection files that do not correlate with software updates are suspicious. |
T1573.001 | Encrypted Channel: Symmetric Cryptography | Adversaries may employ a known symmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Symmetric encryption algorithms use the same key for plaintext encryption and ciphertext decryption. Common symmetric encryption algorithms include AES, DES, 3DES, Blowfish, and RC4. | 16 March 2020 | enterprise-attack | Command and Control | With symmetric encryption, it may be possible to obtain the algorithm and key from samples and use them to decode network traffic to detect malware communications signatures.
In general, analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1596.005 | Search Open Technical Databases: Scan Databases | Adversaries may search within public scan databases for information about victims that can be used during targeting. Various online services continuously publish the results of Internet scans/surveys, often harvesting information such as active IP addresses, hostnames, open ports, certificates, and even server banners.(Citation: Shodan)
Adversaries may search scan databases to gather actionable information. Threat actors can use online resources and lookup tools to harvest information from these services. Adversaries may seek information about their already identified targets, or use these datasets to discover opportunities for successful breaches. Information from these sources may reveal opportunities for other forms of reconnaissance (ex: [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [External Remote Services](https://attack.mitre.org/techniques/T1133) or [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1222 | File and Directory Permissions Modification | Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files.(Citation: Hybrid Analysis Icacls1 June 2018)(Citation: Hybrid Analysis Icacls2 May 2018) File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.).
Modifications may include changing specific access rights, which may require taking ownership of a file or directory and/or elevated permissions depending on the file or directory’s existing permissions. This may enable malicious activity such as modifying, replacing, or deleting specific files or directories. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via [Accessibility Features](https://attack.mitre.org/techniques/T1546/008), [Boot or Logon Initialization Scripts](https://attack.mitre.org/techniques/T1037), [Unix Shell Configuration Modification](https://attack.mitre.org/techniques/T1546/004), or tainting/hijacking other instrumental binary/configuration files via [Hijack Execution Flow](https://attack.mitre.org/techniques/T1574).
Adversaries may also change permissions of symbolic links. For example, malware (particularly ransomware) may modify symbolic links and associated settings to enable access to files from local shortcuts with remote paths.(Citation: new_rust_based_ransomware)(Citation: bad_luck_blackcat)(Citation: falconoverwatch_blackcat_attack)(Citation: blackmatter_blackcat)(Citation: fsutil_behavior) | 17 October 2018 | enterprise-attack | Defense Evasion | Monitor and investigate attempts to modify ACLs and file/directory ownership. Many of the commands used to modify ACLs and file/directory ownership are built-in system utilities and may generate a high false positive alert rate, so compare against baseline knowledge for how systems are typically used and correlate modification events with other indications of malicious activity where possible.
Consider enabling file/directory permission change auditing on folders containing key binary/configuration files. For example, Windows Security Log events (Event ID 4670) are created when DACLs are modified.(Citation: EventTracker File Permissions Feb 2014) |
T1595.003 | Active Scanning: Wordlist Scanning | Adversaries may iteratively probe infrastructure using brute-forcing and crawling techniques. While this technique employs similar methods to [Brute Force](https://attack.mitre.org/techniques/T1110), its goal is the identification of content and infrastructure rather than the discovery of valid credentials. Wordlists used in these scans may contain generic, commonly used names and file extensions or terms specific to a particular software. Adversaries may also create custom, target-specific wordlists using data gathered from other Reconnaissance techniques (ex: [Gather Victim Org Information](https://attack.mitre.org/techniques/T1591), or [Search Victim-Owned Websites](https://attack.mitre.org/techniques/T1594)).
For example, adversaries may use web content discovery tools such as Dirb, DirBuster, and GoBuster and generic or custom wordlists to enumerate a website’s pages and directories.(Citation: ClearSky Lebanese Cedar Jan 2021) This can help them to discover old, vulnerable pages or hidden administrative portals that could become the target of further operations (ex: [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190) or [Brute Force](https://attack.mitre.org/techniques/T1110)).
As cloud storage solutions typically use globally unique names, adversaries may also use target-specific wordlists and tools such as s3recon and GCPBucketBrute to enumerate public and private buckets on cloud infrastructure.(Citation: S3Recon GitHub)(Citation: GCPBucketBrute) Once storage objects are discovered, adversaries may leverage [Data from Cloud Storage](https://attack.mitre.org/techniques/T1530) to access valuable information that can be exfiltrated or used to escalate privileges and move laterally. | 04 March 2022 | enterprise-attack | Reconnaissance | Monitor for suspicious network traffic that could be indicative of scanning, such as large quantities originating from a single source (especially if the source is known to be associated with an adversary/botnet). Monitor for access to S3 buckets, especially those that are not intended to be publicly accessible.
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1124 | System Time Discovery | An adversary may gather the system time and/or time zone settings from a local or remote system. The system time is set and stored by services, such as the Windows Time Service on Windows or <code>systemsetup</code> on macOS.(Citation: MSDN System Time)(Citation: Technet Windows Time Service)(Citation: systemsetup mac time) These time settings may also be synchronized between systems and services in an enterprise network, typically accomplished with a network time server within a domain.(Citation: Mac Time Sync)(Citation: linux system time)
System time information may be gathered in a number of ways, such as with [Net](https://attack.mitre.org/software/S0039) on Windows by performing <code>net time \\hostname</code> to gather the system time on a remote system. The victim's time zone may also be inferred from the current system time or gathered by using <code>w32tm /tz</code>.(Citation: Technet Windows Time Service) In addition, adversaries can discover device uptime through functions such as <code>GetTickCount()</code> to determine how long it has been since the system booted up.(Citation: Virtualization/Sandbox Evasion)
On network devices, [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as `show clock detail` can be used to see the current time configuration.(Citation: show_clock_detail_cisco_cmd)
In addition, system calls – such as <code>time()</code> – have been used to collect the current time on Linux devices.(Citation: MAGNET GOBLIN) On macOS systems, adversaries may use commands such as <code>systemsetup -gettimezone</code> or <code>timeIntervalSinceNow</code> to gather current time zone information or current date and time.(Citation: System Information Discovery Technique)(Citation: ESET DazzleSpy Jan 2022)
This information could be useful for performing other techniques, such as executing a file with a [Scheduled Task/Job](https://attack.mitre.org/techniques/T1053)(Citation: RSA EU12 They're Inside), or to discover locality information based on time zone to assist in victim targeting (i.e. [System Location Discovery](https://attack.mitre.org/techniques/T1614)). Adversaries may also use knowledge of system time as part of a time bomb, or delaying execution until a specified date/time.(Citation: AnyRun TimeBomb) | 31 May 2017 | enterprise-attack | Discovery | Command-line interface monitoring may be useful to detect instances of net.exe or other command-line utilities being used to gather system time or time zone. Methods of detecting API use for gathering this information are likely less useful due to how often they may be used by legitimate software.
For network infrastructure devices, collect AAA logging to monitor `show` commands being run by non-standard users from non-standard locations. |
T1578.002 | Modify Cloud Compute Infrastructure: Create Cloud Instance | An adversary may create a new instance or virtual machine (VM) within the compute service of a cloud account to evade defenses. Creating a new instance may allow an adversary to bypass firewall rules and permissions that exist on instances currently residing within an account. An adversary may [Create Snapshot](https://attack.mitre.org/techniques/T1578/001) of one or more volumes in an account, create a new instance, mount the snapshots, and then apply a less restrictive security policy to collect [Data from Local System](https://attack.mitre.org/techniques/T1005) or for [Remote Data Staging](https://attack.mitre.org/techniques/T1074/002).(Citation: Mandiant M-Trends 2020)
Creating a new instance may also allow an adversary to carry out malicious activity within an environment without affecting the execution of current running instances. | 14 May 2020 | enterprise-attack | Defense Evasion | The creation of a new instance or VM is a common part of operations within many cloud environments. Events should then not be viewed in isolation, but as part of a chain of behavior that could lead to other activities. For example, the creation of an instance by a new user account or the unexpected creation of one or more snapshots followed by the creation of an instance may indicate suspicious activity.
In AWS, CloudTrail logs capture the creation of an instance in the <code>RunInstances</code> event, and in Azure the creation of a VM may be captured in Azure activity logs.(Citation: AWS CloudTrail Search)(Citation: Azure Activity Logs) Google's Admin Activity audit logs within their Cloud Audit logs can be used to detect the usage of <code>gcloud compute instances create</code> to create a VM.(Citation: Cloud Audit Logs) |
T1102 | Web Service | Adversaries may use an existing, legitimate external Web service as a means for relaying data to/from a compromised system. Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.
Use of Web services may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed). | 31 May 2017 | enterprise-attack | Command and Control | Host data that can relate unknown or suspicious process activity using a network connection is important to supplement any existing indicators of compromise based on malware command and control signatures and infrastructure or the presence of strong encryption. Packet capture analysis will require SSL/TLS inspection if data is encrypted. Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). User behavior monitoring may help to detect abnormal patterns of activity.(Citation: University of Birmingham C2) |
T1596.004 | Search Open Technical Databases: CDNs | Adversaries may search content delivery network (CDN) data about victims that can be used during targeting. CDNs allow an organization to host content from a distributed, load balanced array of servers. CDNs may also allow organizations to customize content delivery based on the requestor’s geographical region.
Adversaries may search CDN data to gather actionable information. Threat actors can use online resources and lookup tools to harvest information about content servers within a CDN. Adversaries may also seek and target CDN misconfigurations that leak sensitive information not intended to be hosted and/or do not have the same protection mechanisms (ex: login portals) as the content hosted on the organization’s website.(Citation: DigitalShadows CDN) Information from these sources may reveal opportunities for other forms of reconnaissance (ex: [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593)), establishing operational resources (ex: [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) or [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)), and/or initial access (ex: [Drive-by Compromise](https://attack.mitre.org/techniques/T1189)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1078 | Valid Accounts | Adversaries may obtain and abuse credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Compromised credentials may be used to bypass access controls placed on various resources on systems within the network and may even be used for persistent access to remote systems and externally available services, such as VPNs, Outlook Web Access, network devices, and remote desktop.(Citation: volexity_0day_sophos_FW) Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence.
In some cases, adversaries may abuse inactive accounts: for example, those belonging to individuals who are no longer part of an organization. Using these accounts may allow the adversary to evade detection, as the original account user will not be present to identify any anomalous activity taking place on their account.(Citation: CISA MFA PrintNightmare)
The overlap of permissions for local, domain, and cloud accounts across a network of systems is of concern because the adversary may be able to pivot across accounts and systems to reach a high level of access (i.e., domain or enterprise administrator) to bypass access controls set within the enterprise.(Citation: TechNet Credential Theft) | 31 May 2017 | enterprise-attack | Defense Evasion, Initial Access, Persistence, Privilege Escalation | Configure robust, consistent account activity audit policies across the enterprise and with externally accessible services.(Citation: TechNet Audit Policy) Look for suspicious account behavior across systems that share accounts, either user, admin, or service accounts. Examples: one account logged into multiple systems simultaneously; multiple accounts logged into the same machine simultaneously; accounts logged in at odd times or outside of business hours. Activity may be from interactive login sessions or process ownership from accounts being used to execute binaries on a remote system as a particular account. Correlate other security systems with login information (e.g., a user has an active login session but has not entered the building or does not have VPN access).
Perform regular audits of domain and local system accounts to detect accounts that may have been created by an adversary for persistence. Checks on these accounts could also include whether default accounts such as Guest have been activated. These audits should also include checks on any appliances and applications for default credentials or SSH keys, and if any are discovered, they should be updated immediately. |
T1205.001 | Traffic Signaling: Port Knocking | Adversaries may use port knocking to hide open ports used for persistence or command and control. To enable a port, an adversary sends a series of attempted connections to a predefined sequence of closed ports. After the sequence is completed, opening a port is often accomplished by the host based firewall, but could also be implemented by custom software.
This technique has been observed both for the dynamic opening of a listening port as well as the initiating of a connection to a listening server on a different system.
The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r (Citation: Hartrell cd00r 2002), is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs. | 01 July 2020 | enterprise-attack | Command and Control, Defense Evasion, Persistence | Record network packets sent to and from the system, looking for extraneous packets that do not belong to established flows. |
T1070.004 | Indicator Removal: File Deletion | Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: [Ingress Tool Transfer](https://attack.mitre.org/techniques/T1105)) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint.
There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well.(Citation: Microsoft SDelete July 2016) Examples of built-in [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) functions include <code>del</code> on Windows and <code>rm</code> or <code>unlink</code> on Linux and macOS. | 31 January 2020 | enterprise-attack | Defense Evasion | It may be uncommon for events related to benign command-line functions such as DEL or third-party utilities or tools to be found in an environment, depending on the user base and how systems are typically used. Monitoring for command-line deletion functions to correlate with binaries or other files that an adversary may drop and remove may lead to detection of malicious activity. Another good practice is monitoring for known deletion and secure deletion tools that are not already on systems within an enterprise network that an adversary could introduce. Some monitoring tools may collect command-line arguments, but may not capture DEL commands since DEL is a native function within cmd.exe. |
T1614.001 | System Location Discovery: System Language Discovery | Adversaries may attempt to gather information about the system language of a victim in order to infer the geographical location of that host. This information may be used to shape follow-on behaviors, including whether the adversary infects the target and/or attempts specific actions. This decision may be employed by malware developers and operators to reduce their risk of attracting the attention of specific law enforcement agencies or prosecution/scrutiny from other entities.(Citation: Malware System Language Check)
There are various sources of data an adversary could use to infer system language, such as system defaults and keyboard layouts. Specific checks will vary based on the target and/or adversary, but may involve behaviors such as [Query Registry](https://attack.mitre.org/techniques/T1012) and calls to [Native API](https://attack.mitre.org/techniques/T1106) functions.(Citation: CrowdStrike Ryuk January 2019)
For example, on a Windows system adversaries may attempt to infer the language of a system by querying the registry key <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\Language</code> or parsing the outputs of Windows API functions <code>GetUserDefaultUILanguage</code>, <code>GetSystemDefaultUILanguage</code>, <code>GetKeyboardLayoutList</code> and <code>GetUserDefaultLangID</code>.(Citation: Darkside Ransomware Cybereason)(Citation: Securelist JSWorm)(Citation: SecureList SynAck Doppelgänging May 2018)
On a macOS or Linux system, adversaries may query <code>locale</code> to retrieve the value of the <code>$LANG</code> environment variable. | 18 August 2021 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system language information. This may include calls to various API functions and interaction with system configuration settings such as the Windows Registry. |
T1053 | Scheduled Task/Job | Adversaries may abuse task scheduling functionality to facilitate initial or recurring execution of malicious code. Utilities exist within all major operating systems to schedule programs or scripts to be executed at a specified date and time. A task can also be scheduled on a remote system, provided the proper authentication is met (ex: RPC and file and printer sharing in Windows environments). Scheduling a task on a remote system typically may require being a member of an admin or otherwise privileged group on the remote system.(Citation: TechNet Task Scheduler Security)
Adversaries may use task scheduling to execute programs at system startup or on a scheduled basis for persistence. These mechanisms can also be abused to run a process under the context of a specified account (such as one with elevated permissions/privileges). Similar to [System Binary Proxy Execution](https://attack.mitre.org/techniques/T1218), adversaries have also abused task scheduling to potentially mask one-time execution under a trusted system process.(Citation: ProofPoint Serpent) | 31 May 2017 | enterprise-attack | Execution, Persistence, Privilege Escalation | Monitor scheduled task creation from common utilities using command-line invocation. Legitimate scheduled tasks may be created during installation of new software or through system administration functions. Look for changes to tasks that do not correlate with known software, patch cycles, etc.
Suspicious program execution through scheduled tasks may show up as outlier processes that have not been seen before when compared against historical data. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement. |
T1566.001 | Phishing: Spearphishing Attachment | Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon [User Execution](https://attack.mitre.org/techniques/T1204) to gain execution.(Citation: Unit 42 DarkHydrus July 2018) Spearphishing may also involve social engineering techniques, such as posing as a trusted source.
There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one. | 02 March 2020 | enterprise-attack | Initial Access | Network intrusion detection systems and email gateways can be used to detect spearphishing with malicious attachments in transit. Detonation chambers may also be used to identify malicious attachments. Solutions can be signature and behavior based, but adversaries may construct attachments in a way to avoid these systems.
Filtering based on DKIM+SPF or header analysis can help detect when the email sender is spoofed.(Citation: Microsoft Anti Spoofing)(Citation: ACSC Email Spoofing)
Anti-virus can potentially detect malicious documents and attachments as they're scanned to be stored on the email server or on the user's computer. Endpoint sensing or network sensing can potentially detect malicious events once the attachment is opened (such as a Microsoft Word document or PDF reaching out to the internet or spawning Powershell.exe) for techniques such as [Exploitation for Client Execution](https://attack.mitre.org/techniques/T1203) or usage of malicious scripts.
Monitor for suspicious descendant process spawning from Microsoft Office and other productivity software.(Citation: Elastic - Koadiac Detection with EQL) |
T1588.005 | Obtain Capabilities: Exploits | Adversaries may buy, steal, or download exploits that can be used during targeting. An exploit takes advantage of a bug or vulnerability in order to cause unintended or unanticipated behavior to occur on computer hardware or software. Rather than developing their own exploits, an adversary may find/modify exploits from online or purchase them from exploit vendors.(Citation: Exploit Database)(Citation: TempertonDarkHotel)(Citation: NationsBuying)
In addition to downloading free exploits from the internet, adversaries may purchase exploits from third-party entities. Third-party entities can include technology companies that specialize in exploit development, criminal marketplaces (including exploit kits), or from individuals.(Citation: PegasusCitizenLab)(Citation: Wired SandCat Oct 2019) In addition to purchasing exploits, adversaries may steal and repurpose exploits from third-party entities (including other adversaries).(Citation: TempertonDarkHotel)
An adversary may monitor exploit provider forums to understand the state of existing, as well as newly discovered, exploits. There is usually a delay between when an exploit is discovered and when it is made public. An adversary may target the systems of those known to conduct exploit research and development in order to gain that knowledge for use during a subsequent operation.
Adversaries may use exploits during various phases of the adversary lifecycle (i.e. [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190), [Exploitation for Client Execution](https://attack.mitre.org/techniques/T1203), [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068), [Exploitation for Defense Evasion](https://attack.mitre.org/techniques/T1211), [Exploitation for Credential Access](https://attack.mitre.org/techniques/T1212), [Exploitation of Remote Services](https://attack.mitre.org/techniques/T1210), and [Application or System Exploitation](https://attack.mitre.org/techniques/T1499/004)). | 01 October 2020 | enterprise-attack | Resource Development |
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on behaviors relating to the use of exploits (i.e. [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190), [Exploitation for Client Execution](https://attack.mitre.org/techniques/T1203), [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068), [Exploitation for Defense Evasion](https://attack.mitre.org/techniques/T1211), [Exploitation for Credential Access](https://attack.mitre.org/techniques/T1212), [Exploitation of Remote Services](https://attack.mitre.org/techniques/T1210), and [Application or System Exploitation](https://attack.mitre.org/techniques/T1499/004)). |
T1548.004 | Abuse Elevation Control Mechanism: Elevated Execution with Prompt | Adversaries may leverage the <code>AuthorizationExecuteWithPrivileges</code> API to escalate privileges by prompting the user for credentials.(Citation: AppleDocs AuthorizationExecuteWithPrivileges) The purpose of this API is to give application developers an easy way to perform operations with root privileges, such as for application installation or updating. This API does not validate that the program requesting root privileges comes from a reputable source or has been maliciously modified.
Although this API is deprecated, it still fully functions in the latest releases of macOS. When calling this API, the user will be prompted to enter their credentials but no checks on the origin or integrity of the program are made. The program calling the API may also load world writable files which can be modified to perform malicious behavior with elevated privileges.
Adversaries may abuse <code>AuthorizationExecuteWithPrivileges</code> to obtain root privileges in order to install malicious software on victims and install persistence mechanisms.(Citation: Death by 1000 installers; it's all broken!)(Citation: Carbon Black Shlayer Feb 2019)(Citation: OSX Coldroot RAT) This technique may be combined with [Masquerading](https://attack.mitre.org/techniques/T1036) to trick the user into granting escalated privileges to malicious code.(Citation: Death by 1000 installers; it's all broken!)(Citation: Carbon Black Shlayer Feb 2019) This technique has also been shown to work by modifying legitimate programs present on the machine that make use of this API.(Citation: Death by 1000 installers; it's all broken!) | 30 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Consider monitoring for <code>/usr/libexec/security_authtrampoline</code> executions which may indicate that <code>AuthorizationExecuteWithPrivileges</code> is being executed. MacOS system logs may also indicate when <code>AuthorizationExecuteWithPrivileges</code> is being called. Monitoring OS API callbacks for the execution can also be a way to detect this behavior but requires specialized security tooling. |
T1505.004 | Server Software Component: IIS Components | Adversaries may install malicious components that run on Internet Information Services (IIS) web servers to establish persistence. IIS provides several mechanisms to extend the functionality of the web servers. For example, Internet Server Application Programming Interface (ISAPI) extensions and filters can be installed to examine and/or modify incoming and outgoing IIS web requests. Extensions and filters are deployed as DLL files that export three functions: <code>Get{Extension/Filter}Version</code>, <code>Http{Extension/Filter}Proc</code>, and (optionally) <code>Terminate{Extension/Filter}</code>. IIS modules may also be installed to extend IIS web servers.(Citation: Microsoft ISAPI Extension Overview 2017)(Citation: Microsoft ISAPI Filter Overview 2017)(Citation: IIS Backdoor 2011)(Citation: Trustwave IIS Module 2013)
Adversaries may install malicious ISAPI extensions and filters to observe and/or modify traffic, execute commands on compromised machines, or proxy command and control traffic. ISAPI extensions and filters may have access to all IIS web requests and responses. For example, an adversary may abuse these mechanisms to modify HTTP responses in order to distribute malicious commands/content to previously comprised hosts.(Citation: Microsoft ISAPI Filter Overview 2017)(Citation: Microsoft ISAPI Extension Overview 2017)(Citation: Microsoft ISAPI Extension All Incoming 2017)(Citation: Dell TG-3390)(Citation: Trustwave IIS Module 2013)(Citation: MMPC ISAPI Filter 2012)
Adversaries may also install malicious IIS modules to observe and/or modify traffic. IIS 7.0 introduced modules that provide the same unrestricted access to HTTP requests and responses as ISAPI extensions and filters. IIS modules can be written as a DLL that exports <code>RegisterModule</code>, or as a .NET application that interfaces with ASP.NET APIs to access IIS HTTP requests.(Citation: Microsoft IIS Modules Overview 2007)(Citation: Trustwave IIS Module 2013)(Citation: ESET IIS Malware 2021) | 03 June 2021 | enterprise-attack | Persistence | Monitor for creation and/or modification of files (especially DLLs on webservers) that could be abused as malicious ISAPI extensions/filters or IIS modules. Changes to <code>%windir%\system32\inetsrv\config\applicationhost.config</code> could indicate an IIS module installation.(Citation: Microsoft IIS Modules Overview 2007)(Citation: ESET IIS Malware 2021)
Monitor execution and command-line arguments of <code>AppCmd.exe</code>, which may be abused to install malicious IIS modules.(Citation: Microsoft IIS Modules Overview 2007)(Citation: Unit 42 RGDoor Jan 2018)(Citation: ESET IIS Malware 2021) |
T1003.003 | OS Credential Dumping: NTDS | Adversaries may attempt to access or create a copy of the Active Directory domain database in order to steal credential information, as well as obtain other information about domain members such as devices, users, and access rights. By default, the NTDS file (NTDS.dit) is located in <code>%SystemRoot%\NTDS\Ntds.dit</code> of a domain controller.(Citation: Wikipedia Active Directory)
In addition to looking for NTDS files on active Domain Controllers, adversaries may search for backups that contain the same or similar information.(Citation: Metcalf 2015)
The following tools and techniques can be used to enumerate the NTDS file and the contents of the entire Active Directory hashes.
* Volume Shadow Copy
* secretsdump.py
* Using the in-built Windows tool, ntdsutil.exe
* Invoke-NinjaCopy
| 11 February 2020 | enterprise-attack | Credential Access | Monitor processes and command-line arguments for program execution that may be indicative of credential dumping, especially attempts to access or copy the NTDS.dit. |
T1505.001 | Server Software Component: SQL Stored Procedures | Adversaries may abuse SQL stored procedures to establish persistent access to systems. SQL Stored Procedures are code that can be saved and reused so that database users do not waste time rewriting frequently used SQL queries. Stored procedures can be invoked via SQL statements to the database using the procedure name or via defined events (e.g. when a SQL server application is started/restarted).
Adversaries may craft malicious stored procedures that can provide a persistence mechanism in SQL database servers.(Citation: NetSPI Startup Stored Procedures)(Citation: Kaspersky MSSQL Aug 2019) To execute operating system commands through SQL syntax the adversary may have to enable additional functionality, such as xp_cmdshell for MSSQL Server.(Citation: NetSPI Startup Stored Procedures)(Citation: Kaspersky MSSQL Aug 2019)(Citation: Microsoft xp_cmdshell 2017)
Microsoft SQL Server can enable common language runtime (CLR) integration. With CLR integration enabled, application developers can write stored procedures using any .NET framework language (e.g. VB .NET, C#, etc.).(Citation: Microsoft CLR Integration 2017) Adversaries may craft or modify CLR assemblies that are linked to stored procedures since these CLR assemblies can be made to execute arbitrary commands.(Citation: NetSPI SQL Server CLR) | 12 December 2019 | enterprise-attack | Persistence | On a MSSQL Server, consider monitoring for xp_cmdshell usage.(Citation: NetSPI Startup Stored Procedures) Consider enabling audit features that can log malicious startup activities. |
T1590.001 | Gather Victim Network Information: Domain Properties | Adversaries may gather information about the victim's network domain(s) that can be used during targeting. Information about domains and their properties may include a variety of details, including what domain(s) the victim owns as well as administrative data (ex: name, registrar, etc.) and more directly actionable information such as contacts (email addresses and phone numbers), business addresses, and name servers.
Adversaries may gather this information in various ways, such as direct collection actions via [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Phishing for Information](https://attack.mitre.org/techniques/T1598). Information about victim domains and their properties may also be exposed to adversaries via online or other accessible data sets (ex: [WHOIS](https://attack.mitre.org/techniques/T1596/002)).(Citation: WHOIS)(Citation: DNS Dumpster)(Citation: Circl Passive DNS) Where third-party cloud providers are in use, this information may also be exposed through publicly available API endpoints, such as GetUserRealm and autodiscover in Office 365 environments.(Citation: Azure Active Directory Reconnaisance)(Citation: Office 265 Azure Domain Availability) Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596), [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593), or [Phishing for Information](https://attack.mitre.org/techniques/T1598)), establishing operational resources (ex: [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) or [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)), and/or initial access (ex: [Phishing](https://attack.mitre.org/techniques/T1566)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1021.003 | Remote Services: Distributed Component Object Model | Adversaries may use [Valid Accounts](https://attack.mitre.org/techniques/T1078) to interact with remote machines by taking advantage of Distributed Component Object Model (DCOM). The adversary may then perform actions as the logged-on user.
The Windows Component Object Model (COM) is a component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces. Through COM, a client object can call methods of server objects, which are typically Dynamic Link Libraries (DLL) or executables (EXE). Distributed COM (DCOM) is transparent middleware that extends the functionality of COM beyond a local computer using remote procedure call (RPC) technology.(Citation: Fireeye Hunting COM June 2019)(Citation: Microsoft COM)
Permissions to interact with local and remote server COM objects are specified by access control lists (ACL) in the Registry.(Citation: Microsoft Process Wide Com Keys) By default, only Administrators may remotely activate and launch COM objects through DCOM.(Citation: Microsoft COM ACL)
Through DCOM, adversaries operating in the context of an appropriately privileged user can remotely obtain arbitrary and even direct shellcode execution through Office applications(Citation: Enigma Outlook DCOM Lateral Movement Nov 2017) as well as other Windows objects that contain insecure methods.(Citation: Enigma MMC20 COM Jan 2017)(Citation: Enigma DCOM Lateral Movement Jan 2017) DCOM can also execute macros in existing documents(Citation: Enigma Excel DCOM Sept 2017) and may also invoke [Dynamic Data Exchange](https://attack.mitre.org/techniques/T1559/002) (DDE) execution directly through a COM created instance of a Microsoft Office application(Citation: Cyberreason DCOM DDE Lateral Movement Nov 2017), bypassing the need for a malicious document. DCOM can be used as a method of remotely interacting with [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047). (Citation: MSDN WMI) | 11 February 2020 | enterprise-attack | Lateral Movement | Monitor for COM objects loading DLLs and other modules not typically associated with the application.(Citation: Enigma Outlook DCOM Lateral Movement Nov 2017) Enumeration of COM objects, via [Query Registry](https://attack.mitre.org/techniques/T1012) or [PowerShell](https://attack.mitre.org/techniques/T1059/001), may also proceed malicious use.(Citation: Fireeye Hunting COM June 2019)(Citation: Enigma MMC20 COM Jan 2017) Monitor for spawning of processes associated with COM objects, especially those invoked by a user different than the one currently logged on.
Monitor for any influxes or abnormal increases in DCOM related Distributed Computing Environment/Remote Procedure Call (DCE/RPC) traffic (typically over port 135). |
T1565.002 | Data Manipulation: Transmitted Data Manipulation | Adversaries may alter data en route to storage or other systems in order to manipulate external outcomes or hide activity, thus threatening the integrity of the data.(Citation: FireEye APT38 Oct 2018)(Citation: DOJ Lazarus Sony 2018) By manipulating transmitted data, adversaries may attempt to affect a business process, organizational understanding, and decision making.
Manipulation may be possible over a network connection or between system processes where there is an opportunity deploy a tool that will intercept and change information. The type of modification and the impact it will have depends on the target transmission mechanism as well as the goals and objectives of the adversary. For complex systems, an adversary would likely need special expertise and possibly access to specialized software related to the system that would typically be gained through a prolonged information gathering campaign in order to have the desired impact. | 02 March 2020 | enterprise-attack | Impact | Detecting the manipulation of data as at passes over a network can be difficult without the appropriate tools. In some cases integrity verification checks, such as file hashing, may be used on critical files as they transit a network. With some critical processes involving transmission of data, manual or out-of-band integrity checking may be useful for identifying manipulated data. |
T1222.002 | File and Directory Permissions Modification: Linux and Mac File and Directory Permissions Modification | Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files.(Citation: Hybrid Analysis Icacls1 June 2018)(Citation: Hybrid Analysis Icacls2 May 2018) File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.).
Most Linux and Linux-based platforms provide a standard set of permission groups (user, group, and other) and a standard set of permissions (read, write, and execute) that are applied to each group. While nuances of each platform’s permissions implementation may vary, most of the platforms provide two primary commands used to manipulate file and directory ACLs: <code>chown</code> (short for change owner), and <code>chmod</code> (short for change mode).
Adversarial may use these commands to make themselves the owner of files and directories or change the mode if current permissions allow it. They could subsequently lock others out of the file. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via [Unix Shell Configuration Modification](https://attack.mitre.org/techniques/T1546/004) or tainting/hijacking other instrumental binary/configuration files via [Hijack Execution Flow](https://attack.mitre.org/techniques/T1574).(Citation: 20 macOS Common Tools and Techniques) | 04 February 2020 | enterprise-attack | Defense Evasion | Monitor and investigate attempts to modify ACLs and file/directory ownership. Many of the commands used to modify ACLs and file/directory ownership are built-in system utilities and may generate a high false positive alert rate, so compare against baseline knowledge for how systems are typically used and correlate modification events with other indications of malicious activity where possible. Commonly abused command arguments include <code>chmod +x</code>, <code>chmod -R 755</code>, and <code>chmod 777</code>.(Citation: 20 macOS Common Tools and Techniques)
Consider enabling file/directory permission change auditing on folders containing key binary/configuration files. |
T1652 | Device Driver Discovery | Adversaries may attempt to enumerate local device drivers on a victim host. Information about device drivers may highlight various insights that shape follow-on behaviors, such as the function/purpose of the host, present security tools (i.e. [Security Software Discovery](https://attack.mitre.org/techniques/T1518/001)) or other defenses (e.g., [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497)), as well as potential exploitable vulnerabilities (e.g., [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068)).
Many OS utilities may provide information about local device drivers, such as `driverquery.exe` and the `EnumDeviceDrivers()` API function on Windows.(Citation: Microsoft Driverquery)(Citation: Microsoft EnumDeviceDrivers) Information about device drivers (as well as associated services, i.e., [System Service Discovery](https://attack.mitre.org/techniques/T1007)) may also be available in the Registry.(Citation: Microsoft Registry Drivers)
On Linux/macOS, device drivers (in the form of kernel modules) may be visible within `/dev` or using utilities such as `lsmod` and `modinfo`.(Citation: Linux Kernel Programming)(Citation: lsmod man)(Citation: modinfo man) | 28 March 2023 | enterprise-attack | Discovery | null |
T1587.001 | Develop Capabilities: Malware | Adversaries may develop malware and malware components that can be used during targeting. Building malicious software can include the development of payloads, droppers, post-compromise tools, backdoors (including backdoored images), packers, C2 protocols, and the creation of infected removable media. Adversaries may develop malware to support their operations, creating a means for maintaining control of remote machines, evading defenses, and executing post-compromise behaviors.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: ActiveMalwareEnergy)(Citation: FBI Flash FIN7 USB)
As with legitimate development efforts, different skill sets may be required for developing malware. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's malware development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the malware.
Some aspects of malware development, such as C2 protocol development, may require adversaries to obtain additional infrastructure. For example, malware developed that will communicate with Twitter for C2, may require use of [Web Services](https://attack.mitre.org/techniques/T1583/006).(Citation: FireEye APT29) | 01 October 2020 | enterprise-attack | Resource Development | Consider analyzing malware for features that may be associated with the adversary and/or their developers, such as compiler used, debugging artifacts, or code similarities. Malware repositories can also be used to identify additional samples associated with the adversary and identify development patterns over time.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on post-compromise phases of the adversary lifecycle. |
T1547.015 | Boot or Logon Autostart Execution: Login Items | Adversaries may add login items to execute upon user login to gain persistence or escalate privileges. Login items are applications, documents, folders, or server connections that are automatically launched when a user logs in.(Citation: Open Login Items Apple) Login items can be added via a shared file list or Service Management Framework.(Citation: Adding Login Items) Shared file list login items can be set using scripting languages such as [AppleScript](https://attack.mitre.org/techniques/T1059/002), whereas the Service Management Framework uses the API call <code>SMLoginItemSetEnabled</code>.
Login items installed using the Service Management Framework leverage <code>launchd</code>, are not visible in the System Preferences, and can only be removed by the application that created them.(Citation: Adding Login Items)(Citation: SMLoginItemSetEnabled Schroeder 2013) Login items created using a shared file list are visible in System Preferences, can hide the application when it launches, and are executed through LaunchServices, not launchd, to open applications, documents, or URLs without using Finder.(Citation: Launch Services Apple Developer) Users and applications use login items to configure their user environment to launch commonly used services or applications, such as email, chat, and music applications.
Adversaries can utilize [AppleScript](https://attack.mitre.org/techniques/T1059/002) and [Native API](https://attack.mitre.org/techniques/T1106) calls to create a login item to spawn malicious executables.(Citation: ELC Running at startup) Prior to version 10.5 on macOS, adversaries can add login items by using [AppleScript](https://attack.mitre.org/techniques/T1059/002) to send an Apple events to the “System Events” process, which has an AppleScript dictionary for manipulating login items.(Citation: Login Items AE) Adversaries can use a command such as <code>tell application “System Events” to make login item at end with properties /path/to/executable</code>.(Citation: Startup Items Eclectic)(Citation: hexed osx.dok analysis 2019)(Citation: Add List Remove Login Items Apple Script) This command adds the path of the malicious executable to the login item file list located in <code>~/Library/Application Support/com.apple.backgroundtaskmanagementagent/backgrounditems.btm</code>.(Citation: Startup Items Eclectic) Adversaries can also use login items to launch executables that can be used to control the victim system remotely or as a means to gain privilege escalation by prompting for user credentials.(Citation: objsee mac malware 2017)(Citation: CheckPoint Dok)(Citation: objsee netwire backdoor 2019) | 05 October 2021 | enterprise-attack | Persistence, Privilege Escalation | All login items created via shared file lists are viewable by using the System Preferences GUI or in the <code>~/Library/Application Support/com.apple.backgroundtaskmanagementagent/backgrounditems.btm</code> file.(Citation: Open Login Items Apple)(Citation: Startup Items Eclectic)(Citation: objsee block blocking login items)(Citation: sentinelone macos persist Jun 2019) These locations should be monitored and audited for known good applications.
Otherwise, login Items are located in <code>Contents/Library/LoginItems</code> within an application bundle, so these paths should be monitored as well.(Citation: Adding Login Items) Monitor applications that leverage login items with either the LSUIElement or LSBackgroundOnly key in the Info.plist file set to true.(Citation: Adding Login Items)(Citation: Launch Service Keys Developer Apple)
Monitor processes that start at login for unusual or unknown applications. Usual applications for login items could include what users add to configure their user environment, such as email, chat, or music applications, or what administrators include for organization settings and protections. Check for running applications from login items that also have abnormal behavior,, such as establishing network connections. |
T1583.004 | Acquire Infrastructure: Server | Adversaries may buy, lease, rent, or obtain physical servers that can be used during targeting. Use of servers allows an adversary to stage, launch, and execute an operation. During post-compromise activity, adversaries may utilize servers for various tasks, such as watering hole operations in [Drive-by Compromise](https://attack.mitre.org/techniques/T1189), enabling [Phishing](https://attack.mitre.org/techniques/T1566) operations, or facilitating [Command and Control](https://attack.mitre.org/tactics/TA0011). Instead of compromising a third-party [Server](https://attack.mitre.org/techniques/T1584/004) or renting a [Virtual Private Server](https://attack.mitre.org/techniques/T1583/003), adversaries may opt to configure and run their own servers in support of operations. Free trial periods of cloud servers may also be abused.(Citation: Free Trial PurpleUrchin)(Citation: Freejacked)
Adversaries may only need a lightweight setup if most of their activities will take place using online infrastructure. Or, they may need to build extensive infrastructure if they want to test, communicate, and control other aspects of their activities on their own systems.(Citation: NYTStuxnet) | 01 October 2020 | enterprise-attack | Resource Development | Once adversaries have provisioned a server (ex: for use as a command and control server), internet scans may reveal servers that adversaries have acquired. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1497.002 | Virtualization/Sandbox Evasion: User Activity Based Checks | Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497) during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may search for user activity on the host based on variables such as the speed/frequency of mouse movements and clicks (Citation: Sans Virtual Jan 2016) , browser history, cache, bookmarks, or number of files in common directories such as home or the desktop. Other methods may rely on specific user interaction with the system before the malicious code is activated, such as waiting for a document to close before activating a macro (Citation: Unit 42 Sofacy Nov 2018) or waiting for a user to double click on an embedded image to activate.(Citation: FireEye FIN7 April 2017) | 06 March 2020 | enterprise-attack | Defense Evasion, Discovery | User activity-based checks will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection. |
T1560.003 | Archive Collected Data: Archive via Custom Method | An adversary may compress or encrypt data that is collected prior to exfiltration using a custom method. Adversaries may choose to use custom archival methods, such as encryption with XOR or stream ciphers implemented with no external library or utility references. Custom implementations of well-known compression algorithms have also been used.(Citation: ESET Sednit Part 2) | 20 February 2020 | enterprise-attack | Collection | Custom archival methods can be very difficult to detect, since many of them use standard programming language concepts, such as bitwise operations. |
T1114.002 | Email Collection: Remote Email Collection | Adversaries may target an Exchange server, Office 365, or Google Workspace to collect sensitive information. Adversaries may leverage a user's credentials and interact directly with the Exchange server to acquire information from within a network. Adversaries may also access externally facing Exchange services, Office 365, or Google Workspace to access email using credentials or access tokens. Tools such as [MailSniper](https://attack.mitre.org/software/S0413) can be used to automate searches for specific keywords. | 19 February 2020 | enterprise-attack | Collection | Monitor for unusual login activity from unknown or abnormal locations, especially for privileged accounts (ex: Exchange administrator account). |
T1498.002 | Network Denial of Service: Reflection Amplification | Adversaries may attempt to cause a denial of service (DoS) by reflecting a high-volume of network traffic to a target. This type of Network DoS takes advantage of a third-party server intermediary that hosts and will respond to a given spoofed source IP address. This third-party server is commonly termed a reflector. An adversary accomplishes a reflection attack by sending packets to reflectors with the spoofed address of the victim. Similar to Direct Network Floods, more than one system may be used to conduct the attack, or a botnet may be used. Likewise, one or more reflectors may be used to focus traffic on the target.(Citation: Cloudflare ReflectionDoS May 2017) This Network DoS attack may also reduce the availability and functionality of the targeted system(s) and network.
Reflection attacks often take advantage of protocols with larger responses than requests in order to amplify their traffic, commonly known as a Reflection Amplification attack. Adversaries may be able to generate an increase in volume of attack traffic that is several orders of magnitude greater than the requests sent to the amplifiers. The extent of this increase will depending upon many variables, such as the protocol in question, the technique used, and the amplifying servers that actually produce the amplification in attack volume. Two prominent protocols that have enabled Reflection Amplification Floods are DNS(Citation: Cloudflare DNSamplficationDoS) and NTP(Citation: Cloudflare NTPamplifciationDoS), though the use of several others in the wild have been documented.(Citation: Arbor AnnualDoSreport Jan 2018) In particular, the memcache protocol showed itself to be a powerful protocol, with amplification sizes up to 51,200 times the requesting packet.(Citation: Cloudflare Memcrashed Feb 2018) | 02 March 2020 | enterprise-attack | Impact | Detection of reflection amplification can sometimes be achieved before the traffic volume is sufficient to cause impact to the availability of the service, but such response time typically requires very aggressive monitoring and responsiveness or services provided by an upstream network service provider. Typical network throughput monitoring tools such as netflow(Citation: Cisco DoSdetectNetflow), SNMP, and custom scripts can be used to detect sudden increases in network or service utilization. Real-time, automated, and qualitative study of the network traffic can identify a sudden surge in one type of protocol can be used to detect a reflection amplification DoS event as it starts. Often, the lead time may be small and the indicator of an event availability of the network or service drops. The analysis tools mentioned can then be used to determine the type of DoS causing the outage and help with remediation. |
T1132.001 | Data Encoding: Standard Encoding | Adversaries may encode data with a standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system that adheres to existing protocol specifications. Common data encoding schemes include ASCII, Unicode, hexadecimal, Base64, and MIME.(Citation: Wikipedia Binary-to-text Encoding)(Citation: Wikipedia Character Encoding) Some data encoding systems may also result in data compression, such as gzip. | 14 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1555 | Credentials from Password Stores | Adversaries may search for common password storage locations to obtain user credentials.(Citation: F-Secure The Dukes) Passwords are stored in several places on a system, depending on the operating system or application holding the credentials. There are also specific applications and services that store passwords to make them easier for users to manage and maintain, such as password managers and cloud secrets vaults. Once credentials are obtained, they can be used to perform lateral movement and access restricted information. | 11 February 2020 | enterprise-attack | Credential Access | Monitor system calls, file read events, and processes for suspicious activity that could indicate searching for a password or other activity related to performing keyword searches (e.g. password, pwd, login, store, secure, credentials, etc.) in process memory for credentials. File read events should be monitored surrounding known password storage applications. |
T1027.007 | Obfuscated Files or Information: Dynamic API Resolution | Adversaries may obfuscate then dynamically resolve API functions called by their malware in order to conceal malicious functionalities and impair defensive analysis. Malware commonly uses various [Native API](https://attack.mitre.org/techniques/T1106) functions provided by the OS to perform various tasks such as those involving processes, files, and other system artifacts.
API functions called by malware may leave static artifacts such as strings in payload files. Defensive analysts may also uncover which functions a binary file may execute via an import address table (IAT) or other structures that help dynamically link calling code to the shared modules that provide functions.(Citation: Huntress API Hash)(Citation: IRED API Hashing)
To avoid static or other defensive analysis, adversaries may use dynamic API resolution to conceal malware characteristics and functionalities. Similar to [Software Packing](https://attack.mitre.org/techniques/T1027/002), dynamic API resolution may change file signatures and obfuscate malicious API function calls until they are resolved and invoked during runtime.
Various methods may be used to obfuscate malware calls to API functions. For example, hashes of function names are commonly stored in malware in lieu of literal strings. Malware can use these hashes (or other identifiers) to manually reproduce the linking and loading process using functions such as `GetProcAddress()` and `LoadLibrary()`. These hashes/identifiers can also be further obfuscated using encryption or other string manipulation tricks (requiring various forms of [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140) during execution).(Citation: BlackHat API Packers)(Citation: Drakonia HInvoke)(Citation: Huntress API Hash) | 22 August 2022 | enterprise-attack | Defense Evasion | null |
T1547.010 | Boot or Logon Autostart Execution: Port Monitors | Adversaries may use port monitors to run an adversary supplied DLL during system boot for persistence or privilege escalation. A port monitor can be set through the <code>AddMonitor</code> API call to set a DLL to be loaded at startup.(Citation: AddMonitor) This DLL can be located in <code>C:\Windows\System32</code> and will be loaded and run by the print spooler service, `spoolsv.exe`, under SYSTEM level permissions on boot.(Citation: Bloxham)
Alternatively, an arbitrary DLL can be loaded if permissions allow writing a fully-qualified pathname for that DLL to the `Driver` value of an existing or new arbitrarily named subkey of <code>HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors</code>. The Registry key contains entries for the following:
* Local Port
* Standard TCP/IP Port
* USB Monitor
* WSD Port
| 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor process API calls to <code>AddMonitor</code>.(Citation: AddMonitor) Monitor DLLs that are loaded by spoolsv.exe for DLLs that are abnormal. New DLLs written to the System32 directory that do not correlate with known good software or patching may be suspicious.
Monitor Registry writes to <code>HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors</code>, paying particular attention to changes in the "Driver" subkey. Run the Autoruns utility, which checks for this Registry key as a persistence mechanism.(Citation: TechNet Autoruns) |
T1219 | Remote Access Software | An adversary may use legitimate desktop support and remote access software to establish an interactive command and control channel to target systems within networks. These services, such as `VNC`, `Team Viewer`, `AnyDesk`, `ScreenConnect`, `LogMein`, `AmmyyAdmin`, and other remote monitoring and management (RMM) tools, are commonly used as legitimate technical support software and may be allowed by application control within a target environment.(Citation: Symantec Living off the Land)(Citation: CrowdStrike 2015 Global Threat Report)(Citation: CrySyS Blog TeamSpy)
Remote access software may be installed and used post-compromise as an alternate communications channel for redundant access or as a way to establish an interactive remote desktop session with the target system. They may also be used as a component of malware to establish a reverse connection or back-connect to a service or adversary-controlled system.
Adversaries may similarly abuse response features included in EDR and other defensive tools that enable remote access.
Installation of many remote access software may also include persistence (e.g., the software's installation routine creates a [Windows Service](https://attack.mitre.org/techniques/T1543/003)). Remote access modules/features may also exist as part of otherwise existing software (e.g., Google Chrome’s Remote Desktop).(Citation: Google Chrome Remote Desktop)(Citation: Chrome Remote Desktop) | 18 April 2018 | enterprise-attack | Command and Control | Monitor for applications and processes related to remote admin tools. Correlate activity with other suspicious behavior that may reduce false positives if these tools are used by legitimate users and administrators.
Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol for the port that is being used.
[Domain Fronting](https://attack.mitre.org/techniques/T1090/004) may be used in conjunction to avoid defenses. Adversaries will likely need to deploy and/or install these remote tools to compromised systems. It may be possible to detect or prevent the installation of these tools with host-based solutions. |
T1048 | Exfiltration Over Alternative Protocol | Adversaries may steal data by exfiltrating it over a different protocol than that of the existing command and control channel. The data may also be sent to an alternate network location from the main command and control server.
Alternate protocols include FTP, SMTP, HTTP/S, DNS, SMB, or any other network protocol not being used as the main command and control channel. Adversaries may also opt to encrypt and/or obfuscate these alternate channels.
[Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/T1048) can be done using various common operating system utilities such as [Net](https://attack.mitre.org/software/S0039)/SMB or FTP.(Citation: Palo Alto OilRig Oct 2016) On macOS and Linux <code>curl</code> may be used to invoke protocols such as HTTP/S or FTP/S to exfiltrate data from a system.(Citation: 20 macOS Common Tools and Techniques)
Many IaaS and SaaS platforms (such as Microsoft Exchange, Microsoft SharePoint, GitHub, and AWS S3) support the direct download of files, emails, source code, and other sensitive information via the web console or [Cloud API](https://attack.mitre.org/techniques/T1059/009). | 31 May 2017 | enterprise-attack | Exfiltration | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. (Citation: University of Birmingham C2) |
T1555.001 | Credentials from Password Stores: Keychain | Adversaries may acquire credentials from Keychain. Keychain (or Keychain Services) is the macOS credential management system that stores account names, passwords, private keys, certificates, sensitive application data, payment data, and secure notes. There are three types of Keychains: Login Keychain, System Keychain, and Local Items (iCloud) Keychain. The default Keychain is the Login Keychain, which stores user passwords and information. The System Keychain stores items accessed by the operating system, such as items shared among users on a host. The Local Items (iCloud) Keychain is used for items synced with Apple’s iCloud service.
Keychains can be viewed and edited through the Keychain Access application or using the command-line utility <code>security</code>. Keychain files are located in <code>~/Library/Keychains/</code>, <code>/Library/Keychains/</code>, and <code>/Network/Library/Keychains/</code>.(Citation: Keychain Services Apple)(Citation: Keychain Decryption Passware)(Citation: OSX Keychain Schaumann)
Adversaries may gather user credentials from Keychain storage/memory. For example, the command <code>security dump-keychain –d</code> will dump all Login Keychain credentials from <code>~/Library/Keychains/login.keychain-db</code>. Adversaries may also directly read Login Keychain credentials from the <code>~/Library/Keychains/login.keychain</code> file. Both methods require a password, where the default password for the Login Keychain is the current user’s password to login to the macOS host.(Citation: External to DA, the OS X Way)(Citation: Empire Keychain Decrypt) | 12 February 2020 | enterprise-attack | Credential Access | Unlocking the keychain and using passwords from it is a very common process, so there is likely to be a lot of noise in any detection technique. Monitoring of system calls to the keychain can help determine if there is a suspicious process trying to access it. |
T1132 | Data Encoding | Adversaries may encode data to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system. Use of data encoding may adhere to existing protocol specifications and includes use of ASCII, Unicode, Base64, MIME, or other binary-to-text and character encoding systems.(Citation: Wikipedia Binary-to-text Encoding) (Citation: Wikipedia Character Encoding) Some data encoding systems may also result in data compression, such as gzip. | 31 May 2017 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. (Citation: University of Birmingham C2) |
T1003 | OS Credential Dumping | Adversaries may attempt to dump credentials to obtain account login and credential material, normally in the form of a hash or a clear text password. Credentials can be obtained from OS caches, memory, or structures.(Citation: Brining MimiKatz to Unix) Credentials can then be used to perform [Lateral Movement](https://attack.mitre.org/tactics/TA0008) and access restricted information.
Several of the tools mentioned in associated sub-techniques may be used by both adversaries and professional security testers. Additional custom tools likely exist as well.
| 31 May 2017 | enterprise-attack | Credential Access | ### Windows
Monitor for unexpected processes interacting with lsass.exe.(Citation: Medium Detecting Attempts to Steal Passwords from Memory) Common credential dumpers such as [Mimikatz](https://attack.mitre.org/software/S0002) access the LSA Subsystem Service (LSASS) process by opening the process, locating the LSA secrets key, and decrypting the sections in memory where credential details are stored. Credential dumpers may also use methods for reflective [Process Injection](https://attack.mitre.org/techniques/T1055) to reduce potential indicators of malicious activity.
Hash dumpers open the Security Accounts Manager (SAM) on the local file system (%SystemRoot%/system32/config/SAM) or create a dump of the Registry SAM key to access stored account password hashes. Some hash dumpers will open the local file system as a device and parse to the SAM table to avoid file access defenses. Others will make an in-memory copy of the SAM table before reading hashes. Detection of compromised [Valid Accounts](https://attack.mitre.org/techniques/T1078) in-use by adversaries may help as well.
On Windows 8.1 and Windows Server 2012 R2, monitor Windows Logs for LSASS.exe creation to verify that LSASS started as a protected process.
Monitor processes and command-line arguments for program execution that may be indicative of credential dumping. Remote access tools may contain built-in features or incorporate existing tools like [Mimikatz](https://attack.mitre.org/software/S0002). [PowerShell](https://attack.mitre.org/techniques/T1059/001) scripts also exist that contain credential dumping functionality, such as PowerSploit's Invoke-Mimikatz module, (Citation: Powersploit) which may require additional logging features to be configured in the operating system to collect necessary information for analysis.
Monitor domain controller logs for replication requests and other unscheduled activity possibly associated with DCSync. (Citation: Microsoft DRSR Dec 2017) (Citation: Microsoft GetNCCChanges) (Citation: Samba DRSUAPI) Note: Domain controllers may not log replication requests originating from the default domain controller account. (Citation: Harmj0y DCSync Sept 2015). Also monitor for network protocols (Citation: Microsoft DRSR Dec 2017) (Citation: Microsoft NRPC Dec 2017) and other replication requests (Citation: Microsoft SAMR) from IPs not associated with known domain controllers. (Citation: AdSecurity DCSync Sept 2015)
### Linux
To obtain the passwords and hashes stored in memory, processes must open a maps file in the `/proc` filesystem for the process being analyzed. This file is stored under the path `/proc/<pid>/maps`, where the `<pid>` directory is the unique pid of the program being interrogated for such authentication data. The AuditD monitoring tool, which ships stock in many Linux distributions, can be used to watch for hostile processes opening this file in the proc file system, alerting on the pid, process name, and arguments of such programs. |
T1592 | Gather Victim Host Information | Adversaries may gather information about the victim's hosts that can be used during targeting. Information about hosts may include a variety of details, including administrative data (ex: name, assigned IP, functionality, etc.) as well as specifics regarding its configuration (ex: operating system, language, etc.).
Adversaries may gather this information in various ways, such as direct collection actions via [Active Scanning](https://attack.mitre.org/techniques/T1595) or [Phishing for Information](https://attack.mitre.org/techniques/T1598). Adversaries may also compromise sites then include malicious content designed to collect host information from visitors.(Citation: ATT ScanBox) Information about hosts may also be exposed to adversaries via online or other accessible data sets (ex: [Social Media](https://attack.mitre.org/techniques/T1593/001) or [Search Victim-Owned Websites](https://attack.mitre.org/techniques/T1594)). Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [Supply Chain Compromise](https://attack.mitre.org/techniques/T1195) or [External Remote Services](https://attack.mitre.org/techniques/T1133)). | 02 October 2020 | enterprise-attack | Reconnaissance | Internet scanners may be used to look for patterns associated with malicious content designed to collect host information from visitors.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: ATT ScanBox)
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1027.001 | Obfuscated Files or Information: Binary Padding | Adversaries may use binary padding to add junk data and change the on-disk representation of malware. This can be done without affecting the functionality or behavior of a binary, but can increase the size of the binary beyond what some security tools are capable of handling due to file size limitations.
Binary padding effectively changes the checksum of the file and can also be used to avoid hash-based blocklists and static anti-virus signatures.(Citation: ESET OceanLotus) The padding used is commonly generated by a function to create junk data and then appended to the end or applied to sections of malware.(Citation: Securelist Malware Tricks April 2017) Increasing the file size may decrease the effectiveness of certain tools and detection capabilities that are not designed or configured to scan large files. This may also reduce the likelihood of being collected for analysis. Public file scanning services, such as VirusTotal, limits the maximum size of an uploaded file to be analyzed.(Citation: VirusTotal FAQ) | 05 February 2020 | enterprise-attack | Defense Evasion | Depending on the method used to pad files, a file-based signature may be capable of detecting padding using a scanning or on-access based tool. When executed, the resulting process from padded files may also exhibit other behavior characteristics of being used to conduct an intrusion such as system and network information Discovery or Lateral Movement, which could be used as event indicators that point to the source file. |
T1195.001 | Supply Chain Compromise: Compromise Software Dependencies and Development Tools | Adversaries may manipulate software dependencies and development tools prior to receipt by a final consumer for the purpose of data or system compromise. Applications often depend on external software to function properly. Popular open source projects that are used as dependencies in many applications may be targeted as a means to add malicious code to users of the dependency.(Citation: Trendmicro NPM Compromise)
Targeting may be specific to a desired victim set or may be distributed to a broad set of consumers but only move on to additional tactics on specific victims. | 11 March 2020 | enterprise-attack | Initial Access | Use verification of distributed binaries through hash checking or other integrity checking mechanisms. Scan downloads for malicious signatures and attempt to test software and updates prior to deployment while taking note of potential suspicious activity. |
T1115 | Clipboard Data | Adversaries may collect data stored in the clipboard from users copying information within or between applications.
For example, on Windows adversaries can access clipboard data by using <code>clip.exe</code> or <code>Get-Clipboard</code>.(Citation: MSDN Clipboard)(Citation: clip_win_server)(Citation: CISA_AA21_200B) Additionally, adversaries may monitor then replace users’ clipboard with their data (e.g., [Transmitted Data Manipulation](https://attack.mitre.org/techniques/T1565/002)).(Citation: mining_ruby_reversinglabs)
macOS and Linux also have commands, such as <code>pbpaste</code>, to grab clipboard contents.(Citation: Operating with EmPyre) | 31 May 2017 | enterprise-attack | Collection | Access to the clipboard is a legitimate function of many applications on an operating system. If an organization chooses to monitor for this behavior, then the data will likely need to be correlated against other suspicious or non-user-driven activity. |
T1087.001 | Account Discovery: Local Account | Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior.
Commands such as <code>net user</code> and <code>net localgroup</code> of the [Net](https://attack.mitre.org/software/S0039) utility and <code>id</code> and <code>groups</code> on macOS and Linux can list local users and groups.(Citation: Mandiant APT1)(Citation: id man page)(Citation: groups man page) On Linux, local users can also be enumerated through the use of the <code>/etc/passwd</code> file. On macOS the <code>dscl . list /Users</code> command can be used to enumerate local accounts. | 21 February 2020 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
Monitor for processes that can be used to enumerate user accounts, such as <code>net.exe</code> and <code>net1.exe</code>, especially when executed in quick succession.(Citation: Elastic - Koadiac Detection with EQL) |
T1021.001 | Remote Services: Remote Desktop Protocol | Adversaries may use [Valid Accounts](https://attack.mitre.org/techniques/T1078) to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user.
Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS).(Citation: TechNet Remote Desktop Services)
Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the [Accessibility Features](https://attack.mitre.org/techniques/T1546/008) or [Terminal Services DLL](https://attack.mitre.org/techniques/T1505/005) for Persistence.(Citation: Alperovitch Malware) | 11 February 2020 | enterprise-attack | Lateral Movement | Use of RDP may be legitimate, depending on the network environment and how it is used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with RDP. Monitor for user accounts logged into systems they would not normally access or access patterns to multiple systems over a relatively short period of time. |
T1606 | Forge Web Credentials | Adversaries may forge credential materials that can be used to gain access to web applications or Internet services. Web applications and services (hosted in cloud SaaS environments or on-premise servers) often use session cookies, tokens, or other materials to authenticate and authorize user access.
Adversaries may generate these credential materials in order to gain access to web resources. This differs from [Steal Web Session Cookie](https://attack.mitre.org/techniques/T1539), [Steal Application Access Token](https://attack.mitre.org/techniques/T1528), and other similar behaviors in that the credentials are new and forged by the adversary, rather than stolen or intercepted from legitimate users.
The generation of web credentials often requires secret values, such as passwords, [Private Keys](https://attack.mitre.org/techniques/T1552/004), or other cryptographic seed values.(Citation: GitHub AWS-ADFS-Credential-Generator) Adversaries may also forge tokens by taking advantage of features such as the `AssumeRole` and `GetFederationToken` APIs in AWS, which allow users to request temporary security credentials (i.e., [Temporary Elevated Cloud Access](https://attack.mitre.org/techniques/T1548/005)), or the `zmprov gdpak` command in Zimbra, which generates a pre-authentication key that can be used to generate tokens for any user in the domain.(Citation: AWS Temporary Security Credentials)(Citation: Zimbra Preauth)
Once forged, adversaries may use these web credentials to access resources (ex: [Use Alternate Authentication Material](https://attack.mitre.org/techniques/T1550)), which may bypass multi-factor and other authentication protection mechanisms.(Citation: Pass The Cookie)(Citation: Unit 42 Mac Crypto Cookies January 2019)(Citation: Microsoft SolarWinds Customer Guidance) | 17 December 2020 | enterprise-attack | Credential Access | Monitor for anomalous authentication activity, such as logons or other user session activity associated with unknown accounts. Monitor for unexpected and abnormal access to resources, including access of websites and cloud-based applications by the same user in different locations or by different systems that do not match expected configurations. |
T1574.012 | Hijack Execution Flow: COR_PROFILER | Adversaries may leverage the COR_PROFILER environment variable to hijack the execution flow of programs that load the .NET CLR. The COR_PROFILER is a .NET Framework feature which allows developers to specify an unmanaged (or external of .NET) profiling DLL to be loaded into each .NET process that loads the Common Language Runtime (CLR). These profilers are designed to monitor, troubleshoot, and debug managed code executed by the .NET CLR.(Citation: Microsoft Profiling Mar 2017)(Citation: Microsoft COR_PROFILER Feb 2013)
The COR_PROFILER environment variable can be set at various scopes (system, user, or process) resulting in different levels of influence. System and user-wide environment variable scopes are specified in the Registry, where a [Component Object Model](https://attack.mitre.org/techniques/T1559/001) (COM) object can be registered as a profiler DLL. A process scope COR_PROFILER can also be created in-memory without modifying the Registry. Starting with .NET Framework 4, the profiling DLL does not need to be registered as long as the location of the DLL is specified in the COR_PROFILER_PATH environment variable.(Citation: Microsoft COR_PROFILER Feb 2013)
Adversaries may abuse COR_PROFILER to establish persistence that executes a malicious DLL in the context of all .NET processes every time the CLR is invoked. The COR_PROFILER can also be used to elevate privileges (ex: [Bypass User Account Control](https://attack.mitre.org/techniques/T1548/002)) if the victim .NET process executes at a higher permission level, as well as to hook and [Impair Defenses](https://attack.mitre.org/techniques/T1562) provided by .NET processes.(Citation: RedCanary Mockingbird May 2020)(Citation: Red Canary COR_PROFILER May 2020)(Citation: Almond COR_PROFILER Apr 2019)(Citation: GitHub OmerYa Invisi-Shell)(Citation: subTee .NET Profilers May 2017) | 24 June 2020 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | For detecting system and user scope abuse of the COR_PROFILER, monitor the Registry for changes to COR_ENABLE_PROFILING, COR_PROFILER, and COR_PROFILER_PATH that correspond to system and user environment variables that do not correlate to known developer tools. Extra scrutiny should be placed on suspicious modification of these Registry keys by command line tools like wmic.exe, setx.exe, and [Reg](https://attack.mitre.org/software/S0075), monitoring for command-line arguments indicating a change to COR_PROFILER variables may aid in detection. For system, user, and process scope abuse of the COR_PROFILER, monitor for new suspicious unmanaged profiling DLLs loading into .NET processes shortly after the CLR causing abnormal process behavior.(Citation: Red Canary COR_PROFILER May 2020) Consider monitoring for DLL files that are associated with COR_PROFILER environment variables. |
T1001.001 | Data Obfuscation: Junk Data | Adversaries may add junk data to protocols used for command and control to make detection more difficult.(Citation: FireEye SUNBURST Backdoor December 2020) By adding random or meaningless data to the protocols used for command and control, adversaries can prevent trivial methods for decoding, deciphering, or otherwise analyzing the traffic. Examples may include appending/prepending data with junk characters or writing junk characters between significant characters. | 15 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1593.003 | Search Open Websites/Domains: Code Repositories | Adversaries may search public code repositories for information about victims that can be used during targeting. Victims may store code in repositories on various third-party websites such as GitHub, GitLab, SourceForge, and BitBucket. Users typically interact with code repositories through a web application or command-line utilities such as git.
Adversaries may search various public code repositories for various information about a victim. Public code repositories can often be a source of various general information about victims, such as commonly used programming languages and libraries as well as the names of employees. Adversaries may also identify more sensitive data, including accidentally leaked credentials or API keys.(Citation: GitHub Cloud Service Credentials) Information from these sources may reveal opportunities for other forms of reconnaissance (ex: [Phishing for Information](https://attack.mitre.org/techniques/T1598)), establishing operational resources (ex: [Compromise Accounts](https://attack.mitre.org/techniques/T1586) or [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)), and/or initial access (ex: [Valid Accounts](https://attack.mitre.org/techniques/T1078) or [Phishing](https://attack.mitre.org/techniques/T1566)).
**Note:** This is distinct from [Code Repositories](https://attack.mitre.org/techniques/T1213/003), which focuses on [Collection](https://attack.mitre.org/tactics/TA0009) from private and internally hosted code repositories. | 09 August 2022 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1010 | Application Window Discovery | Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling ([Security Software Discovery](https://attack.mitre.org/techniques/T1518/001)) to evade.(Citation: ESET Grandoreiro April 2020)
Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) commands and [Native API](https://attack.mitre.org/techniques/T1106) functions. | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1195 | Supply Chain Compromise | Adversaries may manipulate products or product delivery mechanisms prior to receipt by a final consumer for the purpose of data or system compromise.
Supply chain compromise can take place at any stage of the supply chain including:
* Manipulation of development tools
* Manipulation of a development environment
* Manipulation of source code repositories (public or private)
* Manipulation of source code in open-source dependencies
* Manipulation of software update/distribution mechanisms
* Compromised/infected system images (multiple cases of removable media infected at the factory)(Citation: IBM Storwize)(Citation: Schneider Electric USB Malware)
* Replacement of legitimate software with modified versions
* Sales of modified/counterfeit products to legitimate distributors
* Shipment interdiction
While supply chain compromise can impact any component of hardware or software, adversaries looking to gain execution have often focused on malicious additions to legitimate software in software distribution or update channels.(Citation: Avast CCleaner3 2018)(Citation: Microsoft Dofoil 2018)(Citation: Command Five SK 2011) Targeting may be specific to a desired victim set or malicious software may be distributed to a broad set of consumers but only move on to additional tactics on specific victims.(Citation: Symantec Elderwood Sept 2012)(Citation: Avast CCleaner3 2018)(Citation: Command Five SK 2011) Popular open source projects that are used as dependencies in many applications may also be targeted as a means to add malicious code to users of the dependency.(Citation: Trendmicro NPM Compromise) | 18 April 2018 | enterprise-attack | Initial Access | Use verification of distributed binaries through hash checking or other integrity checking mechanisms. Scan downloads for malicious signatures and attempt to test software and updates prior to deployment while taking note of potential suspicious activity. Perform physical inspection of hardware to look for potential tampering. |
T1003.005 | OS Credential Dumping: Cached Domain Credentials | Adversaries may attempt to access cached domain credentials used to allow authentication to occur in the event a domain controller is unavailable.(Citation: Microsoft - Cached Creds)
On Windows Vista and newer, the hash format is DCC2 (Domain Cached Credentials version 2) hash, also known as MS-Cache v2 hash.(Citation: PassLib mscache) The number of default cached credentials varies and can be altered per system. This hash does not allow pass-the-hash style attacks, and instead requires [Password Cracking](https://attack.mitre.org/techniques/T1110/002) to recover the plaintext password.(Citation: ired mscache)
On Linux systems, Active Directory credentials can be accessed through caches maintained by software like System Security Services Daemon (SSSD) or Quest Authentication Services (formerly VAS). Cached credential hashes are typically located at `/var/lib/sss/db/cache.[domain].ldb` for SSSD or `/var/opt/quest/vas/authcache/vas_auth.vdb` for Quest. Adversaries can use utilities, such as `tdbdump`, on these database files to dump the cached hashes and use [Password Cracking](https://attack.mitre.org/techniques/T1110/002) to obtain the plaintext password.(Citation: Brining MimiKatz to Unix)
With SYSTEM or sudo access, the tools/utilities such as [Mimikatz](https://attack.mitre.org/software/S0002), [Reg](https://attack.mitre.org/software/S0075), and secretsdump.py for Windows or Linikatz for Linux can be used to extract the cached credentials.(Citation: Brining MimiKatz to Unix)
Note: Cached credentials for Windows Vista are derived using PBKDF2.(Citation: PassLib mscache) | 21 February 2020 | enterprise-attack | Credential Access | Monitor processes and command-line arguments for program execution that may be indicative of credential dumping. Remote access tools may contain built-in features or incorporate existing tools like Mimikatz. PowerShell scripts also exist that contain credential dumping functionality, such as PowerSploit's Invoke-Mimikatz module,(Citation: Powersploit) which may require additional logging features to be configured in the operating system to collect necessary information for analysis.
Detection of compromised [Valid Accounts](https://attack.mitre.org/techniques/T1078) in-use by adversaries may help as well. |
T1055.013 | Process Injection: Process Doppelgänging | Adversaries may inject malicious code into process via process doppelgänging in order to evade process-based defenses as well as possibly elevate privileges. Process doppelgänging is a method of executing arbitrary code in the address space of a separate live process.
Windows Transactional NTFS (TxF) was introduced in Vista as a method to perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables only one transacted handle to write to a file at a given time. Until the write handle transaction is terminated, all other handles are isolated from the writer and may only read the committed version of the file that existed at the time the handle was opened. (Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic rollback if the system or application fails during a write transaction. (Citation: Microsoft Where to use TxF)
Although deprecated, the TxF application programming interface (API) is still enabled as of Windows 10. (Citation: BlackHat Process Doppelgänging Dec 2017)
Adversaries may abuse TxF to a perform a file-less variation of [Process Injection](https://attack.mitre.org/techniques/T1055). Similar to [Process Hollowing](https://attack.mitre.org/techniques/T1055/012), process doppelgänging involves replacing the memory of a legitimate process, enabling the veiled execution of malicious code that may evade defenses and detection. Process doppelgänging's use of TxF also avoids the use of highly-monitored API functions such as <code>NtUnmapViewOfSection</code>, <code>VirtualProtectEx</code>, and <code>SetThreadContext</code>. (Citation: BlackHat Process Doppelgänging Dec 2017)
Process Doppelgänging is implemented in 4 steps (Citation: BlackHat Process Doppelgänging Dec 2017):
* Transact – Create a TxF transaction using a legitimate executable then overwrite the file with malicious code. These changes will be isolated and only visible within the context of the transaction.
* Load – Create a shared section of memory and load the malicious executable.
* Rollback – Undo changes to original executable, effectively removing malicious code from the file system.
* Animate – Create a process from the tainted section of memory and initiate execution.
This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process doppelgänging may evade detection from security products since the execution is masked under a legitimate process. | 14 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Monitor and analyze calls to <code>CreateTransaction</code>, <code>CreateFileTransacted</code>, <code>RollbackTransaction</code>, and other rarely used functions indicative of TxF activity. Process Doppelgänging also invokes an outdated and undocumented implementation of the Windows process loader via calls to <code>NtCreateProcessEx</code> and <code>NtCreateThreadEx</code> as well as API calls used to modify memory within another process, such as <code>WriteProcessMemory</code>. (Citation: BlackHat Process Doppelgänging Dec 2017) (Citation: hasherezade Process Doppelgänging Dec 2017)
Scan file objects reported during the PsSetCreateProcessNotifyRoutine, (Citation: Microsoft PsSetCreateProcessNotifyRoutine routine) which triggers a callback whenever a process is created or deleted, specifically looking for file objects with enabled write access. (Citation: BlackHat Process Doppelgänging Dec 2017) Also consider comparing file objects loaded in memory to the corresponding file on disk. (Citation: hasherezade Process Doppelgänging Dec 2017)
Analyze process behavior to determine if a process is performing actions it usually does not, such as opening network connections, reading files, or other suspicious actions that could relate to post-compromise behavior. |
T1036.004 | Masquerading: Masquerade Task or Service | Adversaries may attempt to manipulate the name of a task or service to make it appear legitimate or benign. Tasks/services executed by the Task Scheduler or systemd will typically be given a name and/or description.(Citation: TechNet Schtasks)(Citation: Systemd Service Units) Windows services will have a service name as well as a display name. Many benign tasks and services exist that have commonly associated names. Adversaries may give tasks or services names that are similar or identical to those of legitimate ones.
Tasks or services contain other fields, such as a description, that adversaries may attempt to make appear legitimate.(Citation: Palo Alto Shamoon Nov 2016)(Citation: Fysbis Dr Web Analysis) | 10 February 2020 | enterprise-attack | Defense Evasion | Look for changes to tasks and services that do not correlate with known software, patch cycles, etc. Suspicious program execution through scheduled tasks or services may show up as outlier processes that have not been seen before when compared against historical data. Monitor processes and command-line arguments for actions that could be taken to create tasks or services. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement. |
T1057 | Process Discovery | Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from [Process Discovery](https://attack.mitre.org/techniques/T1057) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
In Windows environments, adversaries could obtain details on running processes using the [Tasklist](https://attack.mitre.org/software/S0057) utility via [cmd](https://attack.mitre.org/software/S0106) or <code>Get-Process</code> via [PowerShell](https://attack.mitre.org/techniques/T1059/001). Information about processes can also be extracted from the output of [Native API](https://attack.mitre.org/techniques/T1106) calls such as <code>CreateToolhelp32Snapshot</code>. In Mac and Linux, this is accomplished with the <code>ps</code> command. Adversaries may also opt to enumerate processes via `/proc`.
On network devices, [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as `show processes` can be used to display current running processes.(Citation: US-CERT-TA18-106A)(Citation: show_processes_cisco_cmd) | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Normal, benign system and network events that look like process discovery may be uncommon, depending on the environment and how they are used. Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
For network infrastructure devices, collect AAA logging to monitor for `show` commands being run by non-standard users from non-standard locations. |
T1564.009 | Hide Artifacts: Resource Forking | Adversaries may abuse resource forks to hide malicious code or executables to evade detection and bypass security applications. A resource fork provides applications a structured way to store resources such as thumbnail images, menu definitions, icons, dialog boxes, and code.(Citation: macOS Hierarchical File System Overview) Usage of a resource fork is identifiable when displaying a file’s extended attributes, using <code>ls -l@</code> or <code>xattr -l</code> commands. Resource forks have been deprecated and replaced with the application bundle structure. Non-localized resources are placed at the top level directory of an application bundle, while localized resources are placed in the <code>/Resources</code> folder.(Citation: Resource and Data Forks)(Citation: ELC Extended Attributes)
Adversaries can use resource forks to hide malicious data that may otherwise be stored directly in files. Adversaries can execute content with an attached resource fork, at a specified offset, that is moved to an executable location then invoked. Resource fork content may also be obfuscated/encrypted until execution.(Citation: sentinellabs resource named fork 2020)(Citation: tau bundlore erika noerenberg 2020) | 12 October 2021 | enterprise-attack | Defense Evasion | Identify files with the <code>com.apple.ResourceFork</code> extended attribute and large data amounts stored in resource forks.
Monitor command-line activity leveraging the use of resource forks, especially those immediately followed by potentially malicious activity such as creating network connections. |
T1548.006 | Abuse Elevation Control Mechanism: TCC Manipulation | Adversaries can manipulate or abuse the Transparency, Consent, & Control (TCC) service or database to execute malicious applications with elevated permissions. TCC is a Privacy & Security macOS control mechanism used to determine if the running process has permission to access the data or services protected by TCC, such as screen sharing, camera, microphone, or Full Disk Access (FDA).
When an application requests to access data or a service protected by TCC, the TCC daemon (`tccd`) checks the TCC database, located at `/Library/Application Support/com.apple.TCC/TCC.db` (and `~/` equivalent), for existing permissions. If permissions do not exist, then the user is prompted to grant permission. Once permissions are granted, the database stores the application's permissions and will not prompt the user again unless reset. For example, when a web browser requests permissions to the user's webcam, once granted the web browser may not explicitly prompt the user again.(Citation: welivesecurity TCC)
Adversaries may manipulate the TCC database or otherwise abuse the TCC service to execute malicious content. This can be done in various ways, including using privileged system applications to execute malicious payloads or manipulating the database to grant their application TCC permissions.
For example, adversaries can use Finder, which has FDA permissions by default, to execute malicious [AppleScript](https://attack.mitre.org/techniques/T1059/002) while preventing a user prompt. For a system without System Integrity Protection (SIP) enabled, adversaries have also manipulated the operating system to load an adversary controlled TCC database using environment variables and [Launchctl](https://attack.mitre.org/techniques/T1569/001).(Citation: TCC macOS bypass)(Citation: TCC Database)
Adversaries may also opt to instead inject code (e.g., [Process Injection](https://attack.mitre.org/techniques/T1055)) into targeted applications with the desired TCC permissions.
| 21 March 2024 | enterprise-attack | Defense Evasion, Privilege Escalation | null |
T1098.006 | Account Manipulation: Additional Container Cluster Roles | An adversary may add additional roles or permissions to an adversary-controlled user or service account to maintain persistent access to a container orchestration system. For example, an adversary with sufficient permissions may create a RoleBinding or a ClusterRoleBinding to bind a Role or ClusterRole to a Kubernetes account.(Citation: Kubernetes RBAC)(Citation: Aquasec Kubernetes Attack 2023) Where attribute-based access control (ABAC) is in use, an adversary with sufficient permissions may modify a Kubernetes ABAC policy to give the target account additional permissions.(Citation: Kuberentes ABAC)
This account modification may immediately follow [Create Account](https://attack.mitre.org/techniques/T1136) or other malicious account activity. Adversaries may also modify existing [Valid Accounts](https://attack.mitre.org/techniques/T1078) that they have compromised.
Note that where container orchestration systems are deployed in cloud environments, as with Google Kubernetes Engine, Amazon Elastic Kubernetes Service, and Azure Kubernetes Service, cloud-based role-based access control (RBAC) assignments or ABAC policies can often be used in place of or in addition to local permission assignments.(Citation: Google Cloud Kubernetes IAM)(Citation: AWS EKS IAM Roles for Service Accounts)(Citation: Microsoft Azure Kubernetes Service Service Accounts) In these cases, this technique may be used in conjunction with [Additional Cloud Roles](https://attack.mitre.org/techniques/T1098/003). | 14 July 2023 | enterprise-attack | Persistence, Privilege Escalation | null |
T1195.003 | Supply Chain Compromise: Compromise Hardware Supply Chain | Adversaries may manipulate hardware components in products prior to receipt by a final consumer for the purpose of data or system compromise. By modifying hardware or firmware in the supply chain, adversaries can insert a backdoor into consumer networks that may be difficult to detect and give the adversary a high degree of control over the system. Hardware backdoors may be inserted into various devices, such as servers, workstations, network infrastructure, or peripherals. | 11 March 2020 | enterprise-attack | Initial Access | Perform physical inspection of hardware to look for potential tampering. Perform integrity checking on pre-OS boot mechanisms that can be manipulated for malicious purposes. |
T1484.002 | Domain or Tenant Policy Modification: Trust Modification | Adversaries may add new domain trusts, modify the properties of existing domain trusts, or otherwise change the configuration of trust relationships between domains and tenants to evade defenses and/or elevate privileges.Trust details, such as whether or not user identities are federated, allow authentication and authorization properties to apply between domains or tenants for the purpose of accessing shared resources.(Citation: Microsoft - Azure AD Federation) These trust objects may include accounts, credentials, and other authentication material applied to servers, tokens, and domains.
Manipulating these trusts may allow an adversary to escalate privileges and/or evade defenses by modifying settings to add objects which they control. For example, in Microsoft Active Directory (AD) environments, this may be used to forge [SAML Tokens](https://attack.mitre.org/techniques/T1606/002) without the need to compromise the signing certificate to forge new credentials. Instead, an adversary can manipulate domain trusts to add their own signing certificate. An adversary may also convert an AD domain to a federated domain using Active Directory Federation Services (AD FS), which may enable malicious trust modifications such as altering the claim issuance rules to log in any valid set of credentials as a specified user.(Citation: AADInternals zure AD Federated Domain)
An adversary may also add a new federated identity provider to an identity tenant such as Okta, which may enable the adversary to authenticate as any user of the tenant.(Citation: Okta Cross-Tenant Impersonation 2023) | 28 December 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Monitor for modifications to domain trust settings, such as when a user or application modifies the federation settings on the domain or updates domain authentication from Managed to Federated via ActionTypes <code>Set federation settings on domain</code> and <code>Set domain authentication</code>.(Citation: Microsoft - Azure Sentinel ADFSDomainTrustMods) This may also include monitoring for Event ID 307 which can be correlated to relevant Event ID 510 with the same Instance ID for change details.(Citation: Sygnia Golden SAML)(Citation: CISA SolarWinds Cloud Detection)
Monitor for PowerShell commands such as: <code>Update-MSOLFederatedDomain –DomainName: "Federated Domain Name"</code>, or <code>Update-MSOLFederatedDomain –DomainName: "Federated Domain Name" –supportmultipledomain</code>.(Citation: Microsoft - Update or Repair Federated domain) |
T1599.001 | Network Boundary Bridging: Network Address Translation Traversal | Adversaries may bridge network boundaries by modifying a network device’s Network Address Translation (NAT) configuration. Malicious modifications to NAT may enable an adversary to bypass restrictions on traffic routing that otherwise separate trusted and untrusted networks.
Network devices such as routers and firewalls that connect multiple networks together may implement NAT during the process of passing packets between networks. When performing NAT, the network device will rewrite the source and/or destination addresses of the IP address header. Some network designs require NAT for the packets to cross the border device. A typical example of this is environments where internal networks make use of non-Internet routable addresses.(Citation: RFC1918)
When an adversary gains control of a network boundary device, they can either leverage existing NAT configurations to send traffic between two separated networks, or they can implement NAT configurations of their own design. In the case of network designs that require NAT to function, this enables the adversary to overcome inherent routing limitations that would normally prevent them from accessing protected systems behind the border device. In the case of network designs that do not require NAT, address translation can be used by adversaries to obscure their activities, as changing the addresses of packets that traverse a network boundary device can make monitoring data transmissions more challenging for defenders.
Adversaries may use [Patch System Image](https://attack.mitre.org/techniques/T1601/001) to change the operating system of a network device, implementing their own custom NAT mechanisms to further obscure their activities | 19 October 2020 | enterprise-attack | Defense Evasion | Consider monitoring network traffic on both interfaces of border network devices. Compare packets transmitted by the device between networks to look for signs of NAT being implemented. Packets which have their IP addresses changed should still have the same size and contents in the data encapsulated beyond Layer 3. In some cases, Port Address Translation (PAT) may also be used by an adversary.
Monitor the border network device’s configuration to determine if any unintended NAT rules have been added without authorization. |
T1102.002 | Web Service: Bidirectional Communication | Adversaries may use an existing, legitimate external Web service as a means for sending commands to and receiving output from a compromised system over the Web service channel. Compromised systems may leverage popular websites and social media to host command and control (C2) instructions. Those infected systems can then send the output from those commands back over that Web service channel. The return traffic may occur in a variety of ways, depending on the Web service being utilized. For example, the return traffic may take the form of the compromised system posting a comment on a forum, issuing a pull request to development project, updating a document hosted on a Web service, or by sending a Tweet.
Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection. | 14 March 2020 | enterprise-attack | Command and Control | Host data that can relate unknown or suspicious process activity using a network connection is important to supplement any existing indicators of compromise based on malware command and control signatures and infrastructure or the presence of strong encryption. Packet capture analysis will require SSL/TLS inspection if data is encrypted. Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). User behavior monitoring may help to detect abnormal patterns of activity.(Citation: University of Birmingham C2) |
T1027.011 | Obfuscated Files or Information: Fileless Storage | Adversaries may store data in "fileless" formats to conceal malicious activity from defenses. Fileless storage can be broadly defined as any format other than a file. Common examples of non-volatile fileless storage include the Windows Registry, event logs, or WMI repository.(Citation: Microsoft Fileless)(Citation: SecureList Fileless)
Similar to fileless in-memory behaviors such as [Reflective Code Loading](https://attack.mitre.org/techniques/T1620) and [Process Injection](https://attack.mitre.org/techniques/T1055), fileless data storage may remain undetected by anti-virus and other endpoint security tools that can only access specific file formats from disk storage.
Adversaries may use fileless storage to conceal various types of stored data, including payloads/shellcode (potentially being used as part of [Persistence](https://attack.mitre.org/tactics/TA0003)) and collected data not yet exfiltrated from the victim (e.g., [Local Data Staging](https://attack.mitre.org/techniques/T1074/001)). Adversaries also often encrypt, encode, splice, or otherwise obfuscate this fileless data when stored.
Some forms of fileless storage activity may indirectly create artifacts in the file system, but in central and otherwise difficult to inspect formats such as the WMI (e.g., `%SystemRoot%\System32\Wbem\Repository`) or Registry (e.g., `%SystemRoot%\System32\Config`) physical files.(Citation: Microsoft Fileless) | 23 March 2023 | enterprise-attack | Defense Evasion | null |
T1574.007 | Hijack Execution Flow: Path Interception by PATH Environment Variable | Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.
Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.
For example, on Windows if an adversary places a malicious program named "net.exe" in `C:\example path`, which by default precedes `C:\Windows\system32\net.exe` in the PATH environment variable, when "net" is executed from the command-line the `C:\example path` will be called instead of the system's legitimate executable at `C:\Windows\system32\net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059).(Citation: ExpressVPN PATH env Windows 2021)
Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, [Unix Shell Configuration Modification](https://attack.mitre.org/techniques/T1546/004), or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022) | 13 March 2020 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | Monitor file creation for files named after partial directories and in locations that may be searched for common processes through the environment variable, or otherwise should not be user writable. Monitor the executing process for process executable paths that are named for partial directories. Monitor file creation for programs that are named after Windows system programs or programs commonly executed without a path (such as "findstr," "net," and "python"). If this activity occurs outside of known administration activity, upgrades, installations, or patches, then it may be suspicious.
Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement. |
T1608.001 | Stage Capabilities: Upload Malware | Adversaries may upload malware to third-party or adversary controlled infrastructure to make it accessible during targeting. Malicious software can include payloads, droppers, post-compromise tools, backdoors, and a variety of other malicious content. Adversaries may upload malware to support their operations, such as making a payload available to a victim network to enable [Ingress Tool Transfer](https://attack.mitre.org/techniques/T1105) by placing it on an Internet accessible web server.
Malware may be placed on infrastructure that was previously purchased/rented by the adversary ([Acquire Infrastructure](https://attack.mitre.org/techniques/T1583)) or was otherwise compromised by them ([Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)). Malware can also be staged on web services, such as GitHub or Pastebin, or hosted on the InterPlanetary File System (IPFS), where decentralized content storage makes the removal of malicious files difficult.(Citation: Volexity Ocean Lotus November 2020)(Citation: Talos IPFS 2022)
Adversaries may upload backdoored files, such as application binaries, virtual machine images, or container images, to third-party software stores or repositories (ex: GitHub, CNET, AWS Community AMIs, Docker Hub). By chance encounter, victims may directly download/install these backdoored files via [User Execution](https://attack.mitre.org/techniques/T1204). [Masquerading](https://attack.mitre.org/techniques/T1036) may increase the chance of users mistakenly executing these files. | 17 March 2021 | enterprise-attack | Resource Development | If infrastructure or patterns in malware have been previously identified, internet scanning may uncover when an adversary has staged malware to make it accessible for targeting.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on post-compromise phases of the adversary lifecycle, such as [User Execution](https://attack.mitre.org/techniques/T1204) or [Ingress Tool Transfer](https://attack.mitre.org/techniques/T1105). |
T1548.003 | Abuse Elevation Control Mechanism: Sudo and Sudo Caching | Adversaries may perform sudo caching and/or use the sudoers file to elevate privileges. Adversaries may do this to execute commands as other users or spawn processes with higher privileges.
Within Linux and MacOS systems, sudo (sometimes referred to as "superuser do") allows users to perform commands from terminals with elevated privileges and to control who can perform these commands on the system. The <code>sudo</code> command "allows a system administrator to delegate authority to give certain users (or groups of users) the ability to run some (or all) commands as root or another user while providing an audit trail of the commands and their arguments."(Citation: sudo man page 2018) Since sudo was made for the system administrator, it has some useful configuration features such as a <code>timestamp_timeout</code>, which is the amount of time in minutes between instances of <code>sudo</code> before it will re-prompt for a password. This is because <code>sudo</code> has the ability to cache credentials for a period of time. Sudo creates (or touches) a file at <code>/var/db/sudo</code> with a timestamp of when sudo was last run to determine this timeout. Additionally, there is a <code>tty_tickets</code> variable that treats each new tty (terminal session) in isolation. This means that, for example, the sudo timeout of one tty will not affect another tty (you will have to type the password again).
The sudoers file, <code>/etc/sudoers</code>, describes which users can run which commands and from which terminals. This also describes which commands users can run as other users or groups. This provides the principle of least privilege such that users are running in their lowest possible permissions for most of the time and only elevate to other users or permissions as needed, typically by prompting for a password. However, the sudoers file can also specify when to not prompt users for passwords with a line like <code>user1 ALL=(ALL) NOPASSWD: ALL</code>.(Citation: OSX.Dok Malware) Elevated privileges are required to edit this file though.
Adversaries can also abuse poor configurations of these mechanisms to escalate privileges without needing the user's password. For example, <code>/var/db/sudo</code>'s timestamp can be monitored to see if it falls within the <code>timestamp_timeout</code> range. If it does, then malware can execute sudo commands without needing to supply the user's password. Additional, if <code>tty_tickets</code> is disabled, adversaries can do this from any tty for that user.
In the wild, malware has disabled <code>tty_tickets</code> to potentially make scripting easier by issuing <code>echo \'Defaults !tty_tickets\' >> /etc/sudoers</code>.(Citation: cybereason osx proton) In order for this change to be reflected, the malware also issued <code>killall Terminal</code>. As of macOS Sierra, the sudoers file has <code>tty_tickets</code> enabled by default. | 30 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | On Linux, auditd can alert every time a user's actual ID and effective ID are different (this is what happens when you sudo). This technique is abusing normal functionality in macOS and Linux systems, but sudo has the ability to log all input and output based on the <code>LOG_INPUT</code> and <code>LOG_OUTPUT</code> directives in the <code>/etc/sudoers</code> file. |
T1016.002 | System Network Configuration Discovery: Wi-Fi Discovery | Adversaries may search for information about Wi-Fi networks, such as network names and passwords, on compromised systems. Adversaries may use Wi-Fi information as part of [Account Discovery](https://attack.mitre.org/techniques/T1087), [Remote System Discovery](https://attack.mitre.org/techniques/T1018), and other discovery or [Credential Access](https://attack.mitre.org/tactics/TA0006) activity to support both ongoing and future campaigns.
Adversaries may collect various types of information about Wi-Fi networks from hosts. For example, on Windows names and passwords of all Wi-Fi networks a device has previously connected to may be available through `netsh wlan show profiles` to enumerate Wi-Fi names and then `netsh wlan show profile “Wi-Fi name” key=clear` to show a Wi-Fi network’s corresponding password.(Citation: BleepingComputer Agent Tesla steal wifi passwords)(Citation: Malware Bytes New AgentTesla variant steals WiFi credentials)(Citation: Check Point APT35 CharmPower January 2022) Additionally, names and other details of locally reachable Wi-Fi networks can be discovered using calls to `wlanAPI.dll` [Native API](https://attack.mitre.org/techniques/T1106) functions.(Citation: Binary Defense Emotes Wi-Fi Spreader)
On Linux, names and passwords of all Wi-Fi-networks a device has previously connected to may be available in files under ` /etc/NetworkManager/system-connections/`.(Citation: Wi-Fi Password of All Connected Networks in Windows/Linux) On macOS, the password of a known Wi-Fi may be identified with ` security find-generic-password -wa wifiname` (requires admin username/password).(Citation: Find Wi-Fi Password on Mac)
| 08 September 2023 | enterprise-attack | Discovery | This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features. |
T1578.004 | Modify Cloud Compute Infrastructure: Revert Cloud Instance | An adversary may revert changes made to a cloud instance after they have performed malicious activities in attempt to evade detection and remove evidence of their presence. In highly virtualized environments, such as cloud-based infrastructure, this may be accomplished by restoring virtual machine (VM) or data storage snapshots through the cloud management dashboard or cloud APIs.
Another variation of this technique is to utilize temporary storage attached to the compute instance. Most cloud providers provide various types of storage including persistent, local, and/or ephemeral, with the ephemeral types often reset upon stop/restart of the VM.(Citation: Tech Republic - Restore AWS Snapshots)(Citation: Google - Restore Cloud Snapshot) | 16 June 2020 | enterprise-attack | Defense Evasion | Establish centralized logging of instance activity, which can be used to monitor and review system events even after reverting to a snapshot, rolling back changes, or changing persistence/type of storage. Monitor specifically for events related to snapshots and rollbacks and VM configuration changes, that are occurring outside of normal activity. To reduce false positives, valid change management procedures could introduce a known identifier that is logged with the change (e.g., tag or header) if supported by the cloud provider, to help distinguish valid, expected actions from malicious ones. |
T1542.003 | Pre-OS Boot: Bootkit | Adversaries may use bootkits to persist on systems. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.
A bootkit is a malware variant that modifies the boot sectors of a hard drive, including the Master Boot Record (MBR) and Volume Boot Record (VBR). (Citation: Mandiant M Trends 2016) The MBR is the section of disk that is first loaded after completing hardware initialization by the BIOS. It is the location of the boot loader. An adversary who has raw access to the boot drive may overwrite this area, diverting execution during startup from the normal boot loader to adversary code. (Citation: Lau 2011)
The MBR passes control of the boot process to the VBR. Similar to the case of MBR, an adversary who has raw access to the boot drive may overwrite the VBR to divert execution during startup to adversary code. | 19 December 2019 | enterprise-attack | Defense Evasion, Persistence | Perform integrity checking on MBR and VBR. Take snapshots of MBR and VBR and compare against known good samples. Report changes to MBR and VBR as they occur for indicators of suspicious activity and further analysis. |
T1218.007 | System Binary Proxy Execution: Msiexec | Adversaries may abuse msiexec.exe to proxy execution of malicious payloads. Msiexec.exe is the command-line utility for the Windows Installer and is thus commonly associated with executing installation packages (.msi).(Citation: Microsoft msiexec) The Msiexec.exe binary may also be digitally signed by Microsoft.
Adversaries may abuse msiexec.exe to launch local or network accessible MSI files. Msiexec.exe can also execute DLLs.(Citation: LOLBAS Msiexec)(Citation: TrendMicro Msiexec Feb 2018) Since it may be signed and native on Windows systems, msiexec.exe can be used to bypass application control solutions that do not account for its potential abuse. Msiexec.exe execution may also be elevated to SYSTEM privileges if the <code>AlwaysInstallElevated</code> policy is enabled.(Citation: Microsoft AlwaysInstallElevated 2018) | 24 January 2020 | enterprise-attack | Defense Evasion | Use process monitoring to monitor the execution and arguments of msiexec.exe. Compare recent invocations of msiexec.exe with prior history of known good arguments and executed MSI files or DLLs to determine anomalous and potentially adversarial activity. Command arguments used before and after the invocation of msiexec.exe may also be useful in determining the origin and purpose of the MSI files or DLLs being executed. |
T1134.003 | Access Token Manipulation: Make and Impersonate Token | Adversaries may make new tokens and impersonate users to escalate privileges and bypass access controls. For example, if an adversary has a username and password but the user is not logged onto the system the adversary can then create a logon session for the user using the `LogonUser` function.(Citation: LogonUserW function) The function will return a copy of the new session's access token and the adversary can use `SetThreadToken` to assign the token to a thread.
This behavior is distinct from [Token Impersonation/Theft](https://attack.mitre.org/techniques/T1134/001) in that this refers to creating a new user token instead of stealing or duplicating an existing one. | 18 February 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | If an adversary is using a standard command-line shell, analysts can detect token manipulation by auditing command-line activity. Specifically, analysts should look for use of the <code>runas</code> command. Detailed command-line logging is not enabled by default in Windows.(Citation: Microsoft Command-line Logging)
If an adversary is using a payload that calls the Windows token APIs directly, analysts can detect token manipulation only through careful analysis of user network activity, examination of running processes, and correlation with other endpoint and network behavior.
Analysts can also monitor for use of Windows APIs such as <code>LogonUser</code> and <code> SetThreadToken</code> and correlate activity with other suspicious behavior to reduce false positives that may be due to normal benign use by users and administrators. |
T1021.007 | Remote Services: Cloud Services | Adversaries may log into accessible cloud services within a compromised environment using [Valid Accounts](https://attack.mitre.org/techniques/T1078) that are synchronized with or federated to on-premises user identities. The adversary may then perform management actions or access cloud-hosted resources as the logged-on user.
Many enterprises federate centrally managed user identities to cloud services, allowing users to login with their domain credentials in order to access the cloud control plane. Similarly, adversaries may connect to available cloud services through the web console or through the cloud command line interface (CLI) (e.g., [Cloud API](https://attack.mitre.org/techniques/T1059/009)), using commands such as <code>Connect-AZAccount</code> for Azure PowerShell, <code>Connect-MgGraph</code> for Microsoft Graph PowerShell, and <code>gcloud auth login</code> for the Google Cloud CLI.
In some cases, adversaries may be able to authenticate to these services via [Application Access Token](https://attack.mitre.org/techniques/T1550/001) instead of a username and password. | 21 February 2023 | enterprise-attack | Lateral Movement | null |
T1543.001 | Create or Modify System Process: Launch Agent | Adversaries may create or modify launch agents to repeatedly execute malicious payloads as part of persistence. When a user logs in, a per-user launchd process is started which loads the parameters for each launch-on-demand user agent from the property list (.plist) file found in <code>/System/Library/LaunchAgents</code>, <code>/Library/LaunchAgents</code>, and <code>~/Library/LaunchAgents</code>.(Citation: AppleDocs Launch Agent Daemons)(Citation: OSX Keydnap malware) (Citation: Antiquated Mac Malware) Property list files use the <code>Label</code>, <code>ProgramArguments </code>, and <code>RunAtLoad</code> keys to identify the Launch Agent's name, executable location, and execution time.(Citation: OSX.Dok Malware) Launch Agents are often installed to perform updates to programs, launch user specified programs at login, or to conduct other developer tasks.
Launch Agents can also be executed using the [Launchctl](https://attack.mitre.org/techniques/T1569/001) command.
Adversaries may install a new Launch Agent that executes at login by placing a .plist file into the appropriate folders with the <code>RunAtLoad</code> or <code>KeepAlive</code> keys set to <code>true</code>.(Citation: Sofacy Komplex Trojan)(Citation: Methods of Mac Malware Persistence) The Launch Agent name may be disguised by using a name from the related operating system or benign software. Launch Agents are created with user level privileges and execute with user level permissions.(Citation: OSX Malware Detection)(Citation: OceanLotus for OS X) | 17 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor Launch Agent creation through additional plist files and utilities such as Objective-See’s KnockKnock application. Launch Agents also require files on disk for persistence which can also be monitored via other file monitoring applications.
Ensure Launch Agent's <code> ProgramArguments </code> key pointing to executables located in the <code>/tmp</code> or <code>/shared</code> folders are in alignment with enterprise policy. Ensure all Launch Agents with the <code>RunAtLoad</code> key set to <code>true</code> are in alignment with policy. |
T1583 | Acquire Infrastructure | Adversaries may buy, lease, rent, or obtain infrastructure that can be used during targeting. A wide variety of infrastructure exists for hosting and orchestrating adversary operations. Infrastructure solutions include physical or cloud servers, domains, and third-party web services.(Citation: TrendmicroHideoutsLease) Some infrastructure providers offer free trial periods, enabling infrastructure acquisition at limited to no cost.(Citation: Free Trial PurpleUrchin) Additionally, botnets are available for rent or purchase.
Use of these infrastructure solutions allows adversaries to stage, launch, and execute operations. Solutions may help adversary operations blend in with traffic that is seen as normal, such as contacting third-party web services or acquiring infrastructure to support [Proxy](https://attack.mitre.org/techniques/T1090), including from residential proxy services.(Citation: amnesty_nso_pegasus)(Citation: FBI Proxies Credential Stuffing)(Citation: Mandiant APT29 Microsoft 365 2022) Depending on the implementation, adversaries may use infrastructure that makes it difficult to physically tie back to them as well as utilize infrastructure that can be rapidly provisioned, modified, and shut down. | 30 September 2020 | enterprise-attack | Resource Development | Consider use of services that may aid in tracking of newly acquired infrastructure, such as WHOIS databases for domain registration information.
Once adversaries have provisioned infrastructure (ex: a server for use in command and control), internet scans may help proactively discover adversary acquired infrastructure. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1098.002 | Account Manipulation: Additional Email Delegate Permissions | Adversaries may grant additional permission levels to maintain persistent access to an adversary-controlled email account.
For example, the <code>Add-MailboxPermission</code> [PowerShell](https://attack.mitre.org/techniques/T1059/001) cmdlet, available in on-premises Exchange and in the cloud-based service Office 365, adds permissions to a mailbox.(Citation: Microsoft - Add-MailboxPermission)(Citation: FireEye APT35 2018)(Citation: Crowdstrike Hiding in Plain Sight 2018) In Google Workspace, delegation can be enabled via the Google Admin console and users can delegate accounts via their Gmail settings.(Citation: Gmail Delegation)(Citation: Google Ensuring Your Information is Safe)
Adversaries may also assign mailbox folder permissions through individual folder permissions or roles. In Office 365 environments, adversaries may assign the Default or Anonymous user permissions or roles to the Top of Information Store (root), Inbox, or other mailbox folders. By assigning one or both user permissions to a folder, the adversary can utilize any other account in the tenant to maintain persistence to the target user’s mail folders.(Citation: Mandiant Defend UNC2452 White Paper)
This may be used in persistent threat incidents as well as BEC (Business Email Compromise) incidents where an adversary can add [Additional Cloud Roles](https://attack.mitre.org/techniques/T1098/003) to the accounts they wish to compromise. This may further enable use of additional techniques for gaining access to systems. For example, compromised business accounts are often used to send messages to other accounts in the network of the target business while creating inbox rules (ex: [Internal Spearphishing](https://attack.mitre.org/techniques/T1534)), so the messages evade spam/phishing detection mechanisms.(Citation: Bienstock, D. - Defending O365 - 2019) | 19 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor for unusual Exchange and Office 365 email account permissions changes that may indicate excessively broad permissions being granted to compromised accounts.
Enable the UpdateFolderPermissions action for all logon types. The mailbox audit log will forward folder permission modification events to the Unified Audit Log. Create rules to alert on ModifyFolderPermissions operations where the Anonymous or Default user is assigned permissions other than None.
A larger than normal volume of emails sent from an account and similar phishing emails sent from real accounts within a network may be a sign that an account was compromised and attempts to leverage access with modified email permissions is occurring. |
T1485 | Data Destruction | Adversaries may destroy data and files on specific systems or in large numbers on a network to interrupt availability to systems, services, and network resources. Data destruction is likely to render stored data irrecoverable by forensic techniques through overwriting files or data on local and remote drives.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)(Citation: Unit 42 Shamoon3 2018)(Citation: Talos Olympic Destroyer 2018) Common operating system file deletion commands such as <code>del</code> and <code>rm</code> often only remove pointers to files without wiping the contents of the files themselves, making the files recoverable by proper forensic methodology. This behavior is distinct from [Disk Content Wipe](https://attack.mitre.org/techniques/T1561/001) and [Disk Structure Wipe](https://attack.mitre.org/techniques/T1561/002) because individual files are destroyed rather than sections of a storage disk or the disk's logical structure.
Adversaries may attempt to overwrite files and directories with randomly generated data to make it irrecoverable.(Citation: Kaspersky StoneDrill 2017)(Citation: Unit 42 Shamoon3 2018) In some cases politically oriented image files have been used to overwrite data.(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)
To maximize impact on the target organization in operations where network-wide availability interruption is the goal, malware designed for destroying data may have worm-like features to propagate across a network by leveraging additional techniques like [Valid Accounts](https://attack.mitre.org/techniques/T1078), [OS Credential Dumping](https://attack.mitre.org/techniques/T1003), and [SMB/Windows Admin Shares](https://attack.mitre.org/techniques/T1021/002).(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)(Citation: Talos Olympic Destroyer 2018).
In cloud environments, adversaries may leverage access to delete cloud storage, cloud storage accounts, machine images, and other infrastructure crucial to operations to damage an organization or their customers.(Citation: Data Destruction - Threat Post)(Citation: DOJ - Cisco Insider) | 14 March 2019 | enterprise-attack | Impact | Use process monitoring to monitor the execution and command-line parameters of binaries that could be involved in data destruction activity, such as [SDelete](https://attack.mitre.org/software/S0195). Monitor for the creation of suspicious files as well as high unusual file modification activity. In particular, look for large quantities of file modifications in user directories and under <code>C:\Windows\System32\</code>.
In cloud environments, the occurrence of anomalous high-volume deletion events, such as the <code>DeleteDBCluster</code> and <code>DeleteGlobalCluster</code> events in AWS, or a high quantity of data deletion events, such as <code>DeleteBucket</code>, within a short period of time may indicate suspicious activity. |
T1056.002 | Input Capture: GUI Input Capture | Adversaries may mimic common operating system GUI components to prompt users for credentials with a seemingly legitimate prompt. When programs are executed that need additional privileges than are present in the current user context, it is common for the operating system to prompt the user for proper credentials to authorize the elevated privileges for the task (ex: [Bypass User Account Control](https://attack.mitre.org/techniques/T1548/002)).
Adversaries may mimic this functionality to prompt users for credentials with a seemingly legitimate prompt for a number of reasons that mimic normal usage, such as a fake installer requiring additional access or a fake malware removal suite.(Citation: OSX Malware Exploits MacKeeper) This type of prompt can be used to collect credentials via various languages such as [AppleScript](https://attack.mitre.org/techniques/T1059/002)(Citation: LogRhythm Do You Trust Oct 2014)(Citation: OSX Keydnap malware)(Citation: Spoofing credential dialogs) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).(Citation: LogRhythm Do You Trust Oct 2014)(Citation: Enigma Phishing for Credentials Jan 2015)(Citation: Spoofing credential dialogs) On Linux systems adversaries may launch dialog boxes prompting users for credentials from malicious shell scripts or the command line (i.e. [Unix Shell](https://attack.mitre.org/techniques/T1059/004)).(Citation: Spoofing credential dialogs)
Adversaries may also mimic common software authentication requests, such as those from browsers or email clients. This may also be paired with user activity monitoring (i.e., [Browser Information Discovery](https://attack.mitre.org/techniques/T1217) and/or [Application Window Discovery](https://attack.mitre.org/techniques/T1010)) to spoof prompts when users are naturally accessing sensitive sites/data. | 11 February 2020 | enterprise-attack | Collection, Credential Access | Monitor process execution for unusual programs as well as malicious instances of [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) that could be used to prompt users for credentials. For example, command/script history including abnormal parameters (such as requests for credentials and/or strings related to creating password prompts) may be malicious.(Citation: Spoofing credential dialogs)
Inspect and scrutinize input prompts for indicators of illegitimacy, such as non-traditional banners, text, timing, and/or sources. |
T1071 | Application Layer Protocol | Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.(Citation: Mandiant APT29 Eye Spy Email Nov 22) | 31 May 2017 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol standards regarding syntax, structure, or any other variable adversaries could leverage to conceal data.(Citation: University of Birmingham C2) |
T1546.015 | Event Triggered Execution: Component Object Model Hijacking | Adversaries may establish persistence by executing malicious content triggered by hijacked references to Component Object Model (COM) objects. COM is a system within Windows to enable interaction between software components through the operating system.(Citation: Microsoft Component Object Model) References to various COM objects are stored in the Registry.
Adversaries can use the COM system to insert malicious code that can be executed in place of legitimate software through hijacking the COM references and relationships as a means for persistence. Hijacking a COM object requires a change in the Registry to replace a reference to a legitimate system component which may cause that component to not work when executed. When that system component is executed through normal system operation the adversary's code will be executed instead.(Citation: GDATA COM Hijacking) An adversary is likely to hijack objects that are used frequently enough to maintain a consistent level of persistence, but are unlikely to break noticeable functionality within the system as to avoid system instability that could lead to detection. | 16 March 2020 | enterprise-attack | Persistence, Privilege Escalation | There are opportunities to detect COM hijacking by searching for Registry references that have been replaced and through Registry operations (ex: [Reg](https://attack.mitre.org/software/S0075)) replacing known binary paths with unknown paths or otherwise malicious content. Even though some third-party applications define user COM objects, the presence of objects within HKEY_CURRENT_USER\Software\Classes\CLSID\ may be anomalous and should be investigated since user objects will be loaded prior to machine objects in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\.(Citation: Elastic COM Hijacking) Registry entries for existing COM objects may change infrequently. When an entry with a known good path and binary is replaced or changed to an unusual value to point to an unknown binary in a new location, then it may indicate suspicious behavior and should be investigated.
Likewise, if software DLL loads are collected and analyzed, any unusual DLL load that can be correlated with a COM object Registry modification may indicate COM hijacking has been performed. |
T1134.004 | Access Token Manipulation: Parent PID Spoofing | Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the <code>CreateProcess</code> API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via <code>svchost.exe</code> or <code>consent.exe</code>) rather than the current user context.(Citation: Microsoft UAC Nov 2018)
Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of [PowerShell](https://attack.mitre.org/techniques/T1059/001)/[Rundll32](https://attack.mitre.org/techniques/T1218/011) to be <code>explorer.exe</code> rather than an Office document delivered as part of [Spearphishing Attachment](https://attack.mitre.org/techniques/T1566/001).(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via [Visual Basic](https://attack.mitre.org/techniques/T1059/005) within a malicious Office document or any code that can perform [Native API](https://attack.mitre.org/techniques/T1106).(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)
Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as <code>lsass.exe</code>), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017) | 18 February 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Look for inconsistencies between the various fields that store PPID information, such as the EventHeader ProcessId from data collected via Event Tracing for Windows (ETW), Creator Process ID/Name from Windows event logs, and the ProcessID and ParentProcessID (which are also produced from ETW and other utilities such as Task Manager and Process Explorer). The ETW provided EventHeader ProcessId identifies the actual parent process.(Citation: CounterCept PPID Spoofing Dec 2018)
Monitor and analyze API calls to <code>CreateProcess</code>/<code>CreateProcessA</code>, specifically those from user/potentially malicious processes and with parameters explicitly assigning PPIDs (ex: the Process Creation Flags of 0x8XXX, indicating that the process is being created with extended startup information(Citation: Microsoft Process Creation Flags May 2018)). Malicious use of <code>CreateProcess</code>/<code>CreateProcessA</code> may also be proceeded by a call to <code>UpdateProcThreadAttribute</code>, which may be necessary to update process creation attributes.(Citation: Secuirtyinbits Ataware3 May 2019) This may generate false positives from normal UAC elevation behavior, so compare to a system baseline/understanding of normal system activity if possible. |
T1567.003 | Exfiltration Over Web Service: Exfiltration to Text Storage Sites | Adversaries may exfiltrate data to text storage sites instead of their primary command and control channel. Text storage sites, such as <code>pastebin[.]com</code>, are commonly used by developers to share code and other information.
Text storage sites are often used to host malicious code for C2 communication (e.g., [Stage Capabilities](https://attack.mitre.org/techniques/T1608)), but adversaries may also use these sites to exfiltrate collected data. Furthermore, paid features and encryption options may allow adversaries to conceal and store data more securely.(Citation: Pastebin EchoSec)
**Note:** This is distinct from [Exfiltration to Code Repository](https://attack.mitre.org/techniques/T1567/001), which highlight access to code repositories via APIs. | 27 February 2023 | enterprise-attack | Exfiltration | null |
T1092 | Communication Through Removable Media | Adversaries can perform command and control between compromised hosts on potentially disconnected networks using removable media to transfer commands from system to system.(Citation: ESET Sednit USBStealer 2014) Both systems would need to be compromised, with the likelihood that an Internet-connected system was compromised first and the second through lateral movement by [Replication Through Removable Media](https://attack.mitre.org/techniques/T1091). Commands and files would be relayed from the disconnected system to the Internet-connected system to which the adversary has direct access. | 31 May 2017 | enterprise-attack | Command and Control | Monitor file access on removable media. Detect processes that execute when removable media is mounted. |
T1556.003 | Modify Authentication Process: Pluggable Authentication Modules | Adversaries may modify pluggable authentication modules (PAM) to access user credentials or enable otherwise unwarranted access to accounts. PAM is a modular system of configuration files, libraries, and executable files which guide authentication for many services. The most common authentication module is <code>pam_unix.so</code>, which retrieves, sets, and verifies account authentication information in <code>/etc/passwd</code> and <code>/etc/shadow</code>.(Citation: Apple PAM)(Citation: Man Pam_Unix)(Citation: Red Hat PAM)
Adversaries may modify components of the PAM system to create backdoors. PAM components, such as <code>pam_unix.so</code>, can be patched to accept arbitrary adversary supplied values as legitimate credentials.(Citation: PAM Backdoor)
Malicious modifications to the PAM system may also be abused to steal credentials. Adversaries may infect PAM resources with code to harvest user credentials, since the values exchanged with PAM components may be plain-text since PAM does not store passwords.(Citation: PAM Creds)(Citation: Apple PAM) | 26 June 2020 | enterprise-attack | Credential Access, Defense Evasion, Persistence | Monitor PAM configuration and module paths (ex: <code>/etc/pam.d/</code>) for changes. Use system-integrity tools such as AIDE and monitoring tools such as auditd to monitor PAM files.
Look for suspicious account behavior across systems that share accounts, either user, admin, or service accounts. Examples: one account logged into multiple systems simultaneously; multiple accounts logged into the same machine simultaneously; accounts logged in at odd times (ex: when the user is not present) or outside of business hours. Activity may be from interactive login sessions or process ownership from accounts being used to execute binaries on a remote system as a particular account. Correlate other security systems with login information (e.g., a user has an active login session but has not entered the building or does not have VPN access). |
T1608.006 | Stage Capabilities: SEO Poisoning | Adversaries may poison mechanisms that influence search engine optimization (SEO) to further lure staged capabilities towards potential victims. Search engines typically display results to users based on purchased ads as well as the site’s ranking/score/reputation calculated by their web crawlers and algorithms.(Citation: Atlas SEO)(Citation: MalwareBytes SEO)
To help facilitate [Drive-by Compromise](https://attack.mitre.org/techniques/T1189), adversaries may stage content that explicitly manipulates SEO rankings in order to promote sites hosting their malicious payloads (such as [Drive-by Target](https://attack.mitre.org/techniques/T1608/004)) within search engines. Poisoning SEO rankings may involve various tricks, such as stuffing keywords (including in the form of hidden text) into compromised sites. These keywords could be related to the interests/browsing habits of the intended victim(s) as well as more broad, seasonably popular topics (e.g. elections, trending news).(Citation: ZScaler SEO)(Citation: Atlas SEO)
Adversaries may also purchase or plant incoming links to staged capabilities in order to boost the site’s calculated relevance and reputation.(Citation: MalwareBytes SEO)(Citation: DFIR Report Gootloader)
SEO poisoning may also be combined with evasive redirects and other cloaking mechanisms (such as measuring mouse movements or serving content based on browser user agents, user language/localization settings, or HTTP headers) in order to feed SEO inputs while avoiding scrutiny from defenders.(Citation: ZScaler SEO)(Citation: Sophos Gootloader) | 30 September 2022 | enterprise-attack | Resource Development | null |
T1548.002 | Abuse Elevation Control Mechanism: Bypass User Account Control | Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)
If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated [Component Object Model](https://attack.mitre.org/techniques/T1559/001) objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of [Rundll32](https://attack.mitre.org/techniques/T1218/011) to load a specifically crafted DLL which loads an auto-elevated [Component Object Model](https://attack.mitre.org/techniques/T1559/001) object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)
Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:
* <code>eventvwr.exe</code> can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)
Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass) | 30 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | There are many ways to perform UAC bypasses when a user is in the local administrator group on a system, so it may be difficult to target detection on all variations. Efforts should likely be placed on mitigation and collecting enough information on process launches and actions that could be performed before and after a UAC bypass is performed. Monitor process API calls for behavior that may be indicative of [Process Injection](https://attack.mitre.org/techniques/T1055) and unusual loaded DLLs through [DLL Search Order Hijacking](https://attack.mitre.org/techniques/T1574/001), which indicate attempts to gain access to higher privileged processes.
Some UAC bypass methods rely on modifying specific, user-accessible Registry settings. For example:
* The <code>eventvwr.exe</code> bypass uses the <code>[HKEY_CURRENT_USER]\Software\Classes\mscfile\shell\open\command</code> Registry key.(Citation: enigma0x3 Fileless UAC Bypass)
* The <code>sdclt.exe</code> bypass uses the <code>[HKEY_CURRENT_USER]\Software\Microsoft\Windows\CurrentVersion\App Paths\control.exe</code> and <code>[HKEY_CURRENT_USER]\Software\Classes\exefile\shell\runas\command\isolatedCommand</code> Registry keys.(Citation: enigma0x3 sdclt app paths)(Citation: enigma0x3 sdclt bypass)
Analysts should monitor these Registry settings for unauthorized changes. |
T1087.004 | Account Discovery: Cloud Account | Adversaries may attempt to get a listing of cloud accounts. Cloud accounts are those created and configured by an organization for use by users, remote support, services, or for administration of resources within a cloud service provider or SaaS application.
With authenticated access there are several tools that can be used to find accounts. The <code>Get-MsolRoleMember</code> PowerShell cmdlet can be used to obtain account names given a role or permissions group in Office 365.(Citation: Microsoft msolrolemember)(Citation: GitHub Raindance) The Azure CLI (AZ CLI) also provides an interface to obtain user accounts with authenticated access to a domain. The command <code>az ad user list</code> will list all users within a domain.(Citation: Microsoft AZ CLI)(Citation: Black Hills Red Teaming MS AD Azure, 2018)
The AWS command <code>aws iam list-users</code> may be used to obtain a list of users in the current account while <code>aws iam list-roles</code> can obtain IAM roles that have a specified path prefix.(Citation: AWS List Roles)(Citation: AWS List Users) In GCP, <code>gcloud iam service-accounts list</code> and <code>gcloud projects get-iam-policy</code> may be used to obtain a listing of service accounts and users in a project.(Citation: Google Cloud - IAM Servie Accounts List API) | 21 February 2020 | enterprise-attack | Discovery | Monitor processes, command-line arguments, and logs for actions that could be taken to gather information about cloud accounts, including the use of calls to cloud APIs that perform account discovery.
System and network discovery techniques normally occur throughout an operation as an adversary learns the environment, and also to an extent in normal network operations. Therefore discovery data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained. |
T1059.004 | Command and Scripting Interpreter: Unix Shell | Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution.(Citation: DieNet Bash)(Citation: Apple ZShell) Unix shells can control every aspect of a system, with certain commands requiring elevated privileges.
Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems.
Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with [SSH](https://attack.mitre.org/techniques/T1021/004). Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence. | 09 March 2020 | enterprise-attack | Execution | Unix shell usage may be common on administrator, developer, or power user systems, depending on job function. If scripting is restricted for normal users, then any attempt to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.
Scripts are likely to perform actions with various effects on a system that may generate events, depending on the types of monitoring used. Monitor processes and command-line arguments for script execution and subsequent behavior. Actions may be related to network and system information discovery, collection, or other scriptable post-compromise behaviors and could be used as indicators of detection leading back to the source script. |
T1114.001 | Email Collection: Local Email Collection | Adversaries may target user email on local systems to collect sensitive information. Files containing email data can be acquired from a user’s local system, such as Outlook storage or cache files.
Outlook stores data locally in offline data files with an extension of .ost. Outlook 2010 and later supports .ost file sizes up to 50GB, while earlier versions of Outlook support up to 20GB.(Citation: Outlook File Sizes) IMAP accounts in Outlook 2013 (and earlier) and POP accounts use Outlook Data Files (.pst) as opposed to .ost, whereas IMAP accounts in Outlook 2016 (and later) use .ost files. Both types of Outlook data files are typically stored in `C:\Users\<username>\Documents\Outlook Files` or `C:\Users\<username>\AppData\Local\Microsoft\Outlook`.(Citation: Microsoft Outlook Files) | 19 February 2020 | enterprise-attack | Collection | Monitor processes and command-line arguments for actions that could be taken to gather local email files. Monitor for unusual processes accessing local email files. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1538 | Cloud Service Dashboard | An adversary may use a cloud service dashboard GUI with stolen credentials to gain useful information from an operational cloud environment, such as specific services, resources, and features. For example, the GCP Command Center can be used to view all assets, findings of potential security risks, and to run additional queries, such as finding public IP addresses and open ports.(Citation: Google Command Center Dashboard)
Depending on the configuration of the environment, an adversary may be able to enumerate more information via the graphical dashboard than an API. This allows the adversary to gain information without making any API requests. | 30 August 2019 | enterprise-attack | Discovery | Monitor account activity logs to see actions performed and activity associated with the cloud service management console. Some cloud providers, such as AWS, provide distinct log events for login attempts to the management console.(Citation: AWS Console Sign-in Events) |
T1564.008 | Hide Artifacts: Email Hiding Rules | Adversaries may use email rules to hide inbound emails in a compromised user's mailbox. Many email clients allow users to create inbox rules for various email functions, including moving emails to other folders, marking emails as read, or deleting emails. Rules may be created or modified within email clients or through external features such as the <code>New-InboxRule</code> or <code>Set-InboxRule</code> [PowerShell](https://attack.mitre.org/techniques/T1059/001) cmdlets on Windows systems.(Citation: Microsoft Inbox Rules)(Citation: MacOS Email Rules)(Citation: Microsoft New-InboxRule)(Citation: Microsoft Set-InboxRule)
Adversaries may utilize email rules within a compromised user's mailbox to delete and/or move emails to less noticeable folders. Adversaries may do this to hide security alerts, C2 communication, or responses to [Internal Spearphishing](https://attack.mitre.org/techniques/T1534) emails sent from the compromised account.
Any user or administrator within the organization (or adversary with valid credentials) may be able to create rules to automatically move or delete emails. These rules can be abused to impair/delay detection had the email content been immediately seen by a user or defender. Malicious rules commonly filter out emails based on key words (such as <code>malware</code>, <code>suspicious</code>, <code>phish</code>, and <code>hack</code>) found in message bodies and subject lines. (Citation: Microsoft Cloud App Security)
In some environments, administrators may be able to enable email rules that operate organization-wide rather than on individual inboxes. For example, Microsoft Exchange supports transport rules that evaluate all mail an organization receives against user-specified conditions, then performs a user-specified action on mail that adheres to those conditions.(Citation: Microsoft Mail Flow Rules 2023) Adversaries that abuse such features may be able to automatically modify or delete all emails related to specific topics (such as internal security incident notifications). | 07 June 2021 | enterprise-attack | Defense Evasion | Monitor email clients and applications for suspicious activity, such as missing messages or abnormal configuration and/or log entries.
On Windows systems, monitor for creation of suspicious inbox rules through the use of the <code>New-InboxRule</code> and <code>Set-InboxRule</code> PowerShell cmdlets.(Citation: Microsoft BEC Campaign) On MacOS systems, monitor for modifications to the <code>RulesActiveState.plist</code>, <code>SyncedRules.plist</code>, <code>UnsyncedRules.plist</code>, and <code>MessageRules.plist</code> files.(Citation: MacOS Email Rules) |
T1030 | Data Transfer Size Limits | An adversary may exfiltrate data in fixed size chunks instead of whole files or limit packet sizes below certain thresholds. This approach may be used to avoid triggering network data transfer threshold alerts. | 31 May 2017 | enterprise-attack | Exfiltration | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). If a process maintains a long connection during which it consistently sends fixed size data packets or a process opens connections and sends fixed sized data packets at regular intervals, it may be performing an aggregate data transfer. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. (Citation: University of Birmingham C2) |
T1497.003 | Virtualization/Sandbox Evasion: Time Based Evasion | Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.
Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: [Scheduled Task/Job](https://attack.mitre.org/techniques/T1053)). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled [Multi-Stage Channels](https://attack.mitre.org/techniques/T1104) to avoid analysis and scrutiny.(Citation: Deloitte Environment Awareness)
Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as [Ping](https://attack.mitre.org/software/S0097)s, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope Nitol) Another variation, commonly referred to as API hammering, involves making various calls to [Native API](https://attack.mitre.org/techniques/T1106) functions in order to delay execution (while also potentially overloading analysis environments with junk data).(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot)
Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment's timestamp before and after execution of a sleep function.(Citation: ISACA Malware Tricks) | 06 March 2020 | enterprise-attack | Defense Evasion, Discovery | Time-based evasion will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection. |
T1619 | Cloud Storage Object Discovery | Adversaries may enumerate objects in cloud storage infrastructure. Adversaries may use this information during automated discovery to shape follow-on behaviors, including requesting all or specific objects from cloud storage. Similar to [File and Directory Discovery](https://attack.mitre.org/techniques/T1083) on a local host, after identifying available storage services (i.e. [Cloud Infrastructure Discovery](https://attack.mitre.org/techniques/T1580)) adversaries may access the contents/objects stored in cloud infrastructure.
Cloud service providers offer APIs allowing users to enumerate objects stored within cloud storage. Examples include ListObjectsV2 in AWS (Citation: ListObjectsV2) and List Blobs in Azure(Citation: List Blobs) . | 01 October 2021 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Collection and Exfiltration, based on the information obtained.
Monitor cloud logs for API calls used for file or object enumeration for unusual activity. |
T1651 | Cloud Administration Command | Adversaries may abuse cloud management services to execute commands within virtual machines. Resources such as AWS Systems Manager, Azure RunCommand, and Runbooks allow users to remotely run scripts in virtual machines by leveraging installed virtual machine agents. (Citation: AWS Systems Manager Run Command)(Citation: Microsoft Run Command)
If an adversary gains administrative access to a cloud environment, they may be able to abuse cloud management services to execute commands in the environment’s virtual machines. Additionally, an adversary that compromises a service provider or delegated administrator account may similarly be able to leverage a [Trusted Relationship](https://attack.mitre.org/techniques/T1199) to execute commands in connected virtual machines.(Citation: MSTIC Nobelium Oct 2021) | 13 March 2023 | enterprise-attack | Execution | null |