repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qalam/Lei | Qalam | null | 2 | 0 | null | 0 | text-to-image | false | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 28,989 | false | <p align="center">
<br>
<img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
</a>
<a href="https://github.com/huggingface/diffusers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
</a>
<a href="CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
</a>
</p>
🤗 Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of diffusion models.
More precisely, 🤗 Diffusers offers:
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers.
- Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
- Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)).
## Installation
### For PyTorch
**With `pip`** (official package)
```bash
pip install --upgrade diffusers[torch]
```
**With `conda`** (maintained by the community)
```sh
conda install -c conda-forge diffusers
```
### For Flax
**With `pip`**
```bash
pip install --upgrade diffusers[flax]
```
**Apple Silicon (M1/M2) support**
Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps).
## Contributing
We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.
## Quickstart
In order to get started, we recommend taking a look at two notebooks:
- The [Getting started with Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) notebook, which showcases an end-to-end example of usage for diffusion models, schedulers and pipelines.
Take a look at this notebook to learn how to use the pipeline abstraction, which takes care of everything (model, scheduler, noise handling) for you, and also to understand each independent building block in the library.
- The [Training a diffusers model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) notebook summarizes diffusion models training methods. This notebook takes a step-by-step approach to training your
diffusion models on an image dataset, with explanatory graphics.
## Stable Diffusion is fully compatible with `diffusers`!
Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [LAION](https://laion.ai/) and [RunwayML](https://runwayml.com/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 4GB VRAM.
See the [model card](https://huggingface.co/CompVis/stable-diffusion) for more information.
### Text-to-Image generation with Stable Diffusion
First let's install
```bash
pip install --upgrade diffusers transformers accelerate
```
We recommend using the model in [half-precision (`fp16`)](https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/) as it gives almost always the same results as full
precision while being roughly twice as fast and requiring half the amount of GPU RAM.
```python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
#### Running the model locally
You can also simply download the model folder and pass the path to the local folder to the `StableDiffusionPipeline`.
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
Assuming the folder is stored locally under `./stable-diffusion-v1-5`, you can run stable diffusion
as follows:
```python
pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
If you are limited by GPU memory, you might want to consider chunking the attention computation in addition
to using `fp16`.
The following snippet should result in less than 4GB VRAM.
```python
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
image = pipe(prompt).images[0]
```
If you wish to use a different scheduler (e.g.: DDIM, LMS, PNDM/PLMS), you can instantiate
it before the pipeline and pass it to `from_pretrained`.
```python
from diffusers import LMSDiscreteScheduler
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```
If you want to run Stable Diffusion on CPU or you want to have maximum precision on GPU,
please run the model in the default *full-precision* setting:
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
# disable the following line if you run on CPU
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```
### JAX/Flax
Diffusers offers a JAX / Flax implementation of Stable Diffusion for very fast inference. JAX shines specially on TPU hardware because each TPU server has 8 accelerators working in parallel, but it runs great on GPUs too.
Running the pipeline with the default PNDMScheduler:
```python
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", revision="flax", dtype=jax.numpy.bfloat16
)
prompt = "a photo of an astronaut riding a horse on mars"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
**Note**:
If you are limited by TPU memory, please make sure to load the `FlaxStableDiffusionPipeline` in `bfloat16` precision instead of the default `float32` precision as done above. You can do so by telling diffusers to load the weights from "bf16" branch.
```python
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jax.numpy.bfloat16
)
prompt = "a photo of an astronaut riding a horse on mars"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
Diffusers also has a Image-to-Image generation pipeline with Flax/Jax
```python
import jax
import numpy as np
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
import requests
from io import BytesIO
from PIL import Image
from diffusers import FlaxStableDiffusionImg2ImgPipeline
def create_key(seed=0):
return jax.random.PRNGKey(seed)
rng = create_key(0)
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_img = Image.open(BytesIO(response.content)).convert("RGB")
init_img = init_img.resize((768, 512))
prompts = "A fantasy landscape, trending on artstation"
pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="flax",
dtype=jnp.bfloat16,
)
num_samples = jax.device_count()
rng = jax.random.split(rng, jax.device_count())
prompt_ids, processed_image = pipeline.prepare_inputs(prompt=[prompts]*num_samples, image = [init_img]*num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
processed_image = shard(processed_image)
output = pipeline(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
strength=0.75,
num_inference_steps=50,
jit=True,
height=512,
width=768).images
output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
```
Diffusers also has a Text-guided inpainting pipeline with Flax/Jax
```python
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
import PIL
import requests
from io import BytesIO
from diffusers import FlaxStableDiffusionInpaintPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained("xvjiarui/stable-diffusion-2-inpainting")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
init_image = num_samples * [init_image]
mask_image = num_samples * [mask_image]
prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
processed_masked_images = shard(processed_masked_images)
processed_masks = shard(processed_masks)
images = pipeline(prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
### Image-to-Image text-guided generation with Stable Diffusion
The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline
# load the pipeline
device = "cuda"
model_id_or_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
# or download via git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
# and pass `model_id_or_path="./stable-diffusion-v1-5"`.
pipe = pipe.to(device)
# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
prompt = "A fantasy landscape, trending on artstation"
images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
images[0].save("fantasy_landscape.png")
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
### In-painting using Stable Diffusion
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and a text prompt.
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
### Tweak prompts reusing seeds and latents
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked.
Please have a look at [Reusing seeds for deterministic generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/reusing_seeds).
## Fine-Tuning Stable Diffusion
Fine-tuning techniques make it possible to adapt Stable Diffusion to your own dataset, or add new subjects to it. These are some of the techniques supported in `diffusers`:
Textual Inversion is a technique for capturing novel concepts from a small number of example images in a way that can later be used to control text-to-image pipelines. It does so by learning new 'words' in the embedding space of the pipeline's text encoder. These special words can then be used within text prompts to achieve very fine-grained control of the resulting images.
- Textual Inversion. Capture novel concepts from a small set of sample images, and associate them with new "words" in the embedding space of the text encoder. Please, refer to [our training examples](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) or [documentation](https://huggingface.co/docs/diffusers/training/text_inversion) to try for yourself.
- Dreambooth. Another technique to capture new concepts in Stable Diffusion. This method fine-tunes the UNet (and, optionally, also the text encoder) of the pipeline to achieve impressive results. Please, refer to [our training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) and [training report](https://huggingface.co/blog/dreambooth) for additional details and training recommendations.
- Full Stable Diffusion fine-tuning. If you have a more sizable dataset with a specific look or style, you can fine-tune Stable Diffusion so that it outputs images following those examples. This was the approach taken to create [a Pokémon Stable Diffusion model](https://huggingface.co/justinpinkney/pokemon-stable-diffusion) (by Justing Pinkney / Lambda Labs), [a Japanese specific version of Stable Diffusion](https://huggingface.co/spaces/rinna/japanese-stable-diffusion) (by [Rinna Co.](https://github.com/rinnakk/japanese-stable-diffusion/) and others. You can start at [our text-to-image fine-tuning example](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) and go from there.
## Stable Diffusion Community Pipelines
The release of Stable Diffusion as an open source model has fostered a lot of interesting ideas and experimentation.
Our [Community Examples folder](https://github.com/huggingface/diffusers/tree/main/examples/community) contains many ideas worth exploring, like interpolating to create animated videos, using CLIP Guidance for additional prompt fidelity, term weighting, and much more! [Take a look](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview) and [contribute your own](https://huggingface.co/docs/diffusers/using-diffusers/contribute_pipeline).
## Other Examples
There are many ways to try running Diffusers! Here we outline code-focused tools (primarily using `DiffusionPipeline`s and Google Colab) and interactive web-tools.
### Running Code
If you want to run the code yourself 💻, you can try out:
- [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256)
```python
# !pip install diffusers["torch"] transformers
from diffusers import DiffusionPipeline
device = "cuda"
model_id = "CompVis/ldm-text2im-large-256"
# load model and scheduler
ldm = DiffusionPipeline.from_pretrained(model_id)
ldm = ldm.to(device)
# run pipeline in inference (sample random noise and denoise)
prompt = "A painting of a squirrel eating a burger"
image = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images[0]
# save image
image.save("squirrel.png")
```
- [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256)
```python
# !pip install diffusers["torch"]
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-celebahq-256"
device = "cuda"
# load model and scheduler
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
ddpm.to(device)
# run pipeline in inference (sample random noise and denoise)
image = ddpm().images[0]
# save image
image.save("ddpm_generated_image.png")
```
- [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256)
- [Unconditional Diffusion with continuous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024)
**Other Image Notebooks**:
* [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
* [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
**Diffusers for Other Modalities**:
* [Molecule conformation generation](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
* [Model-based reinforcement learning](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
### Web Demos
If you just want to play around with some web demos, you can try out the following 🚀 Spaces:
| Model | Hugging Face Spaces |
|-------------------------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Text-to-Image Latent Diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/text2img-latent-diffusion) |
| Faces generator | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/celeba-latent-diffusion) |
| DDPM with different schedulers | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/fusing/celeba-diffusion) |
| Conditional generation from sketch | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/huggingface/diffuse-the-rest) |
| Composable diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Shuang59/Composable-Diffusion) |
## Definitions
**Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image.
*Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet
<p align="center">
<img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/>
<br>
<em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training. Also known as **Samplers**.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
<p align="center">
<img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/>
<br>
<em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em>
<p>
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
<p align="center">
<img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
<br>
<em> Figure from ImageGen (https://imagen.research.google/). </em>
<p>
## Philosophy
- Readability and clarity is preferred over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continuous outputs**, *e.g.* vision and audio.
- Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of another library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion).
## In the works
For the first release, 🤗 Diffusers focuses on text-to-image diffusion techniques. However, diffusers can be used for much more than that! Over the upcoming releases, we'll be focusing on:
- Diffusers for audio
- Diffusers for reinforcement learning (initial work happening in https://github.com/huggingface/diffusers/pull/105).
- Diffusers for video generation
- Diffusers for molecule generation (initial work happening in https://github.com/huggingface/diffusers/pull/54)
A few pipeline components are already being worked on, namely:
- BDDMPipeline for spectrogram-to-sound vocoding
- GLIDEPipeline to support OpenAI's GLIDE model
- Grad-TTS for text to audio generation / conditional audio generation
We want diffusers to be a toolbox useful for diffusers models in general; if you find yourself limited in any way by the current API, or would like to see additional models, schedulers, or techniques, please open a [GitHub issue](https://github.com/huggingface/diffusers/issues) mentioning what you would like to see.
## Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim).
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
## Citation
```bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
``` | 5649976f381a19c93af23495becb8bf5 |
nateraw/vit-base-patch16-224-cifar10 | nateraw | vit | 5 | 300 | transformers | 4 | image-classification | true | false | false | apache-2.0 | null | ['cifar10'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['image-classification', 'vision', 'pytorch'] | false | true | true | 2,211 | false |
# Vision Transformer Fine Tuned on CIFAR10
Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) and **fine-tuned on CIFAR10** at resolution 224x224.
Check out the code at my [my Github repo](https://github.com/nateraw/huggingface-vit-finetune).
## Usage
```python
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import requests
url = 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/dog10.png'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('nateraw/vit-base-patch16-224-cifar10')
model = ViTForImageClassification.from_pretrained('nateraw/vit-base-patch16-224-cifar10')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
preds = outputs.logits.argmax(dim=1)
classes = [
'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
]
classes[preds[0]]
```
## Model description
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
| a7720f05c366487247c0c8ddec5f5f70 |
jeapaul/languagemodel | jeapaul | wav2vec2 | 13 | 7 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,806 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# languagemodel
This model is a fine-tuned version of [monideep2255/XLRS-torgo](https://huggingface.co/monideep2255/XLRS-torgo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 1.1173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.3015 | 3.12 | 400 | inf | 1.3984 |
| 0.6892 | 6.25 | 800 | inf | 1.1059 |
| 0.5069 | 9.37 | 1200 | inf | 1.0300 |
| 0.3596 | 12.5 | 1600 | inf | 1.0830 |
| 0.2571 | 15.62 | 2000 | inf | 1.1981 |
| 0.198 | 18.75 | 2400 | inf | 1.1009 |
| 0.1523 | 21.87 | 2800 | inf | 1.1803 |
| 0.1112 | 25.0 | 3200 | inf | 1.0429 |
| 0.08 | 28.12 | 3600 | inf | 1.1173 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.13.1
| 04bbbdb7edbd59c5b2c31d25803acb7f |
Helsinki-NLP/opus-mt-de-efi | Helsinki-NLP | marian | 10 | 9 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 776 | false |
### opus-mt-de-efi
* source languages: de
* target languages: efi
* OPUS readme: [de-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-efi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.efi | 24.2 | 0.451 |
| 78c1aa5620eb159180800cab78b7e81e |
Cwhgn/DAMO-YOLO-T | Cwhgn | null | 5 | 0 | null | 1 | null | false | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 4,105 | false |
## Model Description
This **DAMO-YOLO-T** model is a tiny-size object detection model with fast inference speed and high accuracy, trained by **DAMO-YOLO**.
DAMO-YOLO is a fast and accurate object detection method, which is developed by TinyML Team from Alibaba DAMO Data Analytics and Intelligence Lab. And it achieves a higher performance than state-of-the-art YOLO series. DAMO-YOLO is extend from YOLO but with some new techs, including Neural Architecture Search (NAS) backbones, efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. For more details, please refer to our [Arxiv Report](https://arxiv.org/abs/2211.15444) and [Github Code](https://github.com/tinyvision/DAMO-YOLO). Moreover, here you can find not only powerful models, but also highly efficient training strategies and complete tools from training to deployment.
## Chinese Web Demo
- We also provide Chinese Web Demo on ModelScope, including [DAMO-YOLO-T](https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo-t/summary), [DAMO-YOLO-S](https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary), [DAMO-YOLO-M](https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo-m/summary).
## Datasets
The model is trained on COCO2017.
## Model Usage
The usage guideline can be found in our [Quick Start Tutorial](https://github.com/tinyvision/DAMO-YOLO).
## Model Evaluation
|Model |size |mAP<sup>val<br>0.5:0.95 | Latency T4<br>TRT-FP16-BS1| FLOPs<br>(G)| Params<br>(M)| Download |
| ------ |:---: | :---: |:---:|:---: | :---: | :---:|
|[DAMO-YOLO-T](./configs/damoyolo_tinynasL20_T.py) | 640 | 41.8 | 2.78 | 18.1 | 8.5 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL20_T_418.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL20_T_418.onnx) |
|[DAMO-YOLO-T*](./configs/damoyolo_tinynasL20_T.py) | 640 | 43.0 | 2.78 | 18.1 | 8.5 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL20_T.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL20_T.onnx) |
|[DAMO-YOLO-S](./configs/damoyolo_tinynasL25_S.py) | 640 | 45.6 | 3.83 | 37.8 | 16.3 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL25_S_456.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL25_S_456.onnx) |
|[DAMO-YOLO-S*](./configs/damoyolo_tinynasL25_S.py) | 640 | 46.8 | 3.83 | 37.8 | 16.3 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL25_S.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL25_S.onnx) |
|[DAMO-YOLO-M](./configs/damoyolo_tinynasL35_M.py) | 640 | 48.7 | 5.62 | 61.8 | 28.2 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/before_distill/damoyolo_tinynasL35_M_487.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/before_distill/damoyolo_tinynasL35_M_487.onnx)|
|[DAMO-YOLO-M*](./configs/damoyolo_tinynasL35_M.py) | 640 | 50.0 | 5.62 | 61.8 | 28.2 |[torch](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/clean_models/damoyolo_tinynasL35_M.pth),[onnx](https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/onnx/damoyolo_tinynasL35_M.onnx)|
- We report the mAP of models on COCO2017 validation set, with multi-class NMS.
- The latency in this table is measured without post-processing.
- \* denotes the model trained with distillation.
## Cite DAMO-YOLO
If you use DAMO-YOLO in your research, please cite our work by using the following BibTeX entry:
```latex
@article{damoyolo,
title={DAMO-YOLO: A Report on Real-Time Object Detection Design},
author={Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang and Xiuyu Sun},
journal={arXiv preprint arXiv:2211.15444v2},
year={2022},
}
```
| 2b6545482d3b485a60db785e800a5f36 |
espnet/realzza-meld-asr-hubert-transformer | espnet | null | 21 | 0 | espnet | 0 | automatic-speech-recognition | false | false | false | cc-by-4.0 | ['en'] | ['meld'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['espnet', 'audio', 'automatic-speech-recognition', 'spoken-language-understanding'] | false | true | true | 1,636 | false | # ESPnet2: Meld Recipe
## Demo: How to use in ESPnet2
```bash
cd espnet
pip install -e .
cd egs2/meld/asr1/
./run.sh
```
## Environments
- date: `Thu Nov 10 09:07:40 EST 2022`
- python version: `3.8.6 (default, Dec 17 2020, 16:57:01) [GCC 10.2.0]`
- espnet version: `espnet 202207`
- pytorch version: `pytorch 1.8.1+cu102`
- Git hash: `a7bd6522b32ec6472c13f6a2289dcdff4a846c12`
- Commit date: `Wed Sep 14 08:34:27 2022 -0400`
## asr_train_asr_hubert_transformer_adam_specaug_meld_raw_en_bpe850
- ASR config: conf/tuning/train_asr_hubert_transformer_adam_specaug_meld.yaml
- token_type: bpe
- keep_nbest_models: 5
|dataset|Snt|Emotion Classification (%)|
|---|---|---|
|decoder_asr_asr_model_valid.acc.ave_5best/test|2608|39.22|
|decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|42.64|
### ASR results
#### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decoder_asr_asr_model_valid.acc.ave_5best/test|2608|24809|55.5|28.0|16.5|8.4|52.9|96.5|
|decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|10171|55.3|29.4|15.3|7.0|51.7|96.2|
#### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decoder_asr_asr_model_valid.acc.ave_5best/test|2608|120780|71.1|10.7|18.2|10.6|39.5|96.5|
|decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|49323|71.3|11.1|17.6|9.4|38.1|96.2|
#### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decoder_asr_asr_model_valid.acc.ave_5best/test|2608|35287|57.6|21.8|20.5|7.8|50.2|96.5|
|decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|14430|57.4|23.2|19.4|6.1|48.6|96.2|
| 7519deaf7b47d3610deb6a523d6f610e |
gorkemgoknar/gpt2-small-turkish | gorkemgoknar | gpt2 | 9 | 160 | transformers | 4 | text-generation | true | false | true | apache-2.0 | ['tr'] | ['wikipedia-turkish'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['gpt2', 'turkish'] | false | true | true | 3,479 | false |
# Turkish GPT2 Model Finetuned
# Türkçe GPT2 Modeli
## Model description
This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020
Live demo based on this work at : https://www.metayazar.com/
Fine tuned writer on this model: https://huggingface.co/gorkemgoknar/gpt2-turkish-writer
Work has been done on Pierre Guillou tutorial as on this page.
(https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb)
Code is converted to work with Fastai 2.X .
Using Google Colab for training.
Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage.
Current accuracy 33 % , Perplexity : 51.88
Models are available:
* [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish)
* [gpt2-small-turkish-writer] (https://huggingface.co/gorkemgoknar/gpt2-turkish-writer)
## Intended uses & limitations
#### How to use
#### Install
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish")
model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish")
# Get sequence length max of 1024
tokenizer.model_max_length=1024
model.eval() # disable dropout (or leave in train mode to finetune)
```
#### Generate 1 word
```python
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output
outputs = model(**inputs, labels=inputs["input_ids"])
loss, logits = outputs[:2]
predicted_index = torch.argmax(logits[0, -1, :]).item()
predicted_text = tokenizer.decode([predicted_index])
# results
print('input text:', text)
print('predicted text:', predicted_text)
# input text:
# predicted text:
```
#### Generate Full Sequence
```python
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output using Top-k sampling text generation method
sample_outputs = model.generate(inputs.input_ids,
pad_token_id=50256,
do_sample=True,
max_length=50, # put the token number you want
top_k=40,
num_return_sequences=1)
# generated sequence
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\\\\
\\\\
{}".format(i+1, tokenizer.decode(sample_output.tolist())))
# >> Generated text
#
```
#### Limitations and bias
The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.
## Training data
Wikipedia Turkish article dump as of 28-10-2020
## Training procedure
## Eval results
| epoch\\\\t|train_loss\\\\t|valid_loss\\\\t|accuracy\\\\t|perplexity\\\\t|time |
| ----- | -------- |--------- | ---------- | --------- | ----- |
|0\\\\t|4.777015\\\\t|4.621834\\\\t|0.292547\\\\t|101.680367\\\\t|2:42:05|
|1\\\\t|4.509412\\\\t|4.403999\\\\t|0.305574\\\\t|81.777267\\\\t|1:09:38|
|2\\\\t|4.169529\\\\t|4.120755\\\\t|0.324908\\\\t|61.605747\\\\t|1:07:45|
|3\\\\t|4.293973\\\\t|4.177899\\\\t|0.317211\\\\t|65.228653\\\\t|1:07:02|
|4\\\\t|4.049848\\\\t|3.949103\\\\t|0.338347\\\\t|51.888783\\\\t|1:05:53|
#Epoch 0 on Tesla T4, others on V100
```
| 45f1507b46de4efe36497523568a73a3 |
davanstrien/distilbert-base-cased_fine_tuned_food_ner | davanstrien | distilbert | 12 | 12 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 5,875 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-cased_fine_tuned_food_ner
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6129
- Precision: 0.9080
- Recall: 0.9328
- F1: 0.9203
- Accuracy: 0.9095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 40 | 1.2541 | 0.7806 | 0.7299 | 0.7544 | 0.6782 |
| No log | 2.0 | 80 | 0.7404 | 0.8301 | 0.8657 | 0.8475 | 0.8047 |
| No log | 3.0 | 120 | 0.5886 | 0.8416 | 0.8900 | 0.8651 | 0.8507 |
| No log | 4.0 | 160 | 0.5094 | 0.8772 | 0.9122 | 0.8944 | 0.8727 |
| No log | 5.0 | 200 | 0.4724 | 0.8727 | 0.9159 | 0.8938 | 0.8863 |
| No log | 6.0 | 240 | 0.4471 | 0.8975 | 0.9240 | 0.9105 | 0.8960 |
| No log | 7.0 | 280 | 0.4446 | 0.9028 | 0.9255 | 0.9140 | 0.9006 |
| No log | 8.0 | 320 | 0.4437 | 0.9042 | 0.9336 | 0.9187 | 0.9032 |
| No log | 9.0 | 360 | 0.4582 | 0.9144 | 0.9299 | 0.9221 | 0.9074 |
| No log | 10.0 | 400 | 0.4525 | 0.9080 | 0.9328 | 0.9203 | 0.9066 |
| No log | 11.0 | 440 | 0.4650 | 0.9076 | 0.9351 | 0.9211 | 0.9032 |
| No log | 12.0 | 480 | 0.4725 | 0.9119 | 0.9395 | 0.9255 | 0.9095 |
| 0.406 | 13.0 | 520 | 0.4862 | 0.9161 | 0.9343 | 0.9251 | 0.9095 |
| 0.406 | 14.0 | 560 | 0.4735 | 0.9214 | 0.9424 | 0.9318 | 0.9154 |
| 0.406 | 15.0 | 600 | 0.4973 | 0.9085 | 0.9380 | 0.9230 | 0.9095 |
| 0.406 | 16.0 | 640 | 0.5075 | 0.9026 | 0.9373 | 0.9196 | 0.9099 |
| 0.406 | 17.0 | 680 | 0.5057 | 0.9124 | 0.9380 | 0.9250 | 0.9121 |
| 0.406 | 18.0 | 720 | 0.5179 | 0.9098 | 0.9380 | 0.9237 | 0.9129 |
| 0.406 | 19.0 | 760 | 0.5156 | 0.9111 | 0.9380 | 0.9244 | 0.9121 |
| 0.406 | 20.0 | 800 | 0.5325 | 0.9077 | 0.9358 | 0.9215 | 0.9099 |
| 0.406 | 21.0 | 840 | 0.5350 | 0.9203 | 0.9373 | 0.9287 | 0.9137 |
| 0.406 | 22.0 | 880 | 0.5405 | 0.9077 | 0.9365 | 0.9219 | 0.9108 |
| 0.406 | 23.0 | 920 | 0.5682 | 0.9107 | 0.9336 | 0.9220 | 0.9066 |
| 0.406 | 24.0 | 960 | 0.5545 | 0.9109 | 0.9351 | 0.9228 | 0.9095 |
| 0.0303 | 25.0 | 1000 | 0.5717 | 0.9044 | 0.9351 | 0.9194 | 0.9049 |
| 0.0303 | 26.0 | 1040 | 0.5637 | 0.9101 | 0.9343 | 0.9221 | 0.9108 |
| 0.0303 | 27.0 | 1080 | 0.5736 | 0.9102 | 0.9351 | 0.9225 | 0.9104 |
| 0.0303 | 28.0 | 1120 | 0.5793 | 0.9027 | 0.9380 | 0.9200 | 0.9074 |
| 0.0303 | 29.0 | 1160 | 0.5753 | 0.9137 | 0.9380 | 0.9257 | 0.9112 |
| 0.0303 | 30.0 | 1200 | 0.5804 | 0.9111 | 0.9380 | 0.9244 | 0.9108 |
| 0.0303 | 31.0 | 1240 | 0.5877 | 0.9123 | 0.9365 | 0.9243 | 0.9099 |
| 0.0303 | 32.0 | 1280 | 0.5837 | 0.9116 | 0.9358 | 0.9235 | 0.9087 |
| 0.0303 | 33.0 | 1320 | 0.5886 | 0.9113 | 0.9402 | 0.9255 | 0.9108 |
| 0.0303 | 34.0 | 1360 | 0.5847 | 0.9145 | 0.9387 | 0.9264 | 0.9121 |
| 0.0303 | 35.0 | 1400 | 0.5981 | 0.9083 | 0.9358 | 0.9218 | 0.9082 |
| 0.0303 | 36.0 | 1440 | 0.5963 | 0.9056 | 0.9343 | 0.9197 | 0.9095 |
| 0.0303 | 37.0 | 1480 | 0.6027 | 0.9101 | 0.9343 | 0.9221 | 0.9104 |
| 0.0086 | 38.0 | 1520 | 0.6003 | 0.9102 | 0.9351 | 0.9225 | 0.9099 |
| 0.0086 | 39.0 | 1560 | 0.5958 | 0.9082 | 0.9343 | 0.9211 | 0.9095 |
| 0.0086 | 40.0 | 1600 | 0.6054 | 0.9059 | 0.9306 | 0.9181 | 0.9091 |
| 0.0086 | 41.0 | 1640 | 0.6056 | 0.9075 | 0.9343 | 0.9207 | 0.9112 |
| 0.0086 | 42.0 | 1680 | 0.6029 | 0.9080 | 0.9321 | 0.9199 | 0.9091 |
| 0.0086 | 43.0 | 1720 | 0.6027 | 0.9109 | 0.9351 | 0.9228 | 0.9104 |
| 0.0086 | 44.0 | 1760 | 0.6071 | 0.9075 | 0.9336 | 0.9203 | 0.9099 |
| 0.0086 | 45.0 | 1800 | 0.6100 | 0.9102 | 0.9351 | 0.9225 | 0.9095 |
| 0.0086 | 46.0 | 1840 | 0.6106 | 0.9102 | 0.9351 | 0.9225 | 0.9104 |
| 0.0086 | 47.0 | 1880 | 0.6132 | 0.9101 | 0.9343 | 0.9221 | 0.9091 |
| 0.0086 | 48.0 | 1920 | 0.6134 | 0.9095 | 0.9343 | 0.9217 | 0.9095 |
| 0.0086 | 49.0 | 1960 | 0.6129 | 0.9080 | 0.9328 | 0.9203 | 0.9095 |
| 0.005 | 50.0 | 2000 | 0.6129 | 0.9080 | 0.9328 | 0.9203 | 0.9095 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| dfc415a57928faeff60711e7d211362a |
yip-i/wav2vec2-demo-F04-2 | yip-i | wav2vec2 | 10 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 3,203 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-demo-F04-2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3203
- Wer: 0.5353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 23.5576 | 0.89 | 500 | 3.3654 | 1.0 |
| 3.3953 | 1.79 | 1000 | 3.1729 | 1.0 |
| 2.9514 | 2.68 | 1500 | 2.8946 | 1.0 |
| 2.84 | 3.57 | 2000 | 2.8386 | 1.0 |
| 2.7685 | 4.46 | 2500 | 2.7147 | 1.0 |
| 2.5059 | 5.36 | 3000 | 2.1341 | 1.1752 |
| 1.8907 | 6.25 | 3500 | 1.3604 | 1.2403 |
| 1.3892 | 7.14 | 4000 | 0.8814 | 1.1989 |
| 1.0754 | 8.04 | 4500 | 0.6416 | 1.0529 |
| 0.8795 | 8.93 | 5000 | 0.5760 | 0.9641 |
| 0.7478 | 9.82 | 5500 | 0.4633 | 0.8790 |
| 0.6107 | 10.71 | 6000 | 0.3921 | 0.8394 |
| 0.5445 | 11.61 | 6500 | 0.3579 | 0.7987 |
| 0.4788 | 12.5 | 7000 | 0.3034 | 0.7470 |
| 0.4435 | 13.39 | 7500 | 0.2989 | 0.7311 |
| 0.4057 | 14.29 | 8000 | 0.3366 | 0.7092 |
| 0.3606 | 15.18 | 8500 | 0.2783 | 0.6892 |
| 0.343 | 16.07 | 9000 | 0.2593 | 0.6612 |
| 0.3189 | 16.96 | 9500 | 0.2780 | 0.6460 |
| 0.277 | 17.86 | 10000 | 0.3266 | 0.6277 |
| 0.2789 | 18.75 | 10500 | 0.3582 | 0.6253 |
| 0.2552 | 19.64 | 11000 | 0.3422 | 0.6156 |
| 0.2416 | 20.54 | 11500 | 0.3387 | 0.6016 |
| 0.2187 | 21.43 | 12000 | 0.3657 | 0.5845 |
| 0.2317 | 22.32 | 12500 | 0.2932 | 0.5845 |
| 0.2091 | 23.21 | 13000 | 0.2551 | 0.5614 |
| 0.199 | 24.11 | 13500 | 0.3113 | 0.5474 |
| 0.1777 | 25.0 | 14000 | 0.2895 | 0.5572 |
| 0.1823 | 25.89 | 14500 | 0.3127 | 0.5456 |
| 0.179 | 26.79 | 15000 | 0.2945 | 0.5438 |
| 0.1596 | 27.68 | 15500 | 0.3052 | 0.5322 |
| 0.1671 | 28.57 | 16000 | 0.3119 | 0.5365 |
| 0.1564 | 29.46 | 16500 | 0.3203 | 0.5353 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 1.18.3
- Tokenizers 0.13.2
| 9611873b854e5b846fc5f901066a2684 |
rajistics/informal_formal_style_transfer | rajistics | t5 | 10 | 4 | transformers | 2 | text2text-generation | true | false | false | apache-2.0 | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,495 | false |
## Source
A Neural Language Style Transfer framework to transfer natural language text smoothly between fine-grained language styles like formal/casual. The original model is at [https://github.com/PrithivirajDamodaran/Styleformer](https://github.com/PrithivirajDamodaran/Styleformer).
![Style](Styleformer.png)
## Examples:
```
[Casual] I am quitting my job
[Formal] I will be stepping down from my job.
----------------------------------------------------------------------------------------------------
[Casual] Jimmy is on crack and can't trust him
[Formal] Jimmy is a crack addict I cannot trust him
----------------------------------------------------------------------------------------------------
[Casual] What do guys do to show that they like a gal?
[Formal] What do guys do to demonstrate their affinity for women?
----------------------------------------------------------------------------------------------------
[Casual] i loooooooooooooooooooooooove going to the movies.
[Formal] I really like to go to the movies.
```
## References
- [Formality Style Transfer for Noisy Text: Leveraging Out-of-Domain
Parallel Data for In-Domain Training via POS Masking](https://www.aclweb.org/anthology/D19-5502.pdf)
- [Generative Text Style Transfer for Improved Language Sophistication](http://cs230.stanford.edu/projects_winter_2020/reports/32069807.pdf)
- [Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer](https://arxiv.org/pdf/1804.06437.pdf) | 3e92178b50846e4c0e85b6bddc271780 |
imvladikon/wav2vec2-xls-r-300m-lm-hebrew | imvladikon | wav2vec2 | 16 | 12 | transformers | 1 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 1 | 1 | 0 | ['generated_from_trainer', 'he', 'robust-speech-event'] | true | true | true | 1,048 | false |
# wav2vec2-xls-r-300m-lm-hebrew
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset
with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0 | dd0b6d26ec6bd6985c2566c9b1b831b5 |
TencentMedicalNet/MedicalNet-Resnet10 | TencentMedicalNet | null | 5 | 0 | null | 2 | null | false | false | false | mit | ['en'] | ['MRBrainS18'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['MedicalNet', 'medical images', 'medical', '3D', 'Med3D'] | false | true | true | 1,531 | false | # MedicalNet
This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625).
Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided.
### License
MedicalNet is released under the MIT License (refer to the LICENSE file for detailso).
### Citing MedicalNet
If you use this code or pre-trained models, please cite the following:
```
@article{chen2019med3d,
title={Med3D: Transfer Learning for 3D Medical Image Analysis},
author={Chen, Sihong and Ma, Kai and Zheng, Yefeng},
journal={arXiv preprint arXiv:1904.00625},
year={2019}
}
```
### Update(2019/07/30)
We uploaded 4 pre-trained models based on more datasets (23 datasets).
```
Model name : parameters settings
resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B
resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A
resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A
resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B
```
Hugging Face repository contribution by:
[Rafael Zimmer](https://www.github.com/rzimmerdev) | 3b78cd30983091b59fd000537cc9ab87 |
danieleV9H/hubert-base-libri-clean-ft100h | danieleV9H | hubert | 12 | 4 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | ['librispeech_asr'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 3,400 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-libri-clean-ft100h
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1324
- Wer: 0.1597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.14 | 250 | 4.1508 | 1.0000 |
| 4.4345 | 0.28 | 500 | 3.8766 | 1.0000 |
| 4.4345 | 0.42 | 750 | 3.4376 | 1.0000 |
| 2.8475 | 0.56 | 1000 | 2.7380 | 1.0 |
| 2.8475 | 0.7 | 1250 | 0.8803 | 0.6766 |
| 1.1877 | 0.84 | 1500 | 0.5671 | 0.5102 |
| 1.1877 | 0.98 | 1750 | 0.4537 | 0.4388 |
| 0.5802 | 1.12 | 2000 | 0.3566 | 0.3740 |
| 0.5802 | 1.26 | 2250 | 0.2925 | 0.3209 |
| 0.4301 | 1.4 | 2500 | 0.2613 | 0.2952 |
| 0.4301 | 1.54 | 2750 | 0.2363 | 0.2715 |
| 0.3591 | 1.68 | 3000 | 0.2155 | 0.2552 |
| 0.3591 | 1.82 | 3250 | 0.2062 | 0.2418 |
| 0.3015 | 1.96 | 3500 | 0.1951 | 0.2308 |
| 0.3015 | 2.1 | 3750 | 0.1842 | 0.2207 |
| 0.2698 | 2.24 | 4000 | 0.1900 | 0.2112 |
| 0.2698 | 2.38 | 4250 | 0.1745 | 0.2048 |
| 0.2561 | 2.52 | 4500 | 0.1718 | 0.2040 |
| 0.2561 | 2.66 | 4750 | 0.1625 | 0.1939 |
| 0.2348 | 2.8 | 5000 | 0.1568 | 0.1867 |
| 0.2348 | 2.94 | 5250 | 0.1517 | 0.1855 |
| 0.2278 | 3.08 | 5500 | 0.1501 | 0.1807 |
| 0.2278 | 3.22 | 5750 | 0.1445 | 0.1772 |
| 0.2166 | 3.36 | 6000 | 0.1422 | 0.1752 |
| 0.2166 | 3.5 | 6250 | 0.1418 | 0.1741 |
| 0.2017 | 3.64 | 6500 | 0.1404 | 0.1695 |
| 0.2017 | 3.78 | 6750 | 0.1356 | 0.1674 |
| 0.1922 | 3.92 | 7000 | 0.1350 | 0.1688 |
| 0.1922 | 4.06 | 7250 | 0.1346 | 0.1638 |
| 0.1979 | 4.2 | 7500 | 0.1359 | 0.1638 |
| 0.1979 | 4.34 | 7750 | 0.1336 | 0.1612 |
| 0.1836 | 4.48 | 8000 | 0.1324 | 0.1613 |
| 0.1836 | 4.62 | 8250 | 0.1320 | 0.1606 |
| 0.1891 | 4.76 | 8500 | 0.1325 | 0.1598 |
| 0.1891 | 4.9 | 8750 | 0.1324 | 0.1597 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
| 8324194e16045b7cc5cddb2ba388c513 |
DrishtiSharma/whisper-large-v2-hungarian-400-steps | DrishtiSharma | whisper | 15 | 3 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['hu'] | ['mozilla-foundation/common_voice_11_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['whisper-event', 'generated_from_trainer'] | true | true | true | 1,312 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Nepali - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2551
- Wer: 18.8467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2613 | 0.27 | 400 | 0.2551 | 18.8467 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
| 13caa302125caf15f8975418c5c656a6 |
paola-md/recipe-lr1e05-wd0.01-bs16 | paola-md | roberta | 6 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,467 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# recipe-lr1e05-wd0.01-bs16
This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2793
- Rmse: 0.5285
- Mse: 0.2793
- Mae: 0.4342
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4124 |
| 0.2739 | 2.0 | 2490 | 0.2757 | 0.5251 | 0.2757 | 0.4212 |
| 0.2727 | 3.0 | 3735 | 0.2793 | 0.5285 | 0.2793 | 0.4342 |
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 2.4.0
- Tokenizers 0.12.1
| 658cadc2476f5c2ef3581b45b0ea7834 |
sentence-transformers/bert-base-nli-max-tokens | sentence-transformers | bert | 15 | 310 | sentence-transformers | 0 | sentence-similarity | true | true | true | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers'] | false | true | true | 3,816 | false |
**⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)**
# sentence-transformers/bert-base-nli-max-tokens
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/bert-base-nli-max-tokens')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Max Pooling - Take the max value over time for every dimension.
def max_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
return torch.max(token_embeddings, 1)[0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/bert-base-nli-max-tokens')
model = AutoModel.from_pretrained('sentence-transformers/bert-base-nli-max-tokens')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/bert-base-nli-max-tokens)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
``` | 01424900dc45c408817091f060f291da |
kha-white/manga-ocr-base | kha-white | vision-encoder-decoder | 8 | 35,462 | transformers | 18 | image-to-text | true | false | false | apache-2.0 | ['ja'] | ['manga109s'] | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ['image-to-text'] | false | true | true | 620 | false |
# Manga OCR
Optical character recognition for Japanese text, with the main focus being Japanese manga.
It uses [Vision Encoder Decoder](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder) framework.
Manga OCR can be used as a general purpose printed Japanese OCR, but its main goal was to provide a high quality
text recognition, robust against various scenarios specific to manga:
- both vertical and horizontal text
- text with furigana
- text overlaid on images
- wide variety of fonts and font styles
- low quality images
Code is available [here](https://github.com/kha-white/manga_ocr).
| 01ad2a2f436ea34209d9527bd1aa6468 |
xliu128/xlm-roberta-base-finetuned-panx-de | xliu128 | xlm-roberta | 12 | 6 | transformers | 0 | token-classification | true | false | false | mit | null | ['xtreme'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,320 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1363
- F1: 0.8627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 |
| 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 |
| 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
| e8ba46ccc2397d2774a76da7f86d30d6 |
wdcqc/starcraft-platform-terrain-32x32 | wdcqc | null | 17 | 21 | diffusers | 8 | other | true | false | false | creativeml-openrail-m | null | ['wdcqc/starcraft-remastered-melee-maps'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'landscape'] | false | true | true | 3,157 | false |
# DreamBooth model for Starcraft:Remastered terrain
This is a Stable Diffusion model fine-tuned on Starcraft terrain images on the Space Platform tileset with DreamBooth. It can be used by adding the `instance_prompt`: **isometric scspace terrain**
It was trained on 32x32 terrain images from 265 melee maps including original Blizzard maps and those downloaded from Battle.net, scmscx.com and broodwarmaps.net.
Run it on Huggingface Spaces:
https://huggingface.co/spaces/wdcqc/wfd
Or use this notebook on Colab:
https://colab.research.google.com/github/wdcqc/WaveFunctionDiffusion/blob/remaster/colab/WaveFunctionDiffusion_Demo.ipynb
In addition to Dreambooth, a custom VAE model (`AutoencoderTile`) is trained to encode and decode the latents to/from tileset probabilities ("waves") and then generated as Starcraft maps.
A WFC Guidance, inspired by the Wave Function Collapse algorithm, is also added to the pipeline. For more information about guidance please see this page: [Fine-Tuning, Guidance and Conditioning](https://github.com/huggingface/diffusion-models-class/tree/main/unit2)
This model was created as part of the DreamBooth Hackathon. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
## Description
This is a Stable Diffusion model fine-tuned on starcraft terrain images for the landscape theme.
GitHub: https://github.com/wdcqc/WaveFunctionDiffusion
## Usage
First clone the git repository:
```bash
git clone https://github.com/wdcqc/WaveFunctionDiffusion.git
```
Then create a Jupyter notebook under the repository folder:
```python
# Load pipeline
from wfd.wf_diffusers import WaveFunctionDiffusionPipeline
from wfd.wf_diffusers import AutoencoderTile
wfc_data_path = "tile_data/wfc/platform_32x32.npz"
# Use CUDA (otherwise it will take 15 minutes)
device = "cuda"
tilenet = AutoencoderTile.from_pretrained(
"wdcqc/starcraft-platform-terrain-32x32",
subfolder="tile_vae"
).to(device)
pipeline = WaveFunctionDiffusionPipeline.from_pretrained(
"wdcqc/starcraft-platform-terrain-32x32",
tile_vae = tilenet,
wfc_data_path = wfc_data_path
)
pipeline.to(device)
# Generate pipeline output
# need to include the dreambooth keyword "isometric scspace terrain"
pipeline_output = pipeline(
"isometric scspace terrain, corgi",
num_inference_steps = 50,
wfc_guidance_start_step = 20,
wfc_guidance_strength = 5,
wfc_guidance_final_steps = 20,
wfc_guidance_final_strength = 10,
)
image = pipeline_output.images[0]
# Display raw generated image
from IPython.display import display
display(image)
# Display generated image as tiles
wave = pipeline_output.waves[0]
tile_result = wave.argmax(axis=2)
from wfd.scmap import demo_map_image
display(demo_map_image(tile_result, wfc_data_path = wfc_data_path))
# Generate map file
from wfd.scmap import tiles_to_scx
import random, time
tiles_to_scx(
tile_result,
"outputs/generated_{}_{:04d}.scx".format(time.strftime("%Y%m%d_%H%M%S"), random.randint(0, 1e4)),
wfc_data_path = wfc_data_path
)
# Open the generated map file in `outputs` folder with Scmdraft 2
``` | 14350a45f4811851417304f551104815 |
jperezv/bert-finetuned-ner | jperezv | bert | 12 | 3 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | ['conll2003'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,518 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0627
- Precision: 0.9389
- Recall: 0.9524
- F1: 0.9456
- Accuracy: 0.9866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0835 | 1.0 | 1756 | 0.0711 | 0.9200 | 0.9334 | 0.9266 | 0.9825 |
| 0.0329 | 2.0 | 3512 | 0.0648 | 0.9308 | 0.9485 | 0.9396 | 0.9858 |
| 0.0179 | 3.0 | 5268 | 0.0627 | 0.9389 | 0.9524 | 0.9456 | 0.9866 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| 113e53e09798f02595c30622bb91e235 |
yanaiela/roberta-base-epoch_69 | yanaiela | roberta | 9 | 2 | transformers | 0 | fill-mask | true | false | false | mit | ['en'] | ['wikipedia', 'bookcorpus'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['roberta-base', 'roberta-base-epoch_69'] | false | true | true | 2,102 | false |
# RoBERTa, Intermediate Checkpoint - Epoch 69
This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692),
trained on Wikipedia and the Book Corpus only.
We train this model for almost 100K steps, corresponding to 83 epochs.
We provide the 84 checkpoints (including the randomly initialized weights before the training)
to provide the ability to study the training dynamics of such models, and other possible use-cases.
These models were trained in part of a work that studies how simple statistics from data,
such as co-occurrences affects model predictions, which are described in the paper
[Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251).
This is RoBERTa-base epoch_69.
## Model Description
This model was captured during a reproduction of
[RoBERTa-base](https://huggingface.co/roberta-base), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM).
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [RoBERTa-base](https://huggingface.co/roberta-base). Two major
differences with the original model:
* We trained our model for 100K steps, instead of 500K
* We only use Wikipedia and the Book Corpus, as corpora which are publicly available.
### How to use
Using code from
[RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on
PyTorch:
```
from transformers import pipeline
model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10)
model("Hello, I'm the <mask> RoBERTa-base language model")
```
## Citation info
```bibtex
@article{2207.14251,
Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg},
Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions},
Year = {2022},
Eprint = {arXiv:2207.14251},
}
```
| 4a0fe2a00a3cc71cbc560697dc698607 |
projecte-aina/mt-aina-en-ca | projecte-aina | null | 5 | 0 | null | 0 | null | false | false | false | cc-by-4.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 8,803 | false | ## Aina Project's English-Catalan machine translation model
## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-use)
- [How to Use](#how-to-use)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Data Preparation](#data-preparation)
- [Tokenization](#tokenization)
- [Hyperparameters](#hyperparameters)
- [Evaluation](#evaluation)
- [Variable and Metrics](#variable-and-metrics)
- [Evaluation Results](#evaluation-results)
- [Additional Information](#additional-information)
- [Author](#author)
- [Contact Information](#contact-information)
- [Copyright](#copyright)
- [Licensing Information](#licensing-information)
- [Funding](#funding)
- [Disclaimer](#disclaimer)
## Model description
This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of English-Catalan datasets, up to 11 million sentences. Additionally, the model is evaluated on several public datasecomprising 5 different domains (general, adminstrative, technology, biomedical, and news).
## Intended uses and limitations
You can use this model for machine translation from English to Catalan.
## How to use
### Usage
Required libraries:
```bash
pip install ctranslate2 pyonmttok
```
Translate a sentence using python
```python
import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="projecte-aina/mt-aina-en-ca", revision="main")
tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Welcome to the Aina Project!")
translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))
```
## Training
### Training data
The model was trained on a combination of the following datasets:
| Dataset | Sentences |
|--------------------|----------------|
| Global Voices | 21.342 |
| Memories Lluires | 1.173.055 |
| Wikimatrix | 1.205.908 |
| TED Talks | 50.979 |
| Tatoeba | 5.500 |
| CoVost 2 ca-en | 79.633 |
| CoVost 2 en-ca | 263.891 |
| Europarl | 1.965.734 |
| jw300 | 97.081 |
| Crawled Generalitat| 38.595 |
| Opus Books | 4.580 |
| CC Aligned | 5.787.682 |
| COVID_Wikipedia | 1.531 |
| EuroBooks | 3.746 |
| Gnome | 2.183 |
| KDE 4 | 144.153 |
| OpenSubtitles | 427.913 |
| QED | 69.823 |
| Ubuntu | 6.781 |
| Wikimedia | 208.073 |
|--------------------|----------------|
| **Total** | **11.558.183** |
### Training procedure
### Data preparation
All datasets are concatenated and filtered using the [mBERT Gencata parallel filter](https://huggingface.co/projecte-aina/mbert-base-gencata). Before training, the punctuation is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)
#### Tokenization
All data is tokenized using sentencepiece, using 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included.
#### Hyperparameters
The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf)
The following hyperparamenters were set on the Fairseq toolkit:
| Hyperparameter | Value |
|------------------------------------|----------------------------------|
| Architecture | transformer_vaswani_wmt_en_de_bi |
| Embedding size | 1024 |
| Feedforward size | 4096 |
| Number of heads | 16 |
| Encoder layers | 24 |
| Decoder layers | 6 |
| Normalize before attention | True |
| --share-decoder-input-output-embed | True |
| --share-all-embeddings | True |
| Effective batch size | 96.000 |
| Optimizer | adam |
| Adam betas | (0.9, 0.980) |
| Clip norm | 0.0 |
| Learning rate | 1e-3 |
| Lr. schedurer | inverse sqrt |
| Warmup updates | 4000 |
| Dropout | 0.1 |
| Label smoothing | 0.1 |
The model was trained for a total of 45.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 32 checkpoints.
## Evaluation
### Variable and metrics
We use the BLEU score for evaluation on test sets: [Flores-101](https://github.com/facebookresearch/flores), [TaCon](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/), [United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0), [Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/), [wmt19 biomedical test set](), [wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/)
### Evaluation results
Below are the evaluation results on the machine translation from English to Catalan compared to [Softcatalà](https://www.softcatala.org/) and [Google Translate](https://translate.google.es/?hl=es):
| Test set | SoftCatalà | Google Translate | mt-aina-en-ca |
|----------------------|------------|------------------|---------------|
| Spanish Constitution | 32,6 | 37,6 | **37,7** |
| United Nations | 39,0 | 39,7 | **39,8** |
| aina_aapp_ca-en | 46,5 | **51,5** | 48,8 |
| european_comission | 49,1 | **52** | 49,5 |
| Flores 101 dev | 41,0 | 41,6 | **42,9** |
| Flores 101 devtest | 42,1 | 42,2 | **44,0** |
| Cybersecurity | 42,5 | **46,5** | 45,8 |
| wmt 19 biomedical | 21,7 | **25,2** | 25,1 |
| wmt 13 news | 34,9 | 33,8 | **35,6** |
| Average | 38,8 | **41,1** | 41,0 |
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to [email protected]
### Copyright
Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
### Licensing Information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
| c00058da64d3154b5ae406178924eaca |
Helsinki-NLP/opus-mt-sv-mos | Helsinki-NLP | marian | 10 | 9 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 776 | false |
### opus-mt-sv-mos
* source languages: sv
* target languages: mos
* OPUS readme: [sv-mos](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-mos/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-mos/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-mos/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-mos/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.sv.mos | 22.4 | 0.379 |
| 43b2b1761968671d22f82fab09dd2ed5 |
joey234/whisper-small-vi | joey234 | whisper | 55 | 5 | transformers | 1 | automatic-speech-recognition | true | false | false | apache-2.0 | ['vi'] | ['mozilla-foundation/common_voice_11_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['whisper-event', 'generated_from_trainer'] | true | true | true | 1,552 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Vietnamese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 vi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9921
- Wer: 34.2172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0002 | 124.0 | 1000 | 0.7998 | 21.7706 |
| 0.0001 | 249.0 | 2000 | 0.8833 | 28.9690 |
| 0.0 | 374.0 | 3000 | 0.9382 | 30.8206 |
| 0.0 | 499.0 | 4000 | 0.9754 | 34.4363 |
| 0.0 | 624.0 | 5000 | 0.9921 | 34.2172 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
| 48f84e65873df9efa4ae9927b20eb30e |
qanastek/whisper-large-french-uncased | qanastek | whisper | 17 | 0 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['fr'] | ['mozilla-foundation/common_voice_11_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['whisper-event', 'generated_from_trainer', 'hf-asr-leaderboard'] | true | true | true | 1,310 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large French
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_11_0 fr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.00
- Wer: 00.00
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.00 | 0.2 | 1000 | 0.00 | 00.00 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
| f14b5761e15606a957ae0332eb91336e |
alexjercan/codet5-base-buggy-error-description | alexjercan | t5 | 11 | 5 | transformers | 1 | text2text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 948 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codet5-base-buggy-error-description
This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.11.6
| aa9c5535d99bba236370cceda837f19e |
lct-rug-2022/edos-2023-baseline-distilbert-base-uncased-label_sexist | lct-rug-2022 | distilbert | 10 | 4 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,544 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# edos-2023-baseline-distilbert-base-uncased-label_sexist
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4852
- F1: 0.7874
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4199 | 1.14 | 400 | 0.3911 | 0.7571 |
| 0.293 | 2.29 | 800 | 0.3778 | 0.7899 |
| 0.2348 | 3.43 | 1200 | 0.4102 | 0.7894 |
| 0.1895 | 4.57 | 1600 | 0.4417 | 0.7835 |
| 0.1392 | 5.71 | 2000 | 0.4852 | 0.7874 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
| 060ab1672e994f920d3af913bfb5a3d5 |
JovialValley/model_syllable_onSet1 | JovialValley | wav2vec2 | 13 | 0 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 11,452 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_syllable_onSet1
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1815
- 0 Precision: 1.0
- 0 Recall: 0.9677
- 0 F1-score: 0.9836
- 0 Support: 31
- 1 Precision: 0.9545
- 1 Recall: 1.0
- 1 F1-score: 0.9767
- 1 Support: 21
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 30
- 3 Precision: 1.0
- 3 Recall: 1.0
- 3 F1-score: 1.0
- 3 Support: 16
- Accuracy: 0.9898
- Macro avg Precision: 0.9886
- Macro avg Recall: 0.9919
- Macro avg F1-score: 0.9901
- Macro avg Support: 98
- Weighted avg Precision: 0.9903
- Weighted avg Recall: 0.9898
- Weighted avg F1-score: 0.9898
- Weighted avg Support: 98
- Wer: 0.7883
- Mtrix: [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 70
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:--------------------------------------------------------------------------------------:|
| 1.6949 | 4.16 | 100 | 1.6177 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 1.5778 | 8.33 | 200 | 1.3535 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 1.2861 | 12.49 | 300 | 1.0938 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 0.954 | 16.65 | 400 | 0.9480 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 0.8849 | 20.82 | 500 | 0.9231 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 0.8674 | 24.98 | 600 | 0.8767 | 1.0 | 0.2581 | 0.4103 | 31 | 0.0 | 0.0 | 0.0 | 21 | 0.3333 | 1.0 | 0.5 | 30 | 0.0 | 0.0 | 0.0 | 16 | 0.3878 | 0.3333 | 0.3145 | 0.2276 | 98 | 0.4184 | 0.3878 | 0.2828 | 98 | 0.9655 | [[0, 1, 2, 3], [0, 8, 0, 23, 0], [1, 0, 0, 21, 0], [2, 0, 0, 30, 0], [3, 0, 0, 16, 0]] |
| 0.7921 | 29.16 | 700 | 0.7519 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9545 | 1.0 | 0.9767 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9886 | 0.9919 | 0.9901 | 98 | 0.9903 | 0.9898 | 0.9898 | 98 | 1.0 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
| 0.7851 | 33.33 | 800 | 0.8212 | 1.0 | 0.9032 | 0.9492 | 31 | 0.84 | 1.0 | 0.9130 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 0.9375 | 0.9677 | 16 | 0.9592 | 0.96 | 0.9602 | 0.9575 | 98 | 0.9657 | 0.9592 | 0.9600 | 98 | 1.0 | [[0, 1, 2, 3], [0, 28, 3, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 1, 0, 15]] |
| 0.7657 | 37.49 | 900 | 0.7504 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9130 | 1.0 | 0.9545 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 0.9375 | 0.9677 | 16 | 0.9796 | 0.9783 | 0.9763 | 0.9765 | 98 | 0.9814 | 0.9796 | 0.9798 | 98 | 1.0 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 1, 0, 15]] |
| 0.688 | 41.65 | 1000 | 0.6897 | 1.0 | 1.0 | 1.0 | 31 | 0.9130 | 1.0 | 0.9545 | 21 | 1.0 | 0.9667 | 0.9831 | 30 | 1.0 | 0.9375 | 0.9677 | 16 | 0.9796 | 0.9783 | 0.9760 | 0.9763 | 98 | 0.9814 | 0.9796 | 0.9798 | 98 | 0.7008 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 21, 0, 0], [2, 0, 1, 29, 0], [3, 0, 1, 0, 15]] |
| 0.4415 | 45.82 | 1100 | 0.1917 | 1.0 | 1.0 | 1.0 | 31 | 1.0 | 1.0 | 1.0 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 98 | 1.0 | 1.0 | 1.0 | 98 | 0.6974 | [[0, 1, 2, 3], [0, 31, 0, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
| 0.3074 | 49.98 | 1200 | 0.1865 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9545 | 1.0 | 0.9767 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9886 | 0.9919 | 0.9901 | 98 | 0.9903 | 0.9898 | 0.9898 | 98 | 0.6686 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
| 0.2069 | 54.16 | 1300 | 0.1821 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9545 | 1.0 | 0.9767 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9886 | 0.9919 | 0.9901 | 98 | 0.9903 | 0.9898 | 0.9898 | 98 | 0.7043 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
| 0.1791 | 58.33 | 1400 | 0.1866 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9130 | 1.0 | 0.9545 | 21 | 1.0 | 0.9667 | 0.9831 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9796 | 0.9783 | 0.9836 | 0.9803 | 98 | 0.9814 | 0.9796 | 0.9799 | 98 | 0.6893 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 1, 29, 0], [3, 0, 0, 0, 16]] |
| 0.1717 | 62.49 | 1500 | 0.1839 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9545 | 1.0 | 0.9767 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9886 | 0.9919 | 0.9901 | 98 | 0.9903 | 0.9898 | 0.9898 | 98 | 0.7848 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
| 0.1571 | 66.65 | 1600 | 0.1799 | 1.0 | 0.9677 | 0.9836 | 31 | 0.9545 | 1.0 | 0.9767 | 21 | 1.0 | 1.0 | 1.0 | 30 | 1.0 | 1.0 | 1.0 | 16 | 0.9898 | 0.9886 | 0.9919 | 0.9901 | 98 | 0.9903 | 0.9898 | 0.9898 | 98 | 0.7929 | [[0, 1, 2, 3], [0, 30, 1, 0, 0], [1, 0, 21, 0, 0], [2, 0, 0, 30, 0], [3, 0, 0, 0, 16]] |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| 74b22347f41a4e124dd113a44611d4fe |
arampacha/whisper-large-uk | arampacha | whisper | 13 | 0 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['uk'] | ['mozilla-foundation/common_voice_11_0', 'google/fleurs'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['whisper-event', 'generated_from_trainer'] | true | true | true | 976 | false |
# whisper-base-uk
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.3201
- eval_wer: 10.2869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
| ab69e623d71ab9b9903e7079b2244bdc |
jonatasgrosman/exp_w2v2r_en_xls-r_accent_us-5_england-5_s334 | jonatasgrosman | wav2vec2 | 10 | 3 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['en'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'en'] | false | true | true | 475 | false | # exp_w2v2r_en_xls-r_accent_us-5_england-5_s334
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| e50e85324282c1ee7dc346d1d93bae19 |
TheNateTCY/fulltrain_optmodel | TheNateTCY | opt | 8 | 0 | transformers | 0 | text-generation | false | true | false | other | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,521 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TheNateTCY/fulltrain_optmodel
This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.8560
- Validation Loss: 1.2171
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 8375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.8560 | 1.2171 | 0 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.10.1
- Datasets 2.7.1
- Tokenizers 0.13.2
| 3be524e9197c1900fc86c15cc8c37ee3 |
ieborhan/irisg444_4c0-Species-classification | ieborhan | null | 4 | 0 | sklearn | 0 | tabular-classification | false | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['tabular-classification', 'baseline-trainer'] | false | true | true | 7,540 | false |
## Baseline Model trained on irisg444_4c0 to apply classification on Species
**Metrics of the best model:**
accuracy 0.953333
recall_macro 0.953333
precision_macro 0.956229
f1_macro 0.953216
Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64
**See model plot below:**
<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string useless
SepalLengthCm True False ... False False
SepalWidthCm True False ... False False
PetalLengthCm True False ... False False
PetalWidthCm True False ... False False[4 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float ... free_string useless
SepalLengthCm True False ... False False
SepalWidthCm True False ... False False
PetalLengthCm True False ... False False
PetalWidthCm True False ... False False[4 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless
SepalLengthCm True False ... False False
SepalWidthCm True False ... False False
PetalLengthCm True False ... False False
PetalWidthCm True False ... False False[4 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=1, class_weight='balanced', max_iter=1000)</pre></div></div></div></div></div></div></div>
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
**Logs of training** including the models tried in the process can be found in logs.txt | ec8f759a2cbcd3838ac5a9ae0eee5a5b |
Helsinki-NLP/opus-mt-fr-bi | Helsinki-NLP | marian | 10 | 7 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 768 | false |
### opus-mt-fr-bi
* source languages: fr
* target languages: bi
* OPUS readme: [fr-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-bi/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-bi/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-bi/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-bi/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.fr.bi | 28.4 | 0.464 |
| 5649db29ae0810704144daf9ba068e0f |
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4 | SetFit | distilbert | 10 | 5 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,215 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased__hate_speech_offensive__train-32-4
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7384
- Accuracy: 0.724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1013 | 1.0 | 19 | 1.0733 | 0.55 |
| 1.0226 | 2.0 | 38 | 1.0064 | 0.65 |
| 0.8539 | 3.0 | 57 | 0.8758 | 0.75 |
| 0.584 | 4.0 | 76 | 0.6941 | 0.7 |
| 0.2813 | 5.0 | 95 | 0.5151 | 0.7 |
| 0.1122 | 6.0 | 114 | 0.4351 | 0.8 |
| 0.0432 | 7.0 | 133 | 0.4896 | 0.85 |
| 0.0199 | 8.0 | 152 | 0.5391 | 0.85 |
| 0.0126 | 9.0 | 171 | 0.5200 | 0.85 |
| 0.0085 | 10.0 | 190 | 0.5622 | 0.85 |
| 0.0069 | 11.0 | 209 | 0.5950 | 0.85 |
| 0.0058 | 12.0 | 228 | 0.6015 | 0.85 |
| 0.0053 | 13.0 | 247 | 0.6120 | 0.85 |
| 0.0042 | 14.0 | 266 | 0.6347 | 0.85 |
| 0.0039 | 15.0 | 285 | 0.6453 | 0.85 |
| 0.0034 | 16.0 | 304 | 0.6660 | 0.85 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
| 5f378270188a2cd951033abe2aa32a85 |
jonatasgrosman/exp_w2v2t_es_no-pretraining_s807 | jonatasgrosman | wav2vec2 | 10 | 4 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['es'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'es'] | false | true | true | 414 | false | # exp_w2v2t_es_no-pretraining_s807
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 1608e6c97878c5322a3d7e3d3d806c08 |
MEDT/ChatBot | MEDT | gpt2 | 9 | 4 | transformers | 0 | conversational | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['conversational'] | false | true | true | 1,752 | false |
# DialoGPT Trained on the Speech of a Game Character
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
# Let's chat for 100 lines
for step in range(100):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
``` | a2d65dd0fa0e00364c69ac839da931ff |
k3lana/xlm-roberta-base-finetuned-panx-de-fr | k3lana | xlm-roberta | 10 | 5 | transformers | 0 | token-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,321 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1608
- F1: 0.8593
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 |
| 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 |
| 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
| cf47ea12a762581cc79bd9c003e3e485 |
csam/finetuning-sentiment-model-3000-samples | csam | distilbert | 13 | 11 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['imdb'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,053 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2913
- Accuracy: 0.88
- F1: 0.8808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1
| e5b4c5ee4a3ad64138b404e64d7135cb |
gchhablani/bert-base-cased-finetuned-stsb | gchhablani | bert | 52 | 88 | transformers | 0 | text-classification | true | false | false | apache-2.0 | ['en'] | ['glue'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer', 'fnet-bert-base-comparison'] | true | true | true | 2,394 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-stsb
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4861
- Pearson: 0.8926
- Spearmanr: 0.8898
- Combined Score: 0.8912
The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used:
```bash
#!/usr/bin/bash
python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:|
| 1.1174 | 1.0 | 360 | 0.8816 | 0.5000 | 0.8832 | 0.8800 |
| 0.3835 | 2.0 | 720 | 0.8901 | 0.4672 | 0.8915 | 0.8888 |
| 0.2388 | 3.0 | 1080 | 0.8912 | 0.4861 | 0.8926 | 0.8898 |
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3
| 82422fc3000b327511490fcfb35bf262 |
Helsinki-NLP/opus-mt-tc-big-es-zle | Helsinki-NLP | marian | 13 | 5 | transformers | 0 | translation | true | true | false | cc-by-4.0 | ['be', 'es', 'ru', 'uk', 'zle'] | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ['translation', 'opus-mt-tc'] | true | true | true | 5,963 | false | # opus-mt-tc-big-es-zle
Neural machine translation model for translating from Spanish (es) to East Slavic languages (zle).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-23
* source language(s): spa
* target language(s): bel rus ukr
* valid target language labels: >>bel<< >>rus<< >>ukr<<
* model: transformer-big
* data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.zip)
* more information released models: [OPUS-MT spa-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-zle/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>rus<< Su novela se vendió bien.",
">>ukr<< Quiero ir a Corea del Norte."
]
model_name = "pytorch-models/opus-mt-tc-big-es-zle"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Его роман хорошо продавался.
# Я хочу поїхати до Північної Кореї.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-es-zle")
print(pipe(">>rus<< Su novela se vendió bien."))
# expected output: Его роман хорошо продавался.
```
## Benchmarks
* test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| spa-bel | tatoeba-test-v2021-08-07 | 0.54506 | 27.5 | 205 | 1259 |
| spa-rus | tatoeba-test-v2021-08-07 | 0.68523 | 49.0 | 10506 | 69242 |
| spa-ukr | tatoeba-test-v2021-08-07 | 0.63502 | 42.3 | 10115 | 54544 |
| spa-rus | flores101-devtest | 0.49913 | 20.2 | 1012 | 23295 |
| spa-ukr | flores101-devtest | 0.47772 | 17.4 | 1012 | 22810 |
| spa-rus | newstest2012 | 0.52436 | 24.6 | 3003 | 64790 |
| spa-rus | newstest2013 | 0.54249 | 26.9 | 3000 | 58560 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Thu Mar 24 03:35:13 EET 2022
* port machine: LM0-400-22516.local
| 26ea00e38fd0841a9c2ea4611b0ed9b6 |
gostrive/distilbert-base-uncased-finetuned-squad-d5716d28 | gostrive | distilbert | 8 | 5 | transformers | 0 | question-answering | true | false | false | apache-2.0 | ['en'] | ['squad'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['question-answering'] | false | true | true | 1,392 | false |
# DistilBERT with a second step of distillation
## Model description
This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
In this version, the following pre-trained models were used:
* Student: `distilbert-base-uncased`
* Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
## Training data
This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
```python
from datasets import load_dataset
squad = load_dataset('squad')
```
## Training procedure
## Eval results
| | Exact Match | F1 |
|------------------|-------------|------|
| DistilBERT paper | 79.1 | 86.9 |
| Ours | 78.4 | 86.5 |
The scores were calculated using the `squad` metric from `datasets`.
### BibTeX entry and citation info
```bibtex
@misc{sanh2020distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
year={2020},
eprint={1910.01108},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | 206913b81dd6917c52eb8c6176e2b1eb |
Evelyn18/distilbert-base-uncased-becasv3-1 | Evelyn18 | distilbert | 19 | 5 | transformers | 0 | question-answering | true | false | false | apache-2.0 | null | ['becasv3'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,530 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-becasv3-1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1086
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 8 | 5.1063 |
| No log | 2.0 | 16 | 4.4615 |
| No log | 3.0 | 24 | 3.9351 |
| No log | 4.0 | 32 | 3.5490 |
| No log | 5.0 | 40 | 3.3299 |
| No log | 6.0 | 48 | 3.2148 |
| No log | 7.0 | 56 | 3.1292 |
| No log | 8.0 | 64 | 3.1086 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
| 8c273b223c303663038329160bf83339 |
Sandeepanie/clinical-finetuned-AgitationModel | Sandeepanie | bert | 18 | 1 | transformers | 0 | text-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,584 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clinical-finetuned-AgitationModel
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9746
- Accuracy: 0.88
- Precision: 0.9178
- Recall: 0.9178
- F1: 0.9178
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0949 | 1.0 | 50 | 1.0393 | 0.85 | 0.8816 | 0.9178 | 0.8993 |
| 0.0475 | 2.0 | 100 | 1.0619 | 0.85 | 0.8816 | 0.9178 | 0.8993 |
| 0.0149 | 3.0 | 150 | 0.9746 | 0.88 | 0.9178 | 0.9178 | 0.9178 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Tokenizers 0.12.1
| c42143ba868f11ba4d7dc20e46e7983d |
kSaluja/new-test-model2 | kSaluja | bert | 14 | 5 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,163 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# new-test-model2
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1040
- Precision: 0.9722
- Recall: 0.9757
- F1: 0.9739
- Accuracy: 0.9808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 151 | 0.1819 | 0.9360 | 0.9405 | 0.9382 | 0.9540 |
| No log | 2.0 | 302 | 0.1196 | 0.9637 | 0.9639 | 0.9638 | 0.9703 |
| No log | 3.0 | 453 | 0.1322 | 0.9614 | 0.9682 | 0.9648 | 0.9711 |
| 0.2764 | 4.0 | 604 | 0.1071 | 0.9677 | 0.9725 | 0.9701 | 0.9763 |
| 0.2764 | 5.0 | 755 | 0.1084 | 0.9709 | 0.9766 | 0.9737 | 0.9790 |
| 0.2764 | 6.0 | 906 | 0.1015 | 0.9717 | 0.9739 | 0.9728 | 0.9791 |
| 0.0342 | 7.0 | 1057 | 0.1208 | 0.9686 | 0.9727 | 0.9706 | 0.9785 |
| 0.0342 | 8.0 | 1208 | 0.1068 | 0.9680 | 0.9752 | 0.9716 | 0.9798 |
| 0.0342 | 9.0 | 1359 | 0.1028 | 0.9719 | 0.9743 | 0.9731 | 0.9807 |
| 0.0129 | 10.0 | 1510 | 0.1040 | 0.9722 | 0.9757 | 0.9739 | 0.9808 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
| f12660b975911f1b3a692931bcbadc8d |
Helsinki-NLP/opus-mt-hy-en | Helsinki-NLP | marian | 10 | 192 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 770 | false |
### opus-mt-hy-en
* source languages: hy
* target languages: en
* OPUS readme: [hy-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hy-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.hy.en | 29.5 | 0.466 |
| 85ae1b911f80c333af96c75f2d35f3bd |
popcornell/chime7_task1_asr1_baseline | popcornell | null | 23 | 7 | espnet | 0 | automatic-speech-recognition | false | false | false | cc-by-4.0 | ['en'] | ['chime7_task1'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['espnet', 'audio', 'automatic-speech-recognition', 'speech separation'] | false | true | true | 10,211 | false |
## ESPnet2 ASR model
### `popcornell/chime7_task1_asr1_baseline`
This model was trained by popcornell using chime7_task1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [CHiME-7 DASR installation instructions](https://github.com/espnet/espnet/blob/master/egs2/chime7_task1/asr1/README.md)
if you haven't done that already.
```bash
cd espnet
git checkout 15646109f254de8b39bbe310827d617da5ac858d
# follow installation instruction for CHiME-7 DASR recipe https://github.com/espnet/espnet/blob/master/egs2/chime7_task1/asr1/README.md
./run.sh --decode-only 1 --use-pretrained popcornell/chime7_task1_asr1_baseline --ngpu PUT YOURS
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
See [CHiME-7 DASR README.md](https://github.com/espnet/espnet/blob/master/egs2/chime7_task1/asr1/README.md)
## Environments
- date: `Wed Feb 8 23:41:28 UTC 2023`
- python version: `3.9.2 (default, Mar 3 2021, 20:02:32) [GCC 7.3.0]`
- espnet version: `espnet 202301`
- pytorch version: `pytorch 1.13.1+cu116`
- Git hash: ``
- Commit date: ``
## ASR config
<details><summary>expand</summary>
```
config: conf/tuning/train_asr_transformer_wavlm_lr1e-4_specaugm_accum1_preenc128_warmup20k.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_transformer_wavlm_lr1e-4_specaugm_accum1_preenc128_warmup20k_raw_en_bpe500_batch_size640_scheduler_confwarmup_steps8000_max_epoch8_optim_conflr0.000500000000_sp
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 5
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 44341
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 8
patience: 4
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 5
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- frontend.upstream
num_iters_per_epoch: null
batch_size: 640
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/train/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/kaldi/train_all_mdm_ihm_rvb_gss_sp/wav.scp
- speech
- sound
- - dump/raw/kaldi/train_all_mdm_ihm_rvb_gss_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/kaldi/chime6/dev/gss/wav.scp
- speech
- sound
- - dump/raw/kaldi/chime6/dev/gss/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.0005
scheduler: warmuplr
scheduler_conf:
warmup_steps: 8000
token_list:
- <blank>
- <unk>
- s
- ''''
- ▁i
- t
- ▁it
- ▁a
- e
- ▁you
- ▁the
- ▁like
- ▁yeah
- a
- d
- ▁and
- m
- ▁that
- ▁to
- n
- i
- y
- ing
- o
- u
- ▁so
- p
- ▁of
- ▁in
- re
- ▁was
- c
- r
- ▁just
- er
- ▁know
- ▁oh
- ed
- ▁but
- ▁ummm
- ▁we
- l
- ▁no
- ▁they
- ▁have
- ▁do
- g
- ▁he
- k
- ll
- ▁uhhh
- ▁don
- ▁for
- h
- ▁what
- ▁be
- ar
- ▁is
- ▁there
- '-'
- ▁s
- ▁this
- in
- b
- ▁
- en
- ▁on
- ▁p
- ▁can
- al
- ▁not
- w
- ▁my
- ▁one
- ic
- f
- ▁or
- ▁really
- ▁go
- ▁right
- ▁me
- an
- ▁w
- or
- le
- ▁f
- ▁think
- ▁okay
- ▁all
- ▁then
- ▁with
- ▁are
- ▁get
- it
- ▁t
- ▁st
- ve
- ▁hmmm
- ▁g
- ▁if
- ce
- 'on'
- ▁she
- ▁good
- ▁e
- es
- ▁well
- v
- ▁re
- th
- ter
- ch
- ▁out
- ▁up
- ly
- ▁b
- ▁ma
- il
- ▁would
- ▁at
- ▁want
- ▁mean
- ▁ch
- ▁your
- ▁people
- ur
- ▁how
- ▁k
- ▁co
- ▁about
- ▁tr
- ▁ba
- ▁kind
- ▁when
- ▁mi
- ▁because
- ro
- ▁had
- ▁ho
- ▁gonna
- ▁time
- ▁more
- ▁got
- ▁some
- ▁two
- ▁did
- ▁see
- ▁now
- ▁pa
- ra
- ▁de
- ▁lot
- ▁actually
- ▁o
- ▁too
- ate
- ▁here
- ▁cuz
- ▁sp
- ▁where
- ▁going
- ▁j
- ▁from
- ▁bo
- ▁them
- ▁bu
- ▁put
- ▁thing
- ng
- ▁were
- ▁n
- ▁sh
- ▁work
- el
- ▁something
- ▁se
- ▁say
- ke
- ow
- ▁ca
- ▁fa
- ▁need
- sh
- ▁di
- ▁po
- ▁make
- la
- ▁br
- ▁v
- ▁an
- ▁who
- ion
- ▁y
- ▁look
- ▁didn
- ▁could
- ▁little
- ver
- ▁c
- ▁mo
- ▁much
- ▁very
- ir
- ▁sa
- ▁play
- ▁pretty
- ▁been
- ▁d
- ▁other
- ▁year
- and
- ▁mm
- ▁stuff
- ▁dr
- ▁why
- ▁con
- ▁su
- ▁back
- ▁ex
- ting
- ▁take
- ▁li
- ▁even
- ▁should
- ▁her
- ally
- lo
- ation
- ▁way
- ▁guess
- ▁has
- z
- ▁three
- ry
- ▁ha
- ies
- is
- x
- ▁ro
- ▁yes
- ▁th
- ▁use
- ▁down
- ous
- ▁over
- ▁probably
- ▁guys
- ▁maybe
- ▁still
- ▁cr
- ▁which
- ▁nice
- und
- ▁sure
- ▁l
- ▁off
- ▁la
- ▁cu
- est
- ▁any
- ▁fi
- ▁these
- ▁ra
- ▁went
- ▁things
- ment
- ▁doing
- ▁day
- ▁un
- ▁lo
- ▁da
- ▁only
- igh
- ▁come
- ▁big
- ▁those
- ▁wanna
- ▁bit
- ▁never
- ▁us
- ol
- ▁though
- ▁first
- ive
- ▁their
- ▁let
- ▁start
- ▁his
- ▁four
- ▁le
- ▁eat
- ist
- ▁school
- us
- ▁into
- ▁yep
- uck
- ▁than
- ▁him
- ▁hi
- ▁also
- ▁five
- side
- ▁new
- ▁comp
- ▁cool
- ▁talk
- ▁said
- ▁pro
- ▁r
- ▁always
- ▁ri
- ▁cl
- ▁long
- able
- ▁sc
- ▁gra
- ▁by
- ▁friend
- age
- ▁different
- ▁live
- ▁doesn
- ▁place
- ▁sorry
- ▁will
- ▁feel
- ▁does
- ▁part
- ▁wait
- ▁six
- ▁watch
- ▁anything
- ▁man
- ▁our
- ▁car
- ▁huh
- ▁whatever
- ▁last
- ▁give
- ▁ten
- ▁before
- ▁thought
- ▁after
- ▁game
- ▁card
- ▁fl
- ▁every
- cause
- ▁same
- ▁around
- ▁cook
- ▁week
- ▁hu
- ▁everything
- ▁fine
- ▁many
- ▁qu
- ▁read
- ▁tea
- ough
- ance
- ▁turn
- ▁wow
- ▁fun
- ▁hard
- ▁great
- ▁love
- ▁remember
- ▁twenty
- ▁whole
- ▁happen
- ▁seven
- ▁keep
- ▁food
- ▁most
- j
- ▁might
- ▁thank
- ▁move
- ▁job
- ▁eight
- ▁mu
- ▁sort
- ▁better
- port
- ▁another
- ful
- ▁point
- ▁show
- ▁again
- ▁high
- ize
- ▁house
- ▁home
- ▁person
- ▁old
- ▁end
- ▁through
- ▁pick
- ▁else
- ▁guy
- ▁app
- ▁find
- ▁nine
- ▁hand
- ▁kid
- ▁interesting
- ▁city
- ▁called
- ▁tell
- ▁half
- ▁name
- ▁definitely
- ▁made
- ▁exactly
- ▁came
- ▁wood
- ▁funny
- ▁basically
- ▁count
- ▁usually
- ▁help
- ▁someone
- ▁already
- ▁dunno
- ▁enough
- ction
- ▁own
- ▁weird
- ▁next
- ▁hundred
- ▁small
- ▁money
- ▁couple
- ▁while
- ▁close
- ▁movie
- ▁sometimes
- ▁everyone
- ▁away
- ▁true
- ▁super
- ▁cheese
- ▁class
- ▁night
- ▁life
- ▁leave
- ▁plan
- ▁water
- ▁left
- ▁thirty
- ▁family
- ▁phone
- ▁build
- ▁room
- ▁month
- ▁open
- ▁idea
- ▁second
- ▁dude
- ▁music
- ▁each
- ▁learn
- ▁girl
- ▁together
- ▁under
- ▁run
- ▁chicken
- ▁having
- ▁either
- ▁almost
- ▁crazy
- ▁book
- ▁sauce
- ▁supposed
- ▁course
- ▁speak
- ▁awesome
- ▁anyway
- ▁throw
- ▁finish
- ▁world
- ▁reason
- ▁check
- ▁least
- ▁parents
- ▁everybody
- ▁change
- '&'
- ä
- '#'
- ñ
- â
- é
- ü
- ']'
- q
- î
- <sos/eos>
init: xavier_uniform
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram500/bpe.model
non_linguistic_symbols: data/nlsyms.txt
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: s3prl
frontend_conf:
frontend_conf:
upstream: wavlm_large
download_dir: ./hub
multilayer_feature: true
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: false
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: false
freq_mask_width_range:
- 0
- 150
num_freq_mask: 4
apply_time_mask: true
time_mask_width_ratio_range:
- 0.0
- 0.15
num_time_mask: 3
normalize: utterance_mvn
normalize_conf: {}
model: espnet
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
extract_feats_in_collect_stats: false
preencoder: linear
preencoder_conf:
input_size: 1024
output_size: 128
dropout: 0.2
encoder: transformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d2
normalize_before: true
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
input_layer: embed
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.0
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
preprocessor: default
preprocessor_conf: {}
required:
- output_dir
- token_list
version: '202301'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | 445aeb1f46c12b854264b9da438a80c1 |
minjibi/test1000v2 | minjibi | wav2vec2 | 12 | 3 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,638 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test1000v2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7873
- Wer: 0.6162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7.7913 | 3.22 | 100 | 3.3481 | 1.0 |
| 3.3831 | 6.44 | 200 | 3.3229 | 1.0 |
| 3.3778 | 9.67 | 300 | 3.3211 | 1.0 |
| 3.3671 | 12.89 | 400 | 3.2973 | 1.0 |
| 3.3528 | 16.13 | 500 | 3.1349 | 1.0 |
| 1.8611 | 19.35 | 600 | 0.7873 | 0.6162 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.10.0+cu102
- Datasets 1.4.1
- Tokenizers 0.12.1
| 367a1b02d526e0d712b87447f337eb8c |
ibm/ColD-Fusion-itr21-seed2 | ibm | roberta | 9 | 3 | transformers | 0 | text-classification | true | false | false | mit | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['exbert'] | false | true | true | 3,148 | false |
# ColD Fusion model
Finetuned model that aims to be a great base model. It improves over RoBERTa base, trained on 35 datasets.
Full details at [this paper](https://arxiv.org/abs/2212.01378).
## Paper Abstract:
Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a
mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now,
massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources
that are only available to well-resourced teams.
In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed
computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic
loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that
ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on
all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find
ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets,
ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.
### How to use
Best way to use is to finetune on your own task, but you can also extract features directly.
To get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
model = RobertaModel.from_pretrained('ibm/ColD-Fusion')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
model = TFRobertaModel.from_pretrained('ibm/ColD-Fusion')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Evaluation results
See full evaluation results of this model and many more [here](https://ibm.github.io/model-recycling/roberta-base_table.html)
When fine-tuned on downstream tasks, this model achieves the following results:
### BibTeX entry and citation info
```bibtex
@article{ColDFusion,
author = {Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, Leshem ChoshenYinhan Liu and},
title = {ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning},
journal = {CoRR},
volume = {abs/2212.01378},
year = {2022},
url = {https://arxiv.org/abs/2212.01378},
archivePrefix = {arXiv},
eprint = {2212.01378},
}
```
<a href="https://huggingface.co/exbert/?model=ibm/ColD-Fusion">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
| 5c8fa2b9a466ea10f283dd893ce2d1a5 |
Kurapka/koja | Kurapka | null | 18 | 4 | diffusers | 0 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['text-to-image', 'stable-diffusion'] | false | true | true | 606 | false | ### koja Dreambooth model trained by Kurapka with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Sample pictures of this concept:
| 469cbb48bbcbaa34569f445e688eabe1 |
jonatasgrosman/exp_w2v2t_sv-se_r-wav2vec2_s418 | jonatasgrosman | wav2vec2 | 10 | 7 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['sv-SE'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'sv-SE'] | false | true | true | 468 | false | # exp_w2v2t_sv-se_r-wav2vec2_s418
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 68a2706abb7fec9a7d722f709415d789 |
MortalSage/Strange_Dedication | MortalSage | null | 38 | 0 | null | 16 | text-to-image | false | false | false | unknown | ['en'] | null | null | 1 | 0 | 0 | 1 | 1 | 1 | 0 | ['stable-diffusion', 'text-to-image'] | false | true | true | 1,952 | false |
.safetensor model for automatic1111 webui.
Strange_Dedication_v3 is an improvement to Strange_Dedication_v2 using Anything_v4.5.
It's better at the cutesexyrobutts style, without having to use a trigger.
Also, it's good at shiny_skin and shiny_clothes and artistical backgrounds.
I have only used it with "vae-ft-mse-840000-ema-pruned", CLIP-Skip 1 and with danbooru tags.
Lately I have started using the negative embed "bad-hands-5" (by an unknown author?), which was used for the example images as well.
If you work with those you should be able to prompt images like these (prompts in .png metadata):
![00009-20230122002457-6cda57b672.png](https://huggingface.co/MortalSage/Strange_Dedication/resolve/main/Strange_Dedication_v3%20examples/SFW/00009-20230122002457-6cda57b672.png)
![00009-20230121201847-6cda57b672.png](https://huggingface.co/MortalSage/Strange_Dedication/resolve/main/Strange_Dedication_v3%20examples/SFW/00009-20230121201847-6cda57b672.png)
![00007-20230122001758-6cda57b672.png](https://huggingface.co/MortalSage/Strange_Dedication/resolve/main/Strange_Dedication_v3%20examples/SFW/00007-20230122001758-6cda57b672.png)
![00002-20230122000635-6cda57b672.png](https://huggingface.co/MortalSage/Strange_Dedication/resolve/main/Strange_Dedication_v3%20examples/SFW/00002-20230122000635-6cda57b672.png)
| 2ac69240c9ec8a6839e66c10c790cb88 |
Sa1i/gakki-mix-512-young | Sa1i | null | 22 | 2 | diffusers | 1 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['text-to-image', 'stable-diffusion', 'gakki'] | false | true | true | 529 | false | # VAE
Highly recommended for use with VAE
# legal & risk
⚠️⚠ It is prohibited to use this model for commercial purposes and any scenarios of illegal acts and purposes.
Sample pictures of this concept:
![0](https://huggingface.co/Sa1i/gakki-mix/resolve/main/sample_images/00986-2977967196.png)
![1](https://huggingface.co/Sa1i/gakki-mix/resolve/main/sample_images/00997-2275133157.png)
![2](https://huggingface.co/Sa1i/gakki-mix/resolve/main/sample_images/01002-3229456781.png) | e2e411d950545015996011bb76f95a94 |
bigmorning/whisper_havest_0015 | bigmorning | whisper | 7 | 6 | transformers | 0 | automatic-speech-recognition | false | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 3,113 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_havest_0015
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.5508
- Train Accuracy: 0.0121
- Train Do Wer: 1.0
- Validation Loss: 4.7620
- Validation Accuracy: 0.0121
- Validation Do Wer: 1.0
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Do Wer | Validation Loss | Validation Accuracy | Validation Do Wer | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 9.9191 | 0.0046 | 1.0 | 8.5836 | 0.0067 | 1.0 | 0 |
| 8.0709 | 0.0083 | 1.0 | 7.4667 | 0.0089 | 1.0 | 1 |
| 7.1652 | 0.0100 | 1.0 | 6.8204 | 0.0112 | 1.0 | 2 |
| 6.7196 | 0.0114 | 1.0 | 6.5192 | 0.0114 | 1.0 | 3 |
| 6.4115 | 0.0115 | 1.0 | 6.2357 | 0.0115 | 1.0 | 4 |
| 6.1085 | 0.0115 | 1.0 | 5.9657 | 0.0115 | 1.0 | 5 |
| 5.8206 | 0.0115 | 1.0 | 5.7162 | 0.0115 | 1.0 | 6 |
| 5.5567 | 0.0115 | 1.0 | 5.4963 | 0.0115 | 1.0 | 7 |
| 5.3223 | 0.0116 | 1.0 | 5.3096 | 0.0116 | 1.0 | 8 |
| 5.1222 | 0.0117 | 1.0 | 5.1600 | 0.0117 | 1.0 | 9 |
| 4.9580 | 0.0117 | 1.0 | 5.0391 | 0.0118 | 1.0 | 10 |
| 4.8251 | 0.0119 | 1.0 | 4.9427 | 0.0118 | 1.0 | 11 |
| 4.7171 | 0.0119 | 1.0 | 4.8691 | 0.0119 | 1.0 | 12 |
| 4.6284 | 0.0121 | 1.0 | 4.8123 | 0.0120 | 1.0 | 13 |
| 4.5508 | 0.0121 | 1.0 | 4.7620 | 0.0121 | 1.0 | 14 |
### Framework versions
- Transformers 4.25.0.dev0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.2
| 7d22385a960de6372ace2a5ceff99557 |
jcblaise/electra-tagalog-small-uncased-generator | jcblaise | electra | 6 | 4 | transformers | 0 | fill-mask | true | false | false | gpl-3.0 | ['tl'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['electra', 'tagalog', 'filipino'] | false | true | true | 1,393 | false |
# ELECTRA Tagalog Small Uncased Generator
Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community.
This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models.
## Citations
All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work:
```
@inproceedings{cruz2021exploiting,
title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets},
author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth},
booktitle={Pacific Rim International Conference on Artificial Intelligence},
pages={86--99},
year={2021},
organization={Springer}
}
```
## Data and Other Resources
Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com
## Contact
If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
| 8b6ffc4dd3c28bb5c24f4a941aa87675 |
arvkevi/nba_pbp_distilgpt2 | arvkevi | gpt2 | 21 | 2 | transformers | 0 | text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,251 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nba_pbp_distilgpt2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on text files containing play-by-play descriptions of games played by the Boston Celtics and Golden State Warriors during the 2021-22 NBA season.
It achieves the following results on the evaluation set:
- Loss: 0.6324
- Accuracy: 0.8117
## Model description
This model will generate properly formatted play-by-play descriptions of an NBA game with players from the Boston Celtics and Golden State Warriors.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| 8350dd6b5f7786145e6b0bef1e2ad520 |
muhtasham/small-mlm-glue-qqp-custom-tokenizer | muhtasham | bert | 12 | 0 | transformers | 0 | fill-mask | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,457 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-mlm-glue-qqp-custom-tokenizer
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0065
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3631 | 0.4 | 500 | 5.9145 |
| 5.6422 | 0.8 | 1000 | 5.8224 |
| 5.4368 | 1.2 | 1500 | 5.6172 |
| 5.1539 | 1.6 | 2000 | 5.4872 |
| 5.0641 | 2.0 | 2500 | 5.5369 |
| 4.9495 | 2.4 | 3000 | 5.3466 |
| 4.8947 | 2.8 | 3500 | 5.4592 |
| 4.9081 | 3.2 | 4000 | 5.3328 |
| 4.7214 | 3.6 | 4500 | 5.3746 |
| 4.7341 | 4.0 | 5000 | 5.3417 |
| 4.6482 | 4.4 | 5500 | 5.2731 |
| 4.628 | 4.8 | 6000 | 5.2716 |
| 4.5801 | 5.2 | 6500 | 5.1364 |
| 4.4967 | 5.6 | 7000 | 5.2167 |
| 4.4984 | 6.0 | 7500 | 5.2133 |
| 4.4255 | 6.4 | 8000 | 5.1228 |
| 4.4459 | 6.8 | 8500 | 5.1664 |
| 4.3732 | 7.2 | 9000 | 5.0800 |
| 4.2546 | 7.6 | 9500 | 5.0616 |
| 4.351 | 8.0 | 10000 | 5.1500 |
| 4.2365 | 8.4 | 10500 | 5.0903 |
| 4.2224 | 8.8 | 11000 | 5.0041 |
| 4.2549 | 9.2 | 11500 | 5.0711 |
| 4.1108 | 9.6 | 12000 | 5.1525 |
| 4.1366 | 10.0 | 12500 | 5.0065 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
| aedf9d49499f69fb9e8b14113d294bb2 |
jonatasgrosman/exp_w2v2r_de_xls-r_age_teens-8_sixties-2_s945 | jonatasgrosman | wav2vec2 | 10 | 0 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['de'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'de'] | false | true | true | 475 | false | # exp_w2v2r_de_xls-r_age_teens-8_sixties-2_s945
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| eeff3a02f55872ba95b04bc82f8f8efd |
2020uee0139/distilbert-base-uncased-finetuned-squad | 2020uee0139 | distilbert | 12 | 3 | transformers | 0 | question-answering | true | false | false | apache-2.0 | null | ['squad'] | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,284 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1547
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2164 | 1.0 | 5533 | 1.1486 |
| 0.9546 | 2.0 | 11066 | 1.1251 |
| 0.7573 | 3.0 | 16599 | 1.1547 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| bdd84eba2f64d8fa267d694ea40d857a |
Intel/bert-base-uncased-mrpc-int8-dynamic | Intel | bert | 9 | 4 | transformers | 0 | text-classification | true | false | false | apache-2.0 | ['en'] | ['mrpc'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['text-classfication', 'int8', 'Intel® Neural Compressor', 'PostTrainingDynamic', 'onnx'] | false | true | true | 1,445 | false |
# INT8 BERT base uncased finetuned MRPC
## Post-training dynamic quantization
### PyTorch
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8997|0.9042|
| **Model size (MB)** |174|418|
#### Load with optimum:
```python
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSequenceClassification
int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(
'Intel/bert-base-uncased-mrpc-int8-dynamic',
)
```
### ONNX
This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8958|0.9042|
| **Model size (MB)** |107|418|
#### Load ONNX model:
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
model = ORTModelForSequenceClassification.from_pretrained('Intel/bert-base-uncased-mrpc-int8-dynamic')
```
| 439aac8e766a0d7796c3738f812e06b4 |
prakharz/DIAL-FLANT5-XL | prakharz | t5 | 8 | 729 | transformers | 3 | text2text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,332 | false |
# InstructDial
Instruction tuning is an emergent paradigm in NLP wherein natural language instructions are leveraged with language models to induce zero-shot performance on unseen tasks. Instructions have been shown to enable good performance on unseen tasks and datasets in both large and small language models. Dialogue is an especially interesting area to explore instruction tuning because dialogue systems perform multiple kinds of tasks related to language (e.g., natural language understanding and generation, domain-specific interaction), yet instruction tuning has not been systematically explored for dialogue-related tasks. We introduce InstructDial, an instruction tuning framework for dialogue, which consists of a repository of 48 diverse dialogue tasks in a unified text-to-text format created from 59 openly available dialogue datasets. Next, we explore cross-task generalization ability on models tuned on InstructDial across diverse dialogue tasks. Our analysis reveals that InstructDial enables good zero-shot performance on unseen datasets and tasks such as dialogue evaluation and intent detection, and even better performance in a few-shot setting. To ensure that models adhere to instructions, we introduce novel meta-tasks. We establish benchmark zero-shot and few-shot performance of models trained using the proposed framework on multiple dialogue tasks.
[Paper](https://arxiv.org/abs/2205.12673)
[GIT] (https://github.com/prakharguptaz/Instructdial)
# DIAL-FLANT5-XL
DIAL-FLANT5-XL is a 3B model trained on InstructDial tasks. This model is a fine-tuned version of google/flan-t5-xl model
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
All tasks in InstructDial framework (including all dialogue eval tasks)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 72
- total_eval_batch_size: 72
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.12.1
| 8551ede43863e78a31514b0a652dc412 |
huggingnft/alpacadabraz | huggingnft | null | 5 | 10 | transformers | 1 | unconditional-image-generation | false | false | false | mit | null | ['huggingnft/alpacadabraz'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['huggingnft', 'nft', 'huggan', 'gan', 'image', 'images', 'unconditional-image-generation'] | false | true | true | 2,190 | false |
# Hugging NFT: alpacadabraz
## Disclaimer
All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright
holder.
## Model description
LightWeight GAN model for unconditional generation.
NFT collection available [here](https://opensea.io/collection/alpacadabraz).
Dataset is available [here](https://huggingface.co/datasets/huggingnft/alpacadabraz).
Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
[![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft)
## Intended uses & limitations
#### How to use
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
#### Limitations and bias
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
## Training data
Dataset is available [here](https://huggingface.co/datasets/huggingnft/alpacadabraz).
## Training procedure
Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft).
## Generated Images
Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
## About
*Built by Aleksey Korshuk*
[![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk)
[![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft)
### BibTeX entry and citation info
```bibtex
@InProceedings{huggingnft,
author={Aleksey Korshuk}
year=2022
}
```
| 8099a5c6818b8263c173d2cc7ee8d440 |
megantosh/flair-arabic-MSA-aqmar | megantosh | null | 11 | 44 | flair | 0 | token-classification | true | false | false | apache-2.0 | ['ar'] | ['AQMAR', 'ANERcorp'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['flair', 'Text Classification', 'token-classification', 'sequence-tagger-model'] | false | true | true | 3,938 | false | # Arabic NER Model for AQMAR dataset
Training was conducted over 86 epochs, using a linear decaying learning rate of 2e-05, starting from 0.3 and a batch size of 48 with fastText and Flair forward and backward embeddings.
## Original Dataset:
- [AQMAR](http://www.cs.cmu.edu/~ark/ArabicNER/)
## Results:
- F1-score (micro) 0.9323
- F1-score (macro) 0.9272
| | True Posititves | False Positives | False Negatives | Precision | Recall | class-F1 |
|------|-----|----|----|---------|--------|----------|
| LOC | 164 | 7 | 13 | 0.9591 | 0.9266 | 0.9425 |
| MISC | 398 | 22 | 37 | 0.9476 | 0.9149 | 0.9310 |
| ORG | 65 | 6 | 9 | 0.9155 | 0.8784 | 0.8966 |
| PER | 199 | 13 | 13 | 0.9387 | 0.9387 | 0.9387 |
---
# Usage
```python
from flair.data import Sentence
from flair.models import SequenceTagger
import pyarabic.araby as araby
from icecream import ic
arTagger = SequenceTagger.load('megantosh/flair-arabic-MSA-aqmar')
sentence = Sentence('George Washington went to Washington .')
arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .')
# predict NER tags
tagger.predict(sentence)
arTagger.predict(arSentence)
# print sentence with predicted tags
ic(sentence.to_tagged_string)
ic(arSentence.to_tagged_string)
```
# Example
see an example from a [similar NER model in Flair](https://huggingface.co/megantosh/flair-arabic-multi-ner)
# Model Configuration
```python
(embeddings): StackedEmbeddings(
(list_embedding_0): WordEmbeddings('ar')
(list_embedding_1): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.1, inplace=False)
(encoder): Embedding(7125, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=7125, bias=True)
)
)
(list_embedding_2): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.1, inplace=False)
(encoder): Embedding(7125, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=7125, bias=True)
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=14, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-03-31 22:19:50,654 ----------------------------------------------------------------------------------------------------
2021-03-31 22:19:50,654 Corpus: "Corpus: 3025 train + 336 dev + 373 test sentences"
2021-03-31 22:19:50,654 ----------------------------------------------------------------------------------------------------
2021-03-31 22:19:50,654 Parameters:
2021-03-31 22:19:50,654 - learning_rate: "0.3"
2021-03-31 22:19:50,654 - mini_batch_size: "48"
2021-03-31 22:19:50,654 - patience: "3"
2021-03-31 22:19:50,654 - anneal_factor: "0.5"
2021-03-31 22:19:50,654 - max_epochs: "150"
2021-03-31 22:19:50,654 - shuffle: "True"
2021-03-31 22:19:50,654 - train_with_dev: "False"
2021-03-31 22:19:50,654 - batch_growth_annealing: "False"
2021-03-31 22:19:50,655 ------------------------------------
```
Due to the right-to-left in left-to-right context, some formatting errors might occur. and your code might appear like [this](https://ibb.co/ky20Lnq), (link accessed on 2020-10-27)
# Citation
*if you use this model, please consider citing [this work](https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects):*
```latex
@unpublished{MMHU21
author = "M. Megahed",
title = "Sequence Labeling Architectures in Diglossia",
year = {2021},
doi = "10.13140/RG.2.2.34961.10084"
url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects}
}
``` | 11e4388388b4286db8293fe9dc815596 |
roscazo/CTEBMSP_ANAT_DISO | roscazo | roberta | 17 | 1 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 3,589 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CTEBMSP_ANAT_DISO
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
- Anat Precision: 0.7522
- Anat Recall: 0.7147
- Anat F1: 0.7330
- Anat Number: 361
- Diso Precision: 0.8915
- Diso Recall: 0.8919
- Diso F1: 0.8917
- Diso Number: 2645
- Overall Precision: 0.8755
- Overall Recall: 0.8706
- Overall F1: 0.8731
- Overall Accuracy: 0.9873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Anat Precision | Anat Recall | Anat F1 | Anat Number | Diso Precision | Diso Recall | Diso F1 | Diso Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0592 | 1.0 | 2133 | 0.0506 | 0.6950 | 0.4986 | 0.5806 | 361 | 0.8635 | 0.8609 | 0.8622 | 2645 | 0.8484 | 0.8174 | 0.8326 | 0.9843 |
| 0.0323 | 2.0 | 4266 | 0.0583 | 0.7899 | 0.6039 | 0.6845 | 361 | 0.8780 | 0.8817 | 0.8798 | 2645 | 0.8697 | 0.8483 | 0.8589 | 0.9858 |
| 0.0201 | 3.0 | 6399 | 0.0580 | 0.6565 | 0.7147 | 0.6844 | 361 | 0.8598 | 0.8764 | 0.8680 | 2645 | 0.8339 | 0.8570 | 0.8453 | 0.9851 |
| 0.0121 | 4.0 | 8532 | 0.0758 | 0.7240 | 0.6759 | 0.6991 | 361 | 0.8976 | 0.8752 | 0.8863 | 2645 | 0.8776 | 0.8513 | 0.8642 | 0.9863 |
| 0.0078 | 5.0 | 10665 | 0.0814 | 0.7219 | 0.7119 | 0.7169 | 361 | 0.8776 | 0.8975 | 0.8875 | 2645 | 0.8595 | 0.8752 | 0.8673 | 0.9862 |
| 0.0031 | 6.0 | 12798 | 0.0974 | 0.7599 | 0.6399 | 0.6947 | 361 | 0.8895 | 0.8915 | 0.8905 | 2645 | 0.8761 | 0.8613 | 0.8686 | 0.9867 |
| 0.002 | 7.0 | 14931 | 0.0980 | 0.7143 | 0.6787 | 0.6960 | 361 | 0.8813 | 0.8957 | 0.8884 | 2645 | 0.8624 | 0.8696 | 0.8660 | 0.9860 |
| 0.0005 | 8.0 | 17064 | 0.0909 | 0.7522 | 0.7147 | 0.7330 | 361 | 0.8915 | 0.8919 | 0.8917 | 2645 | 0.8755 | 0.8706 | 0.8731 | 0.9873 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| 98835688bbc75a121215ab68e234fcfc |
dxiao/bert-finetuned-ner-20percent | dxiao | bert | 12 | 7 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,525 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-20percent
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6513
- Precision: 0.5252
- Recall: 0.6562
- F1: 0.5834
- Accuracy: 0.8044
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2022
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.9155 | 0.3511 | 0.4264 | 0.3851 | 0.7353 |
| No log | 2.0 | 30 | 0.7116 | 0.4845 | 0.6321 | 0.5485 | 0.7898 |
| No log | 3.0 | 45 | 0.6513 | 0.5252 | 0.6562 | 0.5834 | 0.8044 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
| 140bd2b8399a76158210abbebd816fef |
Simon17/Klassifizierung-Heizung | Simon17 | bert | 12 | 1 | transformers | 0 | text-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,318 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Klassifizierung-Heizung
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0936
- F1: 0.9859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7465 | 1.0 | 142 | 0.1972 | 0.9286 |
| 0.1416 | 2.0 | 284 | 0.1080 | 0.9859 |
| 0.0541 | 3.0 | 426 | 0.0936 | 0.9859 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
| 92a43128590c7933cb7f3d2552f8f4ec |
sd-concepts-library/james-web-space-telescope | sd-concepts-library | null | 9 | 0 | null | 0 | null | false | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,150 | false | ### James Web space Telescope on Stable Diffusion
This is the `<James-Web-Telescope>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:
![<James-Web-Telescope> 0](https://huggingface.co/sd-concepts-library/james-web-space-telescope/resolve/main/concept_images/0.jpeg)
![<James-Web-Telescope> 1](https://huggingface.co/sd-concepts-library/james-web-space-telescope/resolve/main/concept_images/2.jpeg)
![<James-Web-Telescope> 2](https://huggingface.co/sd-concepts-library/james-web-space-telescope/resolve/main/concept_images/3.jpeg)
![<James-Web-Telescope> 3](https://huggingface.co/sd-concepts-library/james-web-space-telescope/resolve/main/concept_images/1.jpeg)
| 1fa34a6ac260d9bca1ad288d3ec7d4a6 |
tau/bart-base-sled-contractnli | tau | tau/sled | 5 | 0 | transformers | 0 | null | true | false | false | mit | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 4,972 | false |
# BART-SLED (SLiding-Encoder and Decoder, base-sized model)
SLED models use pretrained, short-range encoder-decoder models, and apply them over
long-text inputs by splitting the input into multiple overlapping chunks, encoding each independently and perform fusion-in-decoder
## Model description
This SLED model is based on the BART model, which is described in its [model card](https://huggingface.co/facebook/bart-base).
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works
well for comprehension tasks (e.g. text classification, question answering). When used as a BART-SLED model, it can be applied on long text tasks.
This model was finetuned on the [ContractNLI](https://arxiv.org/abs/2110.01799)
## Intended uses & limitations
You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset.
### How to use
To use the model, you first need to install `py-sled` in your environment (or clone the code from the [official repository](https://github.com/Mivg/SLED/blob/main/README.md))
```
pip install py-sled
```
For more installation instructions, see [here](https://github.com/Mivg/SLED#Installation).
Once installed, SLED is fully compatible with HuggingFace's AutoClasses (AutoTokenizer, AutoConfig, AutoModel
and AutoModelForCausalLM) and can be loaded using the from_pretrained methods
```python
import sled # *** required so that SledModels will be registered for the AutoClasses ***
model = AutoModel.from_pretrained('tau/bart-base-sled')
```
Here is how to use this model in PyTorch:
```python
from sled import SledTokenizer, SledModel
tokenizer = SledTokenizer.from_pretrained('tau/bart-base-sled')
model = SledModel.from_pretrained('tau/bart-base-sled')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
You can also replace SledModel by SledModelForConditionalGeneration for Seq2Seq generation
```python
model = SledModelForConditionalGeneration.from_pretrained('tau/bart-base-sled')
```
In case you wish to apply SLED on a task containing a prefix (e.g. question) which should be given as a context to
every chunk, you can pass the `prefix_length` tensor input as well (A LongTensor in the length of the batch size).
```python
import torch
import sled # *** required so that SledModels will be registered for the AutoClasses ***
tokenizer = AutoTokenizer.from_pretrained('tau/bart-base-sled')
model = AutoModel.from_pretrained('tau/bart-base-sled')
document_input_ids = tokenizer("Dogs are great for you.", return_tensors="pt").input_ids
prefix_input_ids = tokenizer("Are dogs good for you?", return_tensors="pt").input_ids
input_ids = torch.cat((prefix_input_ids, document_input_ids), dim=-1)
attention_mask = torch.ones_like(input_ids)
prefix_length = torch.LongTensor([[prefix_input_ids.size(1)]])
outputs = model(input_ids=input_ids, attention_mask=attention_mask, prefix_length=prefix_length)
last_hidden_states = outputs.last_hidden_state
```
### BibTeX entry and citation info
Please cite both the SLED [paper](https://arxiv.org/abs/2208.00748.pdf) and the BART [paper](https://arxiv.org/abs/1910.13461) by Lewis et al as well as ContractNLI by Koreeda and Manning
```bibtex
@inproceedings{Ivgi2022EfficientLU,
title={Efficient Long-Text Understanding with Short-Text Models},
author={Maor Ivgi and Uri Shaham and Jonathan Berant},
year={2022}
}
```
```bibtex
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```bibtex
@inproceedings{koreeda-manning-2021-contractnli-dataset,
title = "{C}ontract{NLI}: A Dataset for Document-level Natural Language Inference for Contracts",
author = "Koreeda, Yuta and
Manning, Christopher",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.164",
doi = "10.18653/v1/2021.findings-emnlp.164",
pages = "1907--1919"
}
``` | 652ac6c93ae67a41b4f8d885f27845b1 |
thyagosme/gpt2-wikitext2 | thyagosme | gpt2 | 9 | 4 | transformers | 0 | text-generation | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,216 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.5576 | 1.0 | 2249 | 6.4681 |
| 6.1905 | 2.0 | 4498 | 6.1976 |
| 6.0005 | 3.0 | 6747 | 6.1095 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| db207bf12cddb2e1fba07948e78679ce |
omriuz/distilbert-base-uncased-finetuned-mnli | omriuz | distilbert | 14 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,291 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-mnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8311
- Accuracy: 0.6574
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8687 | 1.0 | 2636 | 0.8341 | 0.6495 |
| 0.7788 | 2.0 | 5272 | 0.8311 | 0.6574 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| eb2b9fcf50cead783754391fa6a139fb |
jonatasgrosman/exp_w2v2t_nl_unispeech_s493 | jonatasgrosman | unispeech | 10 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['nl'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'nl'] | false | true | true | 469 | false | # exp_w2v2t_nl_unispeech_s493
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 835abbb190bd60eeb21e6199a2587a74 |
Vishfeb27/wav2vec2-base-timit-demo-colab | Vishfeb27 | wav2vec2 | 14 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,014 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
| 7812217c55e44d62bc2b6221acd290ad |
96harsh56/bert-large-cased-berta-finetuned-subjqa_1 | 96harsh56 | bert | 12 | 2 | transformers | 0 | question-answering | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 939 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-berta-finetuned-subjqa_1
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
| 3ee5acb3b2366a86a716270a5f0d353e |
lmqg/mt5-base-itquad-ae | lmqg | mt5 | 13 | 66 | transformers | 0 | text2text-generation | true | false | false | cc-by-4.0 | ['it'] | ['lmqg/qg_itquad'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['answer extraction'] | true | true | true | 4,612 | false |
# Model Card of `lmqg/mt5-base-itquad-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for answer extraction on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** it
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-base-itquad-ae")
# model prediction
answers = model.generate_a("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-itquad-ae")
output = pipe("<hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
```
## Evaluation
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-itquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 52.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| AnswerF1Score | 68.09 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| BERTScore | 89.26 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_1 | 36.69 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_2 | 30.79 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_3 | 26.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| Bleu_4 | 22.67 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| METEOR | 37.72 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| MoverScore | 78.79 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
| ROUGE_L | 42.58 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 16
- batch: 8
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-itquad-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
| ce2b2e616da685f4f5bc6498b07e925d |
Raccourci/t5-sentiment | Raccourci | t5 | 11 | 1 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,807 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-sentiment-hub
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0608
- Rouge1: 97.0464
- Rouge2: 0.0
- Rougel: 97.0464
- Rougelsum: 97.0464
- Gen Len: 2.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.2061 | 0.84 | 250 | 0.1437 | 90.7173 | 0.0 | 90.7173 | 90.7173 | 2.0 |
| 0.1223 | 1.69 | 500 | 0.1061 | 93.6709 | 0.0 | 93.6709 | 93.6709 | 2.0 |
| 0.1188 | 2.53 | 750 | 0.0816 | 95.7806 | 0.0 | 95.7806 | 95.7806 | 2.0 |
| 0.0794 | 3.38 | 1000 | 0.0766 | 95.7806 | 0.0 | 95.7806 | 95.7806 | 2.0 |
| 0.1006 | 4.22 | 1250 | 0.0608 | 97.0464 | 0.0 | 97.0464 | 97.0464 | 2.0 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| 3b6f02c97009fbf9ab363eed36da4aed |
flax-community/alberti-bert-base-multilingual-cased | flax-community | bert | 47 | 96 | transformers | 4 | fill-mask | true | false | true | cc-by-4.0 | ['es'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['multilingual', 'bert'] | false | true | true | 4,318 | false |
# ALBERTI
ALBERTI is a set of two BERT-based multilingual model for poetry. One for verses and another one for stanzas. This model has been further trained with the PULPO corpus for verses using [Flax](https://github.com/google/flax), including training scripts.
This is part of the
[Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google.
## PULPO
PULPO, the Prodigious Unannotated Literary Poetry Corpus, is a set of multilingual corpora of verses and stanzas with over 95M words.
The following corpora has been downloaded using the [Averell](https://github.com/linhd-postdata/averell/) tool, developed by the [POSTDATA](https://postdata.linhd.uned.es/) team:
### Spanish
- [Disco v3](https://github.com/pruizf/disco)
- [Corpus of Spanish Golden-Age Sonnets](https://github.com/bncolorado/CorpusSonetosSigloDeOro)
- [Corpus general de poesía lírica castellana del Siglo de Oro](https://github.com/bncolorado/CorpusGeneralPoesiaLiricaCastellanaDelSigloDeOro)
- [Gongocorpus](https://github.com/linhd-postdata/gongocorpus) - [source](http://obvil.sorbonne-universite.site/corpus/gongora/gongora_obra-poetica)
### English
- [Eighteenth-Century Poetry Archive (ECPA)](https://github.com/alhuber1502/ECPA)
- [For better for verse](https://github.com/waynegraham/for_better_for_verse)
### French
- [Métrique en Ligne](https://crisco2.unicaen.fr/verlaine/index.php?navigation=accueil) - [source](https://github.com/linhd-postdata/metrique-en-ligne)
### Italian
- [Biblioteca italiana](https://github.com/linhd-postdata/biblioteca_italiana) - [source](http://www.bibliotecaitaliana.it/)
### Czech
- [Corpus of Czech Verse](https://github.com/versotym/corpusCzechVerse)
### Portuguese
- [Stichotheque](https://gitlab.com/stichotheque/stichotheque-pt)
Also, we obtained the following corpora from these sources:
### Spanish
- [Poesi.as](https://github.com/linhd-postdata/poesi.as) - [source](http://www.poesi.as/)
### English
- [A Gutenberg Poetry Corpus](https://github.com/aparrish/gutenberg-poetry-corpus)
### Arabic
- [Arabic Poetry dataset](https://www.kaggle.com/ahmedabelal/arabic-poetry)
### Chinese
- [THU Chinese Classical Poetry Corpus](https://github.com/THUNLP-AIPoet/Datasets/tree/master/CCPC)
### Finnish
- [SKVR](https://github.com/sks190/SKVR)
### German
- [TextGrid Poetry Corpus](https://github.com/linhd-postdata/textgrid-poetry) - [source](https://textgrid.de/en/digitale-bibliothek)
- [German Rhyme Corpus](https://github.com/tnhaider/german-rhyme-corpus)
### Hungarian
- [verskorpusz](https://github.com/ELTE-DH/verskorpusz)
### Portuguese
- [Poems in Portuguese](https://www.kaggle.com/oliveirasp6/poems-in-portuguese)
### Russian
- [19 000 Russian poems](https://www.kaggle.com/grafstor/19-000-russian-poems)
## Team members
- Álvaro Pérez ([alvp](https://huggingface.co/alvp))
- Javier de la Rosa ([versae](https://huggingface.co/versae))
- Aitor Díaz ([aitordiaz](https://huggingface.co/aitordiaz))
- Elena González-Blanco
- Salvador Ros ([salva](https://huggingface.co/salva))
## Useful links
- [Community Week timeline](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104#summary-timeline-calendar-6)
- [Community Week README](https://github.com/huggingface/transformers/blob/master/examples/research_projects/jax-projects/README.md)
- [Community Week thread](https://discuss.huggingface.co/t/bertin-pretrain-roberta-large-from-scratch-in-spanish/7125)
- [Community Week channel](https://discord.com/channels/858019234139602994/859113060068229190)
- [Masked Language Modelling example scripts](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling)
- [Model Repository](https://huggingface.co/flax-community/alberti-bert-base-multilingual-cased/)
## Acknowledgments
This project would not have been possible without the infrastructure and resources provided by HuggingFace and Google Cloud. Moreover, we want to thank POSTDATA Project (ERC-StG-679528) and the Computational Literary Studies Infrastructure (CLS INFRA No. 101004984) of the European Union's Horizon 2020 research and innovation programme for their support and time allowance. | ea460dc4946fd092a8847a10d71f798a |
Rgl73/xlm-roberta-base-finetuned-panx-de | Rgl73 | xlm-roberta | 26 | 11 | transformers | 0 | token-classification | true | false | false | mit | null | ['xtreme'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,314 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1446
- F1: 0.8609
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2623 | 1.0 | 787 | 0.1756 | 0.8132 |
| 0.1321 | 2.0 | 1574 | 0.1497 | 0.8458 |
| 0.0856 | 3.0 | 2361 | 0.1446 | 0.8609 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.10.3
| 76067d9f672e706ab5a9b7a4af0d61ce |
willcai/wav2vec2_common_voice_accents_indian_only_rerun | willcai | wav2vec2 | 11 | 4 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | ['common_voice'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,504 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_common_voice_accents_indian_only_rerun
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 48
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 384
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 588
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.6205 | 25.0 | 400 | 1.4584 |
| 0.3427 | 50.0 | 800 | 1.8377 |
| 0.1213 | 75.0 | 1200 | 1.6086 |
| 0.0643 | 100.0 | 1600 | 1.5136 |
| 0.0433 | 125.0 | 2000 | 1.4882 |
| 0.0323 | 150.0 | 2400 | 1.2204 |
| 0.0265 | 175.0 | 2800 | 1.3034 |
| 0.0206 | 200.0 | 3200 | 1.2866 |
| 0.0191 | 225.0 | 3600 | 1.2337 |
| 0.0148 | 250.0 | 4000 | 1.1729 |
| 0.0121 | 275.0 | 4400 | 1.2059 |
| 0.0105 | 300.0 | 4800 | 1.1246 |
| 0.01 | 325.0 | 5200 | 1.1397 |
| 0.0098 | 350.0 | 5600 | 1.1684 |
| 0.0073 | 375.0 | 6000 | 1.1030 |
| 0.0061 | 400.0 | 6400 | 1.2077 |
| 0.0049 | 425.0 | 6800 | 1.2653 |
| 0.0044 | 450.0 | 7200 | 1.1587 |
| 0.0037 | 475.0 | 7600 | 1.2283 |
| 0.0033 | 500.0 | 8000 | 1.1897 |
| 0.0026 | 525.0 | 8400 | 1.2633 |
| 0.0023 | 550.0 | 8800 | 1.2571 |
| 0.002 | 575.0 | 9200 | 1.2807 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4
- Tokenizers 0.11.6
| d42e48f0246fc894f956177536df3fa4 |
KarelDO/bert-base-uncased.CEBaB_confounding.food_service_positive.sa.5-class.seed_44 | KarelDO | bert | 14 | 2 | transformers | 0 | null | true | false | false | apache-2.0 | ['en'] | ['OpenTable'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,131 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased.CEBaB_confounding.food_service_positive.sa.5-class.seed_44
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the OpenTable OPENTABLE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7505
- Accuracy: 0.6892
- Macro-f1: 0.6630
- Weighted-macro-f1: 0.6797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 2.5.2
- Tokenizers 0.12.1
| 7cafd07dc3b5011af25ccac708b96d7f |
tahazakir/wav2vec2-base-timit-demo-colab0 | tahazakir | wav2vec2 | 12 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,342 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab0
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8768
- Wer: 0.6089
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.1121 | 13.89 | 500 | 2.9931 | 1.0 |
| 1.1475 | 27.78 | 1000 | 0.8768 | 0.6089 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
| 53254c2d38088ab00e6ed79748fd605b |
Geotrend/bert-base-pt-cased | Geotrend | bert | 8 | 39 | transformers | 0 | fill-mask | true | true | true | apache-2.0 | ['pt'] | ['wikipedia'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,283 | false |
# bert-base-pt-cased
We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages.
Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy.
For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-pt-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-pt-cased")
```
To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).
### How to cite
```bibtex
@inproceedings{smallermbert,
title={Load What You Need: Smaller Versions of Mutlilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
```
## Contact
Please contact [email protected] for any question, feedback or request. | 54f05ce2de162a9d4d61144222fbe932 |
BrianT/distilbert-base-uncased-finetuned-cola | BrianT | distilbert | 13 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['glue'] | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,571 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5254
- Matthews Correlation: 0.5475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5221 | 1.0 | 535 | 0.5360 | 0.4307 |
| 0.3491 | 2.0 | 1070 | 0.5128 | 0.4972 |
| 0.2382 | 3.0 | 1605 | 0.5254 | 0.5475 |
| 0.1756 | 4.0 | 2140 | 0.7479 | 0.5330 |
| 0.1248 | 5.0 | 2675 | 0.7978 | 0.5414 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| aca2c0303da4cf2f214551eeecec8f45 |
Mascariddu8/distilbert-base-uncased-finetuned-imdb | Mascariddu8 | distilbert | 9 | 4 | transformers | 0 | fill-mask | true | false | false | apache-2.0 | null | ['imdb'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,318 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4897 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
| b3aa13b2f8da3c0f2b3d34b10d34cd60 |
tuwonga/marblesh | tuwonga | null | 5 | 0 | null | 20 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 6 | 5 | 1 | 0 | 0 | 0 | 0 | ['stable-diffusion', 'text-to-image'] | false | true | true | 1,692 | false | ### marblesh
This is a fine-tuned Stable Diffusion model (based on v1.5) trained on screenshots from marble statues. This model is a merge from 2 checkpoints trained on different marble statues. Use the token "**marblesh**" in your prompt for person and animals. If you have veichles or other object in your prompt use the token "**marblee**" or "**marblee style**".
_Download the ckpt file from "files and versions" tab into the stable diffusion models folder of your web-ui of choice._
--
**Characters rendered with this model:**
![Character Samples](https://huggingface.co/tuwonga/marblesh/resolve/main/marblesh_prev.jpg)
_prompt and settings used: **[person] in marblesh** | **Steps: 25, Sampler: Euler, CFG scale: 7.5**_
--
This model was trained with Dreambooth training by TheLastBen, using 53 images at 10600 steps.
--
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) | d474d47365c22203b8db9f6e421bc723 |
osanseviero/test123 | osanseviero | null | 2 | 0 | spacy | 0 | token-classification | false | false | false | cc-by-sa-4.0 | ['de'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['spacy', 'token-classification'] | false | true | true | 598,363 | false | UD v2.5 benchmarking pipeline for UD_German-HDT
| Feature | Description |
| --- | --- |
| **Name** | `de_udv25_germanhdt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (62832 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` |
| **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=3`, `Foreign=Yes\|POS=X\|Person=3`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PART\|PartType=Inf`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Dat\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ\|Person=3`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|Case=Acc\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `AdpType=Circ\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person=3`, `NumType=Card\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Sup\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|POS=NOUN\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Int`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|Person=3`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Number=Plur\|POS=DET\|Person=3`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|POS=PROPN\|Person=3`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Number=Sing\|POS=ADJ\|Person=3`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Hyph=Yes\|POS=NOUN\|Person=3`, `Degree=Pos\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|POS=SCONJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Ind,Neg,Tot`, `Degree=Pos\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `AdpType=Prep\|Case=Acc\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|POS=NOUN\|Person=3`, `Degree=Pos\|POS=VERB\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=SCONJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|POS=DET\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind,Neg,Tot`, `Degree=Sup\|Number=Plur\|POS=DET\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Masc\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `POS=DET\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:pv`, `flat`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `12`, `14`, `16`, `19`, `22`, `26`, `28`, `30`, `32`, `34`, `38`, `41`, `43`, `45`, `47`, `49`, `53`, `55`, `57`, `58`, `60`, `62`, `65`, `67`, `68`, `69`, `71`, `73`, `75`, `76`, `79`, `81`, `83`, `85`, `86`, `89`, `92`, `94`, `96`, `98`, `100`, `103`, `105`, `106`, `108`, `111`, `113`, `116`, `119`, `122`, `124`, `126`, `129`, `131`, `133`, `136`, `138`, `141`, `143`, `146`, `148`, `151`, `154`, `156`, `158`, `161`, `163`, `165`, `167`, `170`, `173`, `175`, `176`, `178`, `180`, `182`, `183`, `185`, `187`, `189`, `192`, `193`, `195`, `197`, `199`, `202`, `205`, `207`, `209`, `210`, `132`, `212`, `214`, `216`, `218`, `220`, `226`, `229`, `231`, `234`, `236`, `238`, `239`, `240`, `244`, `246`, `248`, `250`, `253`, `257`, `259`, `262`, `263`, `265`, `267`, `269`, `271`, `275`, `277`, `279`, `283`, `285`, `288`, `290`, `292`, `295`, `297`, `299`, `301`, `303`, `307`, `308`, `310`, `311`, `313`, `314`, `316`, `317`, `319`, `321`, `322`, `324`, `325`, `327`, `329`, `331`, `333`, `334`, `337`, `339`, `341`, `343`, `345`, `348`, `349`, `351`, `353`, `355`, `357`, `361`, `363`, `365`, `366`, `368`, `371`, `372`, `373`, `375`, `376`, `378`, `380`, `382`, `383`, `385`, `387`, `389`, `391`, `393`, `395`, `396`, `398`, `399`, `401`, `403`, `405`, `406`, `409`, `412`, `413`, `415`, `417`, `419`, `420`, `421`, `423`, `425`, `427`, `429`, `431`, `433`, `435`, `437`, `439`, `441`, `443`, `448`, `450`, `452`, `454`, `456`, `457`, `459`, `461`, `463`, `465`, `466`, `468`, `470`, `472`, `474`, `476`, `478`, `480`, `482`, `485`, `487`, `489`, `492`, `494`, `495`, `497`, `499`, `500`, `502`, `504`, `506`, `508`, `509`, `510`, `512`, `513`, `516`, `518`, `519`, `521`, `522`, `523`, `525`, `527`, `528`, `529`, `530`, `532`, `534`, `536`, `537`, `544`, `545`, `547`, `549`, `554`, `555`, `556`, `558`, `560`, `562`, `564`, `565`, `567`, `568`, `570`, `572`, `574`, `576`, `577`, `579`, `580`, `581`, `583`, `585`, `587`, `589`, `591`, `592`, `594`, `596`, `599`, `601`, `604`, `608`, `610`, `612`, `614`, `616`, `618`, `620`, `622`, `624`, `625`, `627`, `628`, `630`, `632`, `634`, `635`, `638`, `640`, `642`, `644`, `646`, `647`, `649`, `651`, `656`, `658`, `660`, `661`, `663`, `665`, `667`, `669`, `671`, `256`, `673`, `675`, `677`, `679`, `680`, `682`, `684`, `686`, `688`, `689`, `690`, `692`, `693`, `695`, `697`, `699`, `701`, `702`, `704`, `706`, `708`, `710`, `712`, `714`, `716`, `717`, `719`, `722`, `724`, `726`, `728`, `731`, `733`, `734`, `736`, `738`, `740`, `741`, `744`, `745`, `746`, `748`, `750`, `753`, `754`, `757`, `759`, `760`, `762`, `764`, `766`, `768`, `770`, `771`, `773`, `776`, `778`, `780`, `782`, `784`, `786`, `788`, `789`, `791`, `793`, `795`, `797`, `799`, `801`, `803`, `804`, `806`, `809`, `811`, `812`, `813`, `814`, `815`, `817`, `820`, `821`, `823`, `824`, `827`, `828`, `830`, `833`, `835`, `836`, `843`, `845`, `847`, `849`, `852`, `854`, `858`, `860`, `862`, `864`, `866`, `868`, `870`, `872`, `874`, `876`, `878`, `880`, `882`, `884`, `886`, `888`, `890`, `892`, `895`, `897`, `899`, `901`, `903`, `908`, `911`, `914`, `916`, `918`, `920`, `922`, `924`, `926`, `607`, `928`, `930`, `931`, `932`, `934`, `935`, `937`, `939`, `941`, `943`, `945`, `947`, `949`, `951`, `953`, `955`, `958`, `960`, `961`, `962`, `964`, `967`, `968`, `970`, `971`, `973`, `975`, `977`, `979`, `980`, `982`, `984`, `986`, `988`, `990`, `992`, `994`, `996`, `997`, `999`, `1000`, `1002`, `1004`, `1006`, `1009`, `1010`, `1012`, `1014`, `1016`, `1019`, `1021`, `1023`, `1025`, `1027`, `1029`, `1031`, `1033`, `1035`, `1037`, `1038`, `1040`, `1042`, `1044`, `1046`, `1047`, `1050`, `1051`, `1053`, `1055`, `1059`, `1061`, `1063`, `1065`, `1067`, `1068`, `1070`, `1075`, `1076`, `1078`, `1080`, `1083`, `1085`, `1088`, `1090`, `1094`, `1095`, `1099`, `1100`, `1102`, `1104`, `1106`, `1108`, `1110`, `1111`, `1112`, `1114`, `1116`, `1118`, `1119`, `1121`, `1123`, `1125`, `1127`, `1128`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1142`, `1144`, `1146`, `1148`, `1149`, `705`, `1151`, `1152`, `1155`, `1157`, `1158`, `1159`, `1161`, `1164`, `1165`, `1167`, `1169`, `1170`, `1172`, `1174`, `1176`, `1178`, `1180`, `1182`, `1184`, `1186`, `1188`, `1191`, `1192`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1202`, `1203`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1212`, `1213`, `1215`, `1217`, `1219`, `1221`, `1222`, `1224`, `1226`, `1228`, `1230`, `1231`, `1232`, `1234`, `1236`, `1238`, `1240`, `1242`, `1244`, `1246`, `1248`, `1250`, `1252`, `1254`, `1255`, `1256`, `1258`, `1260`, `1262`, `1263`, `1265`, `1266`, `1268`, `1270`, `1272`, `1273`, `1275`, `1276`, `1278`, `1280`, `1284`, `1287`, `1289`, `1291`, `1292`, `1294`, `1296`, `1297`, `1300`, `1302`, `1304`, `1306`, `1307`, `1309`, `1311`, `1315`, `1318`, `1320`, `1321`, `1322`, `1323`, `1324`, `1326`, `1329`, `1331`, `1333`, `1336`, `1338`, `1340`, `1342`, `1344`, `1346`, `1348`, `1350`, `1352`, `1353`, `1355`, `1358`, `1360`, `1362`, `1364`, `1366`, `1367`, `1369`, `1370`, `1372`, `1373`, `1375`, `1377`, `1378`, `1380`, `1382`, `1384`, `1385`, `1387`, `1389`, `1391`, `1393`, `1394`, `1396`, `1398`, `1400`, `1402`, `1404`, `1406`, `1407`, `1411`, `1413`, `1414`, `1415`, `1416`, `1418`, `1420`, `1422`, `1423`, `1425`, `1427`, `1429`, `1431`, `1433`, `1435`, `1437`, `1439`, `1442`, `1443`, `1445`, `1447`, `1448`, `1450`, `1452`, `1455`, `1459`, `1460`, `1462`, `1464`, `1466`, `1467`, `1471`, `1473`, `1475`, `1477`, `1479`, `1481`, `1483`, `1484`, `1485`, `1487`, `1489`, `1491`, `1493`, `1495`, `1497`, `1499`, `1501`, `1503`, `1505`, `1506`, `1509`, `1511`, `1512`, `1514`, `1515`, `1516`, `1517`, `1519`, `1521`, `1523`, `1525`, `1527`, `1529`, `1532`, `1534`, `1536`, `1538`, `1540`, `1542`, `1543`, `1544`, `1546`, `1547`, `1549`, `1550`, `1552`, `1553`, `1555`, `1556`, `1558`, `1560`, `1562`, `1564`, `1566`, `1567`, `1569`, `1571`, `1573`, `1576`, `1578`, `1581`, `1582`, `1584`, `1586`, `1587`, `1589`, `1592`, `1594`, `1595`, `1597`, `1599`, `1601`, `1603`, `1605`, `1607`, `1609`, `1610`, `1613`, `1615`, `1617`, `1618`, `1620`, `1622`, `1623`, `1625`, `1627`, `1629`, `1631`, `1635`, `1637`, `1639`, `1641`, `1643`, `1644`, `1646`, `1648`, `1653`, `1655`, `1656`, `1658`, `1660`, `1661`, `1663`, `1665`, `1668`, `1670`, `1672`, `1674`, `1676`, `1678`, `1680`, `1682`, `1685`, `1686`, `1688`, `1690`, `1691`, `1693`, `1695`, `1696`, `1698`, `1700`, `1702`, `1703`, `1705`, `1706`, `1708`, `1710`, `1711`, `1713`, `1717`, `1719`, `1721`, `1723`, `1725`, `1727`, `1729`, `1731`, `1737`, `1739`, `1741`, `1743`, `1744`, `1746`, `1747`, `1749`, `1751`, `1753`, `1755`, `1756`, `1757`, `1758`, `1760`, `1761`, `1764`, `1766`, `1768`, `1770`, `1772`, `1774`, `1776`, `1777`, `1778`, `1779`, `1781`, `1783`, `1785`, `1787`, `1789`, `1791`, `1792`, `1794`, `1796`, `1801`, `1803`, `1805`, `1807`, `1809`, `1811`, `1813`, `1815`, `1817`, `1818`, `1820`, `1822`, `1824`, `1826`, `1828`, `1829`, `1831`, `1833`, `1835`, `1837`, `1839`, `1841`, `1842`, `1844`, `1846`, `1848`, `1849`, `1850`, `1852`, `1853`, `1855`, `1858`, `1859`, `1860`, `1861`, `1863`, `1865`, `1867`, `1868`, `1870`, `1872`, `1874`, `1875`, `1876`, `1879`, `1880`, `1882`, `1885`, `1887`, `1889`, `1891`, `1892`, `1894`, `1895`, `1896`, `1898`, `1899`, `1901`, `1904`, `1906`, `1908`, `1910`, `1912`, `1914`, `1917`, `1919`, `1921`, `1923`, `1925`, `1926`, `1928`, `1930`, `1931`, `1933`, `1935`, `1936`, `1938`, `1939`, `1941`, `1943`, `1945`, `1947`, `1948`, `1950`, `1952`, `1954`, `1956`, `1957`, `1960`, `1965`, `1967`, `1969`, `1970`, `1972`, `1974`, `1976`, `1977`, `1979`, `1981`, `1983`, `1985`, `1987`, `1991`, `1993`, `1994`, `1996`, `1997`, `2001`, `2003`, `2005`, `2007`, `2009`, `2010`, `2012`, `2014`, `2015`, `2018`, `2019`, `2021`, `2023`, `2025`, `2027`, `2029`, `2030`, `2032`, `2034`, `2036`, `2037`, `2038`, `2040`, `2042`, `2044`, `2046`, `2048`, `2049`, `2051`, `2053`, `2055`, `2057`, `2062`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2071`, `2072`, `2074`, `2075`, `2076`, `2078`, `2082`, `2084`, `2085`, `2087`, `2089`, `2090`, `2092`, `2093`, `2094`, `2097`, `2099`, `2101`, `2103`, `2105`, `2108`, `2110`, `2112`, `2113`, `2115`, `2117`, `2119`, `2121`, `2123`, `2124`, `2126`, `2129`, `2131`, `2132`, `2133`, `2134`, `2135`, `2136`, `2138`, `2140`, `2142`, `2000`, `2143`, `2144`, `2146`, `2149`, `2151`, `2153`, `2155`, `2157`, `2159`, `2161`, `2163`, `2165`, `2167`, `2169`, `2171`, `2173`, `2175`, `2177`, `2179`, `2180`, `2182`, `2184`, `2186`, `2188`, `2190`, `2191`, `2193`, `2195`, `2197`, `2199`, `2201`, `2203`, `2204`, `2206`, `2208`, `2209`, `2211`, `2214`, `2215`, `2216`, `2217`, `2219`, `2221`, `2223`, `2224`, `2226`, `2228`, `2230`, `2232`, `2234`, `2236`, `2238`, `2240`, `2243`, `2246`, `2248`, `2250`, `2252`, `2254`, `2255`, `2257`, `2259`, `2260`, `2262`, `2263`, `2265`, `2267`, `2268`, `2269`, `2271`, `2273`, `2275`, `2277`, `2278`, `2280`, `2282`, `2284`, `2286`, `2288`, `2291`, `2293`, `2294`, `2295`, `2297`, `2299`, `2301`, `2303`, `2306`, `2308`, `2310`, `2311`, `2313`, `2315`, `2317`, `2319`, `2321`, `2323`, `2325`, `2327`, `2330`, `2331`, `2332`, `2333`, `2334`, `2336`, `2337`, `2341`, `2342`, `2344`, `2346`, `2348`, `2350`, `2352`, `2354`, `2355`, `2357`, `2358`, `2360`, `2362`, `2364`, `2366`, `2368`, `2370`, `2371`, `2373`, `2376`, `2378`, `2380`, `2382`, `2384`, `2386`, `2388`, `2390`, `2392`, `2393`, `2395`, `2396`, `2398`, `2400`, `2401`, `2403`, `2405`, `2407`, `2410`, `2412`, `2413`, `2414`, `2415`, `2417`, `2419`, `2420`, `2422`, `2424`, `2426`, `2428`, `2429`, `2433`, `2435`, `2436`, `2438`, `2440`, `2441`, `2443`, `2444`, `2446`, `2448`, `2451`, `2453`, `2454`, `2455`, `2456`, `2458`, `2459`, `2461`, `2463`, `2464`, `2466`, `2467`, `2469`, `2471`, `2473`, `2475`, `2477`, `2478`, `2481`, `2482`, `2484`, `2485`, `2490`, `2491`, `2494`, `2496`, `2497`, `2498`, `2500`, `2502`, `2507`, `2509`, `2511`, `2513`, `2515`, `2517`, `2519`, `2520`, `2522`, `2524`, `2526`, `2527`, `2529`, `2531`, `2533`, `2535`, `2538`, `2539`, `2540`, `2542`, `2544`, `2546`, `2549`, `2550`, `2552`, `2554`, `2556`, `2558`, `2559`, `2562`, `2565`, `2569`, `2571`, `2573`, `2575`, `2577`, `2579`, `2581`, `2583`, `2585`, `2588`, `2590`, `2592`, `2594`, `2596`, `2599`, `2601`, `2603`, `2605`, `2607`, `2609`, `2611`, `2613`, `2615`, `2618`, `2619`, `2621`, `2623`, `2625`, `2626`, `2628`, `2630`, `2632`, `2633`, `2635`, `2636`, `2637`, `2638`, `2639`, `2641`, `2643`, `2645`, `2647`, `2649`, `2651`, `2654`, `2656`, `2658`, `2660`, `2662`, `2663`, `2665`, `2667`, `2668`, `2672`, `2674`, `2676`, `2678`, `2680`, `2682`, `2684`, `2686`, `2688`, `2691`, `2693`, `2695`, `2696`, `2698`, `2699`, `2701`, `2702`, `2704`, `2706`, `2708`, `2710`, `2711`, `2714`, `2716`, `2718`, `2720`, `2722`, `2724`, `2725`, `2727`, `2728`, `2730`, `2732`, `2734`, `2736`, `2738`, `2740`, `2742`, `2743`, `2745`, `2747`, `2749`, `2751`, `2753`, `2754`, `2757`, `2759`, `2761`, `2763`, `2765`, `2768`, `2770`, `2772`, `2776`, `2783`, `2787`, `2789`, `2791`, `2793`, `2795`, `2796`, `2798`, `2800`, `2802`, `2804`, `2805`, `2806`, `2809`, `2811`, `2813`, `2814`, `2816`, `2818`, `2819`, `2820`, `2822`, `2824`, `2826`, `2827`, `2829`, `2831`, `2833`, `2835`, `2837`, `2839`, `2841`, `2844`, `2846`, `2847`, `2848`, `2850`, `2852`, `2857`, `2859`, `2860`, `2861`, `2863`, `2864`, `2866`, `2868`, `2870`, `2872`, `2874`, `2875`, `2877`, `2878`, `2880`, `2881`, `2883`, `2886`, `2888`, `2894`, `2896`, `2902`, `2906`, `2908`, `2910`, `2912`, `2913`, `2915`, `2916`, `2918`, `2920`, `2922`, `2924`, `2926`, `2928`, `2930`, `2934`, `2936`, `2937`, `2939`, `2941`, `2943`, `2944`, `2946`, `2947`, `2949`, `2952`, `2954`, `2956`, `2957`, `2960`, `2962`, `2964`, `2965`, `2967`, `2968`, `2970`, `2972`, `2974`, `2976`, `2979`, `2982`, `2984`, `2986`, `2988`, `2990`, `2991`, `2993`, `2995`, `2997`, `2998`, `3000`, `3002`, `3004`, `3006`, `3008`, `3010`, `3015`, `3017`, `3019`, `3021`, `3023`, `3025`, `3027`, `3030`, `3031`, `3032`, `3034`, `3036`, `3038`, `3039`, `3041`, `3043`, `3045`, `3046`, `3048`, `3050`, `3051`, `3054`, `3055`, `3057`, `3060`, `3062`, `3064`, `3065`, `3066`, `3068`, `3069`, `3071`, `3072`, `3074`, `3076`, `3077`, `3080`, `3082`, `3083`, `3085`, `3088`, `3091`, `3093`, `3095`, `3097`, `3099`, `3101`, `3103`, `3105`, `3106`, `3107`, `3109`, `3111`, `3112`, `3114`, `3116`, `3118`, `3120`, `3122`, `3125`, `3126`, `3128`, `3130`, `3132`, `3134`, `3136`, `3139`, `3140`, `3142`, `3143`, `3144`, `3150`, `3152`, `3154`, `3156`, `3158`, `3159`, `3161`, `3163`, `3166`, `3168`, `3170`, `3172`, `3173`, `3174`, `3176`, `3177`, `3179`, `3180`, `3182`, `3184`, `3185`, `3187`, `3189`, `3191`, `3193`, `3194`, `3195`, `3197`, `3198`, `3200`, `3201`, `3203`, `3205`, `3208`, `3210`, `3212`, `3214`, `3216`, `3218`, `3220`, `3221`, `3224`, `3226`, `3229`, `3231`, `3233`, `3234`, `3236`, `3238`, `3240`, `3242`, `3244`, `3245`, `3247`, `3248`, `3250`, `3252`, `3254`, `3255`, `3257`, `3259`, `3261`, `3263`, `3265`, `3267`, `3269`, `3271`, `3273`, `3275`, `3278`, `3279`, `3281`, `3283`, `3285`, `3287`, `3288`, `3289`, `3290`, `3292`, `3294`, `3297`, `3299`, `3301`, `3303`, `3304`, `3306`, `3307`, `3311`, `3313`, `3315`, `3317`, `3319`, `3321`, `3323`, `1441`, `3324`, `3325`, `3326`, `3328`, `3330`, `3332`, `3333`, `3335`, `3337`, `3339`, `3341`, `3343`, `3345`, `3346`, `3348`, `3349`, `3351`, `3353`, `3355`, `3356`, `3358`, `3359`, `3361`, `3363`, `3365`, `3367`, `3368`, `3370`, `3372`, `3373`, `3375`, `3377`, `3379`, `3381`, `3382`, `3385`, `3387`, `3388`, `3389`, `3391`, `3393`, `3395`, `3397`, `3399`, `3401`, `3405`, `3407`, `3409`, `3411`, `3413`, `3415`, `3417`, `3419`, `3421`, `3423`, `3425`, `3426`, `3427`, `3428`, `3430`, `3432`, `3436`, `3437`, `3439`, `3441`, `3442`, `3444`, `3447`, `3448`, `3450`, `3452`, `3454`, `3456`, `3457`, `3459`, `3461`, `3463`, `3466`, `3468`, `3469`, `3470`, `3471`, `3473`, `3474`, `3476`, `3478`, `3479`, `3481`, `3483`, `3484`, `3486`, `3488`, `3490`, `3492`, `3494`, `3496`, `3498`, `3500`, `3501`, `3502`, `3504`, `3505`, `3507`, `3509`, `3510`, `3512`, `3515`, `3517`, `3521`, `3523`, `3525`, `3528`, `3529`, `3530`, `3532`, `3535`, `3536`, `3538`, `3539`, `3541`, `3542`, `3544`, `3547`, `3548`, `3550`, `3552`, `3553`, `3555`, `3557`, `3559`, `3561`, `3563`, `3565`, `3566`, `3568`, `3570`, `3575`, `3578`, `3580`, `3581`, `3583`, `3584`, `3586`, `3588`, `3589`, `3591`, `3593`, `3595`, `3597`, `3598`, `3600`, `3601`, `3603`, `3605`, `3607`, `3609`, `3611`, `3612`, `3614`, `3616`, `3618`, `3620`, `3622`, `3624`, `3626`, `3629`, `3631`, `3633`, `3635`, `3637`, `3639`, `3640`, `3642`, `3644`, `3645`, `3646`, `3648`, `3649`, `3651`, `3653`, `3659`, `3661`, `3663`, `3665`, `3667`, `3669`, `3671`, `3675`, `3677`, `3679`, `3681`, `3682`, `3684`, `3685`, `3687`, `3688`, `3689`, `3691`, `3693`, `3694`, `3696`, `3698`, `3701`, `3703`, `3704`, `3706`, `3708`, `3710`, `3711`, `3713`, `3715`, `3717`, `3719`, `3720`, `3722`, `3725`, `3726`, `3727`, `3729`, `3731`, `3732`, `3734`, `3736`, `3738`, `3740`, `3742`, `3744`, `3746`, `3749`, `3751`, `3752`, `3754`, `3757`, `3758`, `3759`, `3760`, `3762`, `3764`, `3766`, `3767`, `3769`, `3771`, `3774`, `3776`, `3777`, `3779`, `3781`, `3782`, `3784`, `3786`, `3787`, `3789`, `3790`, `3791`, `3793`, `3795`, `3797`, `3798`, `3799`, `3801`, `3803`, `3805`, `3807`, `3809`, `3810`, `3812`, `3814`, `3816`, `3818`, `3820`, `3821`, `3823`, `3825`, `3827`, `3829`, `3832`, `3834`, `3835`, `3836`, `3837`, `3838`, `3840`, `3842`, `3843`, `3845`, `3847`, `3848`, `3850`, `3852`, `3854`, `3855`, `3857`, `3859`, `3860`, `3862`, `3863`, `3865`, `3867`, `3869`, `3871`, `3873`, `3874`, `3876`, `3878`, `3879`, `3881`, `3882`, `3883`, `3885`, `3887`, `3889`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3902`, `3904`, `3905`, `3907`, `3909`, `3911`, `3913`, `3915`, `3917`, `3919`, `3920`, `3922`, `3924`, `3926`, `3927`, `3928`, `3930`, `3932`, `3934`, `3936`, `3938`, `3939`, `3940`, `3942`, `3944`, `3946`, `3948`, `3950`, `3952`, `3954`, `3956`, `3957`, `3958`, `3960`, `3962`, `3964`, `3966`, `3967`, `3968`, `3970`, `3972`, `3974`, `3976`, `3979`, `3980`, `3981`, `3982`, `3983`, `3985`, `3987`, `3989`, `3990`, `3992`, `3994`, `3996`, `3997`, `3998`, `4000`, `4002`, `4004`, `4006`, `4008`, `4010`, `4012`, `4014`, `4016`, `4018`, `4019`, `4021`, `4023`, `4024`, `4025`, `4027`, `4029`, `4031`, `486`, `4033`, `4035`, `4037`, `4040`, `4042`, `4044`, `4046`, `4048`, `4050`, `4052`, `4053`, `4055`, `4056`, `4057`, `4058`, `4061`, `4062`, `4063`, `4065`, `4066`, `4068`, `4070`, `4072`, `4074`, `4076`, `4077`, `4080`, `4082`, `4084`, `4086`, `4088`, `4090`, `4091`, `4093`, `4095`, `4097`, `4099`, `4101`, `4103`, `4105`, `4106`, `4107`, `4109`, `4112`, `4114`, `4116`, `4117`, `4119`, `4121`, `4123`, `4124`, `4125`, `4127`, `4129`, `4131`, `4133`, `4134`, `4136`, `4138`, `4139`, `4141`, `4142`, `4145`, `4148`, `4149`, `4151`, `4153`, `4155`, `4156`, `4158`, `4159`, `4160`, `4161`, `4162`, `4164`, `4166`, `4168`, `4170`, `4171`, `3945`, `4173`, `4175`, `4177`, `4178`, `4180`, `4182`, `4184`, `4186`, `4188`, `4190`, `4192`, `4194`, `4195`, `4197`, `4199`, `4201`, `4203`, `4205`, `4208`, `4210`, `4211`, `4213`, `4215`, `4217`, `4219`, `4221`, `4224`, `4226`, `4228`, `4230`, `4232`, `4234`, `4236`, `4237`, `4239`, `4241`, `4243`, `4245`, `4247`, `4249`, `4251`, `4253`, `4255`, `4257`, `4259`, `4260`, `4262`, `4264`, `4267`, `4268`, `4270`, `4272`, `4274`, `4277`, `4278`, `4279`, `4281`, `4283`, `4284`, `4285`, `4287`, `4289`, `4291`, `4292`, `4294`, `4296`, `4298`, `4300`, `4302`, `4304`, `4305`, `4307`, `4308`, `4310`, `4312`, `4314`, `4315`, `4317`, `4319`, `4321`, `4323`, `4325`, `4327`, `4329`, `4331`, `4332`, `4334`, `4336`, `4338`, `4340`, `4342`, `4343`, `4344`, `4345`, `4347`, `4349`, `4351`, `4353`, `4354`, `4356`, `4358`, `4360`, `4362`, `4363`, `4365`, `4367`, `4368`, `4370`, `4372`, `4373`, `4375`, `4377`, `4379`, `4380`, `4382`, `4384`, `4386`, `4388`, `4390`, `4392`, `4393`, `4395`, `4397`, `4399`, `4401`, `4402`, `4404`, `4406`, `4407`, `4409`, `4411`, `4413`, `4415`, `4417`, `4419`, `4421`, `4423`, `4425`, `4427`, `4429`, `4431`, `4433`, `4435`, `4436`, `4438`, `4440`, `4442`, `4444`, `4445`, `4447`, `4449`, `4451`, `4453`, `4455`, `4457`, `4458`, `4460`, `4461`, `4462`, `4464`, `4466`, `4468`, `4469`, `4470`, `4472`, `4474`, `4475`, `4477`, `4478`, `4480`, `4482`, `4483`, `4485`, `4487`, `4488`, `4490`, `4491`, `4492`, `4493`, `4495`, `4497`, `4499`, `4502`, `4503`, `4504`, `4506`, `4508`, `4510`, `4512`, `4514`, `4516`, `4518`, `4519`, `4521`, `4523`, `4527`, `4529`, `4531`, `4532`, `4533`, `4534`, `4536`, `4538`, `4539`, `4542`, `4544`, `4547`, `4549`, `4551`, `4553`, `4555`, `4557`, `4559`, `4560`, `4562`, `4564`, `4566`, `4567`, `4569`, `4570`, `4572`, `4573`, `4575`, `4576`, `4578`, `4580`, `4581`, `4583`, `4585`, `4587`, `4589`, `4590`, `4592`, `4594`, `4596`, `4597`, `4599`, `4601`, `4603`, `4605`, `4607`, `4609`, `4610`, `4612`, `4613`, `4614`, `4615`, `4617`, `4619`, `4620`, `4621`, `4623`, `4624`, `4626`, `4628`, `4630`, `4632`, `4633`, `4634`, `4636`, `4638`, `4640`, `4642`, `4645`, `4647`, `4648`, `4650`, `4652`, `4654`, `4656`, `4657`, `4659`, `4661`, `4663`, `4666`, `4667`, `4668`, `4670`, `4672`, `4673`, `4675`, `4676`, `4678`, `4679`, `4681`, `4683`, `4685`, `4687`, `4689`, `4691`, `4693`, `4694`, `4696`, `4698`, `4699`, `4700`, `4704`, `4706`, `4708`, `4710`, `4712`, `4714`, `4716`, `4718`, `4720`, `4722`, `4724`, `4726`, `4727`, `4729`, `4731`, `4732`, `4733`, `4735`, `4737`, `4739`, `4740`, `4742`, `4743`, `4745`, `4746`, `4748`, `4750`, `4752`, `4755`, `4758`, `4760`, `4761`, `4763`, `4765`, `4767`, `4769`, `4771`, `4773`, `4774`, `4776`, `4778`, `4780`, `4782`, `4783`, `4785`, `4787`, `4789`, `4791`, `4792`, `4794`, `4796`, `4798`, `4800`, `4801`, `4803`, `4806`, `4808`, `4810`, `4811`, `4814`, `4815`, `4816`, `4818`, `4820`, `4822`, `4823`, `4825`, `4827`, `4829`, `4831`, `4834`, `4836`, `4838`, `4840`, `4842`, `4844`, `4846`, `4848`, `4850`, `4851`, `4853`, `4855`, `4857`, `4858`, `4860`, `4862`, `4864`, `4866`, `4868`, `4870`, `4872`, `4874`, `4876`, `4877`, `4879`, `4881`, `4883`, `4885`, `4886`, `4887`, `4889`, `4892`, `4893`, `4895`, `4897`, `4899`, `4900`, `4902`, `4905`, `4906`, `4908`, `4909`, `4910`, `4912`, `4914`, `4916`, `4917`, `4919`, `4920`, `4921`, `4923`, `4925`, `4927`, `4929`, `4932`, `4933`, `4935`, `4937`, `4940`, `4941`, `4943`, `4946`, `4949`, `4951`, `4952`, `4954`, `4955`, `4958`, `4959`, `4961`, `4963`, `4965`, `4967`, `4969`, `4971`, `4973`, `4975`, `4977`, `4979`, `4980`, `4982`, `4984`, `4986`, `4988`, `4990`, `4992`, `4995`, `4997`, `4999`, `5000`, `5002`, `5004`, `5006`, `5008`, `5010`, `5012`, `5014`, `5015`, `5016`, `5017`, `5019`, `5022`, `5023`, `5025`, `5027`, `5030`, `5035`, `5037`, `5039`, `5041`, `5043`, `5045`, `5047`, `5049`, `5054`, `5055`, `5057`, `5059`, `5061`, `5063`, `5065`, `5067`, `5072`, `5074`, `5076`, `5078`, `5080`, `5081`, `5083`, `5085`, `5087`, `5089`, `5091`, `5093`, `5095`, `5097`, `5099`, `5101`, `5103`, `5105`, `5107`, `5109`, `5111`, `5113`, `5114`, `5115`, `5117`, `5119`, `5121`, `5123`, `5125`, `5127`, `5128`, `5130`, `5132`, `5134`, `5135`, `5136`, `5138`, `5139`, `5141`, `5143`, `5145`, `5147`, `5149`, `5150`, `5152`, `5154`, `5156`, `5158`, `5160`, `5162`, `5164`, `5166`, `5168`, `5169`, `5170`, `5171`, `5173`, `5175`, `5177`, `5179`, `5181`, `5183`, `5186`, `5188`, `5190`, `5192`, `5193`, `5195`, `5197`, `5199`, `5201`, `5203`, `5205`, `5206`, `5208`, `5210`, `5212`, `5214`, `5216`, `5217`, `5220`, `5223`, `5225`, `5227`, `5229`, `5231`, `5233`, `5235`, `5237`, `5239`, `5241`, `5243`, `5246`, `5248`, `5250`, `5252`, `5253`, `5254`, `5255`, `5257`, `5259`, `5261`, `5263`, `5265`, `5267`, `5269`, `5270`, `5272`, `5274`, `5276`, `5278`, `5280`, `5281`, `5283`, `5285`, `5287`, `5288`, `5290`, `5292`, `5294`, `5296`, `5298`, `5300`, `5302`, `5304`, `5307`, `5309`, `5311`, `5313`, `5315`, `5316`, `5318`, `5319`, `5321`, `5323`, `5325`, `5326`, `5328`, `5330`, `5332`, `5334`, `5335`, `5336`, `5337`, `5339`, `5341`, `5343`, `5345`, `5347`, `5349`, `5351`, `5352`, `5355`, `5357`, `5359`, `5361`, `5363`, `5365`, `5367`, `5369`, `5371`, `5374`, `5375`, `5377`, `5379`, `5381`, `5382`, `5384`, `5386`, `5389`, `5391`, `5392`, `5394`, `5396`, `27`, `5398`, `5400`, `5403`, `5405`, `5407`, `5409`, `5411`, `5414`, `5416`, `5420`, `5422`, `5424`, `5426`, `5428`, `5430`, `5431`, `5433`, `5435`, `5437`, `5439`, `5441`, `5442`, `5444`, `5446`, `5448`, `5450`, `5452`, `5454`, `5455`, `5458`, `5460`, `5462`, `5463`, `5464`, `5466`, `5468`, `5470`, `5472`, `5474`, `5476`, `5477`, `5479`, `5481`, `5482`, `5484`, `5486`, `5488`, `5490`, `5492`, `5493`, `5495`, `5496`, `5498`, `5500`, `5502`, `5503`, `5504`, `5506`, `5507`, `5508`, `5510`, `5512`, `5514`, `5516`, `5521`, `5523`, `5525`, `5527`, `5530`, `5531`, `5533`, `5535`, `5538`, `5540`, `5542`, `5544`, `5545`, `5547`, `5548`, `5550`, `5551`, `5554`, `5556`, `5557`, `5559`, `5561`, `5562`, `5565`, `5567`, `5569`, `5571`, `5573`, `5576`, `5578`, `5580`, `5582`, `5584`, `5586`, `5588`, `5590`, `5592`, `5594`, `5595`, `5597`, `5599`, `5601`, `5603`, `5604`, `5606`, `5608`, `5610`, `5611`, `5613`, `5614`, `5616`, `5618`, `5620`, `5622`, `5625`, `5627`, `5629`, `5630`, `5632`, `5635`, `5636`, `5638`, `5640`, `5642`, `5644`, `5647`, `5651`, `5653`, `5655`, `5657`, `5659`, `5660`, `5662`, `5664`, `5666`, `5668`, `5670`, `5671`, `5673`, `5675`, `5676`, `5678`, `5680`, `5682`, `5684`, `5686`, `5688`, `5690`, `5692`, `5695`, `5697`, `5699`, `5701`, `5703`, `5705`, `5707`, `5709`, `5711`, `5713`, `5716`, `5718`, `5720`, `5722`, `5723`, `5725`, `5727`, `5728`, `5730`, `5732`, `5734`, `5736`, `5738`, `5740`, `5742`, `5744`, `5746`, `5748`, `5749`, `5751`, `5753`, `5756`, `5758`, `5762`, `5764`, `5766`, `5768`, `5770`, `5772`, `5774`, `5776`, `5778`, `5780`, `5782`, `5784`, `5786`, `5788`, `5790`, `5792`, `5794`, `5795`, `5797`, `5799`, `5801`, `5803`, `5805`, `5807`, `5808`, `5810`, `5813`, `5815`, `5817`, `5819`, `5821`, `5823`, `5824`, `5826`, `5828`, `5830`, `5832`, `5834`, `5836`, `5838`, `5839`, `5841`, `5843`, `5844`, `5846`, `5848`, `5851`, `5853`, `5854`, `5856`, `5857`, `5858`, `5860`, `5862`, `5864`, `5866`, `5868`, `5869`, `5871`, `5873`, `5874`, `5876`, `5878`, `5880`, `5881`, `5883`, `5886`, `5888`, `5890`, `5891`, `5893`, `5895`, `5897`, `5899`, `5900`, `5901`, `5902`, `5904`, `5906`, `5908`, `5911`, `5913`, `5915`, `5917`, `5918`, `1652`, `5920`, `5922`, `5924`, `5926`, `5928`, `5930`, `5932`, `5934`, `5936`, `5937`, `5939`, `5940`, `5942`, `5944`, `5946`, `5947`, `5948`, `5950`, `5952`, `5953`, `5955`, `5957`, `5959`, `5961`, `5962`, `5964`, `5966`, `5968`, `5970`, `5972`, `5974`, `5976`, `5978`, `5979`, `5981`, `5982`, `5984`, `5986`, `5988`, `5990`, `5992`, `5994`, `5995`, `5996`, `5998`, `6000`, `6001`, `6003`, `6005`, `6007`, `6008`, `6010`, `6012`, `6013`, `6015`, `6016`, `6018`, `6020`, `6022`, `6024`, `6026`, `6028`, `6030`, `6032`, `6034`, `6036`, `6038`, `6040`, `6042`, `6043`, `6045`, `6046`, `6048`, `6050`, `6052`, `6054`, `6056`, `6058`, `6059`, `6061`, `6063`, `6065`, `6067`, `6069`, `6071`, `6073`, `6074`, `6076`, `6078`, `6080`, `6082`, `6084`, `6086`, `6088`, `6089`, `6090`, `6092`, `6093`, `6095`, `6097`, `6098`, `6100`, `6102`, `6103`, `6105`, `6106`, `6108`, `6109`, `6111`, `6113`, `6115`, `6118`, `6119`, `6121`, `6123`, `6125`, `6127`, `6129`, `6131`, `6133`, `6135`, `6137`, `6140`, `6142`, `6145`, `6147`, `6149`, `6151`, `6153`, `6156`, `6157`, `6159`, `6161`, `6162`, `6164`, `6166`, `6167`, `6169`, `6171`, `6173`, `6175`, `6177`, `6179`, `6181`, `6183`, `6185`, `6187`, `6188`, `6189`, `6191`, `6193`, `6195`, `6197`, `6198`, `6200`, `6202`, `6204`, `6205`, `6207`, `6209`, `6211`, `6213`, `6215`, `6217`, `6219`, `6221`, `6223`, `6225`, `6226`, `6228`, `6230`, `6232`, `6234`, `6236`, `6238`, `6240`, `6243`, `6245`, `6246`, `6248`, `6250`, `6252`, `6253`, `6256`, `6257`, `6259`, `6262`, `6264`, `6265`, `6267`, `6268`, `6269`, `6271`, `6273`, `6276`, `6278`, `6280`, `6282`, `6284`, `6286`, `6288`, `6289`, `6290`, `6291`, `6293`, `6294`, `6296`, `6298`, `6300`, `6302`, `6304`, `6305`, `6306`, `6307`, `6309`, `6311`, `6313`, `6317`, `6319`, `6321`, `6323`, `6325`, `6328`, `6330`, `6332`, `6334`, `6335`, `6336`, `6338`, `6339`, `6341`, `6343`, `6345`, `6346`, `6347`, `6349`, `6351`, `6353`, `6355`, `6357`, `6359`, `6361`, `6363`, `6366`, `6367`, `6369`, `6371`, `6373`, `6375`, `6377`, `6379`, `6381`, `6383`, `6385`, `6387`, `6389`, `6391`, `6394`, `6396`, `6398`, `6400`, `6402`, `6404`, `6405`, `6407`, `6409`, `6411`, `6413`, `6415`, `6417`, `6419`, `6421`, `6423`, `6425`, `6426`, `6428`, `6429`, `6430`, `6431`, `6433`, `6435`, `6437`, `6439`, `6441`, `6443`, `6444`, `6447`, `6449`, `6451`, `6453`, `6455`, `6457`, `6459`, `6461`, `6463`, `6465`, `6467`, `6469`, `6472`, `6474`, `6476`, `6478`, `6479`, `6480`, `6482`, `6484`, `6485`, `6487`, `6489`, `6491`, `6493`, `6495`, `6497`, `6498`, `6500`, `6501`, `6505`, `6506`, `6508`, `6510`, `6511`, `6513`, `6517`, `6519`, `6521`, `6523`, `6524`, `6526`, `6527`, `6529`, `6531`, `6533`, `6534`, `6536`, `6539`, `6541`, `6543`, `6545`, `6547`, `6549`, `6551`, `6553`, `6555`, `6557`, `6558`, `6560`, `6561`, `6563`, `6565`, `6568`, `6570`, `6572`, `6574`, `6577`, `6579`, `6581`, `6583`, `6584`, `6586`, `6588`, `6590`, `6592`, `6594`, `6596`, `6599`, `6601`, `6603`, `6604`, `6606`, `6608`, `6610`, `6612`, `6614`, `6615`, `6617`, `6619`, `6621`, `6623`, `6624`, `6625`, `6627`, `6629`, `6631`, `6633`, `6636`, `6637`, `6639`, `6641`, `6642`, `6644`, `6646`, `6648`, `6649`, `6651`, `6653`, `6655`, `6657`, `6659`, `6660`, `6662`, `6665`, `6668`, `6670`, `6672`, `6674`, `6676`, `6678`, `6680`, `6682`, `6684`, `6686`, `6688`, `6690`, `6691`, `6692`, `6693`, `6694`, `6695`, `6697`, `6698`, `6700`, `6701`, `6702`, `6704`, `6705`, `6707`, `6709`, `6711`, `6712`, `6714`, `6715`, `6717`, `6718`, `6720`, `6722`, `6724`, `6726`, `6729`, `6731`, `6733`, `6734`, `6735`, `6738`, `6740`, `6741`, `6743`, `6745`, `6747`, `6749`, `6751`, `6753`, `6755`, `6757`, `6759`, `6761`, `6763`, `6765`, `6767`, `6769`, `6771`, `6773`, `6775`, `6777`, `6779`, `6781`, `6783`, `6785`, `6787`, `6788`, `6789`, `6790`, `6791`, `6793`, `6795`, `6796`, `6798`, `6799`, `6800`, `6802`, `6804`, `6805`, `6806`, `6808`, `6810`, `6812`, `6814`, `6815`, `6817`, `6819`, `6821`, `6823`, `6824`, `6826`, `6828`, `6830`, `6831`, `6832`, `6834`, `6836`, `6838`, `6840`, `6842`, `6844`, `6846`, `6848`, `6850`, `6852`, `6853`, `6855`, `6857`, `6859`, `6861`, `6862`, `6864`, `6866`, `6868`, `6870`, `6871`, `6874`, `6876`, `6878`, `6879`, `6881`, `6882`, `6884`, `6886`, `6888`, `6890`, `6892`, `6894`, `6896`, `6898`, `6900`, `6902`, `6904`, `6907`, `6910`, `6912`, `6914`, `6915`, `6917`, `6919`, `6921`, `6922`, `6924`, `6926`, `6928`, `6930`, `6932`, `6934`, `6936`, `6938`, `6940`, `6942`, `6944`, `6946`, `6948`, `6950`, `6952`, `6954`, `6955`, `6956`, `6958`, `6960`, `6962`, `6964`, `6966`, `6968`, `6970`, `6972`, `6974`, `6976`, `6978`, `6979`, `6980`, `6981`, `6983`, `6985`, `6987`, `6989`, `6991`, `6993`, `6995`, `6997`, `6999`, `7000`, `7002`, `7005`, `7007`, `7008`, `7010`, `7012`, `7013`, `7015`, `7017`, `7019`, `7021`, `7023`, `7025`, `7027`, `7029`, `7031`, `7032`, `7034`, `7036`, `7038`, `7040`, `7042`, `7044`, `7046`, `7047`, `7048`, `7050`, `7052`, `7054`, `7056`, `7057`, `7059`, `7061`, `7063`, `7065`, `7067`, `7069`, `7071`, `7073`, `7077`, `7079`, `7081`, `7083`, `7085`, `7086`, `7088`, `7090`, `7092`, `7094`, `7096`, `7098`, `7100`, `7104`, `7107`, `7108`, `7110`, `7112`, `7114`, `7116`, `7118`, `7119`, `7121`, `7122`, `7124`, `7125`, `7128`, `7130`, `7132`, `7133`, `7135`, `7137`, `7139`, `7141`, `7143`, `7145`, `7147`, `7149`, `7150`, `7152`, `7154`, `7156`, `7158`, `7160`, `7162`, `7164`, `7166`, `7168`, `7171`, `7172`, `7174`, `7176`, `7178`, `7180`, `7182`, `7183`, `7185`, `7186`, `7188`, `7190`, `7192`, `7195`, `7197`, `7199`, `7201`, `7203`, `7205`, `7207`, `7208`, `7210`, `7212`, `7214`, `7217`, `7221`, `7223`, `7225`, `7227`, `7229`, `7230`, `7232`, `7234`, `7236`, `7237`, `7239`, `7241`, `7244`, `7246`, `7248`, `7249`, `7251`, `7252`, `7254`, `7256`, `7258`, `7260`, `7262`, `7265`, `7267`, `7269`, `7271`, `7273`, `7275`, `7278`, `7280`, `7282`, `7284`, `7285`, `7287`, `7289`, `7290`, `7293`, `7295`, `7298`, `7300`, `7302`, `7304`, `7306`, `7308`, `7313`, `7314`, `7315`, `7317`, `7319`, `7321`, `7322`, `7324`, `7326`, `7328`, `7330`, `7332`, `7336`, `7338`, `7340`, `7342`, `7344`, `7346`, `7348`, `7350`, `7352`, `7354`, `7355`, `7357`, `7358`, `7359`, `7360`, `7362`, `7364`, `7366`, `7368`, `7370`, `7372`, `7374`, `7376`, `7377`, `7379`, `7380`, `7382`, `7384`, `7386`, `7388`, `7389`, `7391`, `7393`, `7395`, `7397`, `7399`, `7401`, `7402`, `7403`, `7405`, `7406`, `7409`, `7411`, `7413`, `7415`, `7417`, `7419`, `7421`, `7424`, `7426`, `7428`, `7429`, `7433`, `7435`, `7440`, `7441`, `7443`, `7445`, `7448`, `7450`, `7452`, `7455`, `7457`, `7459`, `7461`, `7462`, `7464`, `7466`, `7468`, `7469`, `7471`, `7473`, `7476`, `7478`, `7480`, `7482`, `7484`, `7486`, `7488`, `7490`, `7492`, `7494`, `7496`, `7498`, `7499`, `7501`, `7503`, `7505`, `7507`, `7508`, `7509`, `7511`, `7513`, `7516`, `7518`, `7519`, `7521`, `7522`, `7523`, `7525`, `7527`, `7529`, `7531`, `7533`, `7535`, `7537`, `7539`, `7541`, `7543`, `7545`, `7546`, `7548`, `7551`, `7553`, `7555`, `7557`, `7558`, `7560`, `7562`, `7563`, `7566`, `7568`, `7570`, `7572`, `7574`, `7576`, `7577`, `7578`, `7580`, `7582`, `7585`, `7587`, `7589`, `7590`, `7591`, `7593`, `7594`, `7596`, `7598`, `7600`, `7601`, `7603`, `7605`, `7607`, `7608`, `7610`, `7613`, `7615`, `7617`, `7619`, `7621`, `7622`, `7623`, `7624`, `7626`, `7628`, `7630`, `7633`, `7635`, `7638`, `7639`, `7641`, `7643`, `7645`, `7647`, `7651`, `7653`, `7654`, `7656`, `7658`, `7660`, `7662`, `7664`, `7666`, `7668`, `7670`, `7672`, `7674`, `7676`, `7677`, `7679`, `7681`, `7683`, `7685`, `7687`, `7690`, `7694`, `7696`, `7698`, `7700`, `7702`, `7703`, `7705`, `7707`, `7709`, `7711`, `7713`, `7714`, `7716`, `7718`, `7720`, `7722`, `7723`, `7725`, `7728`, `7730`, `7733`, `7735`, `7736`, `7739`, `7741`, `7744`, `7746`, `7747`, `7749`, `7751`, `7753`, `7754`, `7756`, `7758`, `7760`, `7762`, `7764`, `7766`, `7769`, `7770`, `7772`, `7774`, `7776`, `7777`, `7779`, `7783`, `7785`, `7787`, `7789`, `7791`, `7792`, `7795`, `7797`, `7799`, `7801`, `7803`, `7805`, `7806`, `7808`, `7810`, `7811`, `7813`, `7815`, `7817`, `7819`, `7820`, `7822`, `7825`, `7827`, `7829`, `7831`, `7833`, `7835`, `7837`, `7839`, `7840`, `7841`, `7843`, `7845`, `7846`, `7849`, `7852`, `7854`, `7856`, `7858`, `7859`, `7861`, `7863`, `7865`, `7866`, `7867`, `7868`, `7870`, `7871`, `7872`, `7874`, `7876`, `7878`, `7880`, `7882`, `7884`, `7886`, `7887`, `7889`, `7891`, `7892`, `7894`, `7895`, `7896`, `7898`, `7900`, `7902`, `7904`, `7906`, `7908`, `7910`, `7911`, `7912`, `7914`, `7916`, `7918`, `7920`, `7922`, `7923`, `7925`, `7927`, `7929`, `7931`, `7932`, `7934`, `7936`, `7937`, `7940`, `7941`, `7942`, `7944`, `7946`, `7947`, `7948`, `7950`, `7952`, `7954`, `7956`, `7957`, `7959`, `7961`, `7963`, `7965`, `7966`, `7968`, `7970`, `7971`, `7973`, `7974`, `7976`, `7977`, `7979`, `7981`, `7983`, `7985`, `7987`, `7989`, `7991`, `7993`, `7995`, `7997`, `7999`, `8001`, `8003`, `8004`, `8005`, `8007`, `8009`, `8012`, `8014`, `8016`, `8018`, `8019`, `8021`, `8023`, `8025`, `8026`, `8027`, `8028`, `8030`, `8031`, `8034`, `8036`, `8037`, `8039`, `8041`, `8045`, `8047`, `8049`, `735`, `8051`, `8053`, `8056`, `8057`, `8059`, `8061`, `8063`, `8065`, `8067`, `8069`, `8071`, `8073`, `8075`, `8077`, `8078`, `8080`, `8082`, `8084`, `8086`, `8088`, `8091`, `8092`, `8094`, `8095`, `8097`, `8098`, `8100`, `8102`, `8104`, `8106`, `8108`, `8110`, `8112`, `8114`, `8116`, `8118`, `8120`, `8121`, `8123`, `8125`, `8127`, `8129`, `8131`, `8133`, `8135`, `8136`, `8137`, `8138`, `8140`, `8142`, `8144`, `8146`, `8147`, `8149`, `8151`, `8153`, `8155`, `8157`, `8159`, `8160`, `8162`, `8164`, `8167`, `8168`, `8170`, `8172`, `8173`, `8177`, `8178`, `8180`, `8182`, `8184`, `8186`, `8187`, `8189`, `8191`, `8193`, `8194`, `8196`, `8198`, `8199`, `8201`, `8203`, `8204`, `8206`, `8207`, `8209`, `8211`, `8212`, `8214`, `8216`, `8219`, `8221`, `8223`, `8224`, `8226`, `8228`, `8229`, `8231`, `8233`, `8235`, `8237`, `8239`, `8241`, `8242`, `8244`, `8246`, `8248`, `8250`, `8252`, `8254`, `8256`, `8258`, `8260`, `8261`, `8263`, `8265`, `8270`, `8272`, `8274`, `8275`, `8277`, `8279`, `8281`, `8282`, `8284`, `8286`, `8288`, `8290`, `8291`, `8293`, `8294`, `8296`, `8298`, `8300`, `8302`, `8304`, `8306`, `8307`, `8308`, `8309`, `8311`, `8313`, `8315`, `8317`, `8319`, `8321`, `8323`, `8325`, `8326`, `8328`, `8330`, `8332`, `8334`, `8336`, `8338`, `8340`, `8342`, `8344`, `8346`, `8348`, `8350`, `8352`, `8354`, `8356`, `8358`, `8360`, `8362`, `8363`, `8366`, `8368`, `8370`, `8372`, `8373`, `8375`, `8378`, `8380`, `8382`, `8383`, `8385`, `8387`, `8389`, `8391`, `8393`, `8395`, `8397`, `8399`, `8401`, `8406`, `8407`, `8409`, `8411`, `8413`, `8415`, `8417`, `8419`, `8420`, `8422`, `8424`, `8426`, `8428`, `8429`, `8430`, `8432`, `8433`, `8434`, `8436`, `8438`, `8440`, `8442`, `8444`, `8446`, `8448`, `8450`, `8451`, `8452`, `8454`, `8455`, `8457`, `8461`, `8463`, `8465`, `8467`, `8469`, `8471`, `8473`, `8475`, `8477`, `8479`, `8481`, `8483`, `8485`, `8487`, `8490`, `8492`, `8494`, `8496`, `8498`, `8500`, `8502`, `8504`, `8505`, `8507`, `8509`, `8511`, `8513`, `8514`, `8515`, `8517`, `8519`, `8520`, `8521`, `8523`, `8525`, `8527`, `8529`, `8531`, `8532`, `8534`, `8536`, `8538`, `8540`, `8542`, `8544`, `8546`, `8548`, `8550`, `8552`, `8554`, `8556`, `8558`, `8560`, `8563`, `8565`, `8567`, `8569`, `8571`, `8573`, `8574`, `8577`, `8579`, `8580`, `8581`, `8583`, `8585`, `8586`, `8588`, `8589`, `8591`, `8593`, `8595`, `8597`, `8599`, `8603`, `8604`, `8606`, `8608`, `8609`, `8610`, `8611`, `8614`, `8616`, `8617`, `8618`, `8620`, `8622`, `8624`, `8625`, `8627`, `8629`, `8632`, `8634`, `8639`, `8641`, `8643`, `8645`, `8647`, `8649`, `8651`, `8653`, `8655`, `8657`, `8659`, `8660`, `8662`, `8665`, `8666`, `8667`, `8669`, `8671`, `8674`, `8676`, `8678`, `8680`, `8682`, `8684`, `8686`, `8687`, `8690`, `8692`, `8694`, `8696`, `8697`, `8699`, `8701`, `8703`, `8704`, `8706`, `8707`, `8709`, `8710`, `8713`, `8715`, `8716`, `8718`, `8720`, `3508`, `8722`, `8723`, `8725`, `8727`, `8729`, `8731`, `8733`, `8735`, `8736`, `8737`, `8739`, `8741`, `8742`, `8748`, `8750`, `8751`, `8752`, `8753`, `8755`, `8756`, `8757`, `8759`, `8761`, `8763`, `8765`, `8767`, `8768`, `8770`, `8772`, `8774`, `8775`, `8777`, `8779`, `8781`, `8783`, `8785`, `8787`, `8789`, `8791`, `8793`, `8795`, `8797`, `8799`, `8800`, `8802`, `8805`, `8807`, `8810`, `8812`, `8814`, `8816`, `8818`, `8820`, `8822`, `8823`, `8825`, `8826`, `8828`, `8830`, `8832`, `8834`, `8836`, `8838`, `8840`, `8842`, `8844`, `8845`, `8846`, `8847`, `8849`, `8851`, `8853`, `8855`, `8857`, `8859`, `8861`, `8862`, `8864`, `8866`, `8869`, `8871`, `8873`, `8875`, `8877`, `8879`, `8880`, `8882`, `8884`, `8887`, `8889`, `8891`, `8893`, `8895`, `8896`, `8898`, `8899`, `8901`, `8903`, `8905`, `8906`, `8908`, `8909`, `8910`, `8912`, `8913`, `8915`, `8917`, `8918`, `8920`, `8921`, `8923`, `8924`, `8926`, `8928`, `8930`, `8931`, `8933`, `8935`, `8937`, `8939`, `8941`, `8943`, `8944`, `8945`, `8947`, `8949`, `8951`, `8953`, `8955`, `8956`, `8958`, `8960`, `8962`, `8964`, `8966`, `8968`, `8970`, `8972`, `8974`, `8976`, `8978`, `8980`, `8982`, `8984`, `8985`, `8987`, `8989`, `8991`, `8993`, `8995`, `8997`, `8998`, `9000`, `9002`, `9005`, `9007`, `9009`, `9011`, `9013`, `9015`, `9017`, `9021`, `9023`, `9024`, `9026`, `9028`, `9030`, `9032`, `9034`, `9036`, `9038`, `9040`, `9042`, `9044`, `9046`, `9050`, `9051`, `9053`, `9055`, `9057`, `9059`, `9061`, `9063`, `9065`, `9067`, `9069`, `9071`, `8369`, `9073`, `9074`, `9076`, `9078`, `9080`, `9081`, `9083`, `9085`, `9087`, `9089`, `9091`, `9093`, `9095`, `9097`, `9099`, `9101`, `9102`, `9104`, `9106`, `9107`, `9109`, `9111`, `9115`, `9118`, `9120`, `9122`, `9124`, `9126`, `9128`, `9130`, `9132`, `9134`, `9136`, `9137`, `9139`, `9141`, `9143`, `9145`, `9147`, `9148`, `9150`, `9152`, `9154`, `9156`, `9159`, `9160`, `9162`, `9164`, `9165`, `9167`, `9169`, `9171`, `9173`, `9175`, `9177`, `9179`, `9181`, `9183`, `9184`, `9186`, `9188`, `9190`, `9192`, `9194`, `9196`, `9198`, `9200`, `9202`, `9204`, `9206`, `9208`, `9209`, `9211`, `9213`, `9215`, `9217`, `9218`, `9220`, `9222`, `9224`, `9226`, `9228`, `9230`, `9232`, `9233`, `9235`, `9237`, `9239`, `9241`, `9243`, `9245`, `9247`, `9249`, `9251`, `9253`, `9255`, `9257`, `9259`, `9261`, `9263`, `9264`, `9266`, `9267`, `9269`, `9270`, `9272`, `9273`, `9275`, `9277`, `9279`, `9284`, `9286`, `9287`, `9289`, `9291`, `9292`, `9294`, `9296`, `9298`, `9300`, `9303`, `9305`, `9307`, `9308`, `9310`, `9312`, `9314`, `9316`, `9318`, `9319`, `9320`, `9323`, `9325`, `9326`, `9328`, `9330`, `9332`, `9334`, `9336`, `9338`, `9340`, `9342`, `9344`, `9345`, `9347`, `9348`, `9350`, `9352`, `9354`, `9356`, `9357`, `9359`, `9360`, `9362`, `9364`, `9366`, `9368`, `9370`, `9372`, `9373`, `9375`, `9376`, `9378`, `9380`, `9381`, `9383`, `9385`, `9386`, `9389`, `9391`, `9393`, `9394`, `9396`, `9397`, `9399`, `9400`, `9402`, `9403`, `9407`, `9408`, `9410`, `9412`, `9414`, `9416`, `9418`, `9420`, `9423`, `9426`, `9430`, `9431`, `9433`, `9435`, `9436`, `9438`, `9440`, `9442`, `9444`, `9447`, `9449`, `9451`, `9453`, `9455`, `9457`, `9459`, `9460`, `9463`, `9467`, `9468`, `9470`, `9472`, `9474`, `9476`, `9478`, `9480`, `9482`, `9484`, `9486`, `9487`, `9489`, `9491`, `9493`, `9497`, `9498`, `9500`, `9501`, `9503`, `9504`, `9506`, `9508`, `9510`, `9512`, `9513`, `9515`, `9517`, `9519`, `9521`, `9523`, `9526`, `9529`, `9531`, `9533`, `9535`, `9537`, `9538`, `9540`, `9542`, `9544`, `9546`, `9548`, `9550`, `9552`, `9554`, `9555`, `9557`, `9559`, `9561`, `9563`, `9565`, `9566`, `9568`, `9570`, `9571`, `9572`, `9574`, `9576`, `9578`, `9580`, `9582`, `9583`, `9585`, `9587`, `9589`, `9591`, `9592`, `9594`, `9596`, `9598`, `9600`, `9602`, `9604`, `9606`, `9608`, `9609`, `9611`, `9613`, `9615`, `9617`, `9619`, `9621`, `9623`, `9625`, `9627`, `9629`, `9631`, `9633`, `9634`, `9638`, `9639`, `9640`, `9643`, `9644`, `9647`, `9650`, `9652`, `9654`, `9657`, `9659`, `9661`, `9663`, `9665`, `9667`, `9669`, `9671`, `9673`, `9675`, `9677`, `9679`, `9682`, `9684`, `9686`, `9687`, `9689`, `9691`, `9693`, `9695`, `9698`, `9702`, `9703`, `9705`, `9707`, `9709`, `9711`, `9713`, `9716`, `9718`, `9720`, `9722`, `9723`, `9725`, `9727`, `9728`, `9730`, `9732`, `9734`, `9736`, `9738`, `9740`, `9742`, `9744`, `9746`, `9747`, `9749`, `9751`, `9753`, `9755`, `9757`, `9759`, `9761`, `9764`, `9766`, `9768`, `9770`, `9772`, `9774`, `9776`, `9778`, `9780`, `9782`, `9784`, `9785`, `9787`, `9789`, `9791`, `9792`, `9794`, `9797`, `9798`, `9800`, `9802`, `9803`, `9808`, `9810`, `9812`, `9815`, `9817`, `9819`, `9821`, `9823`, `9825`, `9826`, `9827`, `9829`, `9831`, `9833`, `9835`, `9836`, `9837`, `9840`, `9842`, `9844`, `9845`, `9847`, `9849`, `9851`, `9852`, `9853`, `9855`, `9856`, `9858`, `9860`, `9861`, `9863`, `9865`, `9867`, `9869`, `9871`, `9874`, `9876`, `9878`, `9881`, `9883`, `9885`, `9887`, `9889`, `9891`, `9893`, `9895`, `9898`, `9901`, `9903`, `9904`, `9906`, `9908`, `9910`, `9912`, `9913`, `9915`, `9917`, `9920`, `9921`, `9923`, `9924`, `9926`, `9927`, `9929`, `9931`, `9934`, `9936`, `9937`, `9939`, `9941`, `9944`, `9945`, `9946`, `9947`, `9948`, `9950`, `9952`, `9954`, `9957`, `9961`, `9963`, `9965`, `9967`, `9969`, `9971`, `9974`, `9976`, `9978`, `9980`, `9982`, `9983`, `9985`, `9986`, `9988`, `9989`, `9991`, `9993`, `9995`, `9997`, `9999`, `10001`, `10003`, `10005`, `10006`, `10009`, `10011`, `10014`, `10015`, `10016`, `10017`, `10019`, `10021`, `10023`, `10025`, `10028`, `10029`, `10031`, `10033`, `10034`, `10036`, `10040`, `10041`, `10043`, `10045`, `10047`, `10049`, `10051`, `10053`, `10055`, `10056`, `10057`, `10059`, `10062`, `10064`, `10065`, `10067`, `10069`, `10071`, `10073`, `10075`, `10077`, `10079`, `10081`, `10084`, `10085`, `10087`, `10089`, `10091`, `10093`, `10095`, `10097`, `10098`, `10099`, `10101`, `10103`, `10104`, `10106`, `10107`, `10109`, `10111`, `10113`, `10117`, `10118`, `10119`, `10121`, `10123`, `10125`, `10127`, `10129`, `10131`, `10133`, `10135`, `10137`, `10139`, `10140`, `10142`, `10144`, `10146`, `10148`, `10152`, `10155`, `10157`, `10159`, `10160`, `10162`, `10164`, `10166`, `10168`, `10170`, `10172`, `10175`, `10177`, `10178`, `10179`, `10181`, `10183`, `10184`, `10185`, `10187`, `10189`, `10191`, `10193`, `10195`, `10197`, `10199`, `10201`, `10203`, `10204`, `10206`, `10208`, `10210`, `10212`, `10213`, `10215`, `10217`, `10219`, `10221`, `10223`, `10225`, `10227`, `10229`, `10231`, `10234`, `10235`, `10237`, `10239`, `10241`, `10243`, `10245`, `10247`, `10249`, `10251`, `10253`, `10254`, `10256`, `10258`, `10260`, `10262`, `10264`, `10266`, `10268`, `10270`, `10271`, `10273`, `10275`, `10277`, `10279`, `10281`, `10283`, `10285`, `10287`, `10289`, `10290`, `10292`, `10294`, `10295`, `10297`, `10299`, `10301`, `10303`, `10305`, `10307`, `10309`, `10312`, `10315`, `10319`, `10322`, `10324`, `10326`, `10327`, `10329`, `10331`, `10333`, `10334`, `10336`, `10338`, `10340`, `10342`, `10344`, `10345`, `10347`, `10348`, `10350`, `10351`, `10352`, `10354`, `10356`, `10358`, `10360`, `10362`, `10363`, `10364`, `10366`, `10368`, `10370`, `10372`, `10374`, `10376`, `10378`, `10380`, `10382`, `10384`, `10386`, `10388`, `10389`, `10392`, `10394`, `10396`, `10398`, `10400`, `10401`, `10402`, `10404`, `10406`, `10408`, `10410`, `10412`, `10414`, `10415`, `10417`, `10418`, `10420`, `10422`, `10424`, `10427`, `10430`, `10432`, `10433`, `10435`, `10437`, `10439`, `10441`, `10443`, `10445`, `10447`, `10448`, `10449`, `10451`, `10453`, `10455`, `10457`, `10459`, `10461`, `10463`, `10465`, `10467`, `10470`, `10471`, `10472`, `10474`, `10475`, `10477`, `10479`, `10481`, `10482`, `10483`, `10485`, `10486`, `10487`, `10489`, `10491`, `10493`, `10495`, `10497`, `10499`, `10501`, `10503`, `10505`, `10507`, `10509`, `10511`, `10513`, `10515`, `10517`, `10518`, `10520`, `10522`, `10523`, `10525`, `10527`, `10529`, `10530`, `10531`, `10535`, `10537`, `10539`, `10541`, `10542`, `10544`, `10546`, `10547`, `10549`, `10554`, `10557`, `10558`, `10560`, `10562`, `10564`, `10565`, `10567`, `10568`, `10570`, `10572`, `10574`, `10576`, `10578`, `10580`, `10581`, `10582`, `10584`, `6554`, `10586`, `10588`, `10590`, `10592`, `10594`, `10596`, `10598`, `10599`, `10601`, `10603`, `10605`, `10607`, `10610`, `10612`, `10614`, `10615`, `10617`, `10619`, `10621`, `10623`, `10625`, `10627`, `10629`, `10631`, `10632`, `10634`, `10636`, `10639`, `10641`, `10643`, `10645`, `10647`, `10649`, `10651`, `10653`, `10655`, `10657`, `10659`, `10661`, `10662`, `10666`, `10668`, `10670`, `10672`, `10674`, `10676`, `10678`, `10680`, `10681`, `10683`, `10685`, `10687`, `10689`, `10691`, `10693`, `10695`, `10696`, `10699`, `10701`, `10703`, `10704`, `10706`, `10708`, `10710`, `10711`, `10715`, `10718`, `10720`, `10722`, `10723`, `10725`, `10727`, `10729`, `10731`, `10733`, `10737`, `10739`, `10741`, `10743`, `10745`, `10747`, `10749`, `10750`, `10752`, `10754`, `10755`, `10757`, `10758`, `10760`, `10762`, `10764`, `10766`, `10768`, `10770`, `10772`, `10773`, `10775`, `10777`, `10778`, `10780`, `10782`, `10784`, `10786`, `10788`, `10790`, `10792`, `10794`, `10796`, `10798`, `10800`, `10801`, `10803`, `10805`, `10806`, `10808`, `10809`, `10811`, `10813`, `10815`, `10817`, `10819`, `10824`, `10826`, `10828`, `10829`, `10831`, `10833`, `10835`, `10836`, `10838`, `10840`, `10842`, `10844`, `10846`, `10848`, `10850`, `10855`, `10857`, `10859`, `10862`, `10864`, `10866`, `10868`, `10870`, `10872`, `10875`, `10877`, `10879`, `10880`, `10882`, `10883`, `10884`, `10886`, `10890`, `10892`, `10894`, `10895`, `10896`, `10897`, `10899`, `10901`, `10902`, `10904`, `10906`, `10907`, `10909`, `10912`, `10914`, `10916`, `10918`, `10920`, `10921`, `10923`, `10925`, `10927`, `10929`, `10930`, `10932`, `10933`, `10934`, `10936`, `10938`, `10939`, `10940`, `10943`, `10945`, `10947`, `10949`, `10951`, `10952`, `10953`, `10955`, `10957`, `10959`, `10960`, `10962`, `10964`, `10966`, `10968`, `10970`, `10972`, `10974`, `10975`, `10977`, `10979`, `10981`, `10982`, `10984`, `10988`, `10990`, `10992`, `10994`, `10995`, `10996`, `10998`, `11000`, `11002`, `11004`, `11006`, `11008`, `11009`, `11011`, `11013`, `11015`, `11019`, `11021`, `11023`, `11025`, `11027`, `11029`, `11031`, `11033`, `11035`, `11037`, `11039`, `11040`, `11042`, `11044`, `11046`, `11047`, `11048`, `11049`, `11050`, `11051`, `11053`, `11055`, `11057`, `11059`, `11062`, `11065`, `11067`, `11069`, `11071`, `11072`, `11074`, `11075`, `11080`, `11081`, `11083`, `11085`, `11087`, `11089`, `11090`, `11091`, `11093`, `11095`, `11097`, `11098`, `11100`, `11102`, `11103`, `11104`, `11106`, `11108`, `11110`, `11111`, `11112`, `11116`, `11118`, `11120`, `11124`, `11125`, `11131`, `11134`, `11135`, `11137`, `11138`, `11140`, `11142`, `11144`, `11146`, `11148`, `11150`, `11151`, `11153`, `11155`, `11157`, `11159`, `11160`, `11162`, `11164`, `11166`, `11168`, `11170`, `11172`, `11174`, `11176`, `11177`, `11179`, `11181`, `11183`, `11184`, `11185`, `11187`, `11188`, `11190`, `11192`, `11194`, `11196`, `11198`, `11200`, `11202`, `11203`, `11207`, `11208`, `11210`, `11212`, `11213`, `11215`, `11217`, `11219`, `11221`, `11222`, `11224`, `11226`, `11229`, `11230`, `11232`, `11234`, `11236`, `11239`, `11241`, `11244`, `11246`, `11248`, `11249`, `11251`, `11253`, `11254`, `11256`, `11258`, `11260`, `11262`, `11264`, `11266`, `11268`, `11270`, `11273`, `11274`, `11276`, `11277`, `11279`, `11280`, `11282`, `11284`, `11286`, `11287`, `11289`, `11290`, `11292`, `11294`, `11295`, `11297`, `11299`, `11301`, `11303`, `11304`, `11305`, `11307`, `11309`, `11311`, `11312`, `11314`, `11315`, `7064`, `11317`, `11318`, `11319`, `11321`, `11322`, `11324`, `11326`, `11328`, `11329`, `11332`, `11334`, `11336`, `11337`, `11339`, `11341`, `11343`, `11344`, `11346`, `11348`, `11350`, `11352`, `11355`, `11357`, `11359`, `11361`, `11363`, `11365`, `11367`, `11369`, `11370`, `11372`, `11374`, `11376`, `11378`, `11379`, `11381`, `11382`, `11383`, `11385`, `11386`, `11388`, `11389`, `11392`, `11393`, `11395`, `11397`, `11399`, `11401`, `11402`, `11404`, `11406`, `11407`, `11409`, `11410`, `11412`, `11414`, `11416`, `11418`, `11419`, `11420`, `11422`, `11424`, `11426`, `11428`, `11430`, `11431`, `11433`, `11435`, `11437`, `11439`, `11441`, `11443`, `11445`, `11447`, `11449`, `11450`, `11452`, `11454`, `11456`, `11459`, `11461`, `11462`, `11465`, `11467`, `11469`, `11471`, `11472`, `11473`, `11475`, `11477`, `11479`, `11481`, `11485`, `11487`, `11489`, `11491`, `11493`, `11495`, `11497`, `11498`, `11500`, `11502`, `11504`, `11506`, `11507`, `11509`, `11511`, `11513`, `11515`, `11517`, `11519`, `11521`, `11523`, `11525`, `11527`, `11529`, `11531`, `11533`, `11535`, `11537`, `11539`, `11542`, `11544`, `11546`, `11548`, `11550`, `11551`, `11552`, `11553`, `11555`, `11557`, `11559`, `11561`, `11562`, `11565`, `11567`, `11569`, `11571`, `11573`, `11575`, `11577`, `11579`, `11581`, `11583`, `11585`, `11587`, `11589`, `11591`, `11593`, `11595`, `11597`, `11599`, `11602`, `11604`, `11605`, `11608`, `11610`, `11612`, `11613`, `11615`, `11617`, `11623`, `11626`, `11629`, `11631`, `11632`, `11635`, `11638`, `11640`, `11642`, `11644`, `11646`, `11648`, `11649`, `11651`, `11653`, `11655`, `11657`, `11659`, `11661`, `11663`, `11665`, `11667`, `8961`, `11669`, `11671`, `11673`, `11675`, `11677`, `11680`, `11682`, `11684`, `11685`, `11687`, `11688`, `11690`, `11692`, `11694`, `11696`, `11698`, `11700`, `11702`, `11704`, `11705`, `11707`, `11710`, `11712`, `11714`, `11716`, `11718`, `11719`, `11721`, `11723`, `11727`, `11728`, `11729`, `11731`, `11733`, `11735`, `11737`, `11739`, `11741`, `11742`, `11743`, `11745`, `11747`, `11750`, `11751`, `11752`, `11754`, `11756`, `11758`, `11763`, `11765`, `11767`, `11769`, `11771`, `11772`, `11774`, `11776`, `11778`, `11780`, `11782`, `11784`, `11786`, `11788`, `11789`, `11790`, `11791`, `11793`, `11795`, `11797`, `11799`, `11800`, `11802`, `11804`, `11805`, `11806`, `11807`, `11808`, `11810`, `11811`, `11813`, `11815`, `11817`, `11820`, `11821`, `11823`, `11824`, `11826`, `11828`, `11830`, `11832`, `11834`, `11836`, `11837`, `11838`, `11840`, `11842`, `11844`, `11845`, `11846`, `11848`, `11850`, `11852`, `11853`, `11855`, `11857`, `11859`, `11862`, `11864`, `11866`, `11868`, `11870`, `11872`, `11874`, `11876`, `11877`, `11879`, `11880`, `11881`, `11882`, `11884`, `11885`, `11887`, `11889`, `11891`, `11892`, `11893`, `11894`, `11896`, `11897`, `11898`, `11901`, `11907`, `11909`, `11910`, `11911`, `11913`, `11914`, `11915`, `11917`, `11919`, `11921`, `11923`, `11925`, `11927`, `11928`, `11930`, `11932`, `11933`, `11934`, `11936`, `11938`, `11940`, `11942`, `11945`, `11947`, `11949`, `11951`, `11953`, `11955`, `11956`, `11958`, `11960`, `11962`, `11964`, `11966`, `11968`, `11970`, `11971`, `11973`, `11974`, `11975`, `11976`, `11978`, `11980`, `11982`, `11984`, `11986`, `11988`, `11989`, `11991`, `11993`, `11995`, `11997`, `11998`, `12000`, `12004`, `12006`, `12007`, `12009`, `12011`, `12012`, `12014`, `12016`, `12018`, `12020`, `12022`, `12024`, `12026`, `12028`, `12030`, `12032`, `12035`, `12037`, `12039`, `12040`, `12042`, `12044`, `12046`, `12047`, `12049`, `12051`, `12053`, `12055`, `12057`, `12059`, `12061`, `12063`, `12065`, `12067`, `12069`, `12070`, `12072`, `12075`, `12076`, `12079`, `12081`, `12083`, `12085`, `12087`, `12089`, `12090`, `12092`, `12094`, `12097`, `12099`, `12101`, `12103`, `12106`, `12107`, `12108`, `12109`, `12111`, `12113`, `12116`, `12117`, `12118`, `12120`, `12123`, `12124`, `12126`, `12130`, `12132`, `12134`, `12136`, `12138`, `12141`, `12142`, `12144`, `12146`, `12148`, `12150`, `12152`, `12154`, `12156`, `12158`, `12160`, `12162`, `12164`, `12166`, `12168`, `12169`, `12171`, `12173`, `12175`, `12176`, `12178`, `12180`, `12182`, `12183`, `12185`, `12187`, `12190`, `12192`, `12194`, `12196`, `12198`, `12200`, `12202`, `12204`, `12206`, `12210`, `12211`, `12212`, `12214`, `12215`, `12217`, `12219`, `12221`, `12223`, `12225`, `12227`, `12229`, `12231`, `12233`, `12235`, `12237`, `12239`, `12241`, `12243`, `12244`, `12245`, `12247`, `12249`, `12251`, `12253`, `12255`, `12256`, `12258`, `12260`, `12261`, `12263`, `12265`, `12267`, `12269`, `12271`, `12273`, `12276`, `12278`, `12280`, `12282`, `12284`, `12286`, `12287`, `12290`, `12291`, `12293`, `12297`, `12299`, `12301`, `12303`, `12304`, `12306`, `12308`, `12309`, `12311`, `12312`, `12314`, `12316`, `12318`, `12320`, `12322`, `12324`, `12325`, `12328`, `12330`, `12332`, `12333`, `12334`, `12336`, `12338`, `12340`, `12342`, `12345`, `12346`, `12347`, `12349`, `12351`, `12353`, `12355`, `12356`, `12357`, `12359`, `12361`, `12363`, `12365`, `12367`, `12369`, `12371`, `12373`, `12375`, `12377`, `12379`, `12381`, `12383`, `12385`, `12387`, `12389`, `12391`, `12392`, `12394`, `12395`, `12396`, `12398`, `12400`, `12402`, `12403`, `12405`, `12406`, `12407`, `12409`, `12411`, `12412`, `12414`, `12416`, `12418`, `12420`, `12422`, `12424`, `12426`, `12428`, `12429`, `12431`, `12433`, `12434`, `12436`, `12437`, `12441`, `12443`, `12444`, `12445`, `12447`, `12449`, `12451`, `12453`, `12455`, `12457`, `12459`, `12461`, `12463`, `12465`, `12467`, `12469`, `12471`, `12473`, `12475`, `12477`, `12479`, `12481`, `12483`, `12485`, `12487`, `12488`, `12490`, `12491`, `12493`, `12495`, `12497`, `12498`, `12499`, `12500`, `12502`, `12504`, `12506`, `12508`, `12510`, `12512`, `12514`, `12516`, `12518`, `12520`, `12522`, `12524`, `12526`, `12528`, `12530`, `12533`, `12534`, `12535`, `12537`, `12539`, `12541`, `12542`, `12543`, `12545`, `12547`, `12549`, `12551`, `12553`, `12555`, `12557`, `12559`, `12561`, `12562`, `12563`, `12564`, `12565`, `12567`, `12569`, `12571`, `12573`, `12574`, `12576`, `12578`, `12579`, `12581`, `12583`, `12584`, `12586`, `12587`, `12588`, `12589`, `12591`, `12593`, `12595`, `12597`, `12598`, `12600`, `12602`, `12604`, `12608`, `12610`, `12612`, `12614`, `12616`, `1897`, `12617`, `12619`, `12621`, `12622`, `12624`, `12626`, `12628`, `12630`, `12632`, `12634`, `12636`, `12638`, `12639`, `12641`, `12643`, `12645`, `12647`, `12648`, `12650`, `12652`, `12654`, `12656`, `12658`, `12660`, `12661`, `12663`, `12665`, `12667`, `12669`, `12671`, `12672`, `12674`, `12676`, `12680`, `12682`, `12683`, `12684`, `12686`, `12688`, `12689`, `12691`, `12693`, `12695`, `12696`, `12697`, `12699`, `12701`, `12703`, `12704`, `12707`, `12709`, `12711`, `12712`, `12714`, `12716`, `12718`, `12720`, `12722`, `12724`, `12726`, `12728`, `12730`, `12732`, `12734`, `12736`, `12738`, `12739`, `12741`, `12743`, `12745`, `12748`, `12750`, `12752`, `12754`, `12756`, `12757`, `12759`, `12761`, `12763`, `12764`, `12766`, `12769`, `12771`, `12773`, `12775`, `12777`, `12779`, `12781`, `12783`, `12785`, `12787`, `12789`, `12790`, `12793`, `12795`, `12797`, `12799`, `12801`, `12803`, `12805`, `12806`, `12807`, `12809`, `12811`, `12812`, `12814`, `12816`, `12818`, `12821`, `12824`, `12826`, `12828`, `12830`, `12832`, `12834`, `12836`, `12838`, `12840`, `12842`, `12844`, `12846`, `12848`, `12850`, `12853`, `12855`, `12857`, `12859`, `12860`, `12862`, `12864`, `12866`, `12867`, `12869`, `12870`, `12872`, `12873`, `12875`, `12876`, `12878`, `12879`, `12881`, `12883`, `12884`, `12886`, `12888`, `12891`, `12893`, `12895`, `12897`, `12899`, `12902`, `12904`, `12905`, `12906`, `12908`, `12910`, `12912`, `12914`, `12916`, `12918`, `12921`, `12923`, `12925`, `12926`, `12928`, `12930`, `12932`, `12934`, `12935`, `12936`, `12938`, `12940`, `12941`, `12942`, `12944`, `12946`, `12947`, `12949`, `12950`, `12952`, `12953`, `12955`, `12957`, `12959`, `12961`, `12963`, `12965`, `12966`, `12968`, `12970`, `12972`, `12974`, `12976`, `12978`, `12980`, `12982`, `12984`, `12986`, `12988`, `12990`, `12992`, `12994`, `12996`, `12998`, `12999`, `13001`, `13003`, `13005`, `13007`, `13009`, `13011`, `13013`, `13014`, `13016`, `13018`, `13020`, `13022`, `13024`, `13026`, `13028`, `13030`, `13032`, `13034`, `13036`, `13037`, `13038`, `13040`, `13042`, `13043`, `13044`, `13046`, `13048`, `13050`, `13052`, `13054`, `13056`, `13058`, `13060`, `13061`, `13062`, `13063`, `13065`, `13068`, `13069`, `13070`, `13071`, `13073`, `13075`, `13077`, `13078`, `13080`, `13082`, `13083`, `13084`, `13086`, `13087`, `13090`, `13092`, `13093`, `13095`, `13096`, `13098`, `13100`, `13102`, `13104`, `13106`, `13108`, `13109`, `13111`, `13113`, `13114`, `13116`, `13118`, `13120`, `13122`, `13123`, `13125`, `13126`, `13129`, `13131`, `13133`, `13135`, `13139`, `13140`, `13142`, `13144`, `13146`, `13148`, `13149`, `13150`, `13152`, `13153`, `13155`, `13157`, `13159`, `13161`, `13162`, `13164`, `13166`, `13168`, `13170`, `13172`, `13173`, `13175`, `13177`, `13179`, `13181`, `13183`, `13185`, `13187`, `13189`, `13191`, `13193`, `13194`, `13196`, `13197`, `13198`, `13200`, `13202`, `13204`, `13206`, `13208`, `13211`, `13212`, `13215`, `13217`, `13219`, `13220`, `13222`, `13224`, `13226`, `13227`, `13229`, `13231`, `13233`, `13235`, `13237`, `13238`, `13239`, `13241`, `13243`, `13245`, `13246`, `13247`, `13249`, `13251`, `13252`, `13254`, `13256`, `13257`, `13259`, `13260`, `13262`, `13264`, `13266`, `13270`, `13272`, `13274`, `13276`, `13278`, `13280`, `13282`, `13284`, `13286`, `13288`, `13289`, `13291`, `13294`, `13296`, `13298`, `13300`, `13302`, `13304`, `13305`, `13307`, `13309`, `13311`, `13313`, `13314`, `13316`, `13319`, `13324`, `13327`, `13329`, `13331`, `13332`, `13333`, `13335`, `13337`, `13339`, `13341`, `13343`, `13345`, `13347`, `13349`, `13351`, `13353`, `13355`, `13356`, `13358`, `13360`, `13362`, `13365`, `13367`, `13368`, `13369`, `13371`, `13372`, `13374`, `13376`, `13378`, `13379`, `13381`, `13383`, `13385`, `13387`, `13389`, `13391`, `13395`, `13397`, `13399`, `13401`, `13402`, `13406`, `13408`, `13410`, `13412`, `13414`, `13415`, `13417`, `13419`, `13421`, `13424`, `13426`, `13428`, `13430`, `13432`, `13433`, `13435`, `13436`, `13438`, `13441`, `13443`, `13444`, `13446`, `13448`, `13449`, `13450`, `13452`, `13454`, `13456`, `13458`, `13459`, `13461`, `13463`, `13465`, `13467`, `13468`, `13469`, `13471`, `13473`, `13474`, `13476`, `13477`, `13480`, `13481`, `13482`, `13484`, `13485`, `13487`, `13489`, `13490`, `13491`, `13492`, `13494`, `13496`, `13498`, `13500`, `13502`, `13505`, `13508`, `13510`, `13512`, `13515`, `13517`, `13519`, `13521`, `13523`, `13525`, `13526`, `13528`, `13530`, `13532`, `13535`, `13536`, `13538`, `13540`, `3001`, `13541`, `13543`, `13545`, `13546`, `13548`, `13549`, `13551`, `13553`, `13555`, `13556`, `13557`, `13559`, `13561`, `13563`, `13565`, `13567`, `13569`, `13571`, `13572`, `13573`, `13575`, `13577`, `13579`, `13580`, `13582`, `13584`, `13585`, `13587`, `13589`, `13591`, `13592`, `13594`, `13596`, `13598`, `13600`, `13602`, `13604`, `13606`, `13608`, `13610`, `13611`, `13612`, `13614`, `13616`, `13617`, `13619`, `13621`, `13622`, `13623`, `13625`, `13627`, `13629`, `13631`, `13632`, `13634`, `13636`, `13637`, `13639`, `13640`, `13642`, `13643`, `13645`, `13646`, `13648`, `13650`, `13651`, `13653`, `13655`, `13656`, `13657`, `13659`, `13661`, `13662`, `13663`, `13664`, `13666`, `13668`, `13670`, `13672`, `13674`, `13676`, `13677`, `13679`, `13681`, `13683`, `13685`, `13687`, `13689`, `13690`, `13692`, `13693`, `13695`, `13697`, `13698`, `13700`, `13701`, `13702`, `13704`, `13706`, `13707`, `13708`, `13709`, `13711`, `13714`, `13716`, `13718`, `13721`, `13722`, `13724`, `13726`, `13728`, `13730`, `13731`, `13732`, `13733`, `13734`, `13735`, `13737`, `13738`, `13740`, `13742`, `13744`, `13745`, `13746`, `13747`, `13749`, `13751`, `13753`, `13754`, `13755`, `13758`, `13760`, `13761`, `13763`, `13764`, `13766`, `13768`, `13770`, `13772`, `13774`, `13775`, `13776`, `13777`, `13779`, `13782`, `13784`, `13786`, `13787`, `13789`, `13792`, `13793`, `13795`, `13796`, `13798`, `13800`, `13802`, `13804`, `13806`, `13807`, `13808`, `13810`, `13812`, `13813`, `13815`, `13817`, `13819`, `13820`, `13821`, `13824`, `13826`, `13827`, `13829`, `13830`, `13831`, `13832`, `13833`, `13834`, `13836`, `13838`, `13840`, `13843`, `13847`, `13852`, `13854`, `13856`, `13858`, `13860`, `13861`, `13862`, `13863`, `13865`, `13867`, `13869`, `13871`, `13873`, `13875`, `13876`, `13878`, `13880`, `13881`, `13883`, `13884`, `13886`, `13888`, `13890`, `13892`, `13894`, `13896`, `13897`, `13899`, `13901`, `13903`, `13905`, `13906`, `13907`, `13909`, `13911`, `13912`, `13914`, `13916`, `13917`, `13919`, `13921`, `13922`, `13924`, `13926`, `13928`, `13929`, `13931`, `13933`, `13935`, `13937`, `13938`, `13940`, `13943`, `13945`, `13947`, `13949`, `13950`, `13951`, `13953`, `13956`, `13957`, `13959`, `13960`, `13962`, `13965`, `13967`, `13969`, `13972`, `13975`, `13976`, `13978`, `13979`, `13982`, `13983`, `13984`, `13987`, `13989`, `13991`, `13993`, `13994`, `13996`, `13998`, `14000`, `14003`, `14005`, `14008`, `14009`, `14010`, `14011`, `14013`, `14015`, `14017`, `14019`, `14021`, `14026`, `14029`, `14031`, `14033`, `14034`, `14035`, `14038`, `14040`, `14041`, `14042`, `14046`, `14047`, `14049`, `14051`, `14053`, `14055`, `14057`, `14059`, `14061`, `14065`, `14066`, `14068`, `14070`, `14071`, `14073`, `14074`, `14075`, `14076`, `14078`, `14080`, `14082`, `14084`, `14086`, `14087`, `14089`, `14092`, `14094`, `14096`, `14098`, `14099`, `14101`, `14103`, `14104`, `14106`, `14108`, `14110`, `14112`, `14113`, `14116`, `14118`, `14119`, `14120`, `14122`, `14124`, `14127`, `14129`, `14130`, `14132`, `14134`, `14135`, `14137`, `14139`, `14141`, `14143`, `14145`, `14146`, `14147`, `14149`, `14151`, `14153`, `14156`, `14159`, `14161`, `14163`, `14165`, `14167`, `14169`, `14171`, `14173`, `14175`, `14176`, `14178`, `14180`, `14183`, `14184`, `14186`, `14188`, `14190`, `14192`, `14194`, `14196`, `14197`, `14198`, `14199`, `14202`, `14204`, `14206`, `14208`, `14210`, `14212`, `14214`, `14215`, `14217`, `14218`, `14219`, `14221`, `14223`, `14224`, `14226`, `14228`, `14230`, `14232`, `14233`, `14235`, `14236`, `14237`, `14239`, `14240`, `14243`, `14246`, `14247`, `14248`, `14249`, `14251`, `14252`, `14254`, `14256`, `14258`, `14260`, `14262`, `14263`, `14264`, `14265`, `14267`, `14269`, `14272`, `14274`, `14275`, `14277`, `14279`, `14280`, `14282`, `14283`, `14285`, `14286`, `14287`, `14289`, `14291`, `14292`, `14294`, `14296`, `14298`, `14300`, `14302`, `14303`, `14304`, `14306`, `14308`, `14310`, `14311`, `14312`, `14314`, `14316`, `14318`, `14320`, `14322`, `14324`, `14326`, `14328`, `14329`, `14331`, `14333`, `14335`, `14337`, `14339`, `14341`, `14343`, `14345`, `14347`, `14350`, `14352`, `14354`, `14356`, `14359`, `14361`, `14363`, `14365`, `14367`, `14369`, `14373`, `14374`, `14375`, `14377`, `14379`, `14381`, `14383`, `14384`, `14385`, `14387`, `14389`, `14391`, `14392`, `14393`, `14395`, `14397`, `14399`, `14401`, `14403`, `14404`, `14409`, `14411`, `14413`, `14415`, `14417`, `14419`, `14424`, `14426`, `14428`, `14430`, `14431`, `14432`, `14434`, `14435`, `14436`, `14438`, `14439`, `14441`, `14443`, `14445`, `14447`, `14449`, `14451`, `14453`, `14455`, `14457`, `14459`, `14460`, `14463`, `14465`, `14467`, `14469`, `14471`, `14472`, `14474`, `14475`, `14477`, `14479`, `14481`, `14482`, `14483`, `14485`, `14488`, `14490`, `14492`, `14495`, `14496`, `14498`, `14500`, `14502`, `14504`, `14506`, `14508`, `14509`, `14511`, `14513`, `14514`, `14516`, `14518`, `14520`, `14523`, `14525`, `14527`, `14528`, `14530`, `14532`, `14533`, `14535`, `14536`, `14538`, `14539`, `14541`, `14542`, `14543`, `14545`, `14547`, `14549`, `14551`, `14552`, `14553`, `14554`, `14556`, `14558`, `14560`, `14562`, `14563`, `14565`, `14567`, `14569`, `14571`, `14572`, `14574`, `14576`, `14577`, `14578`, `14580`, `14582`, `14584`, `14585`, `14587`, `14589`, `14592`, `14593`, `14595`, `14597`, `14599`, `14601`, `14603`, `14604`, `14605`, `14607`, `14609`, `14611`, `14613`, `14614`, `14615`, `14616`, `14618`, `14620`, `14622`, `14624`, `14626`, `14627`, `14629`, `14631`, `14633`, `14635`, `14637`, `14639`, `14643`, `14645`, `14648`, `14650`, `14652`, `14653`, `14655`, `14656`, `14657`, `14659`, `14661`, `14663`, `14664`, `14666`, `14668`, `14669`, `14671`, `14673`, `14675`, `14677`, `14679`, `14681`, `14683`, `14685`, `14687`, `14689`, `14691`, `14693`, `14694`, `14696`, `14697`, `14699`, `14700`, `14702`, `14703`, `14705`, `14707`, `14709`, `14711`, `14712`, `14714`, `14715`, `14716`, `14718`, `14720`, `14723`, `14724`, `14725`, `14727`, `14729`, `14730`, `14731`, `14732`, `14733`, `14735`, `14737`, `14739`, `14740`, `14742`, `14744`, `14746`, `14747`, `14748`, `14750`, `14752`, `14754`, `14755`, `14756`, `14758`, `14760`, `14762`, `14764`, `14766`, `14768`, `14770`, `14772`, `14774`, `14776`, `14778`, `14780`, `14782`, `14784`, `14787`, `14788`, `14790`, `14792`, `14796`, `14798`, `14799`, `14800`, `14802`, `14804`, `14805`, `14807`, `14809`, `14810`, `14812`, `14814`, `14816`, `14817`, `14818`, `14819`, `14820`, `14823`, `14825`, `14826`, `14827`, `14828`, `14829`, `14831`, `14833`, `14835`, `14836`, `14838`, `14840`, `14841`, `14843`, `14845`, `14846`, `14848`, `14850`, `14852`, `14853`, `14855`, `14857`, `14859`, `14861`, `14863`, `14865`, `14867`, `14868`, `14870`, `14871`, `14875`, `14877`, `14878`, `14879`, `14882`, `14885`, `14887`, `14889`, `14891`, `14893`, `14895`, `14897`, `14898`, `14900`, `14902`, `14904`, `14906`, `14908`, `14911`, `14912`, `14914`, `14916`, `14918`, `14920`, `14921`, `14922`, `14924`, `14926`, `14928`, `14929`, `14931`, `14934`, `14935`, `14937`, `14939`, `14941`, `14943`, `14945`, `14946`, `14950`, `14952`, `14953`, `14954`, `14955`, `14957`, `14958`, `14961`, `14963`, `14965`, `14967`, `14969`, `14971`, `14972`, `14974`, `14976`, `14978`, `14980`, `14982`, `14984`, `14987`, `14988`, `14990`, `14992`, `14993`, `14995`, `14997`, `14998`, `14999`, `15000`, `15003`, `15005`, `15007`, `15009`, `15011`, `15012`, `15013`, `15015`, `15017`, `15019`, `15022`, `15024`, `15025`, `15027`, `15028`, `15030`, `15032`, `15034`, `15035`, `15036`, `15038`, `15040`, `15042`, `15044`, `15046`, `15047`, `15048`, `15050`, `15052`, `15053`, `15054`, `15055`, `15057`, `15058`, `15059`, `15061`, `15064`, `15066`, `15067`, `15069`, `15071`, `15073`, `15078`, `15080`, `15082`, `15084`, `15085`, `15086`, `15087`, `15089`, `15091`, `15093`, `15094`, `15095`, `15097`, `15099`, `15101`, `15102`, `15103`, `15104`, `15106`, `15108`, `15109`, `15110`, `15112`, `15114`, `15117`, `15118`, `15120`, `15122`, `15125`, `15127`, `15129`, `15131`, `15132`, `15134`, `15135`, `15137`, `15138`, `15139`, `15140`, `15141`, `15142`, `15144`, `15146`, `15148`, `15150`, `15153`, `15154`, `15157`, `15158`, `15160`, `15161`, `15162`, `15163`, `15165`, `15169`, `15171`, `15173`, `15174`, `15176`, `15177`, `15178`, `15179`, `15181`, `15182`, `15183`, `15185`, `15187`, `15188`, `15190`, `15191`, `15193`, `15195`, `15196`, `15197`, `15200`, `15201`, `15203`, `15204`, `15205`, `15207`, `15209`, `15210`, `15211`, `15213`, `15215`, `15216`, `15194`, `15218`, `15219`, `15221`, `15223`, `15225`, `15227`, `15229`, `15231`, `15236`, `15238`, `15239`, `15241`, `15243`, `15245`, `15247`, `15248`, `15250`, `15251`, `15253`, `15255`, `15256`, `15258`, `15260`, `15264`, `15266`, `15268`, `15269`, `15271`, `15272`, `15273`, `15275`, `15277`, `15279`, `15281`, `15282`, `15285`, `15287`, `15289`, `15291`, `15292`, `15294`, `15296`, `15298`, `15300`, `15301`, `15303`, `15304`, `15306`, `15307`, `15309`, `15310`, `15312`, `15314`, `15315`, `15317`, `15319`, `15320`, `15322`, `15324`, `15326`, `15328`, `15330`, `15332`, `15334`, `15336`, `15337`, `15338`, `15340`, `15341`, `15343`, `15344`, `15346`, `15348`, `15349`, `15351`, `15353`, `15355`, `15357`, `15358`, `15360`, `15362`, `15364`, `15366`, `15368`, `15369`, `15371`, `15373`, `15375`, `15377`, `15379`, `15381`, `15383`, `15385`, `15387`, `15389`, `15391`, `15393`, `15394`, `15395`, `15397`, `15399`, `15402`, `15404`, `15405`, `15406`, `15407`, `15409`, `15411`, `15413`, `15415`, `15417`, `15419`, `15421`, `15422`, `15424`, `15425`, `15427`, `15429`, `15430`, `15432`, `15433`, `15435`, `15437`, `15439`, `15441`, `15442`, `15444`, `15446`, `15448`, `15450`, `15452`, `15454`, `15455`, `15457`, `15462`, `15463`, `15465`, `15467`, `15469`, `15470`, `15471`, `15473`, `15475`, `15477`, `15479`, `15483`, `15485`, `15487`, `15489`, `15493`, `15495`, `15497`, `15499`, `15501`, `15504`, `15507`, `15509`, `15511`, `15513`, `15515`, `15517`, `15518`, `15520`, `15521`, `15523`, `15525`, `15526`, `15527`, `15529`, `15531`, `15533`, `15536`, `15537`, `15539`, `15540`, `15542`, `15544`, `15546`, `15547`, `15549`, `15550`, `15552`, `15554`, `15557`, `15559`, `15561`, `15562`, `15564`, `15566`, `15568`, `15570`, `15572`, `15574`, `15576`, `15578`, `15580`, `15582`, `15584`, `15586`, `15587`, `15589`, `15591`, `15592`, `15593`, `15594`, `15596`, `15597`, `15599`, `15601`, `15603`, `15605`, `15607`, `15609`, `15611`, `15613`, `15615`, `15617`, `15620`, `15622`, `15624`, `15626`, `15627`, `15629`, `15631`, `15633`, `15634`, `15636`, `15638`, `15640`, `15642`, `15643`, `15645`, `15647`, `15649`, `15650`, `15651`, `15653`, `15655`, `15657`, `15658`, `15660`, `15661`, `15664`, `15666`, `15669`, `15671`, `15673`, `15674`, `15676`, `15678`, `15680`, `15681`, `15683`, `15685`, `15687`, `15689`, `15690`, `15692`, `15693`, `15695`, `15696`, `15698`, `15700`, `15702`, `15704`, `15705`, `15707`, `15709`, `15711`, `15713`, `6792`, `15714`, `15716`, `15718`, `15722`, `15723`, `15725`, `15727`, `15728`, `15729`, `15730`, `15732`, `15734`, `15736`, `15737`, `15739`, `15741`, `15743`, `15744`, `15746`, `15747`, `15749`, `15751`, `15756`, `15758`, `15759`, `15764`, `15765`, `15766`, `15768`, `15770`, `15772`, `15774`, `15777`, `15779`, `15781`, `15785`, `15786`, `15788`, `15789`, `15790`, `15791`, `15793`, `15794`, `15796`, `15798`, `15800`, `15803`, `15804`, `15805`, `15807`, `15809`, `15813`, `15815`, `15817`, `15818`, `15819`, `15821`, `15823`, `15825`, `15827`, `15829`, `15831`, `15833`, `15834`, `15837`, `15838`, `15840`, `15841`, `15843`, `15844`, `15846`, `15847`, `15849`, `15850`, `15854`, `15855`, `15856`, `15862`, `15864`, `15866`, `15868`, `15869`, `15871`, `15873`, `15875`, `15877`, `15878`, `15881`, `15883`, `15885`, `15887`, `15888`, `15890`, `15892`, `15894`, `15896`, `15898`, `15900`, `15901`, `15902`, `15904`, `15906`, `15911`, `15913`, `15914`, `15915`, `15917`, `15919`, `15921`, `15923`, `15925`, `15926`, `15928`, `15929`, `15931`, `15932`, `15934`, `15936`, `15938`, `15941`, `15943`, `15945`, `15947`, `15948`, `15950`, `15952`, `15953`, `15955`, `15957`, `15959`, `15961`, `15962`, `15964`, `15966`, `15968`, `15970`, `15972`, `15974`, `15976`, `15978`, `15980`, `15982`, `15984`, `15986`, `15988`, `15989`, `15991`, `15992`, `15994`, `15996`, `15997`, `15999`, `16001`, `16002`, `16003`, `16005`, `16006`, `16008`, `16009`, `16011`, `16012`, `16014`, `16016`, `16017`, `16019`, `16023`, `16025`, `16027`, `16029`, `16031`, `16032`, `16034`, `16036`, `16037`, `16039`, `16041`, `16043`, `16045`, `16046`, `16047`, `16048`, `16050`, `16052`, `16054`, `16056`, `16057`, `16059`, `16061`, `16063`, `16064`, `16065`, `16067`, `16069`, `16070`, `16071`, `16072`, `16073`, `16074`, `16076`, `16078`, `16080`, `16081`, `16083`, `16085`, `16087`, `16089`, `16091`, `16093`, `16095`, `16097`, `16099`, `16101`, `16102`, `16104`, `16106`, `16108`, `16111`, `16112`, `16113`, `16115`, `16116`, `16118`, `16120`, `16121`, `16123`, `16125`, `16127`, `16129`, `16130`, `16134`, `16136`, `16138`, `16140`, `16142`, `16144`, `16145`, `16147`, `16149`, `16151`, `16153`, `16155`, `16156`, `16158`, `16160`, `16161`, `16163`, `16164`, `16166`, `16169`, `16171`, `16173`, `16174`, `16176`, `16179`, `16181`, `16184`, `16185`, `16187`, `16188`, `16190`, `16192`, `16193`, `16194`, `16196`, `16198`, `16200`, `16202`, `16204`, `16206`, `16207`, `16208`, `16210`, `16213`, `16214`, `16216`, `16218`, `16219`, `16221`, `16223`, `16225`, `16228`, `16230`, `16234`, `16236`, `16237`, `16239`, `16241`, `16242`, `16243`, `16245`, `2856`, `16246`, `16248`, `16249`, `16251`, `16253`, `16255`, `16257`, `16259`, `16261`, `16263`, `16265`, `16267`, `16269`, `16271`, `16273`, `16275`, `16276`, `16277`, `16279`, `16281`, `16283`, `16285`, `16287`, `16289`, `16291`, `16292`, `16294`, `16296`, `16298`, `16300`, `16302`, `16305`, `16308`, `16310`, `16315`, `16317`, `16318`, `16319`, `16321`, `16325`, `16328`, `16329`, `16332`, `16334`, `16335`, `16337`, `16338`, `16339`, `16341`, `16343`, `16345`, `16347`, `16349`, `16350`, `16352`, `16354`, `16356`, `16358`, `16360`, `16362`, `16363`, `16365`, `16368`, `16370`, `16373`, `16375`, `16377`, `16378`, `16379`, `16381`, `16383`, `16384`, `16385`, `16387`, `16389`, `16391`, `16393`, `16394`, `16396`, `16397`, `16399`, `16400`, `16401`, `16402`, `16404`, `16406`, `16407`, `16409`, `16411`, `16413`, `16415`, `16417`, `16419`, `16420`, `16421`, `16422`, `16424`, `16426`, `16427`, `16429`, `16431`, `16432`, `16434`, `16436`, `16437`, `16438`, `16441`, `16442`, `16444`, `16446`, `16448`, `16450`, `16452`, `16453`, `16455`, `16457`, `16458`, `16459`, `16461`, `16462`, `16464`, `16466`, `16467`, `16469`, `16470`, `16471`, `16474`, `16475`, `16477`, `16478`, `16480`, `16481`, `16483`, `16485`, `16487`, `16488`, `16490`, `16491`, `16492`, `16494`, `16496`, `16497`, `16499`, `16501`, `16503`, `16505`, `16507`, `16508`, `16509`, `16513`, `16514`, `16516`, `16518`, `16520`, `16522`, `16523`, `16524`, `16525`, `16527`, `16529`, `16531`, `16532`, `16533`, `16534`, `16535`, `16537`, `16539`, `16541`, `16543`, `16544`, `16546`, `16548`, `16552`, `16553`, `16555`, `16557`, `16559`, `16562`, `16563`, `16565`, `16568`, `16570`, `16572`, `16574`, `16576`, `16578`, `16579`, `16581`, `16583`, `16585`, `16587`, `16589`, `16590`, `16591`, `16592`, `16594`, `16596`, `16598`, `16600`, `16602`, `16603`, `16605`, `16606`, `16608`, `16610`, `16612`, `16614`, `16615`, `16617`, `16618`, `16620`, `16622`, `16624`, `16626`, `16628`, `16630`, `16631`, `16633`, `16635`, `16637`, `16639`, `16640`, `16642`, `16643`, `16645`, `16646`, `16648`, `16649`, `16650`, `16652`, `16654`, `16656`, `16659`, `16661`, `16662`, `16664`, `16666`, `16668`, `16670`, `16672`, `16674`, `16676`, `16678`, `16679`, `16680`, `16682`, `16683`, `16685`, `16686`, `16688`, `16689`, `16690`, `16691`, `16693`, `16695`, `16698`, `16699`, `16701`, `16702`, `16704`, `16705`, `16707`, `16708`, `16710`, `16712`, `16715`, `16717`, `16719`, `16720`, `16721`, `16723`, `16725`, `16727`, `16729`, `16731`, `16733`, `16734`, `16736`, `16738`, `16740`, `16741`, `16744`, `16745`, `16746`, `16748`, `16749`, `16751`, `16753`, `16755`, `16757`, `16758`, `16760`, `16764`, `16766`, `16768`, `16770`, `16772`, `16774`, `16775`, `16778`, `16780`, `16782`, `16784`, `16785`, `16786`, `16788`, `16789`, `16792`, `16794`, `16795`, `16797`, `16799`, `16802`, `16803`, `16807`, `16809`, `16811`, `16812`, `16814`, `16816`, `16818`, `16819`, `16820`, `16822`, `16824`, `16826`, `16828`, `16830`, `16832`, `16833`, `16835`, `16837`, `16839`, `16840`, `16841`, `16842`, `16844`, `16846`, `16847`, `16849`, `16850`, `16852`, `16854`, `16856`, `16858`, `16860`, `16862`, `16864`, `16865`, `16867`, `16868`, `16869`, `16871`, `16872`, `16873`, `16874`, `16876`, `16878`, `16880`, `16882`, `16883`, `16885`, `16886`, `16888`, `16889`, `16891`, `16893`, `16895`, `16896`, `16898`, `16900`, `16902`, `16904`, `16906`, `16908`, `16910`, `16912`, `16914`, `16916`, `16918`, `16920`, `16922`, `16924`, `16926`, `16927`, `16929`, `16930`, `16932`, `16934`, `16935`, `16936`, `16938`, `16940`, `16942`, `16943`, `16945`, `16947`, `16949`, `16951`, `16953`, `16955`, `16957`, `16959`, `16961`, `16962`, `16964`, `16965`, `16967`, `16968`, `16969`, `16970`, `16971`, `16973`, `16974`, `16975`, `16977`, `16978`, `16980`, `16982`, `16984`, `16985`, `16986`, `16988`, `16989`, `16991`, `16993`, `16995`, `16996`, `16998`, `16999`, `17000`, `17002`, `17003`, `17008`, `17009`, `17011`, `17013`, `17015`, `17017`, `17019`, `17020`, `17022`, `17024`, `17026`, `17028`, `17029`, `17030`, `17034`, `17036`, `17038`, `17040`, `17042`, `17043`, `17045`, `17047`, `17048`, `17050`, `17052`, `17054`, `17055`, `17057`, `17059`, `17061`, `17062`, `17064`, `17066`, `17068`, `17070`, `17072`, `17074`, `17078`, `17080`, `17081`, `17083`, `17085`, `17087`, `17089`, `17090`, `17091`, `17093`, `17095`, `17097`, `17098`, `17099`, `17100`, `17102`, `17104`, `17105`, `17107`, `17109`, `17111`, `17113`, `17115`, `17117`, `17119`, `17120`, `17121`, `17123`, `17125`, `17126`, `17128`, `17130`, `17131`, `17132`, `17134`, `17136`, `17137`, `17138`, `17140`, `17142`, `17144`, `17145`, `17147`, `17149`, `17150`, `17151`, `17152`, `17153`, `17154`, `17156`, `17158`, `17159`, `17161`, `17162`, `17164`, `17165`, `17167`, `17168`, `17170`, `17173`, `17175`, `17177`, `17179`, `17180`, `17181`, `17185`, `17187`, `17188`, `17191`, `17192`, `17194`, `17196`, `17198`, `17200`, `17202`, `17207`, `17209`, `17210`, `17212`, `17215`, `17217`, `17219`, `17221`, `17222`, `17223`, `17225`, `17226`, `17228`, `17230`, `17232`, `17233`, `17235`, `17236`, `17237`, `17240`, `17242`, `17244`, `17245`, `17247`, `17249`, `17251`, `17253`, `17255`, `17257`, `17259`, `17261`, `17263`, `17264`, `17266`, `17268`, `17269`, `17271`, `17273`, `17275`, `17277`, `17278`, `17280`, `17282`, `17284`, `17286`, `17288`, `17290`, `17292`, `17294`, `17295`, `17297`, `17299`, `17301`, `17302`, `17306`, `17308`, `17310`, `17312`, `17314`, `17316`, `17318`, `17320`, `17322`, `17324`, `17326`, `17328`, `17330`, `17331`, `17334`, `17336`, `17338`, `17341`, `17342`, `17343`, `17346`, `17347`, `17348`, `17350`, `17351`, `17353`, `17354`, `17356`, `17358`, `17362`, `17366`, `17368`, `17369`, `17371`, `17372`, `17373`, `17375`, `17376`, `17378`, `17380`, `17382`, `17387`, `17389`, `17391`, `17392`, `17394`, `17396`, `17398`, `17399`, `17401`, `17402`, `17404`, `17405`, `17406`, `17407`, `17408`, `17410`, `17411`, `17413`, `17414`, `17416`, `17418`, `17419`, `17421`, `17423`, `17425`, `17427`, `17429`, `17431`, `17433`, `17435`, `17439`, `17443`, `17444`, `17445`, `17447`, `17449`, `17451`, `17453`, `17456`, `17458`, `17459`, `17460`, `17462`, `17463`, `17465`, `17467`, `17468`, `17470`, `17472`, `17473`, `17475`, `17477`, `17479`, `17481`, `17482`, `17484`, `17486`, `17487`, `17489`, `17491`, `17493`, `17496`, `17498`, `17500`, `17502`, `17504`, `17506`, `17508`, `17510`, `17512`, `17514`, `17516`, `17517`, `17519`, `17521`, `17523`, `17525`, `17527`, `17529`, `17530`, `17531`, `17533`, `17535`, `17537`, `17539`, `17541`, `17543`, `17544`, `17546`, `17548`, `17551`, `17553`, `17555`, `17557`, `17559`, `17560`, `17562`, `17564`, `17566`, `17568`, `17569`, `17571`, `17573`, `17575`, `17576`, `17578`, `17579`, `17581`, `17583`, `17584`, `17585`, `17586`, `17588`, `17589`, `17590`, `17592`, `17594`, `17596`, `17598`, `17599`, `17600`, `17602`, `17604`, `17606`, `17608`, `17610`, `17611`, `17613`, `17614`, `17616`, `17618`, `17620`, `17622`, `17624`, `17628`, `17629`, `17630`, `17632`, `17634`, `17636`, `17637`, `17639`, `17641`, `17643`, `17647`, `17649`, `17650`, `17654`, `17657`, `17663`, `17664`, `17666`, `17668`, `17669`, `17670`, `17672`, `17674`, `17675`, `17677`, `17679`, `17680`, `17681`, `17683`, `17684`, `17685`, `17688`, `17690`, `17691`, `17694`, `17695`, `17696`, `17697`, `17699`, `17700`, `17702`, `17703`, `17705`, `17707`, `17709`, `17711`, `17712`, `17713`, `17715`, `17717`, `17719`, `17720`, `17722`, `17724`, `17726`, `17727`, `17728`, `17729`, `17731`, `17732`, `17734`, `17736`, `17738`, `17739`, `17741`, `17743`, `17745`, `17747`, `17750`, `17751`, `17752`, `17754`, `17755`, `17757`, `17759`, `17760`, `17762`, `17764`, `17765`, `17766`, `17767`, `17769`, `17771`, `17773`, `17775`, `17777`, `17778`, `17780`, `17781`, `17783`, `17786`, `17788`, `17790`, `17792`, `17794`, `17796`, `17797`, `17799`, `17801`, `17803`, `17806`, `17808`, `17810`, `17812`, `17814`, `17816`, `17818`, `17820`, `17821`, `17823`, `17825`, `17827`, `17829`, `17831`, `17833`, `17835`, `17837`, `17839`, `17841`, `17843`, `17845`, `17847`, `17849`, `17851`, `17853`, `17855`, `17857`, `17859`, `17861`, `17863`, `17864`, `17866`, `17868`, `17870`, `17872`, `17873`, `17874`, `17876`, `17877`, `17879`, `17881`, `17883`, `17886`, `17887`, `17889`, `17891`, `8806`, `17893`, `17894`, `17896`, `17898`, `17900`, `17903`, `17904`, `17906`, `17908`, `17910`, `17911`, `17913`, `17915`, `17917`, `17919`, `17920`, `17921`, `17923`, `17925`, `17927`, `17928`, `17932`, `17934`, `17936`, `17938`, `17940`, `17942`, `17944`, `17946`, `17948`, `17952`, `17954`, `17956`, `17958`, `17960`, `17962`, `17964`, `17966`, `17968`, `17970`, `17972`, `17974`, `17975`, `17976`, `17977`, `17979`, `17980`, `17982`, `17983`, `17985`, `17988`, `17990`, `17993`, `17994`, `17996`, `17997`, `17998`, `17999`, `18001`, `18003`, `18005`, `18006`, `18007`, `18009`, `18011`, `18013`, `18015`, `18017`, `18019`, `18021`, `18023`, `18025`, `18026`, `18027`, `18028`, `18029`, `18031`, `18033`, `18035`, `18037`, `18038`, `18040`, `18045`, `18047`, `18049`, `18051`, `18052`, `18054`, `18055`, `18057`, `18059`, `18061`, `18063`, `18065`, `18066`, `18069`, `18070`, `18072`, `18073`, `18075`, `18077`, `18079`, `18081`, `18082`, `18083`, `18085`, `18086`, `18087`, `18088`, `18090`, `18092`, `18093`, `18094`, `18096`, `18097`, `18099`, `18100`, `18102`, `18104`, `18106`, `18108`, `18110`, `18111`, `18113`, `18115`, `18117`, `18118`, `18120`, `18122`, `18123`, `18124`, `18126`, `18128`, `18133`, `18135`, `18136`, `18138`, `18140`, `18142`, `18144`, `18146`, `18148`, `18150`, `18151`, `18152`, `18153`, `18155`, `18157`, `18159`, `18161`, `18162`, `18163`, `18166`, `18168`, `18169`, `18171`, `18172`, `18175`, `18176`, `18178`, `18180`, `18182`, `18183`, `18185`, `18187`, `18189`, `18190`, `18192`, `18194`, `18195`, `18197`, `18199`, `18200`, `18202`, `18204`, `18206`, `18208`, `18209`, `18212`, `18214`, `18215`, `18217`, `18219`, `18220`, `18223`, `18224`, `18225`, `18227`, `18229`, `18231`, `18232`, `18234`, `18236`, `18238`, `18240`, `18242`, `18244`, `18245`, `18247`, `18250`, `18252`, `18256`, `18260`, `18261`, `18263`, `18265`, `18267`, `18268`, `18270`, `18272`, `18273`, `18275`, `18277`, `18278`, `18279`, `18280`, `18282`, `18283`, `18285`, `18286`, `18287`, `18289`, `18290`, `18292`, `18294`, `18295`, `18296`, `18297`, `18299`, `18303`, `18305`, `18306`, `18308`, `18309`, `18311`, `18312`, `18313`, `18315`, `18317`, `18319`, `18321`, `18323`, `18325`, `18326`, `18328`, `18329`, `18331`, `18333`, `18334`, `18336`, `18338`, `18340`, `18341`, `18343`, `18345`, `18346`, `18348`, `18349`, `18350`, `18352`, `18354`, `18355`, `18357`, `18358`, `18359`, `18361`, `18362`, `18364`, `18366`, `18368`, `18370`, `18372`, `18373`, `18375`, `18377`, `18380`, `18384`, `18390`, `18392`, `18394`, `18396`, `18398`, `18402`, `18404`, `18405`, `18407`, `18409`, `18411`, `18413`, `18416`, `18418`, `18420`, `18422`, `18424`, `18426`, `18428`, `1074`, `18430`, `18432`, `18434`, `18436`, `18438`, `18440`, `18442`, `18444`, `18446`, `18448`, `18450`, `18452`, `18454`, `18455`, `18456`, `18457`, `18459`, `18460`, `18462`, `18463`, `18465`, `18466`, `18468`, `18470`, `18472`, `18474`, `18475`, `18477`, `18479`, `18482`, `18484`, `18485`, `18487`, `18489`, `18491`, `18494`, `18495`, `18497`, `18499`, `18501`, `18502`, `18504`, `18505`, `18506`, `18507`, `18509`, `18511`, `18513`, `18515`, `18517`, `18518`, `18520`, `18522`, `18524`, `18526`, `18527`, `18529`, `18530`, `18532`, `18534`, `18535`, `18536`, `18537`, `18539`, `18541`, `18543`, `18545`, `18547`, `18550`, `18551`, `18553`, `18555`, `18558`, `18560`, `18562`, `18564`, `18566`, `18568`, `18571`, `18573`, `18575`, `18581`, `18583`, `18585`, `18586`, `18588`, `18589`, `18591`, `18593`, `18597`, `18598`, `18600`, `18602`, `18604`, `18606`, `18608`, `18609`, `18610`, `18612`, `18614`, `18615`, `18617`, `18618`, `18620`, `18621`, `18622`, `18623`, `18625`, `18627`, `18629`, `18631`, `18632`, `18634`, `18637`, `18638`, `18641`, `18642`, `18644`, `18646`, `18647`, `18649`, `18651`, `18654`, `18656`, `18658`, `18659`, `18661`, `18663`, `18665`, `18666`, `18667`, `18668`, `18671`, `18673`, `18675`, `18677`, `18678`, `18679`, `18680`, `18682`, `18684`, `18687`, `18689`, `18691`, `18693`, `18695`, `18697`, `18698`, `18700`, `18702`, `18704`, `18706`, `18708`, `18710`, `18712`, `18713`, `18715`, `18717`, `18722`, `18724`, `18726`, `18728`, `18730`, `18732`, `18734`, `18735`, `18737`, `18738`, `18739`, `18741`, `18743`, `18745`, `18747`, `18748`, `18750`, `18754`, `18756`, `18758`, `18760`, `18763`, `18765`, `18767`, `18768`, `18770`, `18772`, `18774`, `18776`, `18778`, `18780`, `18782`, `18784`, `18786`, `18787`, `18789`, `18791`, `18792`, `18794`, `18796`, `18798`, `18800`, `18801`, `18802`, `18803`, `18805`, `18807`, `18809`, `18812`, `18814`, `18815`, `18816`, `18819`, `18821`, `18823`, `18827`, `18829`, `18830`, `18833`, `18835`, `18837`, `18839`, `18841`, `18842`, `18844`, `18845`, `18847`, `18848`, `18850`, `18852`, `18853`, `18854`, `18856`, `18857`, `18859`, `18861`, `18863`, `18865`, `18866`, `18868`, `18869`, `18871`, `18873`, `18875`, `18876`, `18877`, `18878`, `18880`, `18882`, `18883`, `18885`, `18887`, `18889`, `18892`, `18893`, `18894`, `18896`, `18898`, `18900`, `18902`, `18903`, `18905`, `18907`, `18367`, `18909`, `18911`, `18913`, `18915`, `18916`, `18918`, `18920`, `18922`, `18923`, `18925`, `18927`, `18929`, `18931`, `18933`, `18935`, `18937`, `18939`, `18943`, `18944`, `18946`, `18948`, `18950`, `18951`, `18952`, `18956`, `18958`, `18960`, `18961`, `18963`, `18965`, `18967`, `18969`, `18970`, `18972`, `18973`, `18974`, `18975`, `18977`, `18979`, `18981`, `18982`, `18983`, `18984`, `18986`, `18988`, `18990`, `18992`, `18994`, `18996`, `18997`, `18998`, `19000`, `19002`, `19003`, `19005`, `19007`, `19008`, `19009`, `19011`, `19013`, `19015`, `19016`, `19018`, `19020`, `19022`, `19024`, `19025`, `19027`, `19029`, `19031`, `19033`, `19035`, `19036`, `19038`, `19039`, `19041`, `19042`, `19044`, `19046`, `19048`, `19049`, `19050`, `19051`, `19052`, `19054`, `19056`, `19057`, `19058`, `19060`, `19064`, `19066`, `19068`, `19069`, `19071`, `19073`, `19075`, `19076`, `19083`, `19088`, `19091`, `19093`, `19095`, `19096`, `19097`, `19098`, `19099`, `19101`, `19102`, `19104`, `19106`, `19107`, `19109`, `19111`, `19113`, `19115`, `19116`, `19119`, `19121`, `19123`, `19124`, `19126`, `19127`, `19128`, `19130`, `19132`, `19137`, `19139`, `19140`, `19142`, `19144`, `19145`, `19146`, `19147`, `19148`, `19150`, `19152`, `19154`, `19155`, `19156`, `19158`, `19159`, `19161`, `19162`, `19163`, `19165`, `19166`, `19168`, `19173`, `19174`, `19176`, `19178`, `19180`, `19182`, `19183`, `19184`, `19186`, `19188`, `19190`, `19192`, `19197`, `19198`, `19200`, `19202`, `19204`, `19205`, `19206`, `19208`, `19209`, `19210`, `19212`, `19213`, `19214`, `19216`, `19217`, `19219`, `19220`, `19221`, `19223`, `19225`, `19227`, `19228`, `19230`, `19232`, `19234`, `19235`, `19237`, `19239`, `19240`, `19242`, `19244`, `264`, `19246`, `19247`, `19249`, `19250`, `19252`, `19254`, `19255`, `19256`, `19258`, `19260`, `19262`, `19264`, `19265`, `19267`, `19269`, `19271`, `19273`, `19275`, `19277`, `19279`, `19280`, `19282`, `19284`, `19286`, `19288`, `19290`, `19291`, `19293`, `19295`, `19297`, `19299`, `19300`, `19302`, `19304`, `19305`, `19306`, `19308`, `19310`, `19312`, `19314`, `19315`, `19317`, `19319`, `19321`, `19324`, `19325`, `19327`, `19329`, `19331`, `19333`, `19334`, `19335`, `19337`, `19339`, `19341`, `19343`, `19344`, `19346`, `19348`, `19349`, `19351`, `19353`, `19355`, `19357`, `19359`, `19361`, `19362`, `19363`, `19365`, `19367`, `19368`, `19370`, `19373`, `19375`, `19376`, `19378`, `19380`, `19382`, `19383`, `19384`, `19385`, `19387`, `19389`, `19390`, `19392`, `19394`, `19395`, `19397`, `19399`, `19400`, `19401`, `19403`, `19405`, `19406`, `19408`, `19410`, `19412`, `19413`, `19416`, `19418`, `19419`, `19421`, `19423`, `19424`, `19426`, `19428`, `19430`, `19432`, `19433`, `19436`, `19438`, `19440`, `19442`, `19444`, `19446`, `19448`, `19450`, `19452`, `19453`, `19457`, `19458`, `19459`, `19464`, `19466`, `19467`, `19468`, `19470`, `19471`, `19473`, `19475`, `19476`, `19478`, `19480`, `19482`, `19483`, `19485`, `19487`, `19490`, `19492`, `19494`, `19496`, `19498`, `19500`, `19502`, `19504`, `19507`, `19509`, `19510`, `19511`, `19513`, `19515`, `19516`, `19517`, `19519`, `19521`, `19523`, `19525`, `19526`, `19528`, `19529`, `19531`, `19533`, `19534`, `19536`, `19537`, `19538`, `19541`, `19542`, `19543`, `19545`, `19547`, `19548`, `19549`, `19551`, `19553`, `19554`, `19556`, `19558`, `19559`, `19561`, `19563`, `19565`, `19567`, `19569`, `19570`, `19573`, `19575`, `19577`, `19578`, `19580`, `19581`, `19583`, `19584`, `19586`, `19587`, `19589`, `19592`, `19594`, `19595`, `19597`, `19598`, `19600`, `19602`, `19604`, `19606`, `19609`, `19611`, `19612`, `19614`, `19616`, `19618`, `19620`, `19622`, `19623`, `19624`, `19626`, `19628`, `19631`, `19633`, `19635`, `19637`, `19639`, `19641`, `19643`, `19646`, `19647`, `19649`, `19651`, `19653`, `19655`, `19657`, `19659`, `19661`, `19662`, `19665`, `19667`, `19669`, `19672`, `19673`, `19675`, `19677`, `19680`, `19683`, `19685`, `19687`, `19689`, `19691`, `19693`, `19696`, `19697`, `19699`, `19701`, `19703`, `19705`, `19707`, `19709`, `19711`, `19713`, `19715`, `19717`, `19718`, `19720`, `19723`, `19724`, `19726`, `19728`, `19730`, `19732`, `19733`, `19735`, `19737`, `19739`, `19741`, `19743`, `19744`, `19746`, `19747`, `19749`, `19752`, `19755`, `19756`, `19758`, `19759`, `19760`, `19762`, `19764`, `19765`, `19766`, `19768`, `19769`, `19771`, `19773`, `19775`, `19777`, `19779`, `19780`, `19781`, `19783`, `19784`, `19786`, `19787`, `19789`, `19791`, `19793`, `19795`, `19796`, `19798`, `19799`, `19800`, `19802`, `19804`, `19806`, `19808`, `19810`, `19812`, `19814`, `19816`, `19818`, `19820`, `19822`, `19823`, `19825`, `19827`, `19829`, `19830`, `19832`, `19834`, `19836`, `19838`, `19840`, `19842`, `19843`, `19846`, `19848`, `19850`, `19852`, `19854`, `19856`, `19858`, `19860`, `19862`, `19863`, `19865`, `19866`, `19869`, `19870`, `19871`, `19873`, `19875`, `19877`, `19878`, `19879`, `19884`, `19886`, `19888`, `19889`, `19891`, `19892`, `19894`, `19895`, `19896`, `19898`, `19900`, `19902`, `19903`, `19905`, `19907`, `19909`, `19910`, `19912`, `19913`, `19915`, `19917`, `19919`, `19920`, `19921`, `19923`, `19925`, `19926`, `19927`, `19929`, `19932`, `19933`, `19935`, `19937`, `19938`, `19940`, `19941`, `19942`, `19944`, `19946`, `19948`, `19951`, `19953`, `19955`, `19956`, `19958`, `19960`, `19961`, `19962`, `19964`, `19968`, `19970`, `19975`, `19977`, `19979`, `19981`, `19983`, `19985`, `19987`, `19989`, `19991`, `19992`, `19993`, `19995`, `19996`, `19998`, `20000`, `20003`, `20005`, `20006`, `20008`, `20012`, `20014`, `20016`, `20018`, `20020`, `20022`, `20025`, `20027`, `20029`, `20030`, `20031`, `20035`, `20037`, `20038`, `20039`, `20041`, `20042`, `20043`, `20045`, `20046`, `20048`, `20049`, `20051`, `20053`, `20054`, `20055`, `20057`, `20058`, `20060`, `20061`, `20063`, `20065`, `20066`, `20068`, `20069`, `20070`, `20072`, `20074`, `20075`, `20076`, `20078`, `20080`, `20082`, `20085`, `20087`, `20088`, `20090`, `20092`, `20095`, `20096`, `20098`, `20100`, `20101`, `20103`, `20104`, `20106`, `20108`, `20110`, `20113`, `20115`, `20117`, `20119`, `20121`, `20122`, `20124`, `20127`, `20129`, `20131`, `20133`, `20136`, `20138`, `20140`, `20142`, `20144`, `20146`, `20148`, `20150`, `20151`, `20152`, `20154`, `20158`, `20159`, `20160`, `20162`, `20163`, `20165`, `20167`, `20169`, `20171`, `20172`, `20174`, `20176`, `20177`, `20179`, `20181`, `20183`, `20184`, `20185`, `20186`, `20187`, `20189`, `20191`, `20193`, `20195`, `20196`, `20198`, `20199`, `20201`, `20203`, `20205`, `20207`, `20209`, `20211`, `20213`, `20215`, `20217`, `20219`, `20221`, `20223`, `20225`, `20226`, `20228`, `20230`, `20232`, `20235`, `20237`, `20239`, `20242`, `20244`, `20245`, `20247`, `20249`, `20251`, `20252`, `20253`, `20254`, `20255`, `20256`, `20258`, `20259`, `20260`, `20262`, `20266`, `20268`, `20271`, `20273`, `20274`, `20276`, `20278`, `20281`, `20283`, `20284`, `20285`, `20287`, `20289`, `20291`, `20293`, `20295`, `20297`, `20298`, `20300`, `20302`, `20303`, `20305`, `20307`, `20309`, `20311`, `20312`, `20314`, `20316`, `20317`, `20319`, `20321`, `20323`, `20324`, `20326`, `20328`, `20330`, `20332`, `20334`, `20336`, `20338`, `20340`, `20342`, `20344`, `20345`, `20347`, `20348`, `20350`, `20357`, `20360`, `20362`, `20363`, `20365`, `20367`, `20369`, `20372`, `20374`, `20375`, `20377`, `20378`, `20380`, `20381`, `20383`, `20385`, `20387`, `20388`, `20390`, `20392`, `20393`, `20395`, `20397`, `20398`, `20399`, `20400`, `20402`, `20403`, `20404`, `20406`, `20408`, `20409`, `20411`, `20413`, `20415`, `20417`, `20419`, `20420`, `20422`, `20426`, `20428`, `20430`, `20432`, `20434`, `20435`, `20437`, `20439`, `20441`, `20443`, `20445`, `20446`, `20448`, `20450`, `20452`, `20455`, `20456`, `20458`, `20460`, `20462`, `20464`, `20466`, `20467`, `20469`, `20470`, `20471`, `20473`, `20474`, `20476`, `20478`, `20480`, `20482`, `20485`, `20488`, `20490`, `20493`, `20495`, `20497`, `20499`, `20500`, `20502`, `20504`, `20506`, `20507`, `20509`, `20510`, `20512`, `20514`, `20516`, `20518`, `20520`, `20522`, `20524`, `20525`, `20527`, `20529`, `20531`, `20534`, `20536`, `20538`, `20540`, `20541`, `20543`, `20545`, `20547`, `20549`, `20551`, `20553`, `20555`, `20556`, `20557`, `20558`, `20559`, `20560`, `20562`, `20564`, `20565`, `20567`, `20569`, `20570`, `20572`, `20573`, `20574`, `20576`, `20578`, `20580`, `20582`, `20584`, `20585`, `20586`, `20587`, `20591`, `20592`, `20593`, `20595`, `20597`, `20598`, `20599`, `20600`, `20602`, `20603`, `20605`, `20606`, `20609`, `20611`, `20613`, `20614`, `20616`, `20618`, `20619`, `20621`, `20623`, `20624`, `20626`, `20628`, `20633`, `20634`, `20636`, `20638`, `20640`, `20641`, `20643`, `20645`, `20647`, `20649`, `20651`, `20653`, `20654`, `20656`, `20657`, `20659`, `20661`, `20662`, `20664`, `20666`, `20667`, `20669`, `20671`, `20673`, `20675`, `20678`, `20679`, `20680`, `20682`, `20684`, `20686`, `20687`, `20689`, `20690`, `20691`, `20694`, `20696`, `20697`, `20699`, `20700`, `20702`, `20704`, `20705`, `20707`, `20709`, `20710`, `20712`, `20714`, `20716`, `20718`, `20720`, `20722`, `20724`, `20726`, `20727`, `20729`, `20732`, `20734`, `20736`, `20738`, `20740`, `20742`, `20743`, `20745`, `20747`, `20749`, `20751`, `20755`, `20757`, `20758`, `20760`, `20762`, `20764`, `20765`, `20767`, `20769`, `20771`, `20773`, `20775`, `20777`, `20779`, `20782`, `20783`, `20785`, `20787`, `20789`, `20791`, `20792`, `20795`, `20797`, `20799`, `20801`, `20803`, `20804`, `20806`, `20808`, `20809`, `20810`, `20812`, `20814`, `20816`, `20818`, `20820`, `20822`, `20824`, `20826`, `20828`, `20830`, `20832`, `20834`, `20836`, `20837`, `20839`, `20841`, `20842`, `20844`, `20845`, `20846`, `20850`, `20852`, `20854`, `20856`, `20858`, `20859`, `20861`, `20863`, `20864`, `20867`, `20868`, `20870`, `20872`, `20874`, `20875`, `20877`, `20879`, `20880`, `20882`, `20884`, `20885`, `20887`, `20889`, `20890`, `20892`, `20894`, `20895`, `20897`, `20898`, `20900`, `20902`, `20904`, `20906`, `20908`, `20910`, `20912`, `20914`, `20916`, `20917`, `20919`, `20920`, `20921`, `20923`, `20925`, `20927`, `20928`, `20930`, `20932`, `20934`, `20936`, `20938`, `20939`, `20940`, `20942`, `20944`, `20946`, `20948`, `20949`, `20951`, `20952`, `20954`, `20956`, `20958`, `20959`, `20961`, `20963`, `20964`, `20966`, `20967`, `20968`, `20970`, `20971`, `20972`, `20974`, `20976`, `20977`, `20979`, `20981`, `20983`, `20985`, `20986`, `20987`, `20989`, `20991`, `20993`, `20995`, `20997`, `20999`, `21000`, `21002`, `21004`, `21005`, `21007`, `21009`, `21011`, `21013`, `21015`, `21016`, `21018`, `21020`, `21021`, `21022`, `21024`, `21025`, `21026`, `21027`, `21028`, `21030`, `21031`, `21033`, `21035`, `21039`, `21041`, `21043`, `21045`, `21047`, `21048`, `21050`, `21052`, `21055`, `21056`, `21058`, `21060`, `21062`, `21064`, `21067`, `21068`, `21070`, `21072`, `21074`, `21076`, `21078`, `21080`, `21081`, `21084`, `21086`, `21088`, `21089`, `21090`, `21091`, `21094`, `21097`, `21099`, `21101`, `21103`, `21105`, `21107`, `21109`, `21111`, `21113`, `21115`, `21116`, `21118`, `21120`, `21121`, `21124`, `21126`, `21128`, `21130`, `21131`, `21133`, `21135`, `21137`, `21139`, `21141`, `21143`, `21144`, `21146`, `21148`, `21150`, `21152`, `21154`, `21155`, `21157`, `21159`, `21161`, `21163`, `21164`, `21166`, `21168`, `21169`, `21170`, `21172`, `21173`, `21175`, `21177`, `21179`, `21180`, `21182`, `21184`, `21186`, `21188`, `21190`, `21193`, `21195`, `21197`, `21198`, `21199`, `21201`, `21203`, `21205`, `21207`, `21208`, `21209`, `21211`, `21213`, `21215`, `21216`, `21218`, `21220`, `21222`, `21224`, `21226`, `21228`, `21230`, `21231`, `21233`, `21238`, `21240`, `21242`, `21243`, `21245`, `21247`, `21249`, `21251`, `21253`, `21255`, `21256`, `21258`, `21259`, `21261`, `21263`, `21265`, `21266`, `21268`, `21270`, `21272`, `21274`, `21276`, `21278`, `21281`, `21283`, `21284`, `21286`, `21288`, `21289`, `21290`, `21292`, `21297`, `21299`, `21300`, `21301`, `21302`, `21303`, `21305`, `21306`, `21307`, `21309`, `21311`, `21312`, `21314`, `21316`, `21318`, `21319`, `21321`, `21322`, `21323`, `21325`, `21327`, `21329`, `21331`, `21333`, `21335`, `21337`, `21339`, `21341`, `21343`, `21344`, `21346`, `21348`, `21350`, `21351`, `21353`, `21354`, `21356`, `21358`, `21360`, `21361`, `21363`, `21365`, `21367`, `21369`, `21371`, `21373`, `21375`, `21377`, `21379`, `21381`, `21383`, `21385`, `21387`, `21388`, `21390`, `21392`, `21396`, `21398`, `21400`, `21402`, `21404`, `21405`, `21406`, `21410`, `21411`, `21412`, `21414`, `21415`, `21416`, `21418`, `21420`, `21421`, `21422`, `21425`, `21426`, `21428`, `21431`, `21433`, `21435`, `21437`, `21439`, `21440`, `21442`, `21444`, `21446`, `21448`, `21450`, `21452`, `21454`, `21456`, `21458`, `21460`, `21461`, `21462`, `21464`, `21466`, `21469`, `21471`, `21473`, `21475`, `21477`, `21481`, `21483`, `21485`, `21486`, `21488`, `21490`, `21492`, `21494`, `21496`, `21497`, `21499`, `21501`, `21503`, `21505`, `21508`, `21510`, `21511`, `21513`, `21514`, `21516`, `21517`, `21518`, `21520`, `21521`, `21523`, `21525`, `21527`, `21529`, `21531`, `21533`, `21535`, `21537`, `21538`, `21540`, `21542`, `21544`, `21546`, `21548`, `21550`, `21551`, `21553`, `21554`, `21556`, `21558`, `21560`, `21562`, `21564`, `21565`, `21567`, `21570`, `21572`, `21574`, `21576`, `21578`, `21580`, `21582`, `21583`, `21586`, `21588`, `21591`, `21593`, `21595`, `21597`, `21598`, `21600`, `21601`, `21602`, `21604`, `21606`, `21608`, `21610`, `21613`, `21614`, `21616`, `21618`, `21620`, `21622`, `21624`, `21625`, `21627`, `21629`, `21631`, `21633`, `21634`, `21636`, `21637`, `21639`, `21640`, `21641`, `21643`, `21645`, `21646`, `21648`, `21649`, `21651`, `21657`, `21659`, `21661`, `21662`, `21664`, `21665`, `21667`, `21669`, `21671`, `21673`, `21674`, `21676`, `21677`, `21678`, `21680`, `21682`, `21684`, `21686`, `21687`, `21689`, `21691`, `21693`, `21695`, `21696`, `21697`, `21698`, `21700`, `21702`, `21703`, `21705`, `21707`, `21709`, `21712`, `21714`, `21715`, `21717`, `21719`, `21721`, `21722`, `21724`, `21726`, `21727`, `21729`, `21731`, `21733`, `21734`, `21736`, `21738`, `21740`, `21741`, `21743`, `21745`, `21746`, `21748`, `21750`, `21751`, `21753`, `21755`, `21757`, `21759`, `21761`, `21763`, `21767`, `21768`, `21770`, `21772`, `21774`, `21776`, `21777`, `21779`, `21781`, `21783`, `21785`, `21786`, `21788`, `21790`, `21791`, `21793`, `21795`, `21797`, `21799`, `21801`, `21803`, `21804`, `21806`, `21808`, `21809`, `21811`, `21813`, `21815`, `21818`, `21820`, `21821`, `21822`, `21823`, `21825`, `21826`, `21827`, `21828`, `21830`, `21831`, `21832`, `21834`, `21835`, `21837`, `21839`, `21840`, `21842`, `21845`, `21847`, `21849`, `21851`, `21852`, `21854`, `21855`, `21857`, `21858`, `21859`, `21861`, `21863`, `21864`, `21865`, `21867`, `21869`, `21872`, `21874`, `21877`, `21879`, `21880`, `21882`, `21884`, `21886`, `21888`, `21890`, `21891`, `21893`, `21895`, `21896`, `21897`, `21898`, `21900`, `21902`, `21904`, `21906`, `21907`, `21909`, `21910`, `21914`, `21915`, `21917`, `21919`, `21923`, `21925`, `21927`, `21928`, `21929`, `21931`, `21933`, `21936`, `21938`, `21939`, `21940`, `21941`, `21943`, `21945`, `21947`, `21949`, `21951`, `21952`, `21954`, `21955`, `21957`, `21958`, `21960`, `21961`, `21963`, `21965`, `21967`, `21969`, `21971`, `21973`, `21975`, `21977`, `21979`, `21980`, `21982`, `21983`, `21984`, `21986`, `21987`, `21988`, `21990`, `21992`, `21994`, `21996`, `21997`, `21999`, `22001`, `22003`, `22004`, `22006`, `22007`, `22011`, `22013`, `22015`, `22017`, `22018`, `22020`, `22022`, `22024`, `22026`, `22028`, `22030`, `22031`, `22033`, `22037`, `22039`, `22041`, `22042`, `22043`, `22045`, `22047`, `22049`, `22050`, `22052`, `22054`, `22056`, `22058`, `22059`, `22061`, `22063`, `22065`, `22066`, `22067`, `22068`, `22069`, `22070`, `22072`, `22074`, `22077`, `22078`, `22080`, `22082`, `22084`, `22085`, `22087`, `22089`, `22090`, `22092`, `22094`, `22096`, `22097`, `22098`, `22099`, `22101`, `22103`, `22104`, `22106`, `22108`, `22110`, `22112`, `22113`, `22115`, `22117`, `22119`, `22121`, `22123`, `22125`, `22127`, `22128`, `22130`, `22131`, `22133`, `22134`, `22136`, `22138`, `22140`, `22143`, `22145`, `22147`, `22148`, `22150`, `22152`, `22153`, `22155`, `22157`, `22160`, `22162`, `22164`, `22165`, `22167`, `22168`, `22170`, `22173`, `22175`, `22178`, `22180`, `22181`, `22182`, `22183`, `22184`, `22185`, `22187`, `22189`, `22190`, `22191`, `22193`, `22194`, `22196`, `22197`, `22199`, `629`, `22201`, `22203`, `22204`, `22206`, `22209`, `22211`, `22213`, `22215`, `22216`, `22218`, `22221`, `22223`, `22225`, `22226`, `22228`, `22230`, `22234`, `22237`, `22241`, `22242`, `22244`, `22246`, `22248`, `22250`, `22251`, `22253`, `22254`, `22256`, `22258`, `22259`, `22261`, `22262`, `22263`, `22265`, `22267`, `22269`, `22271`, `22272`, `22273`, `22275`, `22276`, `22278`, `22281`, `22283`, `22284`, `22285`, `22287`, `22289`, `22291`, `22293`, `22294`, `22300`, `22301`, `22302`, `22304`, `22306`, `22308`, `22309`, `22311`, `22313`, `22316`, `22317`, `22319`, `22321`, `22323`, `22324`, `22326`, `22331`, `22332`, `22333`, `22335`, `22336`, `22337`, `22339`, `22340`, `22342`, `22344`, `22346`, `22347`, `22348`, `22351`, `22353`, `22355`, `22357`, `22358`, `22361`, `22363`, `22365`, `22367`, `22369`, `22370`, `22371`, `22373`, `22375`, `22377`, `22379`, `22380`, `22382`, `22384`, `22385`, `22387`, `22389`, `22391`, `22393`, `22395`, `22397`, `22398`, `22400`, `22402`, `22404`, `22406`, `22408`, `22410`, `22412`, `22414`, `22415`, `22417`, `22419`, `22421`, `22425`, `22427`, `22429`, `22431`, `22433`, `22435`, `22437`, `22438`, `22439`, `22441`, `22443`, `22444`, `22446`, `22448`, `22450`, `22452`, `22454`, `22456`, `22458`, `22460`, `22462`, `22463`, `22465`, `22466`, `22467`, `22468`, `22470`, `22472`, `22474`, `22476`, `22478`, `22480`, `22482`, `22484`, `22486`, `22490`, `22492`, `22494`, `22495`, `22497`, `22499`, `22501`, `22503`, `22505`, `22507`, `22510`, `22511`, `22513`, `22515`, `22517`, `22519`, `22521`, `22523`, `22525`, `22527`, `22529`, `22533`, `22535`, `22537`, `22543`, `22545`, `22546`, `22548`, `22550`, `22552`, `22553`, `22555`, `22557`, `22558`, `22559`, `22561`, `22562`, `22565`, `22567`, `22569`, `22571`, `22573`, `22575`, `22577`, `22579`, `22580`, `22582`, `22585`, `22586`, `22588`, `22590`, `22592`, `22594`, `22595`, `22597`, `22598`, `22599`, `22600`, `22601`, `22602`, `22604`, `22606`, `22607`, `22609`, `22610`, `22612`, `22614`, `22616`, `22617`, `22619`, `22621`, `22623`, `22624`, `22627`, `22630`, `22631`, `22633`, `22634`, `22636`, `22637`, `22639`, `22641`, `22643`, `22645`, `22646`, `22647`, `22649`, `22652`, `22654`, `22655`, `22657`, `22659`, `22660`, `22661`, `22663`, `22665`, `22667`, `22668`, `22670`, `22672`, `22674`, `22676`, `22678`, `22680`, `22681`, `22682`, `22684`, `22685`, `22686`, `22687`, `22689`, `22690`, `22692`, `22696`, `22698`, `22700`, `22702`, `22704`, `22705`, `22707`, `22708`, `22710`, `22711`, `22713`, `22715`, `22716`, `22717`, `22719`, `22721`, `22723`, `22725`, `22727`, `22728`, `22729`, `22731`, `22732`, `22733`, `22735`, `22736`, `22738`, `22740`, `22743`, `22746`, `22748`, `22750`, `22751`, `22753`, `22755`, `22757`, `22759`, `22761`, `22763`, `22765`, `22766`, `22767`, `22769`, `22771`, `22774`, `22776`, `22778`, `22779`, `22780`, `22781`, `22782`, `22784`, `22786`, `22788`, `22790`, `22791`, `22796`, `22798`, `22799`, `22801`, `22802`, `22804`, `22806`, `22807`, `22809`, `22810`, `22811`, `22813`, `22815`, `22817`, `22819`, `22820`, `22822`, `22823`, `22825`, `22827`, `22828`, `22830`, `22831`, `22832`, `22834`, `22840`, `22841`, `22843`, `22845`, `22849`, `22850`, `22852`, `22853`, `22855`, `22857`, `22858`, `22860`, `22861`, `22862`, `22864`, `22866`, `22867`, `22869`, `22871`, `22872`, `22874`, `22877`, `22879`, `22880`, `22882`, `22883`, `22885`, `22886`, `22887`, `22888`, `22889`, `22891`, `22894`, `22895`, `22897`, `22899`, `22901`, `22902`, `22905`, `22907`, `22909`, `22910`, `22912`, `22915`, `22917`, `22918`, `22920`, `22922`, `22924`, `22925`, `22927`, `22929`, `22931`, `22932`, `22933`, `22935`, `22937`, `22939`, `22941`, `22943`, `22944`, `22946`, `22947`, `22949`, `22951`, `22953`, `22955`, `22959`, `22960`, `22962`, `22964`, `22966`, `22967`, `22969`, `22971`, `22972`, `22974`, `22976`, `22977`, `22979`, `22981`, `22983`, `22985`, `22987`, `22990`, `22992`, `22994`, `22996`, `22998`, `23000`, `23002`, `23003`, `23005`, `23007`, `23009`, `23011`, `23012`, `23014`, `23017`, `23019`, `23020`, `23022`, `23024`, `23027`, `23029`, `23031`, `23033`, `23041`, `23043`, `23046`, `23049`, `23051`, `23053`, `23054`, `23056`, `23057`, `23059`, `23061`, `23064`, `23066`, `23068`, `23070`, `23072`, `23076`, `23078`, `23079`, `23081`, `23083`, `23084`, `23086`, `23087`, `23089`, `23091`, `23096`, `23098`, `23100`, `23103`, `23104`, `23106`, `23107`, `23109`, `23111`, `23113`, `23115`, `23117`, `23119`, `23121`, `23123`, `23125`, `23127`, `23129`, `23130`, `23131`, `23132`, `23134`, `23135`, `23136`, `23138`, `23139`, `23140`, `23142`, `23144`, `23146`, `23147`, `23149`, `23151`, `23153`, `23155`, `23157`, `23161`, `23162`, `23164`, `23165`, `23167`, `23169`, `23171`, `23173`, `23174`, `23175`, `23179`, `23181`, `23183`, `23185`, `23187`, `23189`, `23191`, `23192`, `23194`, `23196`, `23198`, `23200`, `23202`, `23204`, `23206`, `23207`, `23208`, `23210`, `23212`, `23214`, `23215`, `23217`, `23218`, `23220`, `23222`, `23224`, `23225`, `23227`, `23230`, `23231`, `23232`, `23234`, `23236`, `23237`, `23238`, `23240`, `23241`, `23243`, `23245`, `23246`, `23248`, `23250`, `23252`, `23255`, `23259`, `23261`, `23264`, `23266`, `23267`, `23269`, `23271`, `23273`, `23274`, `23276`, `23277`, `23279`, `23281`, `23282`, `23284`, `23286`, `23288`, `23290`, `23292`, `23294`, `23295`, `23296`, `23297`, `23299`, `23301`, `23303`, `23305`, `23306`, `23307`, `23309`, `23311`, `23313`, `23315`, `23318`, `23320`, `23322`, `23324`, `23327`, `23328`, `23329`, `23332`, `23334`, `23336`, `23339`, `23340`, `23341`, `23344`, `23347`, `23349`, `23351`, `23353`, `23355`, `23356`, `23358`, `23360`, `23362`, `23364`, `23366`, `23369`, `23371`, `23374`, `23377`, `23379`, `23381`, `23383`, `23385`, `23388`, `23390`, `23391`, `23392`, `23393`, `23395`, `23396`, `23398`, `23400`, `23401`, `23403`, `23405`, `23407`, `23409`, `23411`, `23413`, `23414`, `23415`, `23417`, `23418`, `23423`, `23424`, `23427`, `23428`, `23430`, `23431`, `23433`, `23434`, `23436`, `23438`, `23440`, `23442`, `23444`, `23446`, `23447`, `23449`, `23451`, `23453`, `23455`, `23457`, `23459`, `23461`, `23462`, `23464`, `23466`, `23467`, `23470`, `23472`, `23473`, `23474`, `23475`, `23477`, `23478`, `23481`, `23483`, `23484`, `23486`, `23488`, `23490`, `23492`, `23493`, `23496`, `23498`, `23504`, `23506`, `23507`, `23509`, `23510`, `23512`, `23514`, `23515`, `23517`, `23519`, `23522`, `23524`, `23526`, `23528`, `23530`, `23531`, `23533`, `23534`, `23536`, `23538`, `23540`, `23541`, `23542`, `23544`, `23546`, `23547`, `23550`, `23554`, `23556`, `23559`, `23561`, `23563`, `23565`, `23566`, `23568`, `23570`, `23571`, `23573`, `23574`, `23576`, `23577`, `23579`, `23581`, `23583`, `23585`, `23586`, `23587`, `23589`, `23591`, `23593`, `23594`, `23596`, `23598`, `23600`, `23602`, `23603`, `23604`, `23606`, `23608`, `23610`, `23611`, `23613`, `23617`, `23619`, `23621`, `23623`, `23625`, `23627`, `23628`, `23630`, `23631`, `23634`, `23635`, `23637`, `23639`, `23641`, `23643`, `23645`, `23647`, `23648`, `23650`, `23652`, `23654`, `23656`, `23657`, `23658`, `23659`, `23661`, `23663`, `23665`, `23667`, `23669`, `23671`, `23673`, `23674`, `23675`, `23676`, `23678`, `23680`, `23681`, `23683`, `23685`, `23686`, `23689`, `23691`, `23693`, `23695`, `23697`, `23699`, `23701`, `23703`, `23704`, `23706`, `23708`, `23709`, `23711`, `23713`, `23714`, `23715`, `23717`, `23719`, `23720`, `23721`, `23722`, `23723`, `23724`, `23725`, `23727`, `23731`, `23733`, `23735`, `23737`, `23739`, `23741`, `23742`, `23744`, `23746`, `23747`, `23748`, `23749`, `23750`, `23751`, `23752`, `23754`, `23755`, `23757`, `23758`, `23760`, `23762`, `23764`, `23766`, `23768`, `23770`, `23772`, `23773`, `23775`, `23777`, `23778`, `23780`, `23781`, `23783`, `23785`, `23786`, `23788`, `23790`, `23792`, `23794`, `23795`, `23796`, `23798`, `23799`, `23801`, `23802`, `23805`, `23806`, `23807`, `23808`, `23809`, `23811`, `23813`, `23815`, `23817`, `23819`, `23821`, `23823`, `23825`, `23830`, `23832`, `23834`, `23835`, `23836`, `23837`, `23838`, `23840`, `23842`, `23844`, `23847`, `23849`, `23850`, `23852`, `23853`, `23855`, `23858`, `23860`, `23864`, `23867`, `23869`, `23872`, `23874`, `23876`, `23878`, `23879`, `23882`, `23884`, `23885`, `23887`, `23889`, `23891`, `23892`, `23893`, `23895`, `23897`, `23899`, `23900`, `23902`, `23904`, `23906`, `23907`, `23908`, `23909`, `23911`, `23912`, `23913`, `23914`, `23916`, `23918`, `23919`, `23920`, `23922`, `23924`, `23925`, `23926`, `23928`, `23929`, `23932`, `23934`, `23936`, `23938`, `23940`, `23942`, `23944`, `23946`, `23948`, `23951`, `23952`, `23954`, `23957`, `23958`, `23960`, `23961`, `23963`, `23965`, `23966`, `23967`, `23969`, `23971`, `23973`, `23975`, `23977`, `23978`, `23980`, `23981`, `23983`, `23985`, `23987`, `23989`, `23991`, `23993`, `23995`, `23997`, `24001`, `24003`, `24004`, `24005`, `24007`, `24009`, `24011`, `24013`, `24015`, `24016`, `24017`, `24020`, `24022`, `24023`, `24025`, `24027`, `24029`, `24031`, `24033`, `24035`, `24036`, `24037`, `24039`, `24041`, `24044`, `24046`, `24048`, `24050`, `24052`, `24054`, `24055`, `24057`, `24059`, `24061`, `24063`, `24064`, `24066`, `24068`, `24069`, `24070`, `24071`, `24072`, `24073`, `24075`, `24076`, `24077`, `24079`, `24082`, `24086`, `24088`, `24089`, `24091`, `24093`, `24095`, `24097`, `24101`, `24103`, `24104`, `24106`, `24108`, `24109`, `24111`, `24112`, `24114`, `24115`, `24116`, `24118`, `24120`, `24124`, `24126`, `24128`, `24132`, `24133`, `24135`, `24136`, `24138`, `24140`, `24142`, `24144`, `24145`, `24147`, `24149`, `24151`, `24153`, `24155`, `24157`, `24159`, `24160`, `24162`, `24164`, `24167`, `24169`, `24170`, `24172`, `24174`, `24175`, `24176`, `24177`, `24179`, `24180`, `24182`, `24184`, `24185`, `24187`, `24189`, `24191`, `24193`, `24195`, `24197`, `24199`, `24201`, `24203`, `24207`, `24208`, `24210`, `24211`, `24212`, `24214`, `24215`, `531`, `24217`, `24218`, `24219`, `24221`, `24223`, `24225`, `24227`, `24229`, `24230`, `24232`, `24233`, `24235`, `24237`, `24239`, `24241`, `24243`, `24244`, `24246`, `24248`, `24250`, `24252`, `24254`, `24256`, `24257`, `24258`, `24259`, `24261`, `24262`, `24264`, `24265`, `24266`, `24268`, `24272`, `24275`, `24277`, `24278`, `24279`, `24281`, `24282`, `24283`, `24285`, `24287`, `24289`, `24291`, `24292`, `24294`, `24295`, `24297`, `24299`, `24301`, `24304`, `24306`, `24308`, `24310`, `24312`, `24314`, `24315`, `24317`, `24319`, `24321`, `24322`, `24324`, `24326`, `24328`, `24330`, `24332`, `24336`, `24338`, `24339`, `24342`, `24344`, `24347`, `24350`, `24352`, `24354`, `24355`, `24356`, `24358`, `24360`, `24361`, `24363`, `24365`, `24367`, `24369`, `24372`, `24374`, `24376`, `24377`, `24378`, `24379`, `24380`, `24382`, `24383`, `24387`, `24389`, `24391`, `24393`, `24394`, `24396`, `24397`, `24398`, `24401`, `24403`, `24405`, `24407`, `24409`, `24412`, `24413`, `24415`, `24417`, `24419`, `24420`, `24421`, `24423`, `24425`, `24426`, `24428`, `24430`, `24431`, `24432`, `24434`, `24436`, `24438`, `24440`, `24442`, `24444`, `24446`, `24448`, `24450`, `24451`, `24453`, `24455`, `24457`, `24460`, `24461`, `24463`, `24464`, `24466`, `24468`, `24471`, `24473`, `24475`, `24477`, `24478`, `24480`, `24482`, `24485`, `24487`, `24488`, `24490`, `24492`, `24493`, `24495`, `24496`, `24497`, `24498`, `24499`, `24501`, `24503`, `24505`, `24508`, `24510`, `24513`, `24515`, `24517`, `24519`, `24520`, `24522`, `24523`, `24525`, `24526`, `24528`, `24530`, `24532`, `24533`, `24535`, `24537`, `24538`, `24541`, `24543`, `24545`, `24547`, `24549`, `24551`, `24553`, `24555`, `24557`, `24558`, `24560`, `24562`, `24564`, `24565`, `24567`, `24568`, `24570`, `24572`, `24577`, `24579`, `24580`, `24582`, `24584`, `24586`, `24588`, `24589`, `24591`, `24593`, `24595`, `24596`, `24597`, `24599`, `24601`, `24603`, `24605`, `24607`, `24609`, `24612`, `24614`, `24617`, `24619`, `24621`, `24623`, `24625`, `24627`, `24629`, `24631`, `24633`, `24634`, `24635`, `24636`, `24638`, `24639`, `24641`, `24643`, `24645`, `24647`, `24649`, `24651`, `24653`, `24654`, `24656`, `24658`, `24661`, `24663`, `24665`, `24666`, `24667`, `24668`, `24671`, `24673`, `24675`, `24676`, `24678`, `24680`, `24681`, `24683`, `24685`, `24687`, `24689`, `24691`, `24693`, `24695`, `24697`, `24699`, `24702`, `24704`, `24707`, `24709`, `24710`, `24712`, `24714`, `24715`, `24716`, `24718`, `24721`, `24723`, `24724`, `24726`, `24727`, `24729`, `24730`, `24732`, `24734`, `24735`, `24737`, `24738`, `24740`, `24742`, `24744`, `24746`, `24748`, `24750`, `24753`, `24755`, `24756`, `24758`, `24760`, `24761`, `24762`, `24763`, `24765`, `24767`, `24769`, `24771`, `24773`, `24775`, `24777`, `24779`, `24780`, `24781`, `24783`, `24786`, `24788`, `24790`, `24792`, `24793`, `24794`, `24796`, `24798`, `24801`, `24803`, `24804`, `24806`, `24808`, `24809`, `24811`, `24812`, `24814`, `24815`, `24817`, `24818`, `24820`, `24821`, `24823`, `24825`, `24827`, `24829`, `24830`, `24832`, `24834`, `24835`, `24837`, `24839`, `24841`, `24843`, `24845`, `24846`, `24848`, `24849`, `24850`, `24852`, `24854`, `24856`, `24857`, `24859`, `24860`, `24861`, `24864`, `24867`, `24869`, `24870`, `24872`, `24875`, `24877`, `24879`, `24881`, `24883`, `24885`, `24887`, `24889`, `24891`, `24893`, `24895`, `24897`, `24899`, `24900`, `24902`, `24904`, `24906`, `24908`, `24909`, `24911`, `24913`, `24915`, `24918`, `24920`, `24922`, `24924`, `24926`, `24928`, `24931`, `24932`, `24935`, `24937`, `24938`, `24939`, `24941`, `24942`, `24943`, `24945`, `24946`, `24948`, `24949`, `24950`, `24951`, `24952`, `24954`, `24955`, `24956`, `24957`, `24958`, `24959`, `24961`, `24962`, `24964`, `24966`, `24967`, `24968`, `24969`, `24971`, `24972`, `24974`, `24976`, `24978`, `24980`, `24982`, `24984`, `24986`, `24988`, `24990`, `24991`, `24992`, `24994`, `24996`, `24997`, `24999`, `25001`, `25002`, `25003`, `25005`, `25007`, `25009`, `25010`, `25011`, `25013`, `25014`, `25016`, `25017`, `25018`, `25020`, `25021`, `25023`, `25025`, `25027`, `25028`, `25030`, `25032`, `25035`, `25036`, `25037`, `25038`, `25040`, `25042`, `25044`, `25045`, `25046`, `25048`, `25051`, `25052`, `25053`, `25055`, `25057`, `25058`, `25060`, `25062`, `25064`, `25066`, `25067`, `25068`, `25070`, `25072`, `25074`, `25076`, `25078`, `25079`, `25080`, `25081`, `25083`, `25085`, `25086`, `25088`, `25089`, `25091`, `25092`, `25093`, `25095`, `25097`, `25099`, `25101`, `25104`, `25106`, `25108`, `25110`, `25112`, `25113`, `25115`, `25116`, `25119`, `25121`, `25123`, `25124`, `25126`, `25128`, `25130`, `25132`, `25133`, `25135`, `25136`, `25138`, `25139`, `25141`, `25143`, `25144`, `25146`, `25148`, `25150`, `25151`, `25153`, `25155`, `25158`, `25160`, `25162`, `25164`, `25166`, `25168`, `25171`, `25173`, `25175`, `25177`, `25179`, `25181`, `25183`, `25186`, `25188`, `25190`, `25193`, `25195`, `25196`, `25198`, `25200`, `25202`, `25204`, `25206`, `25208`, `25210`, `25212`, `25214`, `25216`, `25218`, `25220`, `25222`, `25224`, `25226`, `25230`, `25232`, `25234`, `25236`, `25239`, `25241`, `25243`, `25245`, `25247`, `25249`, `25251`, `25252`, `25254`, `25256`, `25257`, `25258`, `25259`, `25260`, `25262`, `25265`, `25267`, `25268`, `25269`, `25272`, `25273`, `25274`, `25275`, `25277`, `25279`, `25281`, `25283`, `25284`, `25286`, `25288`, `25289`, `25290`, `25291`, `25293`, `25295`, `25297`, `25298`, `25300`, `25302`, `25304`, `25307`, `25308`, `25312`, `25314`, `25315`, `25318`, `25321`, `25323`, `25324`, `25326`, `25328`, `25330`, `25331`, `25333`, `25334`, `25336`, `25337`, `25338`, `25339`, `25341`, `25342`, `25343`, `25345`, `25346`, `25349`, `25351`, `25352`, `25354`, `25356`, `25357`, `25359`, `25360`, `25362`, `25363`, `25365`, `25366`, `25367`, `25371`, `25375`, `25377`, `25378`, `25379`, `25381`, `25382`, `25384`, `25386`, `25388`, `25390`, `25391`, `25392`, `25394`, `25396`, `25398`, `25400`, `25401`, `25402`, `25404`, `25406`, `25408`, `25410`, `25412`, `25414`, `25416`, `25418`, `25420`, `25421`, `25422`, `25424`, `25425`, `25427`, `25428`, `25430`, `25431`, `25433`, `25435`, `25436`, `25437`, `25438`, `25440`, `25442`, `25444`, `25447`, `25448`, `25450`, `25452`, `25453`, `25456`, `25458`, `25460`, `25462`, `25464`, `25465`, `25466`, `25468`, `25471`, `25472`, `25473`, `25474`, `25476`, `25478`, `25480`, `25482`, `25484`, `25485`, `25487`, `25489`, `25491`, `25493`, `25495`, `25497`, `25499`, `25501`, `25502`, `25504`, `25505`, `25507`, `25509`, `25511`, `25513`, `25514`, `25516`, `25519`, `25521`, `25522`, `25523`, `25525`, `25528`, `25531`, `25533`, `25535`, `25537`, `25539`, `25541`, `25543`, `25545`, `25547`, `25548`, `25550`, `25553`, `25555`, `25556`, `25558`, `25560`, `25561`, `25562`, `25563`, `25564`, `25566`, `25568`, `25570`, `25572`, `25574`, `25576`, `25578`, `25580`, `25582`, `25584`, `25585`, `25587`, `25589`, `25590`, `25592`, `25594`, `25595`, `25597`, `25598`, `25599`, `25601`, `25603`, `25604`, `25606`, `25608`, `25609`, `25610`, `25612`, `25614`, `25616`, `25618`, `25619`, `25621`, `25623`, `25625`, `25627`, `25628`, `25630`, `25631`, `25633`, `25635`, `25636`, `25638`, `25639`, `25641`, `25642`, `25644`, `25646`, `25647`, `25649`, `25651`, `25653`, `25655`, `25657`, `25659`, `25660`, `25661`, `25663`, `25665`, `25666`, `25668`, `25670`, `25671`, `25673`, `25675`, `25677`, `25678`, `25680`, `25682`, `25685`, `25687`, `25688`, `25690`, `25692`, `25694`, `25696`, `25698`, `25699`, `25701`, `25703`, `25706`, `25708`, `25711`, `25713`, `25718`, `25720`, `25722`, `25724`, `25725`, `25727`, `25729`, `25730`, `25734`, `25736`, `25738`, `25739`, `25741`, `25745`, `25746`, `25750`, `25752`, `25755`, `25757`, `25760`, `25762`, `25764`, `25766`, `25767`, `25769`, `25771`, `25775`, `25776`, `25778`, `25780`, `25782`, `25783`, `25784`, `25785`, `25786`, `25788`, `25790`, `25792`, `25794`, `25796`, `25798`, `25799`, `25801`, `25802`, `25803`, `25805`, `25806`, `25807`, `25808`, `25809`, `25811`, `25812`, `25814`, `25816`, `25817`, `25818`, `25820`, `25821`, `25822`, `25824`, `25826`, `25828`, `25830`, `25832`, `25833`, `25836`, `25837`, `25839`, `25841`, `25842`, `25844`, `25845`, `25847`, `25848`, `25850`, `25852`, `25853`, `25855`, `25857`, `25859`, `25861`, `25863`, `25865`, `25867`, `25868`, `25870`, `25872`, `25875`, `25877`, `25879`, `25881`, `25883`, `25885`, `25886`, `25889`, `25891`, `25893`, `25895`, `25897`, `25899`, `25900`, `25902`, `25903`, `25904`, `25905`, `25906`, `25908`, `25910`, `25912`, `25914`, `25916`, `25918`, `25920`, `25922`, `25924`, `25926`, `25927`, `25929`, `25931`, `25933`, `25935`, `25937`, `25938`, `25940`, `25942`, `25944`, `25946`, `25948`, `25950`, `25952`, `25953`, `25954`, `25956`, `25958`, `25959`, `25961`, `25963`, `25965`, `25967`, `25969`, `25970`, `25972`, `25974`, `25977`, `25979`, `25981`, `25983`, `25985`, `25986`, `25988`, `25989`, `25991`, `25992`, `25994`, `25997`, `25998`, `26000`, `26002`, `26004`, `26007`, `26011`, `26013`, `26014`, `26015`, `26016`, `26017`, `26018`, `26019`, `26021`, `26023`, `26024`, `26026`, `26028`, `26030`, `26031`, `26033`, `26035`, `26036`, `26038`, `26039`, `26043`, `26044`, `26046`, `26048`, `26050`, `26052`, `26054`, `26055`, `26057`, `26058`, `26060`, `26063`, `26065`, `26066`, `26068`, `26072`, `26074`, `26075`, `26077`, `26079`, `26080`, `26082`, `26084`, `26086`, `26088`, `26089`, `26090`, `26092`, `26094`, `26096`, `26098`, `26099`, `26101`, `26102`, `26103`, `26105`, `26107`, `26109`, `26110`, `26112`, `26113`, `26115`, `26116`, `26118`, `26120`, `26122`, `26124`, `26126`, `26128`, `26131`, `26133`, `26134`, `26136`, `26139`, `26143`, `26144`, `26146`, `26149`, `26151`, `26153`, `26154`, `26156`, `26158`, `26160`, `26162`, `26163`, `26165`, `26167`, `26169`, `26170`, `26172`, `26174`, `26175`, `26176`, `26178`, `26180`, `26182`, `26184`, `26185`, `26189`, `26191`, `26193`, `26195`, `26197`, `26198`, `26199`, `26200`, `26201`, `26203`, `26205`, `26207`, `26209`, `26212`, `26213`, `26216`, `26218`, `26219`, `26220`, `26222`, `26223`, `26224`, `26225`, `26227`, `26229`, `26230`, `26232`, `26234`, `26235`, `26237`, `26239`, `26241`, `26243`, `26244`, `26246`, `26248`, `26250`, `26252`, `26254`, `26256`, `26257`, `26258`, `26260`, `26262`, `26264`, `26266`, `26268`, `26270`, `26272`, `26274`, `26276`, `26278`, `26279`, `26281`, `26284`, `26285`, `26286`, `26288`, `26290`, `26292`, `26293`, `26295`, `26299`, `26300`, `26301`, `26302`, `26304`, `26305`, `26306`, `26307`, `26309`, `26312`, `26313`, `26315`, `26317`, `26321`, `26323`, `26325`, `26326`, `26328`, `26329`, `26332`, `26334`, `26335`, `26337`, `26338`, `26340`, `26341`, `26343`, `26344`, `26346`, `26349`, `26351`, `26353`, `26355`, `26357`, `26359`, `26361`, `26362`, `26364`, `26367`, `26369`, `26371`, `26373`, `26374`, `26376`, `26378`, `26379`, `26381`, `26382`, `26383`, `26385`, `26387`, `26388`, `26390`, `26392`, `26394`, `26396`, `26398`, `26399`, `26402`, `26404`, `26406`, `26408`, `26410`, `26411`, `26413`, `26415`, `26417`, `26419`, `26421`, `26423`, `26425`, `26426`, `26428`, `26430`, `26432`, `26434`, `26436`, `26438`, `26440`, `26442`, `26444`, `26445`, `26447`, `26448`, `26450`, `26451`, `26453`, `26455`, `26457`, `26459`, `26461`, `26462`, `26464`, `26466`, `26467`, `26469`, `26472`, `26474`, `26475`, `26476`, `26477`, `26479`, `26481`, `26483`, `26485`, `26487`, `26489`, `26491`, `26493`, `26494`, `26496`, `26498`, `26499`, `26501`, `26502`, `26504`, `26506`, `26507`, `26509`, `26511`, `26513`, `26515`, `26517`, `26519`, `26521`, `26523`, `26525`, `26527`, `26529`, `26530`, `26533`, `26535`, `26537`, `26539`, `26540`, `26541`, `26546`, `26548`, `26551`, `26553`, `26555`, `26557`, `26559`, `26560`, `26562`, `26563`, `26565`, `26566`, `26568`, `26569`, `26571`, `26574`, `26576`, `26577`, `26578`, `26581`, `26582`, `26583`, `26584`, `26585`, `26587`, `26589`, `26590`, `26592`, `26593`, `26594`, `26595`, `26597`, `26598`, `26600`, `26601`, `26603`, `26605`, `26607`, `26609`, `26610`, `26611`, `26613`, `26614`, `26615`, `26617`, `26619`, `26623`, `26624`, `26625`, `26627`, `26629`, `26631`, `26633`, `26635`, `26637`, `26639`, `26641`, `26642`, `26644`, `26645`, `26647`, `26649`, `26651`, `26652`, `26654`, `26656`, `26658`, `26660`, `26662`, `26664`, `26666`, `26668`, `26669`, `26670`, `26672`, `26674`, `26675`, `26677`, `26678`, `26680`, `26681`, `26682`, `26684`, `26687`, `26688`, `26692`, `26694`, `26696`, `26698`, `26700`, `26702`, `26703`, `26705`, `26707`, `26709`, `26712`, `26713`, `26715`, `26717`, `26718`, `26720`, `26722`, `26724`, `26726`, `26727`, `26729`, `26731`, `26733`, `26736`, `26740`, `26741`, `26742`, `26743`, `26745`, `26746`, `26748`, `26749`, `26751`, `26756`, `26758`, `26760`, `26762`, `26763`, `26765`, `26767`, `26769`, `26770`, `26772`, `26774`, `26776`, `26778`, `26779`, `26780`, `26782`, `26783`, `26784`, `26786`, `26788`, `26790`, `26791`, `26792`, `26794`, `26796`, `26798`, `26801`, `26803`, `26805`, `26807`, `26809`, `26812`, `26814`, `26817`, `26819`, `26820`, `26822`, `26823`, `26825`, `26827`, `26829`, `26830`, `26831`, `26832`, `26834`, `26835`, `26836`, `26837`, `26839`, `26840`, `26843`, `26845`, `26847`, `26849`, `26851`, `26853`, `26855`, `26857`, `26860`, `26862`, `26864`, `26866`, `26868`, `26870`, `26872`, `26873`, `26875`, `26877`, `26879`, `26881`, `26882`, `26884`, `26888`, `26890`, `26891`, `26893`, `26895`, `26898`, `26900`, `26901`, `26903`, `26906`, `26908`, `26910`, `26912`, `26914`, `26917`, `26923`, `26925`, `26928`, `26931`, `26934`, `26936`, `26938`, `26940`, `26942`, `26944`, `26945`, `26946`, `26948`, `26950`, `26952`, `26954`, `26956`, `26959`, `26961`, `26962`, `26963`, `26965`, `26969`, `26971`, `26973`, `26975`, `26976`, `26979`, `26982`, `26984`, `26985`, `26991`, `26992`, `26994`, `26996`, `26998`, `27000`, `27001`, `27002`, `27003`, `27009`, `27011`, `27013`, `27015`, `27017`, `27020`, `27026`, `27028`, `27030`, `27032`, `27036`, `27037`, `27039`, `27041`, `27043`, `27045`, `27046`, `27048`, `27050`, `27052`, `27054`, `27055`, `27057`, `27058`, `27060`, `27062`, `27064`, `27066`, `27067`, `27068`, `27070`, `27073`, `27075`, `27076`, `27077`, `27078`, `27079`, `27080`, `27083`, `27084`, `27086`, `27088`, `27090`, `27092`, `27094`, `27096`, `27097`, `27100`, `27102`, `27103`, `27104`, `27106`, `27107`, `27108`, `27110`, `27112`, `27114`, `27117`, `27119`, `27121`, `27123`, `27125`, `27127`, `27131`, `27133`, `27135`, `27137`, `27139`, `27141`, `27142`, `27144`, `27146`, `27147`, `27149`, `27151`, `27152`, `27154`, `27156`, `27158`, `27160`, `27161`, `27163`, `27164`, `27166`, `27167`, `27169`, `27171`, `27172`, `27174`, `27176`, `27178`, `27179`, `27181`, `27183`, `27185`, `27187`, `27189`, `27191`, `27193`, `27194`, `27196`, `27199`, `27201`, `27202`, `27204`, `27206`, `27208`, `27210`, `27212`, `27214`, `27216`, `27218`, `27219`, `27220`, `27221`, `27222`, `27223`, `27225`, `27227`, `27229`, `27231`, `27232`, `27233`, `27234`, `27236`, `27238`, `27240`, `27242`, `27244`, `27246`, `27248`, `27249`, `27250`, `27251`, `27253`, `27255`, `27257`, `27259`, `27260`, `27261`, `27262`, `27263`, `27265`, `27266`, `27268`, `27272`, `27274`, `27275`, `27276`, `27278`, `27279`, `27281`, `27283`, `27284`, `27285`, `27287`, `27288`, `27289`, `27291`, `27293`, `27295`, `27297`, `27299`, `27301`, `27303`, `27305`, `27307`, `27309`, `27311`, `27312`, `27314`, `27315`, `27316`, `27317`, `27319`, `27321`, `27323`, `27325`, `27327`, `27328`, `27330`, `27332`, `27334`, `27336`, `27338`, `27339`, `27341`, `27343`, `27347`, `27349`, `27351`, `27353`, `27354`, `27356`, `27357`, `27359`, `27360`, `27361`, `27362`, `27364`, `27366`, `27368`, `27370`, `27372`, `27373`, `27375`, `27376`, `27377`, `27379`, `27381`, `27382`, `27384`, `27386`, `27388`, `27389`, `27391`, `27393`, `27394`, `27396`, `27398`, `27402`, `27404`, `27405`, `27407`, `27409`, `27410`, `27412`, `27413`, `27415`, `27416`, `27418`, `27419`, `27420`, `27422`, `27424`, `27425`, `27426`, `27431`, `27433`, `27434`, `27436`, `27438`, `27439`, `27442`, `27443`, `27445`, `27446`, `27447`, `27449`, `27450`, `27452`, `27454`, `27456`, `27458`, `27459`, `27460`, `27461`, `27463`, `27464`, `27465`, `27467`, `27468`, `27470`, `27472`, `27474`, `27476`, `27478`, `27480`, `27482`, `27484`, `27487`, `27488`, `27489`, `27491`, `27493`, `27495`, `27497`, `27500`, `27501`, `27503`, `27507`, `27509`, `27511`, `27513`, `27515`, `27517`, `27518`, `27520`, `27522`, `27523`, `27524`, `27526`, `27527`, `27529`, `27531`, `27533`, `27534`, `27537`, `27538`, `27540`, `27541`, `27542`, `27545`, `27549`, `27551`, `27553`, `27555`, `27556`, `27557`, `27559`, `27560`, `27562`, `27564`, `27566`, `27567`, `27569`, `27571`, `27573`, `27575`, `27577`, `27582`, `27584`, `27585`, `27586`, `27588`, `27589`, `27590`, `27591`, `27594`, `27595`, `27599`, `27601`, `27603`, `27605`, `27607`, `27608`, `27610`, `27611`, `27614`, `27616`, `27618`, `27619`, `27622`, `27624`, `27627`, `27629`, `27632`, `27634`, `27635`, `27636`, `27637`, `27640`, `27642`, `27644`, `27645`, `27647`, `27649`, `27651`, `27653`, `27654`, `27656`, `27658`, `27660`, `27661`, `27663`, `27665`, `27667`, `27669`, `27670`, `27672`, `27677`, `27679`, `27681`, `27682`, `27684`, `27686`, `27688`, `27690`, `27692`, `27694`, `27695`, `27696`, `27698`, `27700`, `27701`, `27703`, `27705`, `27706`, `27707`, `27709`, `27711`, `27713`, `27717`, `27719`, `27720`, `27722`, `27724`, `27725`, `27727`, `27729`, `27730`, `27732`, `27734`, `27735`, `27737`, `27738`, `27739`, `27740`, `27742`, `27744`, `27746`, `27747`, `27749`, `27751`, `27753`, `27755`, `27758`, `27759`, `27761`, `27762`, `27765`, `27767`, `27768`, `27770`, `27772`, `27773`, `27775`, `27777`, `27779`, `27781`, `27783`, `27784`, `27785`, `27786`, `27787`, `27789`, `27791`, `27792`, `27794`, `27795`, `27797`, `27798`, `27799`, `27801`, `27803`, `27805`, `27807`, `27808`, `27809`, `27811`, `27814`, `27817`, `27819`, `27821`, `27822`, `27824`, `27825`, `27826`, `27827`, `27829`, `27830`, `328`, `1086`, `27831`, `27833`, `27835`, `27839`, `27841`, `27842`, `27843`, `27846`, `27849`, `27851`, `27853`, `27855`, `27857`, `27859`, `27860`, `27861`, `27864`, `27865`, `27866`, `27868`, `27870`, `27872`, `27874`, `27876`, `27877`, `27878`, `27883`, `27884`, `27886`, `27887`, `27888`, `27890`, `27891`, `27894`, `27896`, `27900`, `27902`, `27903`, `27905`, `27906`, `27910`, `27912`, `27913`, `27914`, `27915`, `27918`, `27919`, `27921`, `27923`, `27925`, `27927`, `27929`, `27930`, `27932`, `27934`, `27935`, `27937`, `27940`, `27942`, `27944`, `27945`, `27947`, `27949`, `27951`, `27953`, `27955`, `27957`, `27959`, `27961`, `27963`, `27964`, `27968`, `27969`, `27970`, `27971`, `27973`, `27975`, `27977`, `27979`, `27980`, `27981`, `27984`, `27986`, `27988`, `27990`, `27991`, `27993`, `27994`, `27995`, `27996`, `27999`, `28000`, `28002`, `28004`, `28005`, `28006`, `28008`, `28010`, `28013`, `28014`, `28016`, `28018`, `28023`, `28025`, `28026`, `28028`, `28030`, `28032`, `28033`, `28034`, `28035`, `28037`, `28039`, `28040`, `28042`, `28043`, `28045`, `28047`, `28049`, `28051`, `28053`, `28054`, `28056`, `28058`, `28060`, `28062`, `28064`, `28066`, `28068`, `28069`, `28070`, `28071`, `28073`, `28075`, `28077`, `28078`, `28080`, `28081`, `28083`, `28085`, `28087`, `28089`, `28092`, `28094`, `28097`, `28098`, `28099`, `28101`, `28102`, `28106`, `28107`, `28109`, `28110`, `28111`, `28112`, `28114`, `28116`, `28118`, `28119`, `28122`, `28124`, `28125`, `28127`, `28129`, `28131`, `28132`, `28134`, `28135`, `28137`, `28138`, `28139`, `28141`, `28142`, `28144`, `28146`, `28148`, `28151`, `28152`, `28153`, `28155`, `28157`, `28159`, `28161`, `28163`, `28164`, `28165`, `28167`, `28169`, `28171`, `28173`, `28175`, `28177`, `28179`, `28181`, `28184`, `28185`, `28186`, `28187`, `28189`, `28190`, `28191`, `28193`, `28194`, `28196`, `28198`, `28199`, `28201`, `28203`, `28205`, `28207`, `28208`, `28210`, `28212`, `28213`, `28215`, `28217`, `28219`, `28221`, `28223`, `28225`, `28226`, `28227`, `28229`, `28231`, `28233`, `28235`, `28237`, `28238`, `28240`, `28241`, `28243`, `28245`, `28247`, `28248`, `28249`, `28251`, `28253`, `28255`, `28257`, `28258`, `28260`, `28261`, `28263`, `28265`, `28267`, `28269`, `28271`, `28273`, `28275`, `28277`, `28279`, `28281`, `28283`, `28284`, `28286`, `28287`, `28288`, `28289`, `28290`, `28292`, `28293`, `28295`, `28297`, `28299`, `28301`, `28303`, `28305`, `28306`, `28308`, `28310`, `28311`, `28313`, `28315`, `28317`, `28319`, `28321`, `28323`, `28324`, `28326`, `28328`, `28330`, `28332`, `28333`, `28335`, `28337`, `28338`, `28339`, `28340`, `28342`, `28344`, `28345`, `28347`, `28349`, `28350`, `28351`, `28353`, `28355`, `28358`, `28359`, `28360`, `28361`, `28363`, `28368`, `28370`, `28372`, `28374`, `28376`, `28378`, `28379`, `28380`, `28381`, `28384`, `28386`, `28388`, `28390`, `28391`, `28392`, `28394`, `28396`, `28397`, `28399`, `28401`, `28403`, `28406`, `28407`, `28412`, `28413`, `28415`, `28417`, `28418`, `28419`, `28420`, `28422`, `28423`, `28425`, `28427`, `28430`, `28432`, `28434`, `28436`, `28440`, `28441`, `28444`, `28446`, `28448`, `28450`, `28451`, `28453`, `28456`, `28457`, `28459`, `28461`, `28463`, `28465`, `28466`, `28468`, `28470`, `28472`, `28474`, `28475`, `28476`, `28477`, `28479`, `28480`, `28482`, `28484`, `28486`, `28488`, `28490`, `28492`, `28494`, `28496`, `28498`, `28502`, `28503`, `28506`, `28508`, `28509`, `28510`, `28512`, `28513`, `28515`, `28517`, `28518`, `28520`, `28522`, `28523`, `28525`, `28526`, `28528`, `28531`, `28532`, `28533`, `28534`, `28537`, `28539`, `28540`, `28541`, `28542`, `28544`, `28546`, `28548`, `28550`, `28551`, `28552`, `28554`, `28556`, `28557`, `28559`, `28561`, `28562`, `28564`, `28566`, `28568`, `28570`, `28571`, `28572`, `28574`, `28576`, `28578`, `28580`, `28581`, `28582`, `28585`, `28586`, `28588`, `28589`, `28592`, `28594`, `28595`, `28600`, `28602`, `28603`, `28604`, `28606`, `28607`, `28609`, `28611`, `28612`, `28614`, `28616`, `28618`, `28620`, `28622`, `28624`, `28626`, `28628`, `28633`, `28635`, `28638`, `28640`, `28643`, `28647`, `28649`, `28650`, `28651`, `28652`, `28654`, `28655`, `28657`, `28659`, `28661`, `28662`, `28663`, `28664`, `28666`, `28668`, `28669`, `28671`, `28673`, `28674`, `28678`, `28681`, `28682`, `28687`, `28689`, `28690`, `28692`, `28693`, `28698`, `28699`, `28700`, `28702`, `28704`, `28706`, `28708`, `28709`, `28710`, `28711`, `28713`, `28717`, `28719`, `28725`, `28728`, `28730`, `28731`, `28732`, `28734`, `28736`, `28738`, `28740`, `28742`, `28743`, `28744`, `28746`, `28748`, `28750`, `28751`, `28753`, `28755`, `28757`, `28759`, `28760`, `28761`, `28763`, `28764`, `28766`, `28768`, `28770`, `28772`, `28773`, `28775`, `28777`, `28782`, `28784`, `28785`, `28786`, `28788`, `28790`, `28792`, `28793`, `28794`, `28796`, `28798`, `28800`, `28802`, `28803`, `28804`, `28805`, `28807`, `28808`, `28810`, `28815`, `28817`, `28818`, `28819`, `28820`, `28822`, `28826`, `28828`, `28830`, `28831`, `28832`, `28834`, `28836`, `28838`, `28840`, `28843`, `28846`, `28848`, `28850`, `28853`, `28855`, `28856`, `28859`, `28861`, `28863`, `28865`, `28866`, `28868`, `28870`, `28872`, `28874`, `28876`, `28878`, `28879`, `28881`, `28883`, `28884`, `28886`, `28887`, `28889`, `28891`, `28893`, `28895`, `28896`, `28900`, `28901`, `28903`, `28904`, `28905`, `28909`, `28910`, `28912`, `28914`, `28916`, `28917`, `28920`, `28922`, `28923`, `28924`, `28926`, `28928`, `28933`, `28935`, `28937`, `28939`, `28941`, `28943`, `28945`, `28947`, `28949`, `28951`, `28952`, `28956`, `28957`, `28959`, `28960`, `28962`, `28964`, `28966`, `28968`, `28970`, `28972`, `28974`, `28976`, `28978`, `28980`, `28981`, `28986`, `28988`, `28990`, `28991`, `28992`, `28995`, `28996`, `28998`, `29000`, `29002`, `29003`, `29005`, `29006`, `29007`, `29008`, `29010`, `29012`, `29014`, `29016`, `29018`, `29020`, `29021`, `29022`, `29024`, `29025`, `29027`, `29029`, `29031`, `29032`, `29034`, `29035`, `29038`, `29040`, `29042`, `29044`, `29045`, `29046`, `29047`, `29049`, `29050`, `29052`, `29054`, `29056`, `29058`, `29060`, `29062`, `29066`, `29068`, `29069`, `29071`, `29074`, `29075`, `29077`, `29080`, `29081`, `29084`, `29085`, `29087`, `29089`, `29091`, `29093`, `29095`, `29097`, `29099`, `29101`, `29102`, `29104`, `29105`, `29107`, `29110`, `29112`, `29114`, `29116`, `29117`, `29121`, `29123`, `29125`, `29127`, `29129`, `29131`, `29132`, `29133`, `29134`, `29137`, `29139`, `29140`, `29142`, `29143`, `29145`, `29147`, `29152`, `29154`, `29157`, `29158`, `29160`, `29162`, `29164`, `29166`, `29170`, `29172`, `29174`, `29175`, `29178`, `29182`, `29183`, `29185`, `29187`, `29191`, `29193`, `29196`, `29198`, `29200`, `29201`, `29204`, `29206`, `29208`, `29209`, `29211`, `29213`, `29215`, `29216`, `29218`, `29220`, `29222`, `29224`, `29226`, `29228`, `29230`, `29235`, `29237`, `29239`, `29241`, `29247`, `29248`, `29250`, `29252`, `29255`, `29257`, `29258`, `29259`, `29261`, `29262`, `29264`, `29266`, `29269`, `29271`, `29273`, `29275`, `29276`, `29279`, `29281`, `29283`, `29285`, `29287`, `29288`, `29290`, `29292`, `29293`, `29294`, `29296`, `29300`, `29301`, `29303`, `29304`, `29305`, `29306`, `29312`, `29314`, `29316`, `29318`, `29319`, `29320`, `29321`, `29323`, `29324`, `29325`, `29326`, `29328`, `29329`, `29331`, `29332`, `29334`, `29336`, `29337`, `29339`, `29341`, `29345`, `29346`, `29348`, `29350`, `29352`, `29354`, `29356`, `29358`, `29360`, `29362`, `29364`, `29367`, `29371`, `29374`, `29375`, `29377`, `29379`, `29380`, `29382`, `29384`, `29386`, `29388`, `29390`, `29392`, `29394`, `29396`, `29399`, `29401`, `29403`, `29405`, `29407`, `29409`, `29411`, `29413`, `29414`, `29416`, `29419`, `29420`, `29421`, `29422`, `29424`, `29427`, `29429`, `29431`, `29433`, `29434`, `29436`, `29438`, `29440`, `29442`, `29443`, `29445`, `29447`, `29449`, `29451`, `29453`, `29455`, `29457`, `29459`, `29461`, `29463`, `29464`, `29466`, `29468`, `29470`, `29473`, `29475`, `29477`, `29480`, `29481`, `29483`, `29486`, `29488`, `29490`, `29493`, `29494`, `29497`, `29499`, `29501`, `29503`, `29505`, `29508`, `29510`, `29516`, `29518`, `29520`, `29522`, `29524`, `29526`, `29528`, `29529`, `29531`, `29533`, `29535`, `29537`, `29539`, `29541`, `29543`, `29544`, `29545`, `29547`, `29549`, `29550`, `29552`, `29554`, `29556`, `29557`, `29560`, `29562`, `29564`, `29566`, `29568`, `29572`, `29574`, `29576`, `29577`, `29579`, `29581`, `29583`, `29585`, `29587`, `29589`, `29592`, `29594`, `29596`, `29598`, `29600`, `29602`, `29604`, `29606`, `29608`, `29610`, `29612`, `29614`, `29616`, `29618`, `29620`, `29622`, `29624`, `29626`, `29627`, `29629`, `29631`, `29633`, `29635`, `29636`, `29638`, `29639`, `29640`, `29642`, `29644`, `29648`, `29650`, `29652`, `29654`, `29657`, `29658`, `29659`, `29660`, `29662`, `29663`, `29665`, `29667`, `29669`, `29670`, `29672`, `29673`, `29674`, `29677`, `29679`, `29681`, `29683`, `29685`, `29687`, `29688`, `29690`, `29691`, `29693`, `29695`, `29696`, `29699`, `29700`, `29702`, `29704`, `29706`, `29711`, `29712`, `29714`, `29716`, `29717`, `29719`, `29721`, `29723`, `29725`, `29727`, `29729`, `29731`, `29733`, `29736`, `29738`, `29740`, `29742`, `29744`, `29746`, `29748`, `29750`, `29752`, `29754`, `29755`, `29757`, `29758`, `29760`, `29762`, `29764`, `29765`, `29768`, `29769`, `29771`, `29773`, `29775`, `29777`, `29779`, `29781`, `29783`, `29785`, `29787`, `29789`, `29792`, `29794`, `29795`, `29797`, `29798`, `29800`, `29803`, `29805`, `29807`, `29809`, `29810`, `29812`, `29814`, `29816`, `29820`, `29822`, `29823`, `29825`, `29827`, `29830`, `29831`, `29833`, `29835`, `29837`, `29839`, `29840`, `29841`, `29842`, `29844`, `29846`, `29850`, `29852`, `29854`, `29855`, `29856`, `29858`, `29860`, `29862`, `29864`, `29866`, `29867`, `29869`, `29871`, `29872`, `29874`, `29876`, `29878`, `29880`, `29882`, `29885`, `29887`, `29889`, `29890`, `29892`, `29894`, `29895`, `29897`, `29900`, `29902`, `29903`, `29904`, `29905`, `29908`, `29910`, `29912`, `29914`, `29916`, `29918`, `29919`, `29921`, `29923`, `29925`, `29926`, `29928`, `29929`, `29931`, `29933`, `29934`, `29935`, `29937`, `29938`, `29939`, `29941`, `29943`, `29944`, `29946`, `29949`, `29951`, `29952`, `29954`, `29956`, `29958`, `29960`, `29962`, `29966`, `29968`, `29973`, `29975`, `29977`, `29979`, `29982`, `29983`, `29984`, `29986`, `29988`, `29991`, `29992`, `29994`, `29996`, `29998`, `30000`, `30002`, `30004`, `30006`, `30008`, `30010`, `30012`, `30014`, `30016`, `30018`, `30020`, `30022`, `30023`, `30025`, `30027`, `30028`, `30029`, `30031`, `30033`, `30035`, `30038`, `30040`, `30042`, `30044`, `30046`, `30048`, `30049`, `30050`, `30051`, `30053`, `30055`, `30058`, `30060`, `30064`, `30067`, `30069`, `30071`, `30073`, `30075`, `30077`, `30078`, `30080`, `30082`, `30084`, `30086`, `30088`, `30090`, `30092`, `30093`, `30095`, `30098`, `30100`, `30102`, `30103`, `30105`, `30107`, `30109`, `30111`, `30112`, `30114`, `30116`, `30117`, `30119`, `30121`, `30123`, `30125`, `30127`, `30130`, `30132`, `30136`, `30137`, `30139`, `30141`, `30143`, `30145`, `30147`, `30148`, `30150`, `30151`, `30152`, `30154`, `30156`, `30160`, `30163`, `30169`, `30171`, `30172`, `30174`, `30176`, `30177`, `30179`, `30181`, `30183`, `30185`, `30187`, `30189`, `30190`, `30192`, `30193`, `30195`, `30197`, `30198`, `30201`, `30202`, `30204`, `30205`, `30207`, `30208`, `30210`, `30211`, `30213`, `30215`, `30217`, `30219`, `30220`, `30222`, `30224`, `30225`, `30229`, `30231`, `30233`, `30235`, `30236`, `30237`, `30239`, `30241`, `30243`, `30244`, `30246`, `30247`, `30249`, `30250`, `30252`, `30254`, `30256`, `30258`, `30260`, `30264`, `30265`, `30268`, `30269`, `30271`, `30274`, `30275`, `30276`, `30277`, `30278`, `30279`, `30280`, `30281`, `30283`, `30284`, `30285`, `30287`, `30289`, `30291`, `30293`, `30295`, `30296`, `30299`, `30300`, `30302`, `30303`, `30305`, `30307`, `30308`, `30310`, `30311`, `30313`, `30314`, `30316`, `30317`, `30319`, `30322`, `30323`, `30325`, `30327`, `30329`, `30331`, `30333`, `30335`, `30337`, `30338`, `30340`, `30342`, `30344`, `30347`, `30349`, `30350`, `30352`, `30354`, `30356`, `30357`, `30359`, `30361`, `30363`, `30365`, `30367`, `30368`, `30370`, `30371`, `30373`, `30375`, `30376`, `30379`, `30382`, `30384`, `30386`, `30387`, `30388`, `30390`, `30392`, `30393`, `30395`, `30397`, `30399`, `30401`, `30402`, `30404`, `30406`, `30408`, `30409`, `30410`, `30412`, `30413`, `30414`, `30416`, `30421`, `30425`, `30427`, `30429`, `30431`, `30436`, `30437`, `30438`, `30440`, `30442`, `30444`, `30446`, `30448`, `30450`, `30452`, `30453`, `30455`, `30457`, `30459`, `30460`, `30461`, `30463`, `30465`, `30467`, `30469`, `30470`, `30472`, `30476`, `30478`, `30480`, `30482`, `30484`, `30485`, `30487`, `30488`, `30489`, `30490`, `30492`, `30494`, `30496`, `30498`, `30500`, `30502`, `30504`, `30507`, `30509`, `30511`, `30512`, `30513`, `30515`, `30517`, `30519`, `30520`, `30522`, `30524`, `30527`, `30528`, `30530`, `30532`, `30533`, `30535`, `30537`, `30538`, `30540`, `30542`, `30543`, `30545`, `30547`, `30549`, `30551`, `30553`, `30555`, `30559`, `30561`, `30562`, `30564`, `30566`, `1720`, `30568`, `30570`, `30572`, `30574`, `30576`, `30578`, `30579`, `30581`, `30583`, `30586`, `30588`, `30589`, `30591`, `30592`, `30594`, `30596`, `30598`, `30600`, `30602`, `30603`, `30608`, `30609`, `30610`, `30612`, `30613`, `30615`, `30617`, `30618`, `30621`, `30623`, `30625`, `30627`, `30629`, `30631`, `30633`, `30635`, `30637`, `30639`, `30640`, `30642`, `30644`, `30645`, `30649`, `30651`, `30654`, `30655`, `30656`, `30657`, `30658`, `30660`, `30661`, `30662`, `30664`, `30666`, `30667`, `30671`, `30672`, `30673`, `30674`, `30676`, `30678`, `30680`, `30682`, `30683`, `30686`, `30688`, `30689`, `30691`, `30693`, `30695`, `30696`, `30697`, `30699`, `30701`, `30702`, `30704`, `30706`, `30708`, `30709`, `30710`, `30712`, `30714`, `30716`, `30717`, `30719`, `30721`, `30723`, `30725`, `30727`, `30729`, `30731`, `30733`, `30735`, `30737`, `30739`, `30741`, `30743`, `30745`, `30747`, `30749`, `30751`, `30753`, `30755`, `30757`, `30759`, `30760`, `30762`, `30764`, `30766`, `30768`, `30769`, `30771`, `30773`, `30775`, `30776`, `30778`, `30780`, `30782`, `30784`, `30786`, `30788`, `30790`, `30792`, `30794`, `30797`, `30799`, `30801`, `30803`, `30805`, `30807`, `30809`, `30811`, `30813`, `30814`, `30815`, `30816`, `30818`, `30820`, `30822`, `30824`, `30825`, `30827`, `30829`, `30831`, `30833`, `30835`, `30837`, `30839`, `30841`, `30847`, `30848`, `30850`, `30852`, `30855`, `30857`, `30859`, `30861`, `30863`, `30865`, `30867`, `30869`, `30871`, `30874`, `30876`, `30878`, `30880`, `30882`, `30884`, `30885`, `30887`, `30888`, `30889`, `30891`, `30892`, `30893`, `30895`, `30899`, `30900`, `30902`, `30904`, `30906`, `30908`, `30909`, `30911`, `30913`, `30915`, `30917`, `30919`, `30921`, `30922`, `30924`, `30925`, `30926`, `30928`, `30929`, `30931`, `30932`, `30934`, `30936`, `30939`, `30941`, `30943`, `30945`, `30947`, `30950`, `30952`, `30954`, `30955`, `30957`, `30959`, `30961`, `30963`, `30964`, `30966`, `30968`, `30970`, `30971`, `30973`, `30975`, `30976`, `30978`, `30980`, `30982`, `30984`, `30987`, `30991`, `30993`, `30995`, `30997`, `30999`, `31000`, `31002`, `31003`, `31005`, `31007`, `31008`, `31010`, `31011`, `31013`, `31014`, `31016`, `31018`, `31020`, `31022`, `31023`, `31025`, `31026`, `31029`, `31031`, `31032`, `31036`, `31038`, `31040`, `31042`, `31043`, `31045`, `31047`, `31049`, `31051`, `31053`, `31054`, `31056`, `31058`, `31061`, `31063`, `31064`, `31066`, `31068`, `31070`, `31071`, `31073`, `31074`, `31075`, `31076`, `31077`, `31079`, `31081`, `31082`, `31084`, `31085`, `31091`, `31092`, `31093`, `31095`, `31096`, `31098`, `31101`, `31103`, `31105`, `31107`, `921`, `31108`, `31110`, `31112`, `31114`, `31115`, `31116`, `31118`, `31120`, `31124`, `31126`, `31127`, `31129`, `31130`, `31132`, `31134`, `31136`, `31137`, `31139`, `31141`, `31143`, `31145`, `31147`, `31149`, `31150`, `31153`, `219`, `31155`, `31157`, `31159`, `31161`, `31162`, `31164`, `31166`, `31167`, `31170`, `31171`, `31174`, `31175`, `31177`, `31179`, `31181`, `31184`, `31186`, `31188`, `31190`, `31192`, `31194`, `31196`, `31198`, `31199`, `31200`, `31201`, `31203`, `31205`, `31207`, `31209`, `31210`, `31211`, `31212`, `31213`, `31215`, `31217`, `31219`, `31221`, `31222`, `31223`, `31226`, `31228`, `31230`, `31232`, `31235`, `31238`, `31240`, `31241`, `31244`, `31245`, `31247`, `31249`, `31251`, `31252`, `31253`, `31255`, `31257`, `31259`, `31261`, `31263`, `31265`, `31266`, `31268`, `31270`, `31272`, `31274`, `31276`, `31278`, `31279`, `31281`, `31283`, `31284`, `31286`, `31287`, `31288`, `31290`, `31293`, `31295`, `31297`, `31300`, `31303`, `31304`, `31306`, `31308`, `31310`, `31311`, `31312`, `31313`, `31315`, `31316`, `31318`, `31320`, `31322`, `31323`, `31325`, `31326`, `31328`, `31329`, `31332`, `31334`, `31336`, `31338`, `31340`, `31342`, `31343`, `31344`, `31346`, `31349`, `31351`, `31353`, `31354`, `31355`, `31357`, `31359`, `31361`, `31363`, `31369`, `31370`, `31372`, `31375`, `31377`, `31378`, `31380`, `31382`, `31384`, `31385`, `31386`, `31387`, `31389`, `31392`, `31393`, `31394`, `31397`, `31399`, `31401`, `31403`, `31405`, `31406`, `31408`, `31410`, `31411`, `31413`, `31415`, `31417`, `31419`, `31421`, `31423`, `31424`, `31426`, `31427`, `31429`, `31430`, `31432`, `31434`, `31435`, `31436`, `31438`, `31440`, `31442`, `31444`, `31446`, `31448`, `31449`, `31451`, `31452`, `31454`, `31456`, `31457`, `31460`, `31462`, `31463`, `31464`, `31466`, `31468`, `31470`, `31473`, `31475`, `31477`, `31479`, `31481`, `31482`, `31484`, `31486`, `31488`, `31489`, `31490`, `31492`, `31495`, `31497`, `31499`, `31501`, `31502`, `31504`, `31506`, `31508`, `31509`, `31512`, `31514`, `31516`, `31518`, `31519`, `31521`, `31523`, `31525`, `31527`, `31529`, `31531`, `31533`, `31536`, `31537`, `31538`, `31540`, `31541`, `31543`, `31544`, `31546`, `31548`, `31549`, `31551`, `31553`, `31555`, `31556`, `31558`, `31560`, `31561`, `31563`, `31565`, `31566`, `31567`, `31569`, `31571`, `31574`, `31575`, `31576`, `31578`, `31580`, `31582`, `31583`, `31585`, `31586`, `31588`, `31590`, `31592`, `31593`, `31595`, `31597`, `31599`, `31600`, `31602`, `31604`, `31606`, `31607`, `31609`, `31610`, `31612`, `31614`, `31615`, `31617`, `31619`, `31620`, `31621`, `31623`, `31625`, `31626`, `31628`, `31630`, `31631`, `31632`, `31633`, `31635`, `31637`, `31639`, `31641`, `31642`, `31644`, `31646`, `31648`, `31650`, `31652`, `31653`, `31655`, `31657`, `31659`, `31661`, `31663`, `31665`, `31667`, `31668`, `31670`, `31672`, `31674`, `31675`, `31677`, `31679`, `31680`, `31682`, `31683`, `31685`, `31686`, `31688`, `31690`, `31692`, `31694`, `31695`, `31697`, `31698`, `31699`, `31700`, `31702`, `31703`, `31704`, `31705`, `31708`, `31710`, `31712`, `31713`, `31715`, `31717`, `31719`, `31721`, `31723`, `31725`, `31727`, `31729`, `31731`, `31733`, `31735`, `31737`, `31739`, `31741`, `31743`, `31745`, `31746`, `31748`, `31750`, `31752`, `31754`, `31756`, `31758`, `31760`, `31765`, `31766`, `31769`, `31771`, `31773`, `31775`, `31777`, `31779`, `31781`, `31783`, `31784`, `31785`, `31788`, `31790`, `31791`, `31793`, `31795`, `31797`, `31799`, `31801`, `31802`, `31804`, `31806`, `31808`, `31809`, `31811`, `31813`, `31815`, `31816`, `31817`, `31819`, `31825`, `31827`, `31829`, `31831`, `31833`, `31835`, `31837`, `31839`, `31840`, `31841`, `31842`, `31843`, `31845`, `31848`, `31850`, `31851`, `31853`, `31854`, `31855`, `31858`, `31860`, `31862`, `31863`, `31865`, `31867`, `31869`, `31871`, `31872`, `31874`, `31875`, `31877`, `31878`, `31880`, `31882`, `31883`, `31885`, `31887`, `31888`, `31890`, `31892`, `31894`, `31895`, `31897`, `31898`, `31900`, `31902`, `31904`, `31906`, `31908`, `31910`, `31912`, `31918`, `31920`, `31921`, `31923`, `31924`, `31925`, `31927`, `31929`, `31931`, `31933`, `31935`, `31937`, `31940`, `31941`, `31942`, `31944`, `31946`, `31948`, `31951`, `31954`, `31955`, `31957`, `31958`, `31959`, `31961`, `31963`, `31965`, `31967`, `31969`, `31972`, `31973`, `31975`, `31976`, `31978`, `31979`, `31981`, `31983`, `31985`, `31986`, `31987`, `31988`, `31990`, `31992`, `31993`, `31995`, `31996`, `31998`, `32000`, `32001`, `32004`, `32005`, `32007`, `32009`, `32011`, `32013`, `32015`, `32017`, `32019`, `32021`, `32022`, `32023`, `32025`, `32026`, `32027`, `32029`, `32032`, `32034`, `32036`, `32037`, `32038`, `32040`, `32042`, `32044`, `32046`, `32048`, `32050`, `32052`, `32054`, `32057`, `32059`, `32061`, `32063`, `32065`, `32067`, `32069`, `32071`, `32075`, `32077`, `32079`, `32081`, `32083`, `32084`, `32086`, `32087`, `32088`, `32090`, `32092`, `32094`, `32096`, `32097`, `32098`, `32099`, `32101`, `32104`, `32105`, `32106`, `32107`, `32108`, `32110`, `32111`, `32113`, `32115`, `32117`, `32118`, `32120`, `32122`, `32124`, `32126`, `32127`, `32129`, `32131`, `32133`, `32135`, `32137`, `32139`, `32141`, `32143`, `32145`, `32146`, `32148`, `32150`, `32154`, `32155`, `32156`, `32158`, `32159`, `32161`, `32162`, `32164`, `32165`, `32167`, `32169`, `32170`, `32172`, `32173`, `32174`, `32176`, `32177`, `32179`, `32181`, `32183`, `32185`, `32186`, `32188`, `32190`, `32192`, `32194`, `32196`, `32198`, `32200`, `32202`, `32203`, `32205`, `32208`, `32210`, `32212`, `32214`, `32216`, `32218`, `32220`, `32222`, `32224`, `32225`, `32227`, `32229`, `32230`, `32234`, `32235`, `32237`, `32238`, `32239`, `32240`, `32242`, `32244`, `32245`, `32247`, `32249`, `32252`, `32254`, `32256`, `32257`, `32259`, `32261`, `32263`, `32265`, `32267`, `32269`, `32271`, `32273`, `32275`, `32278`, `32279`, `32281`, `32283`, `32284`, `32286`, `32288`, `32290`, `32291`, `32293`, `32294`, `32295`, `32296`, `32297`, `32298`, `32300`, `32302`, `32304`, `32306`, `32307`, `32309`, `32310`, `32312`, `32313`, `32315`, `32319`, `32321`, `32323`, `32325`, `32327`, `32329`, `32331`, `32333`, `32335`, `32337`, `32339`, `32341`, `32343`, `32345`, `32347`, `32348`, `32350`, `32352`, `32354`, `32356`, `32357`, `32358`, `32359`, `32361`, `32363`, `32365`, `32367`, `32368`, `32371`, `32373`, `32375`, `32376`, `32377`, `32378`, `32380`, `32384`, `32386`, `32388`, `32390`, `32391`, `32392`, `32394`, `32396`, `32397`, `32398`, `32401`, `32403`, `32405`, `32407`, `32409`, `32411`, `32413`, `32414`, `32415`, `32417`, `32421`, `32423`, `32429`, `32431`, `32434`, `32435`, `32439`, `32441`, `32442`, `32444`, `32446`, `32448`, `32450`, `32452`, `32454`, `32455`, `32457`, `32459`, `32461`, `32463`, `32465`, `32467`, `32469`, `32470`, `32472`, `32477`, `32479`, `32481`, `32483`, `32484`, `32486`, `32488`, `32489`, `32492`, `32494`, `32495`, `32498`, `32499`, `32501`, `32503`, `32505`, `32507`, `32509`, `32513`, `32514`, `32516`, `32519`, `32521`, `32523`, `32525`, `32528`, `32530`, `32531`, `32536`, `32538`, `32540`, `32542`, `32545`, `32547`, `32549`, `32551`, `32553`, `32558`, `32559`, `32561`, `32562`, `32564`, `32566`, `32568`, `32570`, `32571`, `32572`, `32574`, `32576`, `32578`, `32580`, `32582`, `32583`, `32585`, `32586`, `32587`, `32589`, `32591`, `32593`, `32594`, `32596`, `32598`, `32600`, `32602`, `32604`, `32605`, `32607`, `32608`, `32609`, `32611`, `32613`, `32615`, `32617`, `32619`, `32620`, `32622`, `32624`, `32626`, `32628`, `32630`, `32632`, `32634`, `32636`, `32638`, `32640`, `32641`, `32643`, `32645`, `32647`, `32649`, `32651`, `32652`, `32655`, `32657`, `32659`, `32661`, `32663`, `32664`, `32666`, `32668`, `32671`, `32672`, `32673`, `32677`, `32679`, `32681`, `32682`, `32683`, `32685`, `32687`, `32689`, `32691`, `32693`, `32695`, `32696`, `32698`, `32700`, `32702`, `32703`, `32705`, `32707`, `32708`, `32710`, `32712`, `32714`, `32718`, `32719`, `32722`, `32724`, `32726`, `32727`, `32729`, `32731`, `32733`, `32735`, `32737`, `32739`, `32742`, `32744`, `32746`, `32748`, `32750`, `32752`, `32759`, `32761`, `32762`, `32763`, `32765`, `32768`, `32770`, `32774`, `32776`, `32777`, `32779`, `32780`, `32781`, `32782`, `32783`, `32785`, `32787`, `32788`, `32790`, `32791`, `32792`, `32794`, `32795`, `32798`, `32799`, `32801`, `32803`, `32804`, `32806`, `32808`, `32810`, `32811`, `32813`, `32815`, `32817`, `32820`, `32821`, `32822`, `32824`, `32826`, `32827`, `32829`, `32831`, `32833`, `32835`, `32836`, `32838`, `32839`, `32840`, `32841`, `32843`, `32845`, `32847`, `32849`, `32850`, `32852`, `32854`, `32855`, `32858`, `32860`, `32862`, `32864`, `32867`, `32869`, `32870`, `32872`, `32874`, `32876`, `32877`, `32878`, `32880`, `32884`, `32886`, `32888`, `32890`, `32891`, `32893`, `32895`, `32897`, `32899`, `32901`, `32903`, `32905`, `32908`, `32910`, `32913`, `32914`, `32916`, `32918`, `32920`, `32921`, `32923`, `32924`, `32926`, `32928`, `32932`, `32933`, `32934`, `32936`, `32938`, `32942`, `32945`, `32947`, `32949`, `32950`, `32951`, `32953`, `32955`, `32957`, `32958`, `32959`, `32963`, `32964`, `32965`, `32966`, `32968`, `32971`, `32972`, `32974`, `32975`, `32977`, `32980`, `32982`, `32984`, `32986`, `32988`, `32989`, `32990`, `32992`, `32993`, `32995`, `32996`, `32998`, `33000`, `33001`, `33005`, `33007`, `33009`, `33010`, `33012`, `33013`, `33014`, `33016`, `33017`, `33019`, `33021`, `33023`, `33025`, `33027`, `33029`, `33030`, `33032`, `33036`, `33038`, `33040`, `33042`, `33044`, `33046`, `33048`, `33049`, `33050`, `33051`, `33053`, `33055`, `33057`, `33059`, `33060`, `33061`, `33063`, `33065`, `33066`, `33067`, `33068`, `33070`, `33071`, `33073`, `33075`, `33077`, `33079`, `33081`, `33082`, `33084`, `33086`, `33088`, `33090`, `33092`, `33094`, `33096`, `33098`, `33100`, `33102`, `33103`, `33104`, `33106`, `33108`, `33109`, `33111`, `33112`, `33113`, `33114`, `33115`, `33118`, `33119`, `33120`, `33121`, `33123`, `33124`, `33125`, `33127`, `33129`, `33131`, `33132`, `33134`, `33136`, `33137`, `33139`, `33140`, `33141`, `33143`, `33145`, `33147`, `33148`, `33150`, `33152`, `33154`, `33155`, `33157`, `33159`, `33160`, `33161`, `33163`, `33164`, `33165`, `33167`, `33169`, `33171`, `33173`, `33175`, `33177`, `33179`, `33181`, `33184`, `33187`, `33188`, `33190`, `33192`, `33193`, `33195`, `33197`, `33198`, `33200`, `33202`, `33204`, `33206`, `33207`, `33208`, `33209`, `33210`, `33212`, `33213`, `33215`, `33216`, `33217`, `33219`, `33220`, `33222`, `33225`, `33226`, `33228`, `33230`, `33232`, `33233`, `33235`, `33237`, `33239`, `33241`, `33242`, `33244`, `33245`, `33246`, `33247`, `33249`, `33250`, `33252`, `33254`, `33255`, `33257`, `33259`, `33261`, `33263`, `33265`, `33268`, `33270`, `33273`, `33275`, `33277`, `33281`, `33283`, `33285`, `33287`, `33289`, `33291`, `33293`, `33295`, `33296`, `33299`, `33300`, `33302`, `33304`, `33305`, `33307`, `33308`, `33310`, `33312`, `33313`, `33315`, `33317`, `33319`, `33321`, `33322`, `33324`, `33326`, `33328`, `33329`, `33330`, `33332`, `33334`, `33336`, `33338`, `33339`, `33340`, `33341`, `33343`, `33345`, `33347`, `33349`, `33350`, `33352`, `33354`, `33356`, `33358`, `33359`, `33360`, `33362`, `33364`, `33366`, `33369`, `33371`, `33372`, `33374`, `33376`, `33378`, `33380`, `33382`, `33386`, `33388`, `33390`, `33391`, `33393`, `33395`, `33397`, `33398`, `33400`, `33402`, `33404`, `33406`, `33408`, `33410`, `33412`, `33414`, `33416`, `33418`, `33420`, `33422`, `33424`, `33426`, `33427`, `33428`, `33430`, `33432`, `33434`, `33435`, `33436`, `33438`, `33439`, `33441`, `33443`, `33446`, `33447`, `33449`, `33451`, `33453`, `33455`, `33457`, `33459`, `33460`, `33462`, `33464`, `33466`, `33467`, `33469`, `33470`, `33471`, `33473`, `33475`, `33477`, `33479`, `33481`, `33483`, `33484`, `33487`, `33489`, `33491`, `33493`, `33495`, `33497`, `33498`, `33500`, `33501`, `33502`, `33504`, `33505`, `33506`, `33508`, `33512`, `33514`, `33516`, `33519`, `33524`, `33525`, `33526`, `33530`, `33532`, `33534`, `33536`, `33537`, `33540`, `33542`, `33543`, `33545`, `33546`, `33547`, `33549`, `33551`, `33553`, `33555`, `33557`, `33558`, `33563`, `33564`, `33567`, `33569`, `33571`, `33573`, `33575`, `33577`, `33578`, `33580`, `33582`, `33584`, `33586`, `33588`, `33590`, `33591`, `33593`, `33594`, `33595`, `33597`, `33599`, `33601`, `33603`, `33604`, `33606`, `33608`, `33610`, `33612`, `33614`, `33616`, `33617`, `33619`, `33620`, `33621`, `33623`, `33624`, `33626`, `33628`, `33630`, `33631`, `33633`, `33635`, `33637`, `33638`, `33639`, `33641`, `33643`, `33645`, `33647`, `33651`, `33653`, `33655`, `33657`, `33659`, `33661`, `33663`, `33664`, `33665`, `33667`, `33669`, `33671`, `33673`, `33675`, `33676`, `33677`, `33678`, `33679`, `33681`, `33683`, `33684`, `33685`, `33687`, `33688`, `33689`, `33692`, `33693`, `33695`, `33697`, `33699`, `33700`, `33701`, `33703`, `33704`, `33706`, `33707`, `33709`, `33711`, `33713`, `33715`, `33717`, `33719`, `33721`, `33722`, `33724`, `33726`, `33727`, `33728`, `33729`, `33731`, `33733`, `33735`, `33738`, `33740`, `33742`, `33744`, `33745`, `33747`, `33749`, `33751`, `33752`, `33754`, `33756`, `33758`, `33759`, `33760`, `33763`, `33765`, `33766`, `33767`, `33768`, `33770`, `33773`, `33776`, `33778`, `33780`, `33782`, `33784`, `33785`, `33787`, `33788`, `33790`, `33792`, `33794`, `33795`, `33796`, `33798`, `33799`, `33800`, `33802`, `33807`, `33809`, `33811`, `33813`, `33814`, `33816`, `33817`, `33819`, `33820`, `33822`, `33824`, `33826`, `33828`, `33831`, `33833`, `33835`, `33836`, `33838`, `33840`, `33842`, `33844`, `33846`, `33848`, `33849`, `33851`, `33853`, `33855`, `33857`, `33859`, `33861`, `33863`, `33865`, `33866`, `33868`, `33870`, `33874`, `33876`, `33878`, `33880`, `33881`, `33882`, `33883`, `33885`, `33888`, `33890`, `33892`, `33894`, `33896`, `33898`, `33900`, `33902`, `33904`, `33906`, `33908`, `33909`, `33911`, `33912`, `33913`, `33915`, `33917`, `33918`, `33920`, `33922`, `33923`, `33924`, `33926`, `33928`, `33930`, `33932`, `33933`, `33934`, `33935`, `33936`, `33937`, `33938`, `33939`, `33941`, `33942`, `33944`, `33946`, `33948`, `33949`, `33951`, `33953`, `33955`, `33957`, `33959`, `33961`, `33963`, `33965`, `33967`, `33968`, `33969`, `33971`, `33973`, `33975`, `33977`, `33979`, `33981`, `33982`, `33984`, `33987`, `33989`, `33990`, `33991`, `33992`, `33994`, `33996`, `33998`, `33999`, `34001`, `34003`, `34005`, `34007`, `34010`, `34011`, `34013`, `34015`, `34017`, `34018`, `34020`, `34022`, `34023`, `34024`, `34025`, `34029`, `34032`, `34034`, `34036`, `34038`, `34040`, `34042`, `34044`, `34046`, `34047`, `34049`, `34051`, `34053`, `34055`, `34059`, `34060`, `34061`, `34063`, `34065`, `34066`, `34067`, `34068`, `34070`, `34071`, `34073`, `34074`, `34076`, `34077`, `34079`, `34081`, `34082`, `34084`, `34086`, `34089`, `34092`, `34093`, `34095`, `34097`, `34098`, `34099`, `34100`, `34101`, `34103`, `34105`, `34107`, `34108`, `34110`, `34112`, `34113`, `34115`, `34117`, `34118`, `34119`, `34120`, `34121`, `34122`, `34124`, `34125`, `34127`, `34130`, `34132`, `34134`, `34135`, `34137`, `34140`, `34142`, `34144`, `34147`, `34148`, `34150`, `34152`, `34154`, `34157`, `34159`, `34161`, `34163`, `34164`, `34167`, `34169`, `34171`, `34172`, `34174`, `34176`, `34178`, `34180`, `34182`, `34184`, `34186`, `34188`, `34190`, `34191`, `34192`, `34196`, `34197`, `34199`, `34201`, `34202`, `34203`, `34206`, `34207`, `34209`, `34211`, `34214`, `34216`, `34218`, `34220`, `34221`, `34223`, `34225`, `34227`, `34228`, `34230`, `34231`, `34233`, `34236`, `34238`, `34240`, `34241`, `34243`, `34245`, `34247`, `34249`, `34251`, `34252`, `34253`, `34255`, `34257`, `34258`, `34260`, `34262`, `34264`, `34265`, `34269`, `34271`, `34273`, `34274`, `34277`, `34279`, `34281`, `34283`, `34285`, `34287`, `34289`, `34290`, `34292`, `34294`, `34296`, `34298`, `34300`, `34303`, `34306`, `34307`, `34312`, `34314`, `34315`, `34317`, `34319`, `34321`, `34323`, `34325`, `34327`, `34329`, `34330`, `34332`, `34333`, `34334`, `34335`, `34337`, `34339`, `34341`, `34343`, `34345`, `34347`, `34349`, `34350`, `34352`, `34354`, `34356`, `34357`, `34358`, `34360`, `34362`, `34364`, `34366`, `34368`, `34370`, `34372`, `34374`, `34376`, `34378`, `34380`, `34382`, `34384`, `34386`, `34388`, `34390`, `34392`, `34394`, `34396`, `34398`, `34400`, `34401`, `34403`, `34405`, `34407`, `34408`, `34410`, `34412`, `34414`, `34417`, `34418`, `34420`, `34424`, `34427`, `34429`, `34431`, `34433`, `34435`, `34436`, `34437`, `34438`, `34439`, `34441`, `34443`, `34445`, `34446`, `34448`, `34450`, `34454`, `34456`, `34458`, `34460`, `34462`, `34464`, `34465`, `34467`, `34469`, `34470`, `34473`, `34477`, `34479`, `34480`, `34482`, `34484`, `34487`, `34489`, `34491`, `34492`, `34493`, `34497`, `34499`, `34501`, `34503`, `34504`, `34507`, `34509`, `34511`, `34512`, `34514`, `34516`, `34518`, `34520`, `34523`, `34524`, `34526`, `34528`, `34530`, `34532`, `34533`, `34535`, `34537`, `34539`, `34541`, `34543`, `34545`, `34547`, `34549`, `34551`, `34553`, `34556`, `34557`, `34558`, `34561`, `34565`, `34567`, `34568`, `34569`, `34571`, `34573`, `34575`, `34576`, `34577`, `34578`, `34580`, `34582`, `34585`, `34586`, `34587`, `34588`, `34590`, `34592`, `34594`, `34596`, `34597`, `34599`, `34600`, `34602`, `34604`, `34605`, `34606`, `34607`, `34609`, `34612`, `34613`, `34615`, `34617`, `34618`, `34619`, `34621`, `34622`, `34624`, `34625`, `34626`, `34628`, `34629`, `34631`, `34634`, `34636`, `34640`, `34642`, `34644`, `34646`, `34647`, `34649`, `34651`, `34652`, `34654`, `34655`, `34656`, `34659`, `34661`, `34662`, `34664`, `34666`, `34667`, `34669`, `34671`, `34673`, `34675`, `34676`, `34678`, `34679`, `34681`, `34683`, `34684`, `34686`, `34690`, `34692`, `34694`, `34696`, `34698`, `34700`, `34701`, `34704`, `34706`, `34707`, `34709`, `34710`, `34711`, `34713`, `34715`, `34717`, `34718`, `34720`, `34722`, `34723`, `34724`, `34726`, `34728`, `34733`, `34735`, `34737`, `34739`, `34741`, `34743`, `34746`, `34748`, `34751`, `34752`, `34753`, `34756`, `34758`, `34760`, `34762`, `34763`, `34765`, `34766`, `34768`, `34770`, `34772`, `34774`, `34776`, `34778`, `34780`, `34782`, `34784`, `34786`, `34787`, `34789`, `34790`, `34792`, `34793`, `34795`, `34797`, `34799`, `34801`, `34803`, `34804`, `34805`, `34807`, `34808`, `34810`, `34812`, `34813`, `34815`, `34816`, `34818`, `34820`, `34822`, `34823`, `34825`, `34827`, `34829`, `34831`, `34833`, `34834`, `34836`, `34838`, `34840`, `34842`, `34843`, `34845`, `34846`, `34847`, `34848`, `34850`, `34852`, `34856`, `34858`, `34860`, `34862`, `34863`, `34864`, `34866`, `34868`, `34870`, `34871`, `34873`, `34875`, `34877`, `34879`, `34881`, `34883`, `34884`, `34886`, `34888`, `34890`, `34891`, `34893`, `34895`, `34900`, `34906`, `34908`, `34910`, `34912`, `34914`, `34916`, `34918`, `34919`, `34921`, `34923`, `34925`, `34926`, `11536`, `34928`, `34930`, `34931`, `34933`, `34935`, `34937`, `34939`, `34941`, `34942`, `34945`, `34947`, `34949`, `34951`, `34952`, `34957`, `34959`, `34960`, `34962`, `34965`, `34967`, `34969`, `34971`, `34973`, `34975`, `34978`, `34980`, `34982`, `34984`, `34985`, `34987`, `34988`, `34990`, `34992`, `34994`, `34996`, `34998`, `35000`, `35004`, `35006`, `35008`, `35011`, `35013`, `35015`, `35016`, `35018`, `35019`, `35020`, `35022`, `35024`, `35026`, `35028`, `35029`, `35030`, `35032`, `35034`, `35035`, `35036`, `35037`, `35039`, `35040`, `35042`, `35045`, `35046`, `35048`, `35050`, `35051`, `35052`, `35053`, `35055`, `35056`, `35057`, `35059`, `35061`, `35062`, `35064`, `35066`, `35068`, `35070`, `35072`, `35074`, `35076`, `35077`, `35078`, `35079`, `35081`, `35083`, `35084`, `35086`, `35088`, `35090`, `35092`, `35093`, `35095`, `35097`, `35099`, `35100`, `35102`, `35104`, `35106`, `35108`, `35110`, `35112`, `35113`, `35114`, `35116`, `35117`, `35119`, `35124`, `35126`, `35128`, `35131`, `35133`, `35135`, `35138`, `35139`, `35140`, `35143`, `35145`, `35147`, `35149`, `35151`, `35153`, `35157`, `35159`, `35161`, `35163`, `35164`, `35166`, `35168`, `35170`, `35172`, `35174`, `35177`, `35178`, `35180`, `35181`, `35184`, `35186`, `35188`, `35190`, `35192`, `35193`, `35195`, `35196`, `35198`, `35200`, `35202`, `35203`, `35204`, `35206`, `35208`, `35210`, `35211`, `35213`, `35215`, `35217`, `35219`, `35220`, `35221`, `35223`, `35225`, `35226`, `35228`, `35230`, `35231`, `35232`, `35234`, `35235`, `35237`, `35239`, `35241`, `35243`, `35244`, `35246`, `35248`, `35249`, `35251`, `35253`, `35256`, `35258`, `35259`, `35261`, `35263`, `35265`, `35266`, `35267`, `35268`, `35269`, `35271`, `35277`, `35279`, `35281`, `35283`, `35285`, `35286`, `35288`, `35289`, `35292`, `35295`, `35297`, `35298`, `35300`, `35301`, `35302`, `35304`, `35306`, `35308`, `35311`, `35313`, `35315`, `35317`, `35319`, `35321`, `35323`, `35325`, `35326`, `35328`, `35330`, `35331`, `35333`, `35335`, `35336`, `35338`, `35340`, `35341`, `35343`, `35345`, `35347`, `35348`, `35349`, `35351`, `35353`, `35356`, `35358`, `35359`, `35362`, `35366`, `35369`, `35371`, `35373`, `35375`, `35376`, `35377`, `35378`, `35379`, `35381`, `35383`, `35387`, `35389`, `35391`, `35392`, `35394`, `35396`, `35398`, `35401`, `35403`, `35405`, `35407`, `35413`, `35415`, `35418`, `35420`, `35422`, `35423`, `35425`, `35426`, `35427`, `35429`, `35431`, `35433`, `35436`, `35438`, `35440`, `35441`, `35442`, `35444`, `35446`, `35447`, `35448`, `35450`, `35451`, `35453`, `35456`, `35458`, `35460`, `35462`, `35464`, `35466`, `35467`, `35469`, `35470`, `35471`, `35473`, `35474`, `35475`, `35477`, `35479`, `35481`, `35483`, `35484`, `35486`, `35488`, `35490`, `35492`, `35494`, `35496`, `35497`, `35499`, `35500`, `35503`, `35505`, `35507`, `35509`, `35511`, `35513`, `35514`, `35516`, `35518`, `35520`, `35521`, `35524`, `35526`, `35527`, `35529`, `35531`, `35532`, `35534`, `35536`, `35537`, `35540`, `35542`, `35543`, `35545`, `35547`, `35549`, `35551`, `35553`, `35555`, `35556`, `35557`, `35559`, `35561`, `35563`, `35565`, `35567`, `35569`, `35571`, `35573`, `35575`, `35576`, `35578`, `35580`, `35581`, `35582`, `35584`, `35585`, `35587`, `35589`, `35590`, `35592`, `35594`, `35595`, `35597`, `35599`, `35601`, `35603`, `35605`, `35606`, `35607`, `35608`, `35610`, `35612`, `35614`, `35615`, `35616`, `35617`, `35619`, `35621`, `35622`, `35624`, `35626`, `35628`, `35630`, `35631`, `35633`, `35635`, `35637`, `35639`, `35641`, `35643`, `35644`, `35649`, `35650`, `35651`, `35653`, `35655`, `35659`, `35661`, `35663`, `35665`, `35666`, `35668`, `35670`, `35672`, `35675`, `35677`, `35679`, `35681`, `35683`, `35684`, `35685`, `35687`, `35689`, `35691`, `35692`, `35694`, `35696`, `35698`, `35700`, `35702`, `35704`, `35706`, `35708`, `35710`, `35712`, `35713`, `35716`, `35718`, `35719`, `35720`, `35721`, `35722`, `35724`, `35726`, `35730`, `35732`, `35733`, `35735`, `35737`, `35738`, `35740`, `35743`, `35745`, `35747`, `35748`, `35750`, `35751`, `35753`, `35755`, `35756`, `35759`, `35761`, `35763`, `35765`, `35766`, `35768`, `35771`, `35772`, `35774`, `35776`, `35778`, `35780`, `35781`, `35783`, `35784`, `35786`, `35788`, `35790`, `35792`, `35793`, `35794`, `35795`, `35798`, `35800`, `35802`, `35804`, `35807`, `35809`, `35811`, `35813`, `35815`, `35816`, `35818`, `35819`, `35821`, `35822`, `35824`, `35826`, `35830`, `35831`, `35833`, `35835`, `35836`, `35837`, `35838`, `35840`, `35842`, `35845`, `35846`, `35848`, `35850`, `35852`, `35853`, `35855`, `35857`, `35859`, `35860`, `35862`, `35867`, `35869`, `35871`, `35873`, `35875`, `35877`, `35878`, `35883`, `35884`, `35886`, `35888`, `35891`, `35893`, `35895`, `35896`, `35898`, `35899`, `35901`, `35903`, `35905`, `35907`, `35908`, `35912`, `35914`, `35916`, `35917`, `35918`, `35920`, `35921`, `35923`, `35925`, `35926`, `35927`, `35929`, `35931`, `35933`, `35936`, `35938`, `35940`, `35942`, `35944`, `35945`, `35947`, `35949`, `35951`, `35953`, `35956`, `35959`, `35963`, `35965`, `35966`, `35968`, `35970`, `35972`, `35976`, `35979`, `35982`, `35984`, `35986`, `35988`, `35992`, `35993`, `35994`, `35996`, `35999`, `36001`, `36003`, `36005`, `36007`, `36009`, `36011`, `36013`, `36015`, `36016`, `36018`, `36021`, `36023`, `36024`, `36025`, `36028`, `36030`, `36032`, `36034`, `36035`, `36037`, `36038`, `36040`, `36042`, `36043`, `36045`, `36046`, `36047`, `36048`, `36049`, `36050`, `36052`, `36054`, `36057`, `36059`, `36061`, `36062`, `36064`, `36066`, `36068`, `36070`, `36072`, `36073`, `36075`, `36077`, `36079`, `36080`, `36082`, `36084`, `36086`, `36089`, `36091`, `36093`, `36094`, `36095`, `36097`, `36099`, `36101`, `36102`, `36103`, `36105`, `36107`, `36109`, `36110`, `36112`, `36114`, `36116`, `36118`, `36121`, `36123`, `36126`, `36128`, `36130`, `36132`, `36134`, `36135`, `36136`, `36138`, `36139`, `36141`, `36143`, `36144`, `36146`, `36148`, `36150`, `36152`, `36154`, `36155`, `36157`, `36159`, `36161`, `36163`, `36165`, `36167`, `36169`, `36170`, `36171`, `36173`, `36175`, `36176`, `36178`, `36180`, `36181`, `36182`, `36184`, `36186`, `36188`, `36190`, `36192`, `36193`, `36195`, `36196`, `36198`, `36200`, `36202`, `36204`, `36206`, `36209`, `36211`, `36213`, `36215`, `36217`, `36219`, `36221`, `36223`, `36225`, `36227`, `36229`, `36230`, `36232`, `36234`, `36236`, `36238`, `36242`, `36244`, `36247`, `36249`, `36251`, `36253`, `36255`, `36257`, `36259`, `36260`, `36262`, `36264`, `36266`, `36268`, `36270`, `36272`, `36274`, `36275`, `36278`, `36280`, `36281`, `36283`, `36285`, `36287`, `36288`, `36289`, `36290`, `36292`, `36294`, `36296`, `36298`, `36300`, `36305`, `36306`, `36308`, `36310`, `36311`, `36312`, `36314`, `36315`, `36316`, `36317`, `36319`, `36320`, `36321`, `36322`, `36324`, `36326`, `36328`, `36334`, `36335`, `36337`, `36339`, `36342`, `36344`, `36345`, `36347`, `36349`, `36350`, `36352`, `36354`, `36356`, `36357`, `36359`, `36361`, `36363`, `36365`, `36367`, `36370`, `36372`, `36375`, `36376`, `36379`, `36380`, `36382`, `36384`, `36385`, `36387`, `36389`, `36392`, `36393`, `36395`, `36396`, `36398`, `36399`, `36401`, `36403`, `36405`, `36407`, `36409`, `36411`, `36412`, `36413`, `36414`, `36416`, `36418`, `36419`, `36423`, `36424`, `36426`, `36428`, `36429`, `36430`, `36431`, `36433`, `36435`, `36437`, `36441`, `36444`, `36445`, `36447`, `36449`, `36450`, `36452`, `36453`, `36454`, `36455`, `36457`, `36458`, `36460`, `36461`, `36463`, `36464`, `36466`, `36469`, `36470`, `36472`, `36475`, `36477`, `36479`, `36480`, `36481`, `36483`, `36484`, `36486`, `36488`, `36490`, `36491`, `36493`, `36494`, `36496`, `36498`, `36500`, `36501`, `36503`, `36505`, `36507`, `36509`, `36510`, `36511`, `36512`, `36514`, `36516`, `36518`, `36519`, `36521`, `36522`, `36524`, `36525`, `36526`, `36528`, `36530`, `36531`, `36532`, `36537`, `36539`, `36540`, `36542`, `36544`, `36546`, `36548`, `36551`, `36553`, `36555`, `36556`, `36558`, `36560`, `36561`, `36562`, `36564`, `36566`, `36568`, `36570`, `36572`, `36574`, `36575`, `36577`, `36578`, `36580`, `36584`, `36586`, `36588`, `36590`, `36592`, `36594`, `36596`, `36598`, `36605`, `36607`, `36610`, `36612`, `36614`, `36616`, `36620`, `36621`, `36623`, `36624`, `36625`, `36627`, `36629`, `36631`, `36633`, `36635`, `36637`, `36639`, `36641`, `36644`, `36646`, `36647`, `36648`, `36650`, `36651`, `36653`, `36655`, `36657`, `36659`, `36661`, `36663`, `36664`, `36665`, `36667`, `36669`, `36671`, `36672`, `36673`, `36675`, `36677`, `36679`, `36681`, `36683`, `36685`, `36689`, `36691`, `36693`, `36695`, `36697`, `36699`, `36700`, `36702`, `36704`, `36706`, `36708`, `36710`, `36711`, `36713`, `36715`, `36717`, `36718`, `36719`, `36721`, `36722`, `36724`, `36726`, `36728`, `36730`, `36732`, `36734`, `36736`, `36738`, `36739`, `36741`, `36743`, `36746`, `36748`, `36750`, `36752`, `36755`, `36757`, `36759`, `36761`, `36763`, `36765`, `36766`, `36768`, `36770`, `36771`, `36772`, `36774`, `36775`, `36777`, `36779`, `36781`, `36783`, `36785`, `36787`, `36789`, `36790`, `36791`, `36793`, `36795`, `36797`, `36799`, `36800`, `36805`, `36807`, `36809`, `36811`, `36813`, `36814`, `36815`, `36817`, `36819`, `36821`, `36823`, `36824`, `36826`, `36827`, `36829`, `36830`, `36833`, `36836`, `36838`, `36839`, `36841`, `36843`, `36844`, `36846`, `36847`, `36849`, `36851`, `36857`, `36859`, `36860`, `36861`, `36863`, `36865`, `36867`, `36869`, `36871`, `36873`, `36875`, `36877`, `36879`, `36881`, `36885`, `36887`, `36890`, `36892`, `36894`, `36896`, `36898`, `36899`, `36901`, `36904`, `36906`, `36908`, `36910`, `36912`, `36914`, `36916`, `36918`, `36920`, `36922`, `36924`, `36925`, `36927`, `36929`, `36930`, `36931`, `36933`, `36934`, `36935`, `36936`, `36938`, `36940`, `36941`, `36942`, `36944`, `36946`, `36948`, `36950`, `36954`, `36957`, `36959`, `36961`, `36963`, `36964`, `36966`, `36968`, `36969`, `36970`, `36972`, `36974`, `36976`, `36980`, `36981`, `36983`, `36985`, `36986`, `36987`, `36989`, `36991`, `36993`, `36994`, `36997`, `36999`, `37000`, `37004`, `37006`, `37008`, `37010`, `37012`, `37013`, `37015`, `37016`, `37017`, `37018`, `37020`, `37021`, `37023`, `37024`, `37026`, `37028`, `37030`, `37032`, `37033`, `37034`, `37036`, `37037`, `37039`, `37040`, `37042`, `37044`, `37046`, `37047`, `37049`, `37050`, `37053`, `37054`, `37056`, `37057`, `37060`, `37062`, `37064`, `37066`, `37068`, `37070`, `37072`, `37074`, `37076`, `37078`, `37080`, `37081`, `37083`, `37085`, `37086`, `37088`, `37090`, `37092`, `37094`, `37095`, `37099`, `37101`, `37102`, `37104`, `37105`, `37107`, `37108`, `37109`, `37111`, `37113`, `37115`, `37117`, `37120`, `37121`, `37123`, `37126`, `37128`, `37130`, `37131`, `37133`, `37135`, `37137`, `37139`, `37141`, `37143`, `37145`, `37147`, `37149`, `37151`, `37153`, `37155`, `37159`, `37161`, `37163`, `37165`, `37168`, `37170`, `37171`, `37172`, `37174`, `37175`, `37176`, `37182`, `37183`, `37184`, `37185`, `37186`, `37188`, `37190`, `37192`, `37193`, `37195`, `37197`, `37198`, `37202`, `37204`, `37206`, `37207`, `37208`, `37210`, `37211`, `37213`, `37214`, `37215`, `37217`, `37218`, `37219`, `37221`, `37223`, `37227`, `37229`, `37231`, `37232`, `37234`, `37235`, `37237`, `37239`, `37243`, `37245`, `37246`, `37247`, `37248`, `37249`, `37251`, `37253`, `37254`, `37255`, `37257`, `37259`, `37262`, `37263`, `37265`, `37267`, `37269`, `37271`, `37273`, `37274`, `37276`, `37277`, `37279`, `37281`, `37283`, `37284`, `37286`, `37288`, `37290`, `37291`, `37293`, `37295`, `37297`, `37298`, `37300`, `37302`, `37306`, `37308`, `37309`, `37310`, `37314`, `37316`, `37317`, `37319`, `37321`, `37323`, `37325`, `37327`, `37329`, `37330`, `37331`, `37333`, `37335`, `37337`, `37339`, `37341`, `37343`, `37345`, `37347`, `37348`, `37349`, `37350`, `37352`, `37354`, `37356`, `37358`, `37360`, `37362`, `37363`, `37365`, `37366`, `37367`, `37369`, `37371`, `37373`, `37375`, `37376`, `37377`, `37380`, `37382`, `37384`, `37385`, `37387`, `37390`, `37392`, `37394`, `37396`, `37398`, `37399`, `37401`, `37402`, `37404`, `37405`, `37407`, `37408`, `37409`, `37411`, `37413`, `37415`, `37417`, `37418`, `37420`, `37422`, `37424`, `37426`, `37428`, `37429`, `37431`, `37433`, `37434`, `37436`, `37440`, `37442`, `37444`, `37446`, `37448`, `37450`, `37451`, `37453`, `37455`, `37457`, `37459`, `37462`, `37464`, `37466`, `37467`, `37468`, `37469`, `37470`, `37472`, `37474`, `37475`, `37476`, `37478`, `37479`, `37481`, `37482`, `37485`, `37489`, `37492`, `37494`, `37495`, `37497`, `37498`, `37499`, `37501`, `37503`, `37505`, `37506`, `37508`, `37510`, `37512`, `37514`, `37516`, `37518`, `37520`, `37521`, `37523`, `37525`, `37527`, `37530`, `37531`, `37533`, `37535`, `37537`, `37539`, `37541`, `37544`, `37546`, `37548`, `37550`, `37552`, `37555`, `37557`, `37559`, `37561`, `37564`, `37566`, `37568`, `37570`, `37571`, `37572`, `37574`, `37576`, `37578`, `37580`, `37581`, `37583`, `37585`, `37586`, `37587`, `37589`, `37591`, `37593`, `37594`, `37595`, `37597`, `37599`, `37600`, `37602`, `37604`, `37605`, `37607`, `37609`, `37611`, `37612`, `37614`, `37616`, `37618`, `37619`, `37621`, `37625`, `37627`, `37628`, `37629`, `37630`, `37632`, `37634`, `37637`, `37639`, `37640`, `37642`, `37644`, `37646`, `37648`, `37650`, `37652`, `37653`, `37655`, `37656`, `37657`, `37659`, `37661`, `37663`, `37664`, `37666`, `37668`, `37669`, `37671`, `37673`, `37675`, `37677`, `37678`, `37680`, `37681`, `37683`, `37686`, `37688`, `37690`, `37692`, `37694`, `37696`, `37698`, `37699`, `37701`, `37704`, `37705`, `37707`, `37709`, `37711`, `37713`, `37715`, `37716`, `37718`, `37719`, `37721`, `37723`, `37724`, `37726`, `37728`, `37730`, `37731`, `37732`, `37734`, `37735`, `37736`, `37740`, `37742`, `37746`, `37748`, `37749`, `37750`, `37752`, `37753`, `37754`, `37756`, `37758`, `37760`, `37763`, `37764`, `37766`, `37767`, `37769`, `37771`, `37773`, `37775`, `37777`, `37779`, `37781`, `37783`, `37785`, `37786`, `37788`, `37790`, `37792`, `37794`, `37795`, `37796`, `37797`, `37799`, `37801`, `37803`, `37804`, `37806`, `37808`, `37812`, `37814`, `37816`, `37817`, `37818`, `37819`, `37821`, `37822`, `37824`, `37825`, `37827`, `37828`, `37829`, `37830`, `37832`, `37834`, `37835`, `37837`, `37839`, `37842`, `37843`, `37844`, `37848`, `37850`, `37852`, `37854`, `37856`, `37857`, `37859`, `37860`, `37862`, `37863`, `37866`, `37869`, `37871`, `37872`, `37874`, `37875`, `37876`, `37877`, `37878`, `37881`, `37883`, `37884`, `37885`, `37886`, `37887`, `37889`, `37891`, `37892`, `37894`, `37895`, `37897`, `37900`, `37902`, `37904`, `37906`, `37908`, `37909`, `37911`, `37913`, `37915`, `37916`, `37918`, `37922`, `37923`, `37925`, `37926`, `37928`, `37930`, `37932`, `37934`, `37935`, `37936`, `37937`, `37939`, `37941`, `37943`, `37945`, `37947`, `37950`, `37951`, `37952`, `37954`, `37956`, `37958`, `37960`, `37962`, `37964`, `37965`, `37966`, `37968`, `37970`, `37972`, `37974`, `37977`, `37978`, `37980`, `37982`, `37983`, `37986`, `37988`, `37989`, `37993`, `37994`, `37996`, `37998`, `37999`, `38001`, `38003`, `38005`, `38007`, `38008`, `38010`, `38011`, `38013`, `38015`, `38016`, `38018`, `38019`, `38021`, `38023`, `38025`, `38027`, `38029`, `38030`, `38031`, `38033`, `38035`, `38037`, `38038`, `38040`, `38042`, `38044`, `38045`, `38046`, `38048`, `38050`, `38052`, `38054`, `38055`, `38056`, `38058`, `38060`, `38062`, `38064`, `38066`, `38068`, `38070`, `38071`, `38073`, `38075`, `38076`, `38078`, `38080`, `38082`, `38088`, `38090`, `38091`, `38093`, `38095`, `38097`, `38098`, `38099`, `38101`, `38103`, `38105`, `38106`, `38107`, `38108`, `38110`, `38111`, `38112`, `38115`, `38117`, `38119`, `38122`, `38124`, `38126`, `38128`, `38130`, `38131`, `38133`, `38135`, `38136`, `38137`, `38139`, `38141`, `38142`, `38143`, `38145`, `38148`, `38149`, `38151`, `38152`, `38154`, `38156`, `38157`, `38161`, `38163`, `38165`, `38166`, `38168`, `38170`, `38172`, `38173`, `38175`, `38177`, `38178`, `38179`, `38182`, `38183`, `38184`, `38186`, `38188`, `38189`, `38192`, `38193`, `38194`, `38195`, `38197`, `38199`, `38201`, `38202`, `38204`, `38205`, `38207`, `38209`, `38211`, `38212`, `38213`, `38216`, `38218`, `38220`, `38223`, `38225`, `38226`, `38227`, `38229`, `38232`, `38233`, `38235`, `38238`, `38239`, `38240`, `38242`, `38244`, `38245`, `38247`, `38249`, `38251`, `38253`, `17591`, `38255`, `38257`, `38259`, `38261`, `38263`, `38264`, `38266`, `38268`, `38269`, `38271`, `38272`, `38274`, `38275`, `38277`, `38279`, `38280`, `38281`, `38283`, `38284`, `38286`, `38287`, `38288`, `38290`, `38292`, `38294`, `38296`, `38298`, `38300`, `38302`, `38304`, `38306`, `38308`, `38310`, `38311`, `38313`, `38315`, `38316`, `38317`, `38319`, `38320`, `38322`, `38324`, `38325`, `38326`, `38328`, `38330`, `38332`, `38333`, `38335`, `38336`, `38337`, `38340`, `38342`, `38343`, `38345`, `38346`, `38348`, `38350`, `38352`, `38354`, `38356`, `38358`, `38360`, `38362`, `38364`, `38366`, `38368`, `38369`, `38372`, `38373`, `38375`, `38376`, `38378`, `38380`, `38382`, `38383`, `38386`, `38388`, `38391`, `38393`, `38395`, `38397`, `38399`, `38400`, `38404`, `38405`, `38407`, `38409`, `38410`, `38413`, `38414`, `38416`, `38419`, `38421`, `38423`, `38425`, `38427`, `38428`, `38430`, `38432`, `38433`, `38434`, `38436`, `38437`, `38438`, `38441`, `38443`, `38444`, `38446`, `38448`, `38450`, `38453`, `38455`, `38457`, `38459`, `38462`, `38464`, `38465`, `38467`, `38471`, `38473`, `38474`, `38475`, `38477`, `38480`, `38482`, `38483`, `38487`, `38488`, `38490`, `38491`, `38493`, `38496`, `38498`, `38500`, `38502`, `38504`, `38505`, `38507`, `38509`, `38511`, `38512`, `38514`, `38515`, `38517`, `38519`, `38521`, `38523`, `38526`, `38527`, `38528`, `38530`, `38532`, `38534`, `38535`, `38537`, `38539`, `38541`, `38543`, `38545`, `38546`, `38549`, `38551`, `38553`, `38554`, `38555`, `38556`, `38560`, `38562`, `38563`, `38564`, `38565`, `38567`, `38568`, `38570`, `38571`, `38573`, `38575`, `38577`, `38579`, `38582`, `38584`, `38589`, `38591`, `38593`, `38595`, `38596`, `38597`, `38600`, `38601`, `38602`, `38603`, `38604`, `38606`, `38608`, `38610`, `38612`, `38614`, `38615`, `38616`, `38618`, `38619`, `38621`, `38622`, `38624`, `38626`, `38628`, `38631`, `38632`, `38633`, `38634`, `38637`, `38639`, `38640`, `38642`, `38644`, `38646`, `38647`, `38649`, `38650`, `38652`, `38654`, `38656`, `38658`, `38659`, `38661`, `38662`, `38664`, `38666`, `38668`, `38670`, `38672`, `38674`, `38676`, `38678`, `38680`, `38682`, `38684`, `38685`, `38687`, `38689`, `38691`, `38694`, `38695`, `38697`, `38698`, `38700`, `38701`, `38703`, `38705`, `38706`, `38708`, `38710`, `38712`, `38714`, `38715`, `38718`, `38720`, `38721`, `38723`, `38725`, `38727`, `38729`, `38731`, `38733`, `38736`, `38738`, `38739`, `38741`, `38742`, `38744`, `38745`, `38747`, `38749`, `38751`, `38753`, `38754`, `38756`, `38758`, `38759`, `38761`, `38763`, `38765`, `38766`, `38767`, `38769`, `38770`, `38771`, `38773`, `38775`, `38779`, `38781`, `38783`, `38785`, `38786`, `38788`, `38790`, `38792`, `38795`, `38797`, `38799`, `38802`, `38803`, `38805`, `38807`, `38809`, `38811`, `38813`, `38815`, `38817`, `38819`, `38820`, `38822`, `38824`, `38827`, `38829`, `38830`, `38831`, `38833`, `38835`, `38837`, `38838`, `38840`, `38842`, `38844`, `38846`, `38848`, `38850`, `38852`, `38854`, `38856`, `38857`, `38858`, `38860`, `38861`, `38863`, `38865`, `38867`, `38869`, `38871`, `38872`, `38873`, `38875`, `38877`, `38879`, `38881`, `38883`, `38885`, `38887`, `38888`, `38890`, `38892`, `38895`, `38896`, `38897`, `38898`, `38902`, `38903`, `38904`, `38906`, `38908`, `38909`, `38910`, `38911`, `38913`, `38915`, `38916`, `38918`, `38920`, `38922`, `38924`, `38926`, `38928`, `38929`, `38930`, `38933`, `38934`, `38935`, `38936`, `38938`, `38940`, `38942`, `38944`, `38946`, `38948`, `38949`, `38951`, `38953`, `38955`, `38957`, `38959`, `38960`, `38961`, `38964`, `38966`, `38967`, `38969`, `38972`, `38973`, `38974`, `38976`, `38978`, `38980`, `38981`, `38983`, `38986`, `38987`, `38988`, `38989`, `38991`, `38993`, `38995`, `38996`, `38997`, `38999`, `39001`, `39002`, `39003`, `39004`, `39005`, `39006`, `39008`, `39011`, `39013`, `39015`, `39017`, `39019`, `39023`, `39024`, `39026`, `39027`, `39029`, `39031`, `39032`, `39034`, `39036`, `39037`, `39040`, `39042`, `39043`, `39044`, `39046`, `39048`, `39049`, `39051`, `39053`, `39055`, `39057`, `39059`, `39060`, `39062`, `39063`, `39066`, `39067`, `39069`, `39071`, `39074`, `39075`, `39077`, `39078`, `39080`, `39082`, `39083`, `39084`, `39087`, `39089`, `39092`, `39094`, `39096`, `39097`, `39100`, `39102`, `39104`, `39106`, `39108`, `39110`, `39112`, `39114`, `39116`, `39118`, `39120`, `39121`, `39123`, `39124`, `39126`, `39128`, `39129`, `39131`, `39133`, `39134`, `39136`, `39138`, `39140`, `39141`, `39142`, `39144`, `39145`, `39147`, `39148`, `39149`, `39151`, `39155`, `39159`, `39160`, `39161`, `39163`, `39164`, `39166`, `39168`, `39170`, `39172`, `39174`, `39176`, `39178`, `39180`, `39182`, `39184`, `39186`, `39187`, `39189`, `39191`, `39193`, `39194`, `39195`, `39197`, `39198`, `39199`, `39201`, `39205`, `39206`, `39207`, `39208`, `39210`, `39212`, `39214`, `39216`, `39218`, `39219`, `39221`, `39222`, `39224`, `39225`, `39227`, `39229`, `39230`, `39232`, `39234`, `39236`, `39238`, `39239`, `39241`, `39244`, `39245`, `39247`, `39248`, `39249`, `39251`, `39253`, `39255`, `39256`, `39258`, `39259`, `39261`, `39262`, `39263`, `39265`, `39267`, `39269`, `39271`, `39273`, `39275`, `39276`, `39278`, `39280`, `39282`, `39283`, `39285`, `39287`, `39289`, `39290`, `39292`, `39294`, `39296`, `39298`, `39300`, `39302`, `39305`, `39306`, `39307`, `39309`, `39310`, `39313`, `39314`, `39316`, `39318`, `39320`, `39322`, `39324`, `39326`, `39327`, `39329`, `39331`, `39333`, `39334`, `39336`, `39337`, `39339`, `39340`, `39341`, `39342`, `39344`, `39345`, `39346`, `39347`, `39349`, `39351`, `39353`, `39355`, `39356`, `39358`, `39359`, `39361`, `39363`, `39364`, `39366`, `39367`, `39368`, `39369`, `39370`, `39375`, `39377`, `39378`, `39379`, `39381`, `39383`, `39385`, `39387`, `39389`, `39391`, `39392`, `39393`, `39394`, `39396`, `39398`, `39399`, `39400`, `39404`, `39406`, `39408`, `39410`, `39412`, `39414`, `39416`, `39418`, `39420`, `39422`, `39423`, `39425`, `39427`, `39428`, `39429`, `39432`, `39433`, `39435`, `39436`, `39439`, `39441`, `39442`, `39443`, `39444`, `39445`, `39447`, `39448`, `39450`, `39452`, `39454`, `39457`, `39459`, `39460`, `39462`, `39464`, `39466`, `39468`, `39470`, `39471`, `39472`, `39475`, `39477`, `39479`, `39480`, `39482`, `39484`, `39485`, `39487`, `39489`, `39491`, `39492`, `39493`, `39494`, `39496`, `39499`, `39501`, `39502`, `39506`, `39507`, `39508`, `39509`, `39511`, `39513`, `39514`, `39516`, `39518`, `39519`, `39521`, `39522`, `39525`, `39526`, `39529`, `39530`, `39532`, `39533`, `39535`, `39537`, `39539`, `39541`, `39542`, `39544`, `39546`, `39547`, `39548`, `39550`, `39552`, `39554`, `39556`, `39558`, `39560`, `39562`, `39563`, `39565`, `39567`, `39568`, `39570`, `39572`, `39573`, `39575`, `39577`, `39578`, `39579`, `39581`, `39584`, `39586`, `39587`, `39588`, `39589`, `39592`, `39593`, `39595`, `39597`, `39598`, `39600`, `39602`, `39604`, `39606`, `39608`, `39610`, `39612`, `39614`, `39616`, `39617`, `39619`, `39621`, `39623`, `39625`, `39626`, `39627`, `39629`, `39631`, `39633`, `39634`, `39636`, `39637`, `39638`, `39640`, `39644`, `39649`, `39651`, `39653`, `39655`, `39657`, `39659`, `39661`, `39662`, `39664`, `39666`, `39668`, `39673`, `39675`, `39677`, `39679`, `39681`, `39683`, `39685`, `39687`, `39689`, `39692`, `39693`, `39695`, `39697`, `39699`, `39701`, `39703`, `39705`, `39706`, `39708`, `39712`, `39714`, `39716`, `39718`, `39720`, `39722`, `39724`, `39727`, `39729`, `39731`, `39732`, `39734`, `39736`, `39738`, `39740`, `39742`, `39744`, `39746`, `39749`, `39751`, `39752`, `39754`, `39755`, `39757`, `39758`, `39760`, `39762`, `39763`, `39765`, `39766`, `39768`, `39770`, `39772`, `39773`, `39774`, `39775`, `39779`, `39781`, `39783`, `39784`, `39786`, `39787`, `39789`, `39792`, `39794`, `39796`, `39798`, `39800`, `39802`, `39804`, `39806`, `39808`, `39810`, `39814`, `39816`, `39819`, `39820`, `39822`, `39823`, `39825`, `39826`, `39828`, `39830`, `39831`, `39833`, `39835`, `39841`, `39842`, `39846`, `39848`, `39852`, `39854`, `39856`, `39858`, `39860`, `39862`, `39864`, `39867`, `39869`, `39871`, `39873`, `39875`, `39877`, `39879`, `39881`, `39882`, `39883`, `39885`, `39887`, `39889`, `39890`, `39892`, `39894`, `39896`, `39898`, `39899`, `39901`, `39903`, `39905`, `39907`, `39908`, `39910`, `39912`, `39913`, `39915`, `39917`, `39918`, `39920`, `39922`, `39924`, `39926`, `39928`, `39930`, `39932`, `39934`, `39936`, `39937`, `39938`, `39939`, `39940`, `39941`, `39943`, `39945`, `39947`, `39950`, `39951`, `39952`, `39953`, `39955`, `39956`, `39958`, `39960`, `39962`, `39964`, `39965`, `39967`, `39969`, `39971`, `39973`, `39974`, `39977`, `39979`, `39981`, `39982`, `39984`, `39985`, `39987`, `39989`, `39991`, `39993`, `39995`, `39999`, `40001`, `40002`, `40004`, `40005`, `40007`, `40009`, `40011`, `40013`, `40014`, `40015`, `40017`, `40019`, `40021`, `40023`, `40025`, `40027`, `40028`, `40029`, `40030`, `40032`, `40034`, `40035`, `40036`, `40037`, `40038`, `40041`, `40042`, `40043`, `40045`, `40046`, `40047`, `40049`, `40051`, `40053`, `40055`, `40056`, `40057`, `40059`, `40060`, `40061`, `40063`, `40065`, `40067`, `40069`, `40074`, `40075`, `40076`, `40078`, `40080`, `40082`, `40084`, `40085`, `40087`, `40089`, `40091`, `40095`, `40096`, `40098`, `40099`, `40100`, `40101`, `40103`, `40104`, `40105`, `40107`, `40108`, `40110`, `40112`, `40114`, `40116`, `40117`, `40119`, `40121`, `40123`, `40125`, `40126`, `40128`, `40130`, `40132`, `40134`, `40136`, `40138`, `40140`, `40142`, `40143`, `40145`, `40146`, `40147`, `40148`, `40150`, `40152`, `40153`, `40155`, `40157`, `40163`, `40165`, `40167`, `40169`, `40172`, `40174`, `40175`, `40176`, `40178`, `40180`, `40182`, `40184`, `40185`, `40186`, `40188`, `40190`, `40192`, `40193`, `40194`, `40195`, `40197`, `40199`, `40201`, `40202`, `40205`, `40207`, `40209`, `40211`, `40213`, `40215`, `40217`, `40218`, `40220`, `40222`, `40223`, `40225`, `40226`, `40227`, `40229`, `40230`, `40231`, `40233`, `40235`, `40237`, `40239`, `40241`, `40243`, `40245`, `40246`, `40249`, `40250`, `40252`, `40253`, `40255`, `40257`, `40259`, `40261`, `40263`, `40265`, `40267`, `40268`, `40274`, `40276`, `40281`, `40282`, `40283`, `40284`, `40285`, `40287`, `40289`, `40291`, `40293`, `40294`, `40297`, `40299`, `40300`, `40301`, `40304`, `40306`, `40307`, `40309`, `40311`, `40313`, `40315`, `40317`, `40319`, `40323`, `40324`, `40327`, `40329`, `40331`, `40332`, `40334`, `40338`, `40340`, `40342`, `40343`, `40346`, `40347`, `40349`, `40350`, `40352`, `40353`, `40355`, `40357`, `40359`, `40360`, `40362`, `40364`, `40366`, `40367`, `40369`, `40370`, `40373`, `40376`, `40377`, `40379`, `40381`, `40383`, `40385`, `40387`, `40389`, `40391`, `40393`, `40395`, `40397`, `40402`, `40404`, `40406`, `40408`, `40410`, `40412`, `40414`, `40416`, `40417`, `40418`, `40420`, `40424`, `40426`, `40428`, `40430`, `40432`, `40433`, `40435`, `40437`, `40438`, `40440`, `40443`, `40444`, `40446`, `40448`, `40450`, `40452`, `40454`, `40457`, `40458`, `40460`, `40461`, `40463`, `40465`, `40467`, `40468`, `40470`, `40471`, `40473`, `40475`, `40477`, `40478`, `40480`, `40481`, `40484`, `40485`, `40487`, `40489`, `40490`, `40493`, `40495`, `40499`, `40500`, `40502`, `40503`, `40505`, `40506`, `40508`, `40509`, `40512`, `40515`, `40517`, `40518`, `40520`, `40522`, `40523`, `40525`, `40527`, `40529`, `40531`, `40533`, `40535`, `40539`, `40541`, `40543`, `40545`, `40546`, `40549`, `40551`, `40553`, `40555`, `40557`, `40559`, `40561`, `40563`, `40564`, `40566`, `40568`, `40570`, `40573`, `40575`, `40577`, `40579`, `40581`, `40583`, `40585`, `40586`, `40590`, `40591`, `40592`, `40593`, `40595`, `40597`, `40599`, `40601`, `40603`, `40605`, `40607`, `40609`, `40611`, `40612`, `40613`, `40615`, `40617`, `40619`, `40620`, `40621`, `40623`, `40625`, `40627`, `40628`, `40629`, `40631`, `40632`, `40633`, `40634`, `40635`, `40636`, `40638`, `40639`, `40641`, `40643`, `40645`, `40646`, `40647`, `40648`, `40650`, `40652`, `40653`, `40654`, `40655`, `40657`, `40659`, `40660`, `40661`, `40663`, `40665`, `40667`, `40669`, `40671`, `40673`, `40675`, `40676`, `40678`, `40680`, `40682`, `40683`, `40685`, `40686`, `40688`, `40689`, `40691`, `40692`, `40694`, `40696`, `40698`, `40699`, `40700`, `40702`, `40704`, `40706`, `40708`, `40709`, `40713`, `40714`, `40716`, `40717`, `40719`, `40720`, `40722`, `40724`, `40725`, `40728`, `40730`, `40732`, `40733`, `40734`, `40736`, `40738`, `40739`, `40740`, `40741`, `40743`, `40745`, `40747`, `40749`, `40750`, `40752`, `40754`, `40755`, `40756`, `40758`, `40759`, `40760`, `40762`, `40764`, `40766`, `40767`, `40769`, `40771`, `40773`, `40776`, `40779`, `40780`, `40782`, `40784`, `40785`, `40787`, `40788`, `40790`, `40792`, `40794`, `40795`, `40797`, `40798`, `40799`, `40801`, `40803`, `40805`, `40806`, `40808`, `40809`, `40811`, `40813`, `40815`, `40816`, `40818`, `40819`, `40821`, `40823`, `40825`, `40826`, `40828`, `40829`, `40831`, `40832`, `40834`, `40836`, `40837`, `40839`, `40840`, `40842`, `40844`, `40846`, `40848`, `40850`, `40852`, `40854`, `40856`, `40858`, `40860`, `40862`, `40864`, `40866`, `40868`, `40870`, `40872`, `40873`, `40875`, `40877`, `40878`, `40880`, `40885`, `40887`, `40889`, `40891`, `40893`, `40895`, `40897`, `40899`, `40900`, `40902`, `40905`, `40907`, `40909`, `40911`, `40912`, `40914`, `40916`, `40918`, `40920`, `40922`, `40924`, `40926`, `40928`, `40929`, `40933`, `40935`, `40936`, `40937`, `40941`, `40945`, `40947`, `40948`, `40950`, `40952`, `40954`, `40956`, `40958`, `40960`, `40964`, `40966`, `40969`, `40971`, `40973`, `40974`, `40976`, `40979`, `40981`, `40984`, `40988`, `40991`, `40992`, `40993`, `40995`, `40997`, `40999`, `41000`, `41002`, `41004`, `41006`, `41007`, `41008`, `41009`, `41011`, `41013`, `41015`, `41016`, `41018`, `41020`, `41022`, `41024`, `41026`, `41028`, `41030`, `41031`, `41033`, `41035`, `41039`, `41040`, `41042`, `41044`, `41045`, `41046`, `41048`, `41050`, `41051`, `41053`, `41055`, `41057`, `41058`, `41060`, `41061`, `41062`, `41063`, `41064`, `41066`, `41068`, `41070`, `41071`, `41072`, `41073`, `41075`, `41076`, `41078`, `41080`, `41081`, `41083`, `41084`, `41086`, `41088`, `41093`, `41094`, `41095`, `41097`, `41098`, `41099`, `41100`, `41101`, `41103`, `41104`, `41106`, `41107`, `41109`, `41111`, `41112`, `41114`, `41115`, `41117`, `41118`, `41119`, `41120`, `41122`, `41123`, `41125`, `41127`, `41129`, `41130`, `41132`, `41134`, `41136`, `41138`, `41140`, `41142`, `41144`, `41146`, `41148`, `41149`, `41150`, `41152`, `41154`, `41156`, `41158`, `41159`, `41161`, `41162`, `41164`, `41166`, `41168`, `41170`, `41172`, `41174`, `41175`, `41176`, `41178`, `41181`, `41182`, `41184`, `41185`, `41186`, `41189`, `41190`, `41192`, `41194`, `41196`, `41198`, `41199`, `41200`, `41202`, `41204`, `41206`, `41209`, `41210`, `41213`, `41215`, `41216`, `41217`, `41218`, `41220`, `41221`, `41223`, `41227`, `41229`, `41230`, `41231`, `41233`, `41235`, `41236`, `41238`, `41239`, `41240`, `41242`, `41244`, `41245`, `41247`, `41248`, `41250`, `41252`, `41254`, `41256`, `41258`, `41259`, `41261`, `41263`, `41265`, `41267`, `41268`, `41270`, `41272`, `41275`, `41278`, `41279`, `41280`, `41281`, `41283`, `41284`, `41286`, `41288`, `41290`, `41292`, `41294`, `41296`, `41298`, `41300`, `41302`, `41303`, `41306`, `41310`, `41312`, `41314`, `41316`, `41318`, `41320`, `41322`, `41324`, `41326`, `41327`, `41329`, `41331`, `41333`, `41335`, `41337`, `41338`, `41340`, `41341`, `41342`, `41343`, `41345`, `41346`, `41347`, `41349`, `41353`, `41354`, `41357`, `41360`, `41361`, `41362`, `41364`, `41366`, `41367`, `41369`, `41374`, `41375`, `41377`, `41379`, `41380`, `41381`, `41383`, `41385`, `41387`, `41389`, `41390`, `41393`, `41394`, `41396`, `41398`, `41399`, `41401`, `41403`, `41405`, `41406`, `41407`, `41410`, `41412`, `41413`, `41414`, `41416`, `41418`, `41420`, `41422`, `41423`, `41424`, `41425`, `41427`, `41428`, `41431`, `41432`, `41433`, `41435`, `41437`, `41438`, `41440`, `41442`, `41444`, `41446`, `41447`, `41449`, `41450`, `41453`, `41455`, `41457`, `41459`, `41461`, `41463`, `41466`, `41468`, `41470`, `41472`, `41474`, `41475`, `41479`, `41481`, `41483`, `41485`, `41488`, `41491`, `41492`, `41494`, `41496`, `41497`, `41499`, `41500`, `41502`, `41505`, `41507`, `41509`, `41511`, `41513`, `41514`, `41516`, `41519`, `41521`, `41523`, `41525`, `41527`, `41528`, `41530`, `41532`, `41534`, `41536`, `41537`, `41540`, `41542`, `41543`, `41545`, `41547`, `41548`, `41549`, `41551`, `41554`, `41557`, `41558`, `41559`, `41561`, `41563`, `41565`, `41566`, `41568`, `41570`, `41572`, `41574`, `41576`, `41578`, `41580`, `41582`, `41584`, `41586`, `41587`, `41588`, `41590`, `41592`, `41594`, `41596`, `41598`, `41599`, `41600`, `41601`, `41603`, `41606`, `41607`, `41610`, `41613`, `41615`, `41618`, `41620`, `41622`, `41623`, `41624`, `41626`, `41627`, `41630`, `41632`, `41634`, `41635`, `41636`, `41638`, `41639`, `41641`, `41643`, `41645`, `41646`, `41648`, `41650`, `41652`, `41655`, `41656`, `41658`, `41660`, `41662`, `41663`, `41668`, `41670`, `41672`, `41674`, `41675`, `41677`, `41678`, `41680`, `41682`, `41684`, `41686`, `41688`, `41690`, `41691`, `41693`, `41694`, `41696`, `41697`, `41698`, `41699`, `41701`, `41702`, `41704`, `41706`, `41708`, `41710`, `41711`, `41712`, `41716`, `41718`, `41719`, `41721`, `41724`, `41726`, `41728`, `41729`, `41731`, `41732`, `41734`, `41736`, `41738`, `41740`, `41742`, `41743`, `41746`, `41749`, `41751`, `41753`, `41755`, `41757`, `41759`, `41761`, `41762`, `41763`, `41764`, `41765`, `41767`, `41769`, `41770`, `41774`, `41776`, `41778`, `41779`, `41782`, `41783`, `41785`, `41786`, `41787`, `41789`, `41791`, `41793`, `41795`, `41797`, `41799`, `41801`, `41803`, `41804`, `41806`, `41808`, `41809`, `41812`, `41814`, `41816`, `41818`, `41820`, `41822`, `41824`, `41826`, `41827`, `41828`, `41829`, `41831`, `41833`, `41835`, `41836`, `41837`, `41839`, `41842`, `41844`, `41845`, `41847`, `41848`, `41849`, `41851`, `41855`, `41856`, `41858`, `41859`, `41861`, `41863`, `41868`, `41870`, `41872`, `41874`, `41877`, `41879`, `41883`, `41885`, `41887`, `41889`, `41891`, `41894`, `41896`, `41899`, `41901`, `41902`, `41904`, `41905`, `41907`, `41909`, `41911`, `41913`, `41915`, `41917`, `41919`, `41921`, `41924`, `41925`, `41927`, `41928`, `41929`, `41931`, `41933`, `41935`, `41937`, `41939`, `41941`, `41943`, `41945`, `41947`, `41949`, `41950`, `41951`, `41953`, `41955`, `41957`, `41958`, `41960`, `41962`, `41966`, `41967`, `41969`, `41972`, `41974`, `41976`, `41978`, `41979`, `41981`, `41983`, `41984`, `41985`, `41986`, `41988`, `41990`, `41991`, `41992`, `41994`, `41996`, `41997`, `41998`, `42000`, `42002`, `42005`, `42007`, `42009`, `42012`, `42014`, `42016`, `42017`, `42019`, `42021`, `42023`, `42024`, `42027`, `42029`, `42030`, `42032`, `42033`, `42035`, `42037`, `42039`, `42040`, `42044`, `42047`, `42048`, `42050`, `42051`, `42054`, `42056`, `42058`, `42060`, `42061`, `42063`, `42064`, `42065`, `42066`, `42067`, `42068`, `42070`, `42072`, `42073`, `42075`, `42077`, `42079`, `42081`, `42082`, `42084`, `42086`, `42087`, `42088`, `42090`, `42092`, `42093`, `42095`, `42097`, `42099`, `42101`, `42102`, `42104`, `42105`, `42107`, `42109`, `42110`, `42112`, `42114`, `42116`, `42118`, `42119`, `42121`, `42123`, `42125`, `42128`, `42129`, `42131`, `42133`, `42135`, `42137`, `42138`, `42140`, `42142`, `42144`, `42145`, `42147`, `42148`, `42152`, `42155`, `42157`, `42160`, `42162`, `42164`, `42165`, `42166`, `42168`, `42170`, `42172`, `42174`, `42175`, `42177`, `42179`, `42181`, `42184`, `42186`, `42188`, `42190`, `42192`, `42195`, `42197`, `42202`, `42204`, `42206`, `42208`, `42209`, `42210`, `42211`, `42213`, `42214`, `42216`, `42218`, `42220`, `42221`, `42225`, `42226`, `42228`, `42229`, `42231`, `42232`, `42233`, `42235`, `42237`, `42239`, `42241`, `42245`, `42248`, `42250`, `42252`, `42254`, `42255`, `42256`, `42258`, `42260`, `42263`, `42265`, `42266`, `42268`, `42270`, `42271`, `42273`, `42275`, `42277`, `42279`, `42282`, `42283`, `42285`, `42287`, `42289`, `42290`, `42291`, `42293`, `42295`, `42298`, `42300`, `42302`, `42304`, `42306`, `42308`, `42310`, `42312`, `42314`, `42315`, `42317`, `42319`, `42321`, `42323`, `42325`, `42326`, `42328`, `42329`, `42333`, `42334`, `42338`, `42340`, `42341`, `42343`, `42346`, `42347`, `42349`, `42351`, `42353`, `42354`, `42356`, `42357`, `42359`, `42361`, `42363`, `42364`, `42365`, `42366`, `42368`, `42370`, `42371`, `42372`, `42374`, `42375`, `42377`, `42378`, `42384`, `42386`, `42388`, `42390`, `42391`, `42393`, `42395`, `42397`, `42399`, `42400`, `42401`, `42404`, `42406`, `42408`, `42411`, `42412`, `42414`, `42415`, `42419`, `42422`, `42425`, `42427`, `42428`, `42431`, `42433`, `42435`, `42436`, `42437`, `42439`, `42443`, `42445`, `42446`, `42448`, `42450`, `42452`, `42454`, `42455`, `42456`, `42458`, `42460`, `42462`, `42464`, `42466`, `42468`, `42469`, `42471`, `42473`, `42477`, `42479`, `42481`, `42484`, `42486`, `42488`, `42490`, `42492`, `42494`, `42495`, `42496`, `42497`, `42499`, `42501`, `42503`, `42505`, `42507`, `42509`, `42510`, `42512`, `42513`, `42515`, `42517`, `42519`, `42520`, `42521`, `42523`, `42525`, `42526`, `42528`, `42529`, `42531`, `42532`, `42534`, `42535`, `42538`, `42540`, `42542`, `42546`, `42548`, `42550`, `42553`, `42554`, `42557`, `42559`, `42561`, `42563`, `42564`, `42566`, `42568`, `42570`, `42572`, `42574`, `42576`, `42578`, `42581`, `42583`, `42585`, `42587`, `42588`, `42590`, `42591`, `42593`, `42594`, `42597`, `42598`, `42599`, `42601`, `42603`, `42604`, `42606`, `42607`, `42609`, `42612`, `42614`, `42615`, `42617`, `42619`, `42621`, `42623`, `42627`, `42629`, `42632`, `42635`, `42636`, `42637`, `42639`, `42641`, `42643`, `42645`, `42647`, `42649`, `42651`, `42653`, `42655`, `42657`, `42659`, `42661`, `42663`, `42665`, `42667`, `42669`, `42671`, `4891`, `42673`, `42675`, `42677`, `42679`, `42681`, `42683`, `42686`, `42688`, `42689`, `42690`, `42692`, `42694`, `42696`, `42699`, `42700`, `42701`, `42704`, `42706`, `42707`, `42709`, `42711`, `42713`, `42715`, `42716`, `42718`, `42720`, `42722`, `42724`, `42725`, `42727`, `42729`, `42731`, `42733`, `42735`, `42736`, `42738`, `42740`, `42742`, `42744`, `42746`, `42748`, `42749`, `42752`, `42753`, `42755`, `42756`, `42758`, `42759`, `42760`, `42762`, `42763`, `42764`, `42766`, `42768`, `42770`, `42771`, `42773`, `42777`, `42779`, `42780`, `42781`, `42783`, `42785`, `42787`, `42788`, `42790`, `42792`, `42793`, `42795`, `42797`, `42798`, `42799`, `42801`, `42803`, `42805`, `42807`, `42809`, `42810`, `42812`, `42814`, `42815`, `42817`, `42818`, `42819`, `42821`, `42822`, `42823`, `42825`, `42826`, `42828`, `42830`, `42832`, `42834`, `42835`, `42837`, `42838`, `42839`, `42840`, `42841`, `42843`, `42845`, `42850`, `42852`, `42853`, `42855`, `42856`, `42857`, `42858`, `42862`, `42866`, `42870`, `42872`, `42874`, `42876`, `42878`, `42879`, `42881`, `42882`, `42883`, `42885`, `42886`, `42888`, `42890`, `42892`, `42894`, `42898`, `42900`, `42901`, `42903`, `42905`, `42907`, `42909`, `42911`, `42912`, `42914`, `42917`, `42919`, `42920`, `42924`, `42926`, `42927`, `42929`, `42931`, `42933`, `42935`, `42937`, `42938`, `42940`, `42942`, `42944`, `42945`, `42947`, `42949`, `42951`, `42953`, `42955`, `42957`, `42958`, `42960`, `42962`, `42964`, `42965`, `42966`, `42968`, `42970`, `42971`, `42973`, `42975`, `42977`, `42980`, `42982`, `42983`, `42985`, `42987`, `42989`, `42991`, `42993`, `42994`, `42996`, `42998`, `43000`, `43003`, `43005`, `43006`, `43009`, `43011`, `43012`, `43014`, `43015`, `43016`, `43018`, `43020`, `43022`, `43024`, `43026`, `43027`, `43029`, `43033`, `43034`, `43036`, `43038`, `43039`, `43041`, `43043`, `43044`, `43045`, `43046`, `43048`, `43049`, `43051`, `43053`, `43055`, `43057`, `43059`, `43060`, `43062`, `43063`, `43065`, `43066`, `43068`, `43069`, `43070`, `43072`, `43073`, `43075`, `43076`, `43078`, `43079`, `43081`, `43083`, `43085`, `43086`, `43088`, `43089`, `43091`, `43092`, `43094`, `43096`, `43099`, `43102`, `43104`, `43107`, `43109`, `43112`, `43115`, `43119`, `43123`, `43125`, `43127`, `43129`, `43130`, `43132`, `43134`, `43137`, `43139`, `43140`, `43144`, `43146`, `43148`, `43150`, `43151`, `43153`, `43154`, `43156`, `43158`, `43159`, `43162`, `43164`, `43167`, `43168`, `43171`, `43173`, `43175`, `43176`, `43177`, `43179`, `43181`, `43183`, `43186`, `43188`, `43190`, `43192`, `43195`, `43196`, `43197`, `43199`, `43203`, `43204`, `43205`, `43207`, `43209`, `43211`, `43213`, `43215`, `43217`, `43220`, `43222`, `43224`, `43227`, `43229`, `43232`, `43233`, `43234`, `43236`, `43237`, `43239`, `43241`, `43242`, `43244`, `43246`, `43248`, `43249`, `43251`, `43253`, `43254`, `43255`, `43256`, `43258`, `43260`, `43262`, `43264`, `43267`, `43269`, `43272`, `43273`, `43274`, `43276`, `43278`, `43279`, `43280`, `43281`, `43283`, `43285`, `43287`, `43288`, `43289`, `43291`, `43293`, `43294`, `43296`, `43298`, `43299`, `43302`, `43304`, `43306`, `43308`, `43310`, `43312`, `43313`, `43315`, `43318`, `43320`, `43322`, `43324`, `43326`, `43328`, `43329`, `43331`, `43333`, `43334`, `43336`, `43338`, `43340`, `43342`, `43344`, `43347`, `43349`, `43351`, `43353`, `43355`, `43357`, `43358`, `43360`, `43362`, `43364`, `43366`, `43368`, `43370`, `43372`, `43374`, `43375`, `43376`, `43378`, `43380`, `43382`, `43383`, `43385`, `43387`, `43389`, `43390`, `43392`, `43393`, `43395`, `43397`, `43398`, `43400`, `43402`, `43403`, `43405`, `43407`, `43409`, `43411`, `43413`, `43415`, `43417`, `43419`, `43421`, `43423`, `43424`, `43426`, `43428`, `43430`, `43431`, `43432`, `43434`, `43435`, `43436`, `43437`, `43439`, `43441`, `43443`, `43445`, `43446`, `43448`, `43450`, `43452`, `43454`, `43456`, `43458`, `43459`, `43462`, `43464`, `43467`, `43469`, `43471`, `43473`, `43474`, `43476`, `43477`, `43478`, `43479`, `43481`, `43482`, `43484`, `43486`, `43488`, `43489`, `43490`, `43492`, `43493`, `43494`, `43495`, `43497`, `43499`, `43501`, `43502`, `43504`, `43505`, `43507`, `43510`, `43512`, `43514`, `43516`, `43518`, `43520`, `43522`, `43524`, `43526`, `43528`, `43530`, `43532`, `43534`, `43536`, `43539`, `43541`, `43545`, `43546`, `43548`, `43552`, `43554`, `43556`, `43558`, `43560`, `43564`, `43566`, `43569`, `43571`, `43572`, `43574`, `43576`, `43577`, `43578`, `43579`, `43581`, `43583`, `43585`, `43586`, `43588`, `43590`, `43592`, `43593`, `43595`, `43597`, `43600`, `43602`, `43603`, `43604`, `43606`, `43608`, `43610`, `43613`, `43614`, `43616`, `43618`, `43619`, `43621`, `43625`, `43626`, `43628`, `43630`, `43631`, `43633`, `43635`, `43637`, `43638`, `43641`, `43643`, `43644`, `43645`, `43646`, `43648`, `43649`, `43651`, `43653`, `43655`, `43657`, `43659`, `43660`, `43661`, `43662`, `43664`, `43666`, `43667`, `43669`, `43672`, `43674`, `43675`, `43677`, `43679`, `43680`, `43681`, `43682`, `43684`, `43685`, `43687`, `43689`, `43690`, `43692`, `43694`, `43696`, `43697`, `43699`, `43700`, `43701`, `43702`, `43704`, `43706`, `43708`, `43709`, `43710`, `43711`, `43712`, `43713`, `43715`, `43717`, `43719`, `43721`, `43723`, `43725`, `43727`, `43729`, `43730`, `43731`, `43733`, `43735`, `43737`, `43739`, `43740`, `43741`, `43742`, `43744`, `43746`, `43747`, `43749`, `43751`, `43752`, `43754`, `43756`, `43758`, `43759`, `43760`, `43762`, `43764`, `43765`, `43767`, `43769`, `43771`, `43772`, `43774`, `43776`, `43778`, `43780`, `43782`, `43784`, `43786`, `43788`, `43789`, `43791`, `43794`, `43796`, `43798`, `43799`, `43801`, `43803`, `43804`, `43805`, `43807`, `43808`, `43809`, `43811`, `43813`, `43815`, `43817`, `43819`, `43821`, `43822`, `43823`, `43824`, `43826`, `43828`, `43830`, `43831`, `43833`, `43835`, `43839`, `43841`, `43843`, `43845`, `43847`, `43849`, `43852`, `43854`, `43856`, `43857`, `43859`, `43860`, `43862`, `43863`, `43865`, `43866`, `43868`, `43870`, `43872`, `43874`, `43876`, `43878`, `43880`, `43882`, `43884`, `43886`, `43888`, `43890`, `43892`, `43894`, `43896`, `43897`, `43899`, `43901`, `43903`, `43905`, `43907`, `43909`, `43912`, `43915`, `43917`, `43919`, `43920`, `43922`, `43924`, `43926`, `43928`, `43929`, `43931`, `43932`, `43933`, `43934`, `43936`, `43938`, `43940`, `43941`, `43943`, `43945`, `43947`, `43949`, `43951`, `43953`, `43955`, `43959`, `43960`, `43962`, `43963`, `43965`, `291`, `43967`, `43969`, `43971`, `43972`, `43975`, `43976`, `43980`, `43982`, `43984`, `43986`, `43987`, `43988`, `43990`, `43991`, `43993`, `43995`, `43996`, `43997`, `43999`, `44001`, `44002`, `44004`, `44006`, `44008`, `44010`, `44012`, `44015`, `44016`, `44017`, `44018`, `44020`, `44022`, `44024`, `44026`, `44028`, `44030`, `44032`, `44034`, `44036`, `44038`, `44039`, `44040`, `44043`, `44045`, `44047`, `44049`, `44051`, `44052`, `44053`, `44056`, `44058`, `44061`, `44063`, `44065`, `44066`, `44067`, `44069`, `44071`, `44073`, `44075`, `44077`, `44079`, `44080`, `44081`, `44083`, `44085`, `44087`, `44089`, `44091`, `44092`, `44095`, `44097`, `44099`, `44101`, `44105`, `44107`, `44109`, `44111`, `44112`, `44116`, `44117`, `44118`, `44122`, `44124`, `44126`, `44128`, `44130`, `44132`, `44133`, `44135`, `44137`, `44139`, `44141`, `44143`, `44144`, `44147`, `44149`, `44150`, `44151`, `44154`, `44156`, `44157`, `44158`, `44159`, `44161`, `44163`, `44165`, `44168`, `44170`, `44172`, `44174`, `44176`, `44177`, `44178`, `44180`, `44182`, `44183`, `44185`, `44186`, `44188`, `44190`, `44192`, `44195`, `44197`, `44199`, `44201`, `44202`, `44205`, `44206`, `44207`, `44209`, `44211`, `44212`, `44213`, `44215`, `44217`, `44219`, `44222`, `44224`, `44226`, `44228`, `44230`, `44234`, `44238`, `44240`, `44242`, `44244`, `44246`, `44248`, `44249`, `44251`, `44254`, `44256`, `44258`, `44260`, `44262`, `44264`, `44265`, `44266`, `44269`, `44271`, `44274`, `44276`, `44278`, `44280`, `44282`, `44283`, `44285`, `44287`, `44289`, `44291`, `44293`, `44295`, `44297`, `44299`, `44301`, `44303`, `44304`, `44306`, `44307`, `44308`, `44310`, `44312`, `44314`, `44316`, `44318`, `44320`, `44324`, `44326`, `44327`, `44329`, `44331`, `44332`, `44335`, `44337`, `44339`, `44341`, `44342`, `44345`, `44347`, `44349`, `44351`, `44352`, `44354`, `44355`, `44357`, `44358`, `44360`, `44361`, `44364`, `44365`, `44366`, `44367`, `44369`, `44371`, `44373`, `44375`, `44378`, `44380`, `44382`, `44384`, `44386`, `44388`, `44390`, `44392`, `44394`, `44396`, `44399`, `44401`, `44404`, `44406`, `44407`, `44409`, `44410`, `44411`, `44413`, `44416`, `44417`, `44419`, `44420`, `44422`, `44425`, `44426`, `44428`, `44429`, `44431`, `44432`, `44435`, `44436`, `44437`, `44440`, `44442`, `44447`, `44448`, `44450`, `44451`, `44452`, `44453`, `44458`, `44460`, `44462`, `44465`, `44466`, `44467`, `44468`, `44470`, `44472`, `44474`, `44476`, `44478`, `44479`, `44480`, `44483`, `44485`, `44487`, `44489`, `44490`, `44492`, `44494`, `44496`, `44498`, `44500`, `44502`, `44504`, `44505`, `44508`, `44510`, `44512`, `44514`, `44515`, `44517`, `44519`, `44523`, `44524`, `44526`, `44528`, `44530`, `44531`, `44533`, `44535`, `44536`, `44538`, `44540`, `44542`, `44544`, `44546`, `44548`, `44550`, `44551`, `44553`, `44554`, `44556`, `44558`, `44560`, `44561`, `44562`, `44563`, `44565`, `44566`, `44568`, `44570`, `44572`, `44574`, `44576`, `44578`, `44580`, `44582`, `44584`, `44586`, `44587`, `44590`, `44592`, `44594`, `44596`, `44598`, `44601`, `44602`, `44604`, `44605`, `44607`, `44611`, `44613`, `44615`, `44618`, `44619`, `44620`, `44622`, `44623`, `44625`, `44627`, `44631`, `44633`, `44635`, `44637`, `44638`, `44640`, `44644`, `44646`, `44648`, `44650`, `44652`, `44654`, `44655`, `44657`, `44658`, `44660`, `44661`, `44662`, `44664`, `44666`, `44667`, `44669`, `44670`, `44672`, `44673`, `44674`, `44676`, `44680`, `44682`, `44684`, `44686`, `44688`, `44690`, `44691`, `44692`, `44694`, `44695`, `44697`, `44699`, `44700`, `44701`, `44703`, `44705`, `44707`, `44710`, `44712`, `44714`, `44716`, `44718`, `44720`, `44722`, `44725`, `44727`, `44729`, `44730`, `44731`, `44732`, `44733`, `44735`, `44737`, `44739`, `44740`, `44741`, `44743`, `44744`, `44746`, `44748`, `44750`, `44752`, `44753`, `44754`, `44755`, `44757`, `44758`, `44760`, `44762`, `44764`, `44766`, `44767`, `44768`, `44771`, `44773`, `44775`, `44778`, `44780`, `44783`, `44785`, `44786`, `44788`, `44790`, `44792`, `44794`, `44795`, `44797`, `44798`, `44800`, `44802`, `44804`, `44806`, `44808`, `44809`, `44811`, `44813`, `44815`, `44817`, `44818`, `44820`, `44822`, `44826`, `44827`, `44829`, `44831`, `44833`, `44834`, `44836`, `44837`, `44839`, `44841`, `44843`, `44844`, `44845`, `44847`, `44849`, `44851`, `44853`, `44855`, `44857`, `44858`, `44860`, `44862`, `44863`, `44865`, `44867`, `44869`, `44871`, `44873`, `44875`, `44877`, `44879`, `44881`, `44883`, `44884`, `44886`, `44887`, `44889`, `44890`, `44892`, `44893`, `44896`, `44898`, `44900`, `44902`, `44904`, `44906`, `44907`, `44908`, `44909`, `44911`, `44913`, `44914`, `44916`, `44918`, `44920`, `44922`, `44924`, `44928`, `44930`, `44932`, `44934`, `44935`, `44939`, `44941`, `44943`, `44946`, `44948`, `44950`, `44951`, `44953`, `44956`, `44957`, `44959`, `44960`, `44962`, `44964`, `44966`, `44968`, `44970`, `44972`, `44973`, `44975`, `44977`, `44979`, `44981`, `44982`, `44983`, `44984`, `44986`, `44988`, `44989`, `44991`, `44992`, `44994`, `44996`, `44998`, `45000`, `45001`, `45002`, `45004`, `45006`, `45007`, `45009`, `45011`, `45012`, `45014`, `45016`, `45018`, `45020`, `45021`, `45022`, `45023`, `45026`, `45027`, `45029`, `45031`, `45032`, `45034`, `45037`, `45039`, `45040`, `45042`, `45044`, `45045`, `45047`, `45048`, `45050`, `45051`, `45053`, `45055`, `45056`, `45057`, `45059`, `45060`, `45062`, `45064`, `45066`, `45068`, `45069`, `45070`, `45072`, `45074`, `45076`, `45078`, `45080`, `45082`, `45084`, `45086`, `45087`, `45089`, `45091`, `45093`, `45095`, `45097`, `45099`, `45100`, `45102`, `45104`, `45106`, `45107`, `45108`, `45109`, `45110`, `45111`, `45113`, `45114`, `45116`, `45118`, `45120`, `45121`, `45123`, `45125`, `45127`, `45128`, `45130`, `45136`, `45139`, `45140`, `45141`, `45142`, `45145`, `45147`, `45149`, `45150`, `45152`, `45154`, `45157`, `45159`, `45160`, `45161`, `45163`, `45165`, `45166`, `45168`, `45170`, `45172`, `45174`, `45177`, `45179`, `45181`, `45182`, `45184`, `45186`, `45188`, `45190`, `45192`, `45193`, `45194`, `45197`, `45200`, `45203`, `45205`, `45207`, `45209`, `45213`, `45214`, `45216`, `45218`, `45220`, `45223`, `45225`, `45227`, `45229`, `45231`, `45233`, `45236`, `45237`, `45239`, `45241`, `45243`, `45245`, `45247`, `45252`, `45254`, `45257`, `45259`, `45260`, `45262`, `45263`, `45264`, `45267`, `45268`, `45269`, `45271`, `45273`, `45275`, `45277`, `45280`, `45282`, `45283`, `45284`, `45285`, `45287`, `45289`, `45291`, `45292`, `45294`, `45296`, `45297`, `45299`, `45301`, `45303`, `45306`, `45308`, `45309`, `45310`, `45311`, `45313`, `45315`, `45317`, `45319`, `45320`, `45322`, `45324`, `45326`, `45328`, `45329`, `45330`, `45332`, `45334`, `45335`, `45336`, `45337`, `45338`, `45340`, `45342`, `45344`, `45347`, `45349`, `45350`, `45352`, `45354`, `45355`, `45357`, `45360`, `45361`, `45364`, `45366`, `45367`, `45370`, `45372`, `45374`, `45375`, `45377`, `45379`, `45381`, `45383`, `45384`, `45386`, `45388`, `45391`, `45393`, `45394`, `45396`, `45398`, `45400`, `45401`, `45403`, `45405`, `45406`, `45408`, `45410`, `45411`, `45413`, `45415`, `45417`, `45418`, `45419`, `45421`, `45422`, `45423`, `45424`, `45426`, `45428`, `45429`, `45430`, `45432`, `45434`, `45437`, `45439`, `45441`, `45442`, `45444`, `45445`, `45447`, `45448`, `45450`, `45452`, `45456`, `45457`, `45459`, `45461`, `45463`, `45465`, `45467`, `45469`, `45474`, `45476`, `45478`, `45479`, `45480`, `45482`, `45484`, `45486`, `45488`, `45489`, `45491`, `45492`, `45493`, `45494`, `45497`, `45499`, `45500`, `45502`, `45503`, `45505`, `45506`, `45509`, `45510`, `45512`, `45514`, `45516`, `45518`, `45520`, `45522`, `45524`, `45525`, `45527`, `45529`, `45531`, `45532`, `45535`, `45537`, `45539`, `45541`, `45543`, `45545`, `45546`, `45548`, `45549`, `45551`, `45553`, `45555`, `45556`, `45558`, `45560`, `45562`, `45564`, `45567`, `45569`, `45570`, `45572`, `45575`, `45578`, `45580`, `45582`, `45584`, `45585`, `45587`, `45589`, `45591`, `45593`, `45595`, `45597`, `45599`, `45601`, `45603`, `45604`, `45605`, `45606`, `45608`, `45609`, `45610`, `45611`, `45612`, `45613`, `45614`, `45615`, `45616`, `45618`, `45620`, `45621`, `45623`, `45625`, `45628`, `45630`, `45631`, `45633`, `45635`, `45637`, `45639`, `45641`, `45643`, `45645`, `45647`, `45649`, `45651`, `45652`, `45655`, `45656`, `45657`, `45659`, `45660`, `45662`, `45664`, `45666`, `45668`, `45670`, `45671`, `45673`, `45675`, `45677`, `45678`, `45679`, `45680`, `45681`, `45684`, `45685`, `45687`, `45689`, `45690`, `45692`, `45694`, `45696`, `45697`, `45699`, `45700`, `45703`, `45705`, `45707`, `45709`, `45711`, `45713`, `45715`, `45717`, `45718`, `45719`, `45720`, `45722`, `45726`, `45728`, `45730`, `45733`, `45734`, `45736`, `45738`, `45740`, `45742`, `45744`, `45746`, `45748`, `45749`, `45751`, `45752`, `45754`, `45755`, `45757`, `45759`, `45761`, `45763`, `45764`, `45766`, `45767`, `45769`, `45772`, `45775`, `45777`, `45779`, `45782`, `45784`, `45786`, `45788`, `45790`, `45792`, `45793`, `45795`, `45797`, `45798`, `45799`, `45800`, `45802`, `45803`, `45805`, `45806`, `45807`, `45809`, `45811`, `45812`, `45814`, `45816`, `45817`, `45819`, `45820`, `45822`, `45824`, `45825`, `45827`, `45828`, `45829`, `45831`, `45833`, `45834`, `45837`, `45838`, `45842`, `45844`, `45845`, `45847`, `45848`, `45850`, `45852`, `45854`, `45856`, `45858`, `45860`, `45862`, `45864`, `45868`, `45869`, `45873`, `45875`, `45877`, `45878`, `45879`, `45881`, `45883`, `45884`, `45890`, `45891`, `45893`, `45895`, `45896`, `45898`, `45900`, `45902`, `45904`, `45906`, `45908`, `45910`, `45912`, `45914`, `45916`, `45918`, `45920`, `45922`, `45923`, `45925`, `45926`, `45928`, `45930`, `45931`, `45933`, `45935`, `45937`, `45940`, `45941`, `45943`, `45945`, `45947`, `45950`, `45951`, `45952`, `45953`, `45955`, `45956`, `45958`, `45959`, `45960`, `45962`, `45963`, `45965`, `45969`, `45970`, `45972`, `45974`, `45976`, `45979`, `45981`, `45983`, `45984`, `45985`, `45986`, `45988`, `45990`, `45993`, `45994`, `45995`, `45997`, `45998`, `46000`, `46002`, `46004`, `46006`, `46007`, `46009`, `46011`, `46013`, `46014`, `46015`, `46017`, `46019`, `46020`, `46022`, `46024`, `46025`, `46027`, `46028`, `46030`, `46031`, `46032`, `46034`, `46036`, `46037`, `46038`, `46040`, `46042`, `46044`, `46045`, `46047`, `46049`, `46051`, `46053`, `46057`, `46058`, `46060`, `46062`, `46065`, `46067`, `46069`, `46070`, `46072`, `46074`, `46076`, `46078`, `46080`, `46081`, `46082`, `46086`, `46087`, `46089`, `46090`, `46091`, `46092`, `46093`, `46095`, `46097`, `46099`, `46101`, `46103`, `46105`, `46107`, `46109`, `46111`, `46112`, `46114`, `46115`, `46117`, `46118`, `46119`, `46121`, `46122`, `46124`, `46127`, `46129`, `46130`, `46132`, `46134`, `46137`, `46139`, `46141`, `46143`, `46144`, `46146`, `46148`, `46153`, `46154`, `46155`, `46156`, `46157`, `46159`, `46160`, `46162`, `46164`, `46166`, `46167`, `46168`, `46169`, `46171`, `46173`, `46174`, `46176`, `46178`, `46181`, `46183`, `46185`, `46188`, `46190`, `46192`, `46193`, `46194`, `46196`, `46197`, `46199`, `46201`, `46205`, `46207`, `46208`, `46209`, `46212`, `46214`, `46216`, `46218`, `46220`, `46221`, `46223`, `46224`, `46225`, `46227`, `46229`, `46231`, `46232`, `46233`, `46235`, `46237`, `46239`, `46241`, `46243`, `46244`, `46246`, `46248`, `46250`, `46252`, `46254`, `46256`, `46258`, `46260`, `46261`, `46262`, `46263`, `46265`, `46267`, `46268`, `46270`, `46272`, `46274`, `46275`, `46276`, `46278`, `46280`, `46282`, `46284`, `46286`, `46287`, `46289`, `46291`, `46292`, `46293`, `46295`, `46298`, `46301`, `46303`, `46305`, `46307`, `46309`, `46310`, `46312`, `46314`, `46317`, `46318`, `46319`, `46321`, `46322`, `46324`, `46326`, `46329`, `46331`, `46333`, `46335`, `46336`, `46338`, `46342`, `46343`, `46345`, `46347`, `46349`, `46352`, `46354`, `46355`, `46357`, `46359`, `46360`, `46361`, `46363`, `46364`, `46365`, `46367`, `46369`, `46370`, `46372`, `46375`, `46377`, `46379`, `46381`, `46383`, `46384`, `46386`, `46388`, `46389`, `46391`, `46393`, `46395`, `46396`, `46398`, `46400`, `46401`, `46402`, `46404`, `46406`, `46407`, `46408`, `46410`, `46412`, `46414`, `46415`, `46417`, `46419`, `46421`, `46423`, `46424`, `46426`, `46428`, `46431`, `46433`, `46435`, `46437`, `46440`, `46442`, `46444`, `46446`, `46448`, `46450`, `46451`, `46454`, `46456`, `46458`, `46459`, `46460`, `46462`, `46464`, `46465`, `46467`, `46469`, `46470`, `46472`, `46475`, `46477`, `46479`, `46483`, `46484`, `46485`, `46486`, `46487`, `46489`, `46491`, `46492`, `46493`, `46495`, `46496`, `46497`, `46499`, `46501`, `46503`, `46504`, `46505`, `46506`, `46508`, `46510`, `46511`, `46512`, `46514`, `46515`, `46517`, `46519`, `46520`, `46522`, `46524`, `46526`, `46528`, `46529`, `46530`, `46533`, `46537`, `46538`, `46539`, `46541`, `46543`, `46545`, `46547`, `46549`, `46552`, `46555`, `46556`, `46557`, `46558`, `46559`, `46560`, `46562`, `46564`, `46567`, `46569`, `46571`, `46573`, `46575`, `46577`, `46578`, `46580`, `46581`, `46582`, `46583`, `46584`, `46588`, `46589`, `46590`, `46592`, `46594`, `46596`, `46598`, `46601`, `46603`, `46604`, `46605`, `46607`, `46608`, `46611`, `46614`, `46618`, `46620`, `46623`, `46625`, `46627`, `46628`, `46629`, `46631`, `46632`, `46634`, `46635`, `46636`, `46638`, `46640`, `46642`, `46643`, `46645`, `46647`, `46650`, `46653`, `46655`, `46657`, `46659`, `46661`, `46662`, `46663`, `46665`, `46666`, `46669`, `46670`, `46671`, `46672`, `46673`, `46674`, `46675`, `46676`, `46678`, `46680`, `46682`, `46683`, `46685`, `46687`, `46689`, `46691`, `46693`, `46695`, `46696`, `46698`, `46700`, `46701`, `46703`, `46705`, `46707`, `46708`, `46711`, `46712`, `46714`, `46716`, `46718`, `46719`, `46720`, `46722`, `46723`, `46724`, `46726`, `46728`, `46729`, `46731`, `46733`, `46735`, `46736`, `46738`, `46740`, `46742`, `46745`, `46747`, `46748`, `46749`, `46750`, `46752`, `46754`, `46755`, `46757`, `46758`, `46759`, `46761`, `46763`, `46764`, `46765`, `46767`, `46769`, `46771`, `46773`, `46775`, `46777`, `46779`, `46781`, `46785`, `46786`, `46788`, `46790`, `46792`, `46794`, `46796`, `46798`, `46800`, `46801`, `46803`, `46805`, `46807`, `46809`, `46811`, `46813`, `46815`, `46817`, `46819`, `46820`, `46822`, `46824`, `46826`, `46828`, `46830`, `46831`, `46834`, `46836`, `46838`, `46839`, `46840`, `46843`, `46845`, `46847`, `46849`, `46850`, `46852`, `46853`, `46854`, `46856`, `46858`, `46860`, `46862`, `46864`, `46866`, `46868`, `46869`, `46870`, `46871`, `46874`, `46876`, `46877`, `46879`, `46883`, `46885`, `46889`, `46891`, `46893`, `46895`, `46897`, `46899`, `46901`, `46903`, `46905`, `46907`, `46908`, `46910`, `46912`, `46914`, `46915`, `46916`, `46918`, `46920`, `46921`, `46923`, `46925`, `46927`, `46928`, `46930`, `46931`, `46932`, `46933`, `46934`, `46936`, `46938`, `46940`, `46942`, `46944`, `46946`, `46947`, `46949`, `46950`, `46952`, `46954`, `46956`, `46958`, `46960`, `46961`, `46962`, `46963`, `46964`, `46966`, `46968`, `46969`, `46971`, `46972`, `46973`, `46975`, `46977`, `46979`, `46981`, `46983`, `46985`, `46986`, `46988`, `46990`, `46992`, `46994`, `46996`, `46997`, `47000`, `47001`, `47003`, `47005`, `47006`, `47008`, `47011`, `47012`, `47013`, `47014`, `47017`, `47020`, `47024`, `47025`, `47027`, `47029`, `47030`, `47032`, `47033`, `47034`, `47036`, `47037`, `47039`, `47040`, `47042`, `47043`, `47044`, `47046`, `47048`, `47051`, `47053`, `47055`, `47057`, `47059`, `47061`, `47063`, `47064`, `47066`, `47068`, `47070`, `47072`, `47074`, `47077`, `47078`, `47080`, `47081`, `47082`, `47084`, `47085`, `47087`, `47089`, `47091`, `47093`, `47094`, `47099`, `47101`, `47102`, `47104`, `47106`, `47107`, `47109`, `47111`, `47113`, `47115`, `47117`, `47118`, `47120`, `47122`, `47124`, `47126`, `47127`, `47129`, `47130`, `47132`, `47133`, `47136`, `47138`, `47140`, `47141`, `47142`, `47143`, `47145`, `47147`, `47149`, `47151`, `47153`, `47154`, `47155`, `47156`, `47158`, `47160`, `47161`, `47163`, `47165`, `47167`, `47168`, `47169`, `47171`, `47172`, `47176`, `47177`, `47178`, `47180`, `47182`, `47184`, `47186`, `47188`, `47190`, `47191`, `47192`, `47193`, `47196`, `47198`, `47199`, `47201`, `47202`, `47204`, `47208`, `47209`, `47211`, `47213`, `47215`, `47217`, `47219`, `47220`, `47222`, `47224`, `47226`, `47228`, `47230`, `47231`, `47233`, `47235`, `47236`, `47238`, `47240`, `47242`, `47244`, `47246`, `47248`, `47249`, `47251`, `47253`, `47257`, `47259`, `47261`, `47262`, `47264`, `47265`, `47266`, `47268`, `47271`, `47273`, `47275`, `47277`, `47279`, `47282`, `47284`, `47286`, `47288`, `47289`, `47290`, `47292`, `47294`, `47296`, `47298`, `47300`, `47302`, `47305`, `47307`, `47309`, `47311`, `47312`, `47313`, `47314`, `47315`, `47316`, `47318`, `47320`, `47321`, `47323`, `47325`, `47326`, `47328`, `47330`, `47332`, `47333`, `47335`, `47337`, `47339`, `47340`, `47341`, `47343`, `47345`, `47346`, `47348`, `47350`, `47352`, `47354`, `47356`, `47358`, `47360`, `47361`, `47363`, `47365`, `47367`, `47369`, `47371`, `47372`, `47378`, `47380`, `47382`, `47384`, `47386`, `47388`, `47390`, `47391`, `47393`, `47395`, `47397`, `47399`, `47402`, `47404`, `47406`, `47408`, `47409`, `47410`, `47411`, `47412`, `47414`, `47416`, `47418`, `47420`, `47421`, `47423`, `47424`, `47426`, `47428`, `47430`, `47431`, `47433`, `47435`, `47437`, `47438`, `47439`, `47441`, `47444`, `47445`, `47447`, `47449`, `47451`, `47453`, `47454`, `47456`, `47457`, `47459`, `47461`, `47463`, `47465`, `47467`, `47468`, `47470`, `47472`, `47474`, `47476`, `47477`, `47479`, `47481`, `47483`, `47485`, `47487`, `47489`, `47491`, `47493`, `47494`, `47496`, `47498`, `47500`, `47501`, `47503`, `47505`, `47507`, `47511`, `47513`, `47515`, `47517`, `47518`, `47520`, `47521`, `47523`, `47525`, `47527`, `47529`, `47530`, `47532`, `47536`, `47538`, `47543`, `47544`, `47546`, `47549`, `47550`, `47551`, `47553`, `47555`, `47557`, `47559`, `47561`, `47563`, `47564`, `47566`, `47567`, `47569`, `47573`, `47574`, `47576`, `47579`, `47580`, `47582`, `47584`, `47586`, `47587`, `47592`, `47594`, `47596`, `47598`, `47600`, `47601`, `47603`, `47605`, `47607`, `47608`, `47609`, `47611`, `47613`, `47615`, `47617`, `47619`, `47620`, `47622`, `47624`, `47626`, `47627`, `47629`, `47631`, `47633`, `47636`, `47639`, `47641`, `47645`, `47647`, `47649`, `47650`, `47655`, `47657`, `47660`, `47662`, `47663`, `47665`, `47666`, `47668`, `47669`, `47674`, `47676`, `47678`, `47680`, `47682`, `47684`, `47687`, `47688`, `47689`, `47691`, `47692`, `47693`, `47695`, `47696`, `47698`, `47700`, `47701`, `47703`, `47704`, `47706`, `47708`, `47710`, `47712`, `47714`, `47715`, `47716`, `47717`, `47718`, `47721`, `47722`, `47724`, `47725`, `47727`, `47728`, `47729`, `47731`, `47733`, `47734`, `47735`, `47737`, `47739`, `47740`, `47742`, `47744`, `47745`, `47746`, `47748`, `47749`, `47751`, `47753`, `47756`, `47758`, `47759`, `47760`, `47762`, `47765`, `47766`, `47768`, `47769`, `47773`, `47775`, `47777`, `47779`, `47780`, `47781`, `47783`, `47785`, `47786`, `47789`, `47791`, `47794`, `47795`, `47797`, `47798`, `47800`, `47803`, `47805`, `47807`, `47809`, `47811`, `47813`, `47814`, `47816`, `47818`, `47819`, `47821`, `47824`, `47826`, `47828`, `47830`, `47832`, `47833`, `47835`, `47837`, `47839`, `47841`, `47843`, `47844`, `47846`, `47848`, `47850`, `47852`, `47854`, `47856`, `47859`, `47861`, `47863`, `47864`, `47866`, `47868`, `47871`, `47873`, `47875`, `47877`, `47879`, `47880`, `47881`, `47883`, `47885`, `47886`, `47887`, `47889`, `47892`, `47894`, `47895`, `47897`, `47898`, `47900`, `47904`, `47906`, `47908`, `47909`, `47910`, `47912`, `47913`, `47917`, `47919`, `47920`, `47921`, `47923`, `47925`, `47927`, `47928`, `47930`, `47931`, `47933`, `47935`, `47937`, `47938`, `47940`, `47941`, `47942`, `47943`, `47945`, `47946`, `47948`, `47950`, `47951`, `47952`, `47956`, `47958`, `47960`, `47962`, `47964`, `47966`, `47968`, `47970`, `47972`, `47975`, `47977`, `47979`, `47981`, `47983`, `47985`, `47986`, `47987`, `47989`, `47990`, `47992`, `47994`, `47996`, `47998`, `47999`, `48001`, `48003`, `48005`, `48007`, `48009`, `48011`, `48013`, `48015`, `48016`, `48018`, `48020`, `48022`, `48024`, `48026`, `48028`, `48029`, `48031`, `48033`, `48034`, `48036`, `48038`, `48041`, `48043`, `48044`, `48045`, `48047`, `48049`, `48051`, `48053`, `48054`, `48055`, `48056`, `48058`, `48060`, `48062`, `48064`, `48066`, `48068`, `48070`, `48071`, `48073`, `48075`, `48077`, `48078`, `48080`, `48082`, `48085`, `48087`, `48089`, `48091`, `48093`, `48094`, `48095`, `48097`, `48099`, `48100`, `48101`, `48103`, `48105`, `48106`, `48108`, `48110`, `48112`, `48113`, `48116`, `48117`, `48119`, `48120`, `48122`, `48124`, `48126`, `48128`, `48129`, `48131`, `48132`, `48133`, `48134`, `48136`, `48137`, `48139`, `48142`, `48144`, `48146`, `48148`, `48150`, `48152`, `48154`, `48155`, `48157`, `48158`, `48159`, `48161`, `48163`, `48164`, `48165`, `48166`, `48168`, `48169`, `48171`, `48172`, `48174`, `48176`, `48180`, `48182`, `48184`, `48186`, `48188`, `48190`, `48192`, `48194`, `48195`, `48197`, `48199`, `48200`, `48201`, `48203`, `48205`, `48207`, `48209`, `48211`, `48213`, `48215`, `48216`, `48219`, `48221`, `48223`, `48224`, `48226`, `48228`, `48230`, `48234`, `48236`, `48238`, `48239`, `48241`, `48242`, `48243`, `48245`, `48247`, `48249`, `48251`, `48253`, `48255`, `48257`, `48259`, `48261`, `48263`, `48265`, `48266`, `48269`, `48271`, `48272`, `48274`, `48275`, `48276`, `48278`, `48279`, `48280`, `48281`, `48282`, `48284`, `48286`, `48288`, `48289`, `48291`, `48293`, `48294`, `48295`, `48298`, `48300`, `48302`, `48304`, `48306`, `48311`, `48312`, `48313`, `48315`, `48317`, `48319`, `48320`, `48322`, `48324`, `48326`, `48328`, `48330`, `48332`, `48334`, `48335`, `48337`, `48340`, `48342`, `48344`, `48346`, `48347`, `48349`, `48351`, `48353`, `48355`, `48360`, `48363`, `48364`, `48365`, `48367`, `48369`, `48371`, `48372`, `48374`, `48375`, `48376`, `48379`, `48381`, `48383`, `48384`, `48386`, `48388`, `48390`, `48391`, `48393`, `48395`, `48397`, `48399`, `48402`, `48404`, `48406`, `48408`, `48410`, `48411`, `48413`, `48415`, `48417`, `48419`, `48421`, `48423`, `48425`, `48426`, `48427`, `48429`, `48430`, `48432`, `48433`, `48434`, `48435`, `48436`, `48437`, `48441`, `48443`, `48445`, `48446`, `48448`, `48450`, `48451`, `48453`, `48455`, `48457`, `48459`, `48461`, `48462`, `48464`, `48466`, `48468`, `48470`, `48472`, `48473`, `48475`, `48476`, `48478`, `48480`, `48481`, `48482`, `48483`, `48485`, `48487`, `48489`, `48490`, `48492`, `48493`, `48494`, `48495`, `48496`, `48498`, `48499`, `48501`, `48503`, `48505`, `48507`, `48508`, `48510`, `48511`, `48513`, `48515`, `48517`, `48519`, `48521`, `48522`, `48524`, `48526`, `48528`, `48530`, `48532`, `48533`, `48535`, `48537`, `48539`, `48541`, `48543`, `48545`, `48547`, `48548`, `48549`, `48551`, `48553`, `48557`, `48559`, `48561`, `48563`, `48565`, `48567`, `48569`, `48571`, `48572`, `48573`, `48575`, `48576`, `48578`, `48579`, `48581`, `48583`, `48584`, `48587`, `48589`, `48590`, `48592`, `48593`, `48594`, `48596`, `48599`, `48601`, `48603`, `48605`, `48607`, `48609`, `48611`, `48614`, `48617`, `48618`, `48621`, `48623`, `48625`, `48628`, `48629`, `48630`, `48631`, `48633`, `48635`, `48637`, `48639`, `48640`, `48642`, `48643`, `48645`, `48647`, `48649`, `48652`, `48654`, `48656`, `48659`, `48661`, `48662`, `48663`, `48665`, `48666`, `48668`, `48670`, `48672`, `48674`, `48675`, `48676`, `48683`, `48684`, `48686`, `48688`, `48689`, `48691`, `48693`, `48694`, `48696`, `48698`, `48699`, `48701`, `48703`, `48705`, `48707`, `48709`, `48710`, `48711`, `48712`, `48713`, `48714`, `48715`, `48716`, `48717`, `48718`, `48720`, `48721`, `48723`, `48725`, `48727`, `48729`, `48731`, `48734`, `48736`, `48737`, `48739`, `48740`, `48743`, `48745`, `48747`, `48749`, `48750`, `48751`, `48753`, `48754`, `48757`, `48759`, `48761`, `48764`, `48766`, `48768`, `48770`, `48772`, `48774`, `48776`, `48778`, `48779`, `48780`, `48782`, `48784`, `48786`, `48788`, `48790`, `48792`, `48793`, `48795`, `48796`, `48798`, `48800`, `48801`, `48803`, `48805`, `48806`, `48808`, `48810`, `48811`, `48812`, `48813`, `48814`, `48816`, `48818`, `48820`, `48822`, `48824`, `48825`, `48828`, `48830`, `48832`, `48834`, `48835`, `48837`, `48840`, `48842`, `48845`, `48847`, `48848`, `48850`, `48853`, `48855`, `48857`, `48858`, `48860`, `48862`, `48864`, `48866`, `48868`, `48869`, `48871`, `48873`, `48874`, `48875`, `48877`, `48879`, `48881`, `48883`, `48885`, `48887`, `48889`, `48891`, `48893`, `48895`, `48896`, `48900`, `48901`, `48903`, `48905`, `48907`, `48909`, `48911`, `48912`, `48914`, `48915`, `48917`, `48918`, `48920`, `48922`, `48923`, `48925`, `48927`, `48928`, `48930`, `48931`, `48932`, `48933`, `48934`, `48935`, `48936`, `48938`, `48940`, `48941`, `48943`, `48945`, `48947`, `48949`, `48950`, `48952`, `48954`, `48955`, `48957`, `48959`, `48962`, `48964`, `48965`, `48966`, `48968`, `48970`, `48971`, `48972`, `48974`, `48976`, `48977`, `48978`, `48980`, `48982`, `48984`, `48985`, `48987`, `48988`, `48992`, `48994`, `48996`, `48998`, `48999`, `49002`, `49004`, `49006`, `49007`, `49009`, `49011`, `49012`, `49013`, `49014`, `49015`, `49016`, `49018`, `49020`, `49022`, `49024`, `49025`, `49027`, `49028`, `49029`, `49030`, `49031`, `49033`, `49034`, `49035`, `49036`, `49039`, `49040`, `49042`, `49044`, `49046`, `49047`, `49049`, `49052`, `49054`, `49056`, `49058`, `49060`, `49061`, `49062`, `49063`, `49065`, `49067`, `49068`, `49070`, `49072`, `49073`, `49075`, `49077`, `49079`, `49081`, `49083`, `49085`, `49087`, `49094`, `49095`, `49096`, `49099`, `49101`, `49102`, `49104`, `49108`, `49111`, `49113`, `49115`, `49118`, `49120`, `49123`, `49124`, `49125`, `49126`, `49128`, `49130`, `49131`, `49132`, `49134`, `49136`, `49137`, `49139`, `49141`, `49143`, `49145`, `49147`, `49149`, `49151`, `49153`, `49155`, `49156`, `49158`, `49160`, `49162`, `49163`, `49164`, `49167`, `49169`, `49171`, `49173`, `49175`, `49177`, `49179`, `49181`, `49183`, `49186`, `49188`, `49190`, `49195`, `49196`, `49199`, `49201`, `49202`, `49203`, `49205`, `49211`, `49213`, `49215`, `49217`, `49220`, `49222`, `49223`, `49225`, `49226`, `49227`, `49229`, `49230`, `49232`, `49234`, `49236`, `49238`, `49239`, `49240`, `49242`, `49245`, `49246`, `49248`, `49249`, `49252`, `49254`, `49256`, `49257`, `49258`, `49260`, `49262`, `49264`, `49266`, `49267`, `49269`, `49271`, `49273`, `49274`, `49276`, `49278`, `49279`, `49281`, `49283`, `49285`, `49287`, `49290`, `49292`, `49293`, `49295`, `49297`, `49299`, `49301`, `49303`, `49305`, `49308`, `49311`, `49312`, `49313`, `49315`, `49317`, `49319`, `49321`, `49322`, `49323`, `49324`, `49326`, `49328`, `49330`, `49332`, `49333`, `49335`, `49340`, `49341`, `49343`, `49345`, `49347`, `49349`, `49351`, `49354`, `49356`, `49357`, `49360`, `49362`, `49363`, `49364`, `49366`, `49367`, `49368`, `49370`, `49371`, `49372`, `49374`, `49376`, `49378`, `49379`, `49380`, `49381`, `49382`, `49383`, `49384`, `49387`, `49388`, `49390`, `49392`, `49394`, `49396`, `49397`, `49398`, `49399`, `49400`, `49401`, `49403`, `49405`, `49408`, `49410`, `49412`, `49414`, `49415`, `49417`, `49419`, `49421`, `49423`, `49425`, `49427`, `49428`, `49430`, `49431`, `49433`, `49435`, `49437`, `49438`, `49440`, `49442`, `49444`, `49446`, `49448`, `49449`, `49451`, `49452`, `49454`, `49456`, `49458`, `49461`, `49462`, `49463`, `49464`, `49465`, `49467`, `49468`, `49470`, `49474`, `49475`, `49477`, `49479`, `49480`, `49482`, `49484`, `49486`, `49488`, `49490`, `49492`, `49494`, `49496`, `49498`, `49499`, `49501`, `49503`, `49505`, `49507`, `49508`, `49510`, `49512`, `49514`, `49515`, `49516`, `49518`, `49520`, `49521`, `49522`, `49524`, `49525`, `49526`, `49527`, `49528`, `49530`, `49532`, `49533`, `49534`, `49536`, `49537`, `49538`, `49539`, `49541`, `49542`, `49543`, `49544`, `49546`, `49547`, `49549`, `49550`, `49551`, `49553`, `49555`, `49556`, `49558`, `49559`, `49560`, `49562`, `49564`, `49565`, `49567`, `49570`, `49571`, `49573`, `49575`, `49576`, `49578`, `49581`, `49583`, `49585`, `49587`, `49589`, `49591`, `49595`, `49597`, `49598`, `49600`, `49602`, `49604`, `49606`, `49608`, `49610`, `49613`, `49615`, `49617`, `49618`, `49619`, `49621`, `49622`, `49623`, `49624`, `49625`, `49627`, `49628`, `49630`, `49632`, `49633`, `49636`, `49637`, `49638`, `49639`, `49641`, `49643`, `49644`, `49645`, `49646`, `49648`, `49649`, `49651`, `49653`, `49655`, `49656`, `49658`, `49659`, `49661`, `49663`, `49664`, `49667`, `49669`, `49671`, `49672`, `49674`, `49676`, `49678`, `49680`, `49682`, `49684`, `49686`, `49688`, `49689`, `49691`, `49693`, `49696`, `49701`, `49703`, `49705`, `49707`, `49709`, `49711`, `49713`, `49715`, `49717`, `49720`, `49722`, `49724`, `49725`, `49726`, `49729`, `49730`, `49733`, `49734`, `49736`, `49738`, `49740`, `49742`, `49744`, `49746`, `49748`, `49749`, `49750`, `49752`, `49754`, `49756`, `49758`, `49759`, `49760`, `49762`, `49764`, `49766`, `49768`, `49770`, `49771`, `49773`, `49775`, `49777`, `49779`, `49781`, `49782`, `49784`, `49786`, `49788`, `49789`, `49790`, `49794`, `49797`, `49799`, `49800`, `49801`, `49802`, `49804`, `49806`, `49808`, `49809`, `49813`, `49818`, `49819`, `49822`, `49824`, `49825`, `49827`, `49829`, `49830`, `49832`, `49833`, `49835`, `49836`, `49838`, `49840`, `49842`, `49843`, `49844`, `49846`, `49848`, `49850`, `49852`, `49854`, `49855`, `49857`, `49858`, `49860`, `49861`, `49862`, `49864`, `49865`, `49870`, `49874`, `49876`, `49878`, `49880`, `49882`, `49884`, `49885`, `49886`, `49888`, `49890`, `49892`, `49894`, `49896`, `49898`, `49900`, `49901`, `49903`, `49905`, `49907`, `49908`, `49910`, `49912`, `49913`, `49915`, `49916`, `49917`, `49919`, `49921`, `49922`, `49926`, `49928`, `49929`, `49931`, `49933`, `49934`, `49936`, `49937`, `49939`, `49940`, `49941`, `49943`, `49945`, `49947`, `49949`, `49951`, `49953`, `49955`, `49956`, `49958`, `49960`, `49962`, `49964`, `49966`, `49968`, `49970`, `49972`, `49974`, `49975`, `49976`, `49978`, `49979`, `49981`, `49983`, `49986`, `49987`, `49988`, `49990`, `49995`, `49998`, `50000`, `50002`, `50003`, `50005`, `50006`, `50008`, `50010`, `50011`, `50013`, `50016`, `50017`, `50019`, `50021`, `50023`, `50024`, `50025`, `50028`, `50030`, `50032`, `50034`, `50036`, `50037`, `50038`, `50040`, `50042`, `50044`, `50046`, `50047`, `50049`, `50051`, `50053`, `50056`, `50057`, `50059`, `50062`, `50063`, `50064`, `50065`, `50066`, `50067`, `50068`, `50069`, `50071`, `50073`, `50074`, `50075`, `50077`, `50078`, `50079`, `50081`, `50083`, `50085`, `50087`, `50088`, `50090`, `50092`, `50094`, `50096`, `50098`, `50100`, `50102`, `50104`, `50107`, `50109`, `50111`, `50113`, `50114`, `50115`, `50117`, `50119`, `50120`, `50122`, `50123`, `50126`, `50127`, `50128`, `50130`, `50132`, `50133`, `50135`, `50137`, `50138`, `50142`, `50144`, `50146`, `50147`, `50148`, `50149`, `50151`, `50153`, `50154`, `50156`, `50157`, `50158`, `50160`, `50162`, `50163`, `50164`, `50166`, `50169`, `50171`, `50172`, `50174`, `50176`, `50177`, `50178`, `50179`, `50180`, `50182`, `50183`, `50185`, `50186`, `50188`, `50190`, `50192`, `50194`, `50196`, `50198`, `50199`, `50200`, `50202`, `50204`, `50205`, `50207`, `50209`, `50211`, `50213`, `50215`, `50217`, `50218`, `50219`, `50221`, `50223`, `50225`, `50227`, `50229`, `50230`, `50232`, `50234`, `50236`, `50238`, `50239`, `50241`, `50242`, `50243`, `50245`, `50247`, `50252`, `50254`, `50255`, `50257`, `50259`, `50262`, `50263`, `50265`, `50267`, `50269`, `50271`, `50272`, `50274`, `50277`, `50279`, `50281`, `50282`, `50285`, `50287`, `50289`, `50290`, `50291`, `50293`, `50294`, `50296`, `50298`, `50300`, `50303`, `50305`, `50306`, `50308`, `50310`, `50312`, `50314`, `50316`, `50318`, `50319`, `50321`, `50323`, `50325`, `50327`, `50329`, `50332`, `50334`, `50336`, `50337`, `50339`, `50340`, `50341`, `50343`, `50345`, `50346`, `50348`, `50349`, `50351`, `50354`, `50356`, `50357`, `50360`, `50362`, `50364`, `50366`, `50367`, `50369`, `50372`, `50374`, `50376`, `50380`, `50381`, `50382`, `50384`, `50386`, `50387`, `50388`, `50390`, `50391`, `50393`, `50395`, `50398`, `50399`, `50401`, `50402`, `50403`, `50404`, `50406`, `50407`, `50408`, `50410`, `50411`, `50413`, `50414`, `50415`, `50416`, `50418`, `50419`, `50421`, `50423`, `50425`, `50427`, `50429`, `50431`, `50433`, `50434`, `50436`, `50438`, `50440`, `50441`, `50443`, `50445`, `50447`, `50449`, `50451`, `50453`, `50455`, `50457`, `50459`, `50461`, `50462`, `50464`, `50465`, `50467`, `50468`, `50470`, `50472`, `50474`, `50476`, `50477`, `50479`, `50480`, `50481`, `50483`, `50486`, `50487`, `50489`, `50491`, `50492`, `50493`, `50495`, `50497`, `50499`, `50500`, `50501`, `50503`, `50504`, `50506`, `50508`, `50510`, `50511`, `50512`, `50514`, `50516`, `50518`, `50520`, `50522`, `50523`, `50526`, `50528`, `50530`, `50531`, `50533`, `50535`, `50537`, `50538`, `50540`, `50542`, `50544`, `50546`, `50548`, `50550`, `50553`, `50556`, `50557`, `50559`, `50561`, `50562`, `50564`, `50565`, `50567`, `50569`, `50571`, `50573`, `50575`, `50577`, `50579`, `50581`, `50582`, `50586`, `50588`, `50590`, `50592`, `50594`, `50596`, `50597`, `50599`, `50600`, `50602`, `50605`, `50606`, `50607`, `50608`, `50610`, `50612`, `50613`, `50615`, `50616`, `50618`, `50620`, `50622`, `50624`, `50625`, `50626`, `50628`, `50630`, `50631`, `50632`, `50633`, `50635`, `50637`, `50639`, `50641`, `50642`, `50644`, `50645`, `50649`, `50651`, `50653`, `50654`, `50658`, `50659`, `50661`, `50662`, `50665`, `50667`, `50669`, `50671`, `50672`, `50674`, `50676`, `50678`, `50679`, `50680`, `50682`, `50684`, `50686`, `50687`, `50688`, `50690`, `50691`, `50693`, `50695`, `50696`, `50698`, `50699`, `50701`, `50703`, `50704`, `50706`, `50708`, `50710`, `50713`, `50715`, `50718`, `50720`, `50721`, `50723`, `50724`, `50726`, `50727`, `50728`, `50730`, `50732`, `50734`, `50735`, `50737`, `50738`, `50740`, `50742`, `50743`, `50745`, `50746`, `50747`, `50748`, `50750`, `50751`, `50753`, `50755`, `50757`, `50758`, `50760`, `50762`, `50763`, `50765`, `50766`, `50767`, `50768`, `50770`, `50771`, `50773`, `50775`, `50777`, `50779`, `50781`, `50783`, `50785`, `50787`, `50789`, `50790`, `50791`, `50792`, `50793`, `50795`, `50797`, `50799`, `50801`, `50802`, `50804`, `50807`, `50809`, `50813`, `50815`, `50817`, `50818`, `50820`, `50822`, `50824`, `50826`, `50828`, `50830`, `50832`, `50834`, `50836`, `50837`, `50839`, `50840`, `50842`, `50844`, `50845`, `50847`, `50849`, `50850`, `50852`, `50854`, `50856`, `50859`, `50860`, `50861`, `50863`, `50866`, `50868`, `50870`, `50872`, `50874`, `50876`, `50879`, `50881`, `50883`, `50884`, `50886`, `50887`, `50889`, `50891`, `50893`, `50894`, `50895`, `50898`, `50899`, `50901`, `50904`, `50906`, `50908`, `50910`, `50911`, `50912`, `50914`, `50916`, `50920`, `50921`, `50922`, `50923`, `50924`, `50926`, `50928`, `50931`, `50932`, `50934`, `50935`, `50936`, `50938`, `50939`, `50940`, `50941`, `50943`, `50945`, `50947`, `50949`, `50951`, `50953`, `50955`, `50957`, `50958`, `50960`, `50962`, `50963`, `50965`, `50967`, `50969`, `50971`, `50973`, `50974`, `50976`, `50977`, `50979`, `50981`, `50983`, `50985`, `50987`, `50990`, `50991`, `50992`, `50994`, `50995`, `50999`, `51001`, `51003`, `51005`, `51007`, `51009`, `51012`, `51013`, `51015`, `51017`, `51019`, `51021`, `51023`, `51025`, `51026`, `51028`, `51030`, `51032`, `51034`, `51036`, `51038`, `51040`, `51041`, `51043`, `51045`, `51050`, `51052`, `51053`, `51054`, `51056`, `51057`, `51059`, `51061`, `51062`, `51063`, `51065`, `51067`, `51069`, `51071`, `51074`, `51075`, `51077`, `51078`, `51079`, `51080`, `51081`, `51082`, `51083`, `51085`, `51089`, `51091`, `51093`, `51095`, `51096`, `51097`, `51098`, `51100`, `51102`, `51103`, `51105`, `51106`, `51108`, `51110`, `51111`, `51113`, `51115`, `51117`, `51118`, `51119`, `51121`, `51123`, `51124`, `51126`, `51127`, `51129`, `51130`, `51132`, `51134`, `51136`, `51138`, `51140`, `51144`, `51146`, `51148`, `51149`, `51150`, `51152`, `51154`, `51156`, `51158`, `51160`, `51162`, `51164`, `51166`, `51169`, `51172`, `51174`, `51175`, `51177`, `51179`, `51181`, `51183`, `51184`, `51186`, `51188`, `51189`, `51191`, `51192`, `51193`, `51194`, `51196`, `51198`, `51199`, `51201`, `51203`, `51206`, `51207`, `51209`, `51210`, `51212`, `51213`, `51215`, `51217`, `51218`, `51220`, `51222`, `51223`, `51225`, `51226`, `51229`, `51230`, `51232`, `51234`, `51236`, `51237`, `51238`, `51239`, `51241`, `51243`, `51245`, `51246`, `51248`, `51250`, `51252`, `51254`, `51255`, `51257`, `51260`, `51261`, `51263`, `51265`, `51267`, `51269`, `51271`, `51273`, `51274`, `51275`, `51277`, `51279`, `51281`, `51283`, `51285`, `51286`, `51287`, `51290`, `51292`, `51294`, `51295`, `51297`, `51299`, `51301`, `51302`, `51304`, `51305`, `51307`, `51309`, `51311`, `51312`, `51314`, `51315`, `51317`, `51319`, `51321`, `51322`, `51323`, `51324`, `51326`, `51327`, `51328`, `51330`, `51331`, `51332`, `51333`, `51335`, `51336`, `51338`, `51339`, `51341`, `51342`, `51344`, `51346`, `51348`, `51349`, `51351`, `51353`, `51354`, `51355`, `51356`, `51358`, `51360`, `51362`, `51364`, `51366`, `51368`, `51371`, `51373`, `51376`, `51378`, `51379`, `51380`, `51381`, `51383`, `51385`, `51388`, `51390`, `51392`, `51394`, `51395`, `51397`, `51399`, `51401`, `51402`, `51403`, `51405`, `51407`, `51409`, `51411`, `51412`, `51413`, `51414`, `51416`, `51418`, `51419`, `51420`, `51422`, `51423`, `51425`, `51427`, `51428`, `51430`, `51432`, `51434`, `51436`, `51441`, `51442`, `51443`, `51444`, `51445`, `51446`, `51448`, `51451`, `51453`, `51455`, `51457`, `51459`, `51462`, `51464`, `51466`, `51468`, `51470`, `51471`, `51474`, `51476`, `51478`, `51480`, `51481`, `51483`, `51485`, `51487`, `51489`, `51493`, `51494`, `51496`, `51498`, `51499`, `51501`, `51502`, `51504`, `51506`, `51508`, `51512`, `51514`, `51517`, `51518`, `51519`, `51520`, `51522`, `51524`, `51525`, `51528`, `51530`, `51532`, `51534`, `51536`, `51538`, `51540`, `51542`, `51545`, `51547`, `51549`, `51551`, `51552`, `51554`, `51556`, `51558`, `51560`, `51561`, `51563`, `51570`, `51572`, `51574`, `51575`, `51576`, `51578`, `51580`, `51583`, `51585`, `51587`, `51589`, `51590`, `51592`, `51594`, `51595`, `51596`, `51598`, `51600`, `51602`, `51603`, `51604`, `51605`, `51607`, `51608`, `51610`, `51613`, `51615`, `51616`, `51617`, `51618`, `51619`, `51620`, `51622`, `51627`, `51629`, `51631`, `51632`, `51633`, `51635`, `51637`, `51638`, `51642`, `51643`, `51645`, `51647`, `51649`, `51651`, `51653`, `51655`, `51656`, `51657`, `51659`, `51661`, `51662`, `51665`, `51667`, `51668`, `51670`, `51672`, `51674`, `51676`, `51677`, `51679`, `51681`, `51683`, `51685`, `51686`, `51688`, `51689`, `51692`, `51696`, `51698`, `51700`, `51702`, `51703`, `51704`, `51706`, `51708`, `51709`, `51712`, `51714`, `51716`, `51718`, `51720`, `51721`, `51722`, `51724`, `51725`, `51727`, `51729`, `51731`, `51732`, `51734`, `51736`, `51738`, `51740`, `51742`, `51745`, `51747`, `51749`, `51751`, `51753`, `51754`, `51755`, `51757`, `51759`, `51761`, `51762`, `51764`, `51766`, `51768`, `51769`, `51771`, `51773`, `51775`, `51776`, `51778`, `51780`, `51781`, `51783`, `51785`, `51787`, `51789`, `51791`, `51793`, `51794`, `51796`, `51798`, `51800`, `51801`, `51803`, `51805`, `51807`, `51809`, `51811`, `51812`, `51813`, `51815`, `51817`, `51819`, `51821`, `51822`, `51823`, `51824`, `51826`, `51827`, `51828`, `51829`, `51831`, `51832`, `51833`, `51834`, `51835`, `51837`, `51839`, `51841`, `51843`, `51845`, `51847`, `51848`, `51850`, `51852`, `51853`, `51855`, `51856`, `51858`, `51860`, `51862`, `51864`, `51866`, `51868`, `51870`, `51871`, `51872`, `51873`, `51874`, `51875`, `51876`, `51878`, `51879`, `51881`, `51884`, `51886`, `51888`, `51890`, `51892`, `51894`, `51896`, `51900`, `51901`, `51905`, `51907`, `51911`, `51913`, `51915`, `51917`, `51920`, `51921`, `51923`, `51925`, `51926`, `51927`, `51929`, `51930`, `51932`, `51934`, `51936`, `51937`, `51939`, `51941`, `51944`, `51945`, `51947`, `51949`, `51951`, `51953`, `51955`, `51958`, `51963`, `51965`, `51967`, `51969`, `51971`, `51973`, `51974`, `51975`, `51976`, `51977`, `51979`, `51981`, `51983`, `51985`, `51986`, `51988`, `51990`, `51992`, `51994`, `51995`, `51996`, `51999`, `52001`, `52003`, `52004`, `52007`, `52009`, `52010`, `52012`, `52014`, `52015`, `52016`, `52018`, `52022`, `52024`, `52027`, `52028`, `52030`, `52032`, `52035`, `52037`, `52039`, `52041`, `52042`, `52044`, `52046`, `52048`, `52049`, `52051`, `52053`, `52054`, `52056`, `52057`, `52059`, `52061`, `52063`, `52065`, `52067`, `52069`, `52070`, `52071`, `52072`, `52074`, `52076`, `52078`, `52080`, `52082`, `52083`, `52085`, `52087`, `52088`, `52090`, `52092`, `52093`, `52097`, `52099`, `52102`, `52104`, `52106`, `52108`, `52110`, `52112`, `52114`, `52116`, `52118`, `52120`, `52122`, `52124`, `52125`, `52127`, `52129`, `52131`, `52132`, `52133`, `52135`, `52137`, `52138`, `52140`, `52141`, `52144`, `52145`, `52147`, `52149`, `52150`, `52152`, `52154`, `52157`, `52159`, `52160`, `52161`, `52164`, `52166`, `52168`, `52170`, `52172`, `52174`, `52176`, `52178`, `52179`, `52180`, `52182`, `52184`, `52186`, `52187`, `52189`, `52190`, `52192`, `52194`, `52196`, `52199`, `52201`, `52203`, `52205`, `52207`, `52209`, `52211`, `52213`, `52215`, `52216`, `52218`, `52223`, `52225`, `52228`, `52230`, `52231`, `52232`, `52234`, `52235`, `52237`, `52239`, `52241`, `52244`, `52246`, `52247`, `52248`, `52250`, `52251`, `52252`, `52253`, `52255`, `52257`, `52259`, `52260`, `52261`, `52262`, `52265`, `52266`, `52268`, `52270`, `52272`, `52274`, `52275`, `52277`, `52279`, `52281`, `52282`, `52283`, `52285`, `52287`, `52288`, `52290`, `52291`, `52293`, `52295`, `52297`, `52299`, `52301`, `52302`, `52304`, `52306`, `52308`, `52310`, `52311`, `52313`, `52316`, `52318`, `52319`, `52321`, `52322`, `52324`, `52325`, `52326`, `52328`, `52331`, `52332`, `52334`, `52336`, `52338`, `52341`, `52342`, `52343`, `52345`, `52349`, `52351`, `52353`, `52354`, `52356`, `52357`, `52358`, `52360`, `52362`, `52364`, `52365`, `52367`, `52368`, `52369`, `52371`, `52373`, `52374`, `52376`, `52378`, `52380`, `52382`, `52383`, `52385`, `52386`, `52387`, `52388`, `52390`, `52392`, `52393`, `52395`, `52397`, `52398`, `52400`, `52401`, `52402`, `52404`, `52405`, `52407`, `52409`, `52410`, `52412`, `52414`, `52415`, `52416`, `52417`, `52419`, `52424`, `52425`, `52427`, `52430`, `52431`, `52434`, `52437`, `52439`, `52440`, `52442`, `52443`, `52445`, `52447`, `52449`, `52451`, `52453`, `52455`, `52457`, `52460`, `52461`, `52463`, `52465`, `52466`, `52467`, `52470`, `52472`, `52473`, `52474`, `52476`, `52478`, `52479`, `52481`, `52482`, `52483`, `52485`, `52486`, `52488`, `52489`, `52491`, `52493`, `52494`, `52495`, `52496`, `52497`, `52499`, `52501`, `52503`, `52505`, `52507`, `52509`, `52511`, `52513`, `52515`, `52517`, `52520`, `52523`, `52525`, `52527`, `52528`, `52530`, `52532`, `52534`, `52536`, `52537`, `52539`, `52541`, `52543`, `52545`, `52547`, `52549`, `52551`, `52553`, `52555`, `52557`, `52558`, `52560`, `52561`, `52562`, `52564`, `52565`, `52566`, `52567`, `52569`, `52571`, `52573`, `52575`, `52577`, `52578`, `52580`, `52582`, `52587`, `52589`, `52591`, `52593`, `52595`, `52597`, `52598`, `52599`, `52600`, `52603`, `52606`, `52607`, `52610`, `52613`, `52615`, `52617`, `52619`, `52622`, `52624`, `52627`, `52630`, `52632`, `52633`, `52635`, `52636`, `52637`, `52639`, `52641`, `52642`, `52644`, `52646`, `52647`, `52649`, `52651`, `52652`, `52653`, `52656`, `52658`, `52659`, `52660`, `52662`, `52664`, `52666`, `52668`, `52670`, `52672`, `52673`, `52674`, `52676`, `52678`, `52679`, `52680`, `52681`, `52683`, `52685`, `52687`, `52689`, `52691`, `52693`, `52695`, `52697`, `52698`, `52699`, `52701`, `52703`, `52705`, `52707`, `52709`, `52711`, `52713`, `52714`, `52716`, `52717`, `52719`, `52720`, `52722`, `52724`, `52725`, `52726`, `52727`, `52730`, `52732`, `52733`, `52735`, `52736`, `52738`, `52740`, `52742`, `52745`, `52747`, `52748`, `52750`, `52752`, `52754`, `52756`, `52759`, `52760`, `52762`, `52764`, `52768`, `52770`, `52772`, `52773`, `52775`, `52777`, `52779`, `52780`, `52782`, `52784`, `52790`, `52793`, `52794`, `52796`, `52798`, `52800`, `52801`, `52803`, `52805`, `52806`, `52807`, `52809`, `52811`, `52813`, `52817`, `52819`, `52820`, `52822`, `52824`, `52825`, `52827`, `52828`, `52830`, `52831`, `52833`, `52834`, `52837`, `52838`, `52840`, `52842`, `52844`, `52847`, `52849`, `52851`, `52853`, `52855`, `52857`, `52858`, `52861`, `52862`, `52864`, `52865`, `52866`, `52868`, `52870`, `52872`, `52873`, `52874`, `52876`, `52877`, `52880`, `52882`, `52885`, `52886`, `52887`, `52889`, `52891`, `52893`, `52894`, `52895`, `52896`, `52897`, `52899`, `52901`, `52902`, `52906`, `52908`, `52910`, `52913`, `52915`, `52917`, `52919`, `52920`, `52922`, `52923`, `52924`, `52926`, `52929`, `52931`, `52933`, `52935`, `52936`, `52937`, `52938`, `52940`, `52941`, `52943`, `52944`, `52946`, `52947`, `52948`, `52950`, `52952`, `52953`, `52954`, `52956`, `52958`, `52959`, `52961`, `52963`, `52965`, `52969`, `52971`, `52973`, `52975`, `52977`, `52979`, `52980`, `52981`, `52983`, `52985`, `52986`, `52988`, `52990`, `52992`, `52994`, `52995`, `52997`, `52999`, `53001`, `53003`, `53004`, `53005`, `53006`, `53008`, `53009`, `53010`, `53011`, `53013`, `53015`, `53017`, `53018`, `53019`, `53021`, `53022`, `53024`, `53026`, `53029`, `53031`, `53033`, `53034`, `53037`, `53039`, `53040`, `53042`, `53044`, `53047`, `53049`, `53050`, `53052`, `53054`, `53055`, `53056`, `53058`, `53060`, `53062`, `53064`, `53066`, `53068`, `53069`, `53071`, `53073`, `53074`, `53076`, `53077`, `53080`, `53082`, `53083`, `53084`, `53087`, `53089`, `53091`, `53095`, `53097`, `53098`, `53100`, `53101`, `53102`, `53104`, `53105`, `53107`, `53108`, `53110`, `53111`, `53113`, `53115`, `53117`, `53119`, `53121`, `53122`, `53124`, `53125`, `53128`, `53129`, `53131`, `53133`, `53134`, `53135`, `53136`, `53139`, `53140`, `53141`, `53144`, `53146`, `53147`, `53149`, `53150`, `53152`, `53154`, `53155`, `53156`, `53158`, `53159`, `53161`, `53162`, `53164`, `53165`, `53166`, `53168`, `53170`, `53171`, `53173`, `53175`, `53177`, `53179`, `53181`, `53183`, `53185`, `53186`, `53190`, `53191`, `53193`, `53195`, `53197`, `53199`, `53201`, `53203`, `53205`, `53207`, `53208`, `53210`, `53212`, `53214`, `53216`, `53218`, `53220`, `53222`, `53223`, `53225`, `53227`, `53228`, `53230`, `53231`, `53232`, `53234`, `53235`, `53238`, `53241`, `53242`, `53244`, `53246`, `53248`, `53249`, `53250`, `53252`, `53254`, `53256`, `53258`, `53260`, `53262`, `53263`, `53264`, `53265`, `53269`, `53272`, `53274`, `53276`, `53278`, `53279`, `53280`, `53281`, `53283`, `53284`, `53286`, `53288`, `53290`, `53292`, `53294`, `53296`, `53298`, `53299`, `53301`, `53302`, `53303`, `53304`, `53306`, `53308`, `53310`, `53311`, `53313`, `53315`, `53316`, `53318`, `53321`, `53323`, `53327`, `53329`, `53330`, `53332`, `53333`, `53335`, `53337`, `53339`, `53341`, `53343`, `53344`, `53346`, `53347`, `53350`, `53351`, `53353`, `53355`, `53357`, `53358`, `53360`, `53362`, `53363`, `53365`, `53367`, `53368`, `53369`, `53370`, `53371`, `53373`, `53374`, `53375`, `53379`, `53381`, `53383`, `53384`, `53385`, `53387`, `53389`, `53392`, `53394`, `53395`, `53396`, `53398`, `53403`, `53405`, `53407`, `53408`, `53410`, `53413`, `53416`, `53417`, `53419`, `53420`, `53421`, `53423`, `53424`, `53425`, `53428`, `53429`, `53430`, `53432`, `53433`, `53435`, `53437`, `53439`, `53441`, `53443`, `53445`, `53447`, `53448`, `53449`, `53452`, `53454`, `53455`, `53456`, `53457`, `53459`, `53460`, `53461`, `53464`, `53465`, `53467`, `53469`, `53470`, `53471`, `53472`, `53474`, `53476`, `53478`, `53479`, `53481`, `53482`, `53484`, `53485`, `53486`, `53488`, `53490`, `53491`, `53492`, `53493`, `53495`, `53496`, `53497`, `53498`, `53503`, `53504`, `53505`, `53506`, `53507`, `53509`, `53510`, `53512`, `53514`, `53516`, `53517`, `53519`, `53521`, `53523`, `53526`, `53527`, `53529`, `53530`, `53532`, `53533`, `53534`, `53536`, `53538`, `53540`, `53542`, `53545`, `53547`, `53548`, `53550`, `53552`, `53554`, `53555`, `53559`, `53561`, `53563`, `53565`, `53567`, `53569`, `53570`, `53572`, `53573`, `53575`, `53577`, `53579`, `53581`, `53583`, `53584`, `53586`, `53588`, `53589`, `53591`, `53593`, `53595`, `53597`, `53598`, `53599`, `53600`, `53603`, `53605`, `53606`, `53607`, `53609`, `53610`, `53611`, `53613`, `53614`, `53616`, `53618`, `53619`, `53621`, `53623`, `53625`, `53627`, `53630`, `53631`, `53633`, `53635`, `53637`, `53639`, `53642`, `53644`, `53646`, `53648`, `53649`, `53651`, `53653`, `53655`, `53657`, `53658`, `53660`, `53661`, `53662`, `53663`, `53665`, `53666`, `53668`, `53669`, `53670`, `53671`, `53673`, `53674`, `53676`, `53677`, `53679`, `53681`, `53683`, `53684`, `53687`, `53688`, `53690`, `53692`, `53695`, `53696`, `53699`, `53701`, `53703`, `53705`, `53707`, `53710`, `53711`, `53713`, `53715`, `53717`, `53719`, `53721`, `53723`, `53724`, `53726`, `53727`, `53731`, `53733`, `53735`, `53736`, `53737`, `53739`, `53740`, `53742`, `53743`, `53745`, `53747`, `53748`, `53750`, `53752`, `53754`, `53755`, `53757`, `53759`, `53760`, `53762`, `53764`, `53766`, `53768`, `53770`, `53772`, `53773`, `53774`, `53776`, `53778`, `53780`, `53782`, `53784`, `53786`, `53788`, `53790`, `53792`, `53794`, `53796`, `53797`, `53799`, `53801`, `53803`, `53805`, `53807`, `53809`, `53811`, `53813`, `53815`, `53817`, `53819`, `53821`, `53823`, `53825`, `53828`, `53830`, `53831`, `53833`, `53835`, `53837`, `53839`, `53841`, `53843`, `53844`, `53846`, `53848`, `53850`, `53852`, `53854`, `53856`, `53858`, `53860`, `53862`, `53863`, `53866`, `53867`, `53869`, `53871`, `53873`, `53875`, `53877`, `53879`, `53881`, `53882`, `53883`, `53885`, `53886`, `53888`, `53890`, `53891`, `53892`, `53894`, `53896`, `53897`, `53900`, `53902`, `53904`, `53906`, `53908`, `53910`, `53911`, `53913`, `53914`, `53915`, `53917`, `53918`, `53920`, `53922`, `53924`, `53927`, `53929`, `53930`, `53932`, `53934`, `53936`, `53938`, `53940`, `53942`, `53944`, `53945`, `53946`, `53947`, `53948`, `53950`, `53952`, `53953`, `53955`, `53957`, `53958`, `53959`, `53960`, `53961`, `53963`, `53965`, `53967`, `53968`, `53969`, `53971`, `53972`, `53974`, `53976`, `53978`, `53980`, `53982`, `53984`, `53986`, `53990`, `53992`, `53994`, `53996`, `53997`, `53999`, `54000`, `54001`, `54003`, `54007`, `54009`, `54011`, `54013`, `54015`, `54017`, `54019`, `54021`, `54023`, `54025`, `54027`, `54029`, `54030`, `54032`, `54033`, `54034`, `54036`, `54038`, `54040`, `54041`, `54043`, `54044`, `54045`, `54046`, `54048`, `54050`, `54052`, `54054`, `54056`, `54058`, `54060`, `54062`, `54064`, `54066`, `54068`, `54070`, `54071`, `54072`, `54076`, `54077`, `54079`, `54081`, `54082`, `54083`, `54085`, `54087`, `54089`, `54090`, `54092`, `54093`, `54094`, `54095`, `54096`, `54098`, `54100`, `54102`, `54104`, `54106`, `54109`, `54111`, `54112`, `54113`, `54115`, `54116`, `54117`, `54118`, `54120`, `54121`, `54123`, `54125`, `54127`, `54129`, `54132`, `54134`, `54136`, `54138`, `54140`, `54142`, `54143`, `54146`, `54148`, `54150`, `54153`, `54155`, `54157`, `54159`, `54161`, `54162`, `54163`, `54165`, `54167`, `54169`, `54172`, `54174`, `54176`, `54177`, `54179`, `54180`, `54184`, `54186`, `54188`, `54191`, `54193`, `54195`, `54196`, `54198`, `54200`, `54201`, `54202`, `54204`, `54207`, `54208`, `54210`, `54212`, `54214`, `54216`, `54220`, `54222`, `54224`, `54226`, `54227`, `54228`, `54230`, `54232`, `54234`, `54235`, `54236`, `54238`, `54239`, `54241`, `54242`, `54243`, `54245`, `54246`, `54248`, `54249`, `54251`, `54253`, `54254`, `54256`, `54258`, `54260`, `54262`, `54265`, `54267`, `54270`, `54272`, `54274`, `54276`, `54280`, `54282`, `54283`, `54284`, `54285`, `54287`, `54289`, `54291`, `54293`, `54295`, `54297`, `54299`, `54301`, `54303`, `54305`, `54306`, `54308`, `54310`, `54311`, `54312`, `54313`, `54314`, `54316`, `54318`, `54320`, `54321`, `54323`, `54325`, `54327`, `54329`, `54332`, `54334`, `54337`, `54339`, `54341`, `54343`, `54345`, `54348`, `54349`, `54351`, `54352`, `54354`, `54355`, `54357`, `54359`, `54360`, `54362`, `54363`, `54365`, `54366`, `54367`, `54368`, `54370`, `54372`, `54373`, `54374`, `54376`, `54378`, `54379`, `54381`, `54383`, `54385`, `54387`, `54389`, `54391`, `54393`, `54394`, `54396`, `54398`, `54400`, `54401`, `54402`, `54404`, `54406`, `54407`, `54408`, `54410`, `54412`, `54414`, `54417`, `54418`, `54420`, `54422`, `54424`, `54426`, `54428`, `54429`, `54432`, `54434`, `54436`, `54438`, `54439`, `54441`, `54442`, `54445`, `54447`, `54449`, `54451`, `54453`, `54455`, `54457`, `54461`, `54463`, `54464`, `54467`, `54469`, `54471`, `54473`, `54475`, `54477`, `54478`, `54480`, `54483`, `54485`, `54487`, `54489`, `54491`, `54493`, `54495`, `54497`, `54499`, `54501`, `54502`, `54504`, `54506`, `54508`, `54510`, `54512`, `54514`, `54516`, `54518`, `54520`, `54522`, `54524`, `54528`, `54530`, `54531`, `54532`, `54534`, `54537`, `54538`, `54540`, `54541`, `54542`, `54543`, `54545`, `54546`, `54548`, `54549`, `54551`, `54553`, `54554`, `54555`, `54557`, `54559`, `54561`, `54564`, `54566`, `54568`, `54569`, `54571`, `54573`, `54574`, `54576`, `54578`, `54580`, `54582`, `54584`, `54586`, `54588`, `54590`, `54592`, `54594`, `54595`, `54597`, `54599`, `54601`, `54604`, `54606`, `54608`, `54610`, `54611`, `54613`, `54615`, `54616`, `54617`, `54619`, `54621`, `54622`, `54624`, `54626`, `54628`, `54630`, `54631`, `54632`, `54634`, `54636`, `54638`, `54639`, `54641`, `54643`, `54644`, `54645`, `54646`, `54648`, `54652`, `54653`, `54654`, `54656`, `54658`, `54660`, `54662`, `54664`, `54666`, `54668`, `54670`, `54672`, `54674`, `54675`, `54676`, `54678`, `54680`, `54682`, `54683`, `54685`, `54687`, `54688`, `54690`, `54691`, `54693`, `54697`, `54698`, `54700`, `54701`, `54702`, `54704`, `54705`, `54707`, `54708`, `54710`, `54711`, `54713`, `54715`, `54717`, `54718`, `54720`, `54721`, `54723`, `54725`, `54727`, `54728`, `54730`, `54732`, `54734`, `54735`, `54736`, `54737`, `54739`, `54741`, `54743`, `54745`, `54747`, `54749`, `54751`, `54753`, `54754`, `54759`, `54761`, `54763`, `54764`, `54766`, `54768`, `54769`, `54770`, `54772`, `54773`, `54775`, `54777`, `54779`, `54781`, `54782`, `54784`, `54785`, `54786`, `54788`, `54790`, `54792`, `54794`, `54796`, `54798`, `54800`, `54802`, `54803`, `54805`, `54806`, `54807`, `54808`, `54810`, `54813`, `54815`, `54817`, `54819`, `54821`, `54823`, `54825`, `54827`, `54829`, `54831`, `54832`, `54833`, `54835`, `54837`, `54838`, `54839`, `54841`, `54844`, `54846`, `54848`, `54850`, `54854`, `54856`, `54858`, `54860`, `54862`, `54864`, `54866`, `54868`, `54870`, `54871`, `54873`, `54875`, `54877`, `54879`, `54882`, `54884`, `54888`, `54890`, `54892`, `54894`, `54896`, `54898`, `54899`, `54900`, `54902`, `54903`, `54905`, `54907`, `54909`, `54911`, `54913`, `54916`, `54919`, `54921`, `54923`, `54925`, `54926`, `54928`, `54930`, `54932`, `54934`, `54935`, `54937`, `54939`, `54940`, `54942`, `54943`, `54945`, `54947`, `54949`, `54951`, `54953`, `54955`, `54956`, `54958`, `54960`, `54961`, `54963`, `54964`, `54966`, `54968`, `54970`, `54972`, `54974`, `54976`, `54977`, `54979`, `54981`, `54982`, `54983`, `54985`, `54986`, `54987`, `54988`, `54990`, `54992`, `54993`, `54994`, `54995`, `54997`, `54998`, `54999`, `55001`, `55003`, `55005`, `55007`, `55009`, `55012`, `55013`, `55015`, `55016`, `55018`, `55019`, `55020`, `55021`, `55022`, `55024`, `55026`, `55028`, `55031`, `55033`, `55035`, `55037`, `55039`, `55042`, `55044`, `55045`, `55046`, `55048`, `55050`, `55052`, `55055`, `55057`, `55059`, `55061`, `55063`, `55065`, `55067`, `55068`, `55071`, `55073`, `55074`, `55076`, `55079`, `55080`, `55082`, `55083`, `55085`, `55087`, `55089`, `55091`, `55092`, `55093`, `55095`, `55097`, `55100`, `55102`, `55104`, `55105`, `55106`, `55108`, `55109`, `55111`, `55113`, `55114`, `55116`, `55122`, `55124`, `55125`, `55127`, `55128`, `55130`, `55132`, `55134`, `55136`, `55138`, `55140`, `55143`, `55145`, `55146`, `55148`, `55149`, `55150`, `55153`, `55154`, `55155`, `55157`, `55158`, `55160`, `55162`, `55163`, `55170`, `55172`, `55176`, `55177`, `55179`, `55180`, `55182`, `55184`, `55186`, `55188`, `55189`, `55191`, `55192`, `55194`, `55196`, `55198`, `55200`, `55203`, `55205`, `55207`, `55209`, `55210`, `55212`, `55213`, `55215`, `55217`, `55218`, `55220`, `55222`, `55224`, `55226`, `55227`, `55229`, `55231`, `55233`, `55235`, `55237`, `55238`, `55240`, `55241`, `55243`, `55244`, `55246`, `55249`, `55250`, `55251`, `55253`, `55255`, `55257`, `55260`, `55262`, `55264`, `55266`, `55267`, `55269`, `55271`, `55272`, `55274`, `55275`, `55277`, `55278`, `55280`, `55281`, `55283`, `55285`, `55288`, `55289`, `55293`, `55295`, `55297`, `55299`, `55304`, `55306`, `55309`, `55311`, `55313`, `55315`, `55317`, `55320`, `55322`, `55323`, `55325`, `55326`, `55328`, `55330`, `55331`, `55332`, `55334`, `55336`, `55338`, `55339`, `55341`, `55343`, `55345`, `55347`, `55349`, `55351`, `55353`, `55356`, `55359`, `55362`, `55364`, `55368`, `55371`, `55373`, `55375`, `55377`, `55379`, `55381`, `55382`, `55385`, `55386`, `55387`, `55391`, `55392`, `55394`, `55395`, `55396`, `55397`, `55399`, `55401`, `55402`, `55404`, `55405`, `55408`, `55410`, `55411`, `55412`, `55414`, `55416`, `55418`, `55420`, `55422`, `55424`, `55426`, `55428`, `55429`, `55433`, `55436`, `55440`, `55441`, `55442`, `55444`, `55445`, `55448`, `55450`, `55452`, `55454`, `55455`, `55456`, `55458`, `55460`, `55461`, `55462`, `55464`, `55466`, `55468`, `55469`, `55470`, `55472`, `55474`, `55476`, `55478`, `55479`, `55481`, `55482`, `55484`, `55485`, `55486`, `55489`, `55490`, `55492`, `55493`, `55495`, `55497`, `55498`, `55501`, `55502`, `55503`, `55505`, `55507`, `55508`, `55510`, `55511`, `55513`, `55515`, `55517`, `55519`, `55521`, `55523`, `55528`, `55530`, `55531`, `55533`, `55535`, `55536`, `55538`, `55540`, `55542`, `55543`, `55544`, `55545`, `55550`, `55552`, `55554`, `55557`, `55559`, `55562`, `55566`, `55567`, `55568`, `55570`, `55572`, `55574`, `55576`, `55577`, `55579`, `55581`, `55583`, `55584`, `55585`, `55587`, `55589`, `55592`, `55594`, `55595`, `55597`, `55598`, `55600`, `55602`, `55603`, `55605`, `55607`, `55609`, `55610`, `55611`, `55612`, `55613`, `55614`, `55616`, `55618`, `55620`, `55622`, `55625`, `55628`, `55629`, `55632`, `55634`, `55636`, `55638`, `55640`, `55642`, `55644`, `55646`, `55649`, `55650`, `55651`, `55652`, `55653`, `55655`, `55658`, `55662`, `55664`, `55666`, `55668`, `55671`, `55673`, `55676`, `55678`, `55679`, `55681`, `55683`, `55685`, `55686`, `55688`, `55690`, `55692`, `55693`, `55694`, `55696`, `55697`, `55699`, `55700`, `55701`, `55703`, `55705`, `55707`, `55708`, `55709`, `55711`, `55713`, `55714`, `55716`, `55718`, `55719`, `55723`, `55725`, `55727`, `55729`, `55731`, `55732`, `55735`, `55737`, `55739`, `55741`, `55742`, `55743`, `55745`, `55747`, `55748`, `55751`, `55753`, `55754`, `55756`, `55757`, `55758`, `55759`, `55762`, `55764`, `55767`, `55769`, `55771`, `55772`, `55774`, `55776`, `55778`, `55779`, `55780`, `55781`, `55782`, `55784`, `55786`, `55788`, `55791`, `55793`, `55794`, `55796`, `55797`, `55799`, `55800`, `55802`, `55804`, `55806`, `55808`, `55810`, `55812`, `55814`, `55816`, `55818`, `55820`, `55821`, `55822`, `55824`, `55825`, `55827`, `55829`, `55831`, `55833`, `55835`, `55836`, `55837`, `55839`, `55841`, `55844`, `55845`, `55847`, `55848`, `55851`, `55853`, `55854`, `55856`, `55858`, `55859`, `55861`, `55862`, `55864`, `55865`, `55866`, `55868`, `55870`, `55872`, `55873`, `55875`, `55877`, `55878`, `55880`, `55882`, `55884`, `55886`, `55889`, `55891`, `55892`, `55894`, `55895`, `55896`, `55897`, `55898`, `55900`, `55902`, `55903`, `55905`, `55907`, `55909`, `55910`, `55912`, `55913`, `55914`, `55915`, `55917`, `55919`, `55921`, `55923`, `55924`, `55926`, `55928`, `55930`, `55932`, `55934`, `55935`, `55936`, `55938`, `55939`, `55941`, `55943`, `55944`, `55946`, `55948`, `55949`, `55951`, `55953`, `55957`, `55958`, `55960`, `55962`, `55963`, `55965`, `55967`, `55969`, `55971`, `55972`, `55973`, `55975`, `55976`, `55978`, `55979`, `55980`, `55982`, `55983`, `55984`, `55985`, `55987`, `55988`, `55989`, `55990`, `55992`, `55994`, `55996`, `55997`, `55999`, `56001`, `56002`, `56004`, `56005`, `56007`, `56008`, `56011`, `56012`, `56014`, `56016`, `56019`, `56020`, `56022`, `56024`, `56026`, `56028`, `56030`, `56032`, `56033`, `56036`, `56038`, `56039`, `56041`, `56043`, `56045`, `56047`, `56049`, `56050`, `56052`, `56053`, `56055`, `56057`, `56059`, `56062`, `56064`, `56068`, `56069`, `56070`, `56072`, `56073`, `56074`, `56075`, `56077`, `56078`, `56079`, `56081`, `56082`, `56083`, `56084`, `56086`, `56087`, `56089`, `56091`, `56093`, `56095`, `56097`, `56099`, `56101`, `56103`, `56105`, `56107`, `56109`, `56110`, `56111`, `56113`, `56115`, `56117`, `56119`, `56121`, `56123`, `56125`, `56127`, `56129`, `56131`, `56134`, `56136`, `56138`, `56139`, `56143`, `56145`, `56146`, `56147`, `56149`, `56150`, `56151`, `56152`, `56154`, `56156`, `56158`, `56160`, `56163`, `56164`, `56166`, `56167`, `56169`, `56171`, `56173`, `56175`, `56181`, `56182`, `56183`, `56184`, `56186`, `56188`, `56190`, `56192`, `56193`, `56194`, `56195`, `56197`, `56199`, `56201`, `56203`, `56205`, `56207`, `56209`, `56211`, `56212`, `56213`, `56214`, `56218`, `56220`, `56222`, `56223`, `56226`, `56227`, `56228`, `56230`, `56232`, `56234`, `56235`, `56238`, `56240`, `56242`, `56244`, `56245`, `56246`, `56247`, `56248`, `56249`, `56250`, `56252`, `56254`, `56256`, `56258`, `56260`, `56262`, `56264`, `56266`, `56268`, `56270`, `56275`, `56276`, `56278`, `56279`, `56280`, `56282`, `56286`, `56287`, `56288`, `56290`, `56292`, `56293`, `56295`, `56296`, `56298`, `56299`, `56300`, `56302`, `56304`, `56306`, `56308`, `56309`, `56311`, `56314`, `56316`, `56317`, `56318`, `56320`, `56322`, `56324`, `56326`, `56327`, `56329`, `56331`, `56333`, `56334`, `56336`, `56339`, `56340`, `56342`, `56343`, `56344`, `56347`, `56348`, `56349`, `56351`, `56353`, `56356`, `56358`, `56361`, `56363`, `56367`, `56369`, `56373`, `56374`, `56376`, `56378`, `56379`, `56383`, `56385`, `56386`, `56388`, `56389`, `56391`, `56393`, `56394`, `56395`, `56397`, `56400`, `56403`, `56406`, `56408`, `56410`, `56412`, `56413`, `56415`, `56417`, `56419`, `56421`, `56422`, `56424`, `56425`, `56427`, `56428`, `56429`, `56432`, `56433`, `56435`, `56436`, `56437`, `56439`, `56441`, `56443`, `56446`, `56448`, `56451`, `56453`, `56455`, `56457`, `56458`, `56459`, `56461`, `56462`, `56463`, `56465`, `56469`, `56470`, `56471`, `56472`, `56474`, `56476`, `56477`, `56479`, `56481`, `56483`, `56485`, `56487`, `56489`, `56491`, `56493`, `56495`, `56496`, `56499`, `56500`, `56502`, `56503`, `56506`, `56508`, `56509`, `56512`, `56514`, `56515`, `56516`, `56518`, `56520`, `56523`, `56525`, `56526`, `56528`, `56529`, `56531`, `56533`, `56535`, `56537`, `56538`, `56540`, `56542`, `56544`, `56546`, `56548`, `56550`, `56552`, `56554`, `56556`, `56558`, `56560`, `56563`, `56565`, `56567`, `56568`, `56570`, `56572`, `56574`, `56576`, `56577`, `56578`, `56580`, `56582`, `56584`, `56587`, `56589`, `56591`, `56593`, `56595`, `56597`, `56598`, `56599`, `56601`, `56603`, `56604`, `56606`, `56608`, `56609`, `56610`, `56612`, `56614`, `56616`, `56618`, `56619`, `56621`, `56626`, `56627`, `56629`, `56630`, `56632`, `56633`, `56635`, `56637`, `56639`, `56640`, `56641`, `56644`, `56647`, `56649`, `56650`, `56652`, `56654`, `56656`, `56657`, `56659`, `56660`, `56662`, `56665`, `56668`, `56669`, `56670`, `56672`, `56674`, `56676`, `56678`, `56680`, `56682`, `56684`, `56685`, `56686`, `56689`, `56691`, `56693`, `56695`, `56697`, `56699`, `56701`, `56702`, `56704`, `56706`, `56707`, `56708`, `56709`, `56711`, `56713`, `56715`, `56717`, `56719`, `56721`, `56722`, `56725`, `56727`, `56731`, `56732`, `56733`, `56735`, `56737`, `56739`, `56742`, `56743`, `56744`, `56745`, `56747`, `56749`, `56753`, `56756`, `56758`, `56760`, `56762`, `56764`, `56766`, `56770`, `56771`, `56773`, `56774`, `56775`, `56776`, `56777`, `56779`, `56781`, `56782`, `56783`, `56785`, `56787`, `56789`, `56791`, `56792`, `56794`, `56795`, `56796`, `56798`, `56800`, `56802`, `56803`, `56804`, `56805`, `56807`, `56809`, `56810`, `56813`, `56816`, `56817`, `56818`, `56820`, `56822`, `56824`, `56826`, `56828`, `56830`, `56831`, `56832`, `56833`, `56834`, `56836`, `56838`, `56839`, `56840`, `56841`, `56843`, `56845`, `56848`, `56850`, `56852`, `56853`, `56855`, `56858`, `56860`, `56862`, `56864`, `56865`, `56870`, `56872`, `56874`, `56877`, `56878`, `56879`, `56880`, `56884`, `56886`, `56888`, `56889`, `56892`, `56895`, `56896`, `56897`, `56898`, `56900`, `56902`, `56903`, `56905`, `56907`, `56909`, `56910`, `56912`, `56914`, `56916`, `56917`, `56919`, `56921`, `56923`, `56925`, `56927`, `56928`, `56930`, `56932`, `56934`, `56936`, `56938`, `56939`, `56940`, `56941`, `56945`, `56947`, `56949`, `56951`, `56953`, `56954`, `56956`, `56958`, `56960`, `56961`, `56963`, `56965`, `56967`, `56969`, `56973`, `56975`, `56977`, `56979`, `56980`, `56982`, `56983`, `56985`, `56987`, `56988`, `56990`, `56991`, `56992`, `56993`, `56994`, `56995`, `56997`, `56998`, `57000`, `57002`, `57004`, `57005`, `57006`, `57008`, `57009`, `57011`, `57013`, `57016`, `57018`, `57020`, `57022`, `57024`, `57029`, `57031`, `57033`, `57034`, `57035`, `57037`, `57039`, `57041`, `57042`, `57044`, `57046`, `57048`, `57050`, `57052`, `57054`, `57055`, `57057`, `57058`, `57059`, `57060`, `57061`, `57063`, `57065`, `57067`, `57069`, `57071`, `57073`, `57075`, `57076`, `57078`, `57080`, `57082`, `57084`, `57086`, `57087`, `57089`, `57094`, `57097`, `57098`, `57099`, `57100`, `57102`, `57105`, `57107`, `57109`, `57110`, `57112`, `57114`, `57116`, `57118`, `57120`, `57121`, `57123`, `57124`, `57126`, `57127`, `57128`, `57129`, `57133`, `57135`, `57137`, `57139`, `57141`, `57143`, `57145`, `57147`, `57149`, `57150`, `57152`, `57154`, `57156`, `57158`, `57160`, `57161`, `57164`, `57165`, `57166`, `57168`, `57170`, `57171`, `57173`, `57174`, `57175`, `57176`, `57178`, `57180`, `57182`, `57184`, `57186`, `57188`, `57189`, `57190`, `57192`, `57194`, `57196`, `57198`, `57199`, `57201`, `57203`, `57205`, `57207`, `57209`, `57211`, `57212`, `57214`, `57217`, `57219`, `57221`, `57223`, `57229`, `57231`, `57232`, `57233`, `57235`, `57241`, `57243`, `57245`, `57247`, `57249`, `57250`, `57253`, `57254`, `57256`, `57258`, `57259`, `57261`, `57262`, `57264`, `57266`, `57267`, `57269`, `57270`, `57271`, `57272`, `57274`, `57275`, `57277`, `57278`, `57280`, `57282`, `57284`, `57285`, `57287`, `57288`, `57289`, `57291`, `57294`, `57295`, `57296`, `57297`, `57299`, `57300`, `57302`, `57303`, `57304`, `57305`, `57307`, `57310`, `57312`, `57314`, `57316`, `57318`, `57319`, `57321`, `57323`, `57325`, `57329`, `57331`, `57332`, `57334`, `57336`, `57338`, `57340`, `57341`, `57343`, `57344`, `57345`, `57347`, `57349`, `57351`, `57353`, `57355`, `57356`, `57358`, `57360`, `57363`, `57365`, `57367`, `57373`, `57374`, `57376`, `57378`, `57379`, `57381`, `57383`, `57385`, `57387`, `57391`, `57393`, `57395`, `57397`, `57398`, `57399`, `57403`, `57405`, `57407`, `57409`, `57410`, `57411`, `57412`, `57414`, `57416`, `57417`, `57420`, `57421`, `57423`, `57425`, `57427`, `57428`, `57430`, `57431`, `57433`, `57437`, `57438`, `57439`, `57440`, `57441`, `57443`, `57445`, `57447`, `57449`, `57451`, `57453`, `57455`, `57457`, `57459`, `57461`, `57463`, `57465`, `107`, `57468`, `57470`, `57472`, `57473`, `57475`, `57477`, `57479`, `57480`, `57481`, `57483`, `57485`, `57489`, `57490`, `57492`, `57494`, `57496`, `57502`, `57504`, `57506`, `57508`, `57510`, `57512`, `57514`, `57516`, `57518`, `57519`, `57521`, `57524`, `57526`, `57527`, `57528`, `57530`, `57532`, `57533`, `57535`, `57536`, `57537`, `57539`, `57541`, `57543`, `57545`, `57547`, `57549`, `57551`, `57552`, `57553`, `57555`, `57557`, `57558`, `57560`, `57562`, `57563`, `57564`, `57565`, `57567`, `57569`, `57571`, `57574`, `57576`, `57577`, `57578`, `57580`, `57582`, `57585`, `57587`, `57591`, `57593`, `57599`, `57600`, `57602`, `57604`, `57611`, `57613`, `57615`, `57617`, `57618`, `57619`, `57621`, `57625`, `57627`, `57629`, `42369`, `57630`, `57632`, `57633`, `57634`, `57636`, `57638`, `57640`, `57642`, `57645`, `57647`, `57649`, `57651`, `57652`, `57654`, `57655`, `57657`, `57659`, `57661`, `57663`, `57665`, `57667`, `57670`, `57672`, `57674`, `57676`, `57678`, `57680`, `57681`, `57683`, `57685`, `57687`, `57689`, `57691`, `57693`, `57695`, `57696`, `57697`, `57699`, `57701`, `57706`, `57709`, `57710`, `57711`, `57713`, `57715`, `57717`, `57721`, `57722`, `57724`, `57726`, `57728`, `57730`, `57732`, `57733`, `57735`, `57736`, `57737`, `57739`, `57741`, `57743`, `57744`, `57745`, `57746`, `57748`, `57750`, `57752`, `57754`, `57755`, `57756`, `57757`, `57759`, `57760`, `57762`, `57765`, `57767`, `57768`, `57770`, `57774`, `57776`, `57778`, `57780`, `57782`, `57783`, `57785`, `57787`, `57789`, `57790`, `57792`, `57794`, `57795`, `57797`, `57799`, `57801`, `57803`, `57804`, `57805`, `57806`, `57808`, `57810`, `57812`, `57813`, `57814`, `57816`, `57817`, `57819`, `57821`, `57823`, `57828`, `57830`, `57832`, `57834`, `57835`, `57838`, `57839`, `57840`, `57842`, `57844`, `57846`, `57848`, `57850`, `57852`, `57854`, `57856`, `57858`, `57860`, `57862`, `57864`, `57866`, `57868`, `57870`, `57871`, `57873`, `57875`, `57876`, `57877`, `57878`, `57880`, `57881`, `57883`, `57885`, `57887`, `57889`, `57891`, `57893`, `57894`, `57896`, `57897`, `57898`, `57899`, `57900`, `57902`, `57904`, `57906`, `57908`, `57909`, `57911`, `57913`, `57914`, `57917`, `57919`, `57920`, `57922`, `57924`, `57926`, `57927`, `57929`, `57931`, `57933`, `57934`, `57936`, `57938`, `57940`, `57942`, `57944`, `57946`, `57947`, `57948`, `57950`, `57951`, `57953`, `57955`, `57956`, `57958`, `57959`, `57961`, `57963`, `57965`, `57966`, `57969`, `57970`, `57972`, `57975`, `57977`, `57979`, `57981`, `57983`, `57985`, `57987`, `57989`, `57991`, `57993`, `57996`, `57998`, `58000`, `58002`, `58004`, `58005`, `58006`, `58007`, `58009`, `58011`, `58012`, `58013`, `58015`, `58017`, `58019`, `58021`, `58023`, `58026`, `58027`, `58028`, `58029`, `58031`, `58033`, `58034`, `58035`, `58036`, `58037`, `58040`, `58042`, `58044`, `58046`, `58048`, `58050`, `58052`, `58054`, `58055`, `58057`, `58058`, `58060`, `58062`, `58065`, `58066`, `58068`, `58070`, `58071`, `58072`, `58073`, `58079`, `58080`, `58081`, `58082`, `58084`, `58086`, `58088`, `58090`, `58093`, `58095`, `58096`, `58098`, `58099`, `58101`, `58103`, `58105`, `58107`, `58110`, `58112`, `58114`, `58117`, `58119`, `58121`, `58123`, `58125`, `58127`, `58128`, `58130`, `58132`, `58133`, `58136`, `58138`, `58139`, `58140`, `58141`, `58143`, `58145`, `58147`, `58149`, `58150`, `58152`, `58153`, `58155`, `58156`, `58157`, `58159`, `58161`, `58164`, `58166`, `58168`, `58169`, `58171`, `58173`, `58175`, `58176`, `58178`, `58180`, `58182`, `58184`, `58187`, `58188`, `58190`, `58192`, `58194`, `58196`, `58198`, `58200`, `58202`, `58204`, `58206`, `58208`, `58210`, `58211`, `58213`, `58215`, `58216`, `58217`, `58222`, `58224`, `58226`, `58228`, `58230`, `58232`, `58234`, `58236`, `58238`, `58239`, `58241`, `58244`, `58246`, `58248`, `58250`, `58252`, `58255`, `58256`, `58258`, `58259`, `58261`, `58263`, `58264`, `58265`, `58267`, `58269`, `58270`, `58272`, `58273`, `58275`, `58278`, `58279`, `58280`, `58283`, `58285`, `58286`, `58287`, `58289`, `58291`, `58293`, `58294`, `58295`, `58296`, `58298`, `58301`, `58302`, `58304`, `58306`, `58308`, `58310`, `58313`, `58315`, `58318`, `58320`, `58321`, `58322`, `58323`, `58324`, `58325`, `58326`, `58328`, `58330`, `58332`, `58334`, `58335`, `58337`, `58339`, `58340`, `58342`, `58344`, `58345`, `58346`, `58347`, `58349`, `58351`, `58352`, `58354`, `58356`, `58358`, `58360`, `58361`, `58363`, `58366`, `58372`, `58373`, `58374`, `58375`, `58378`, `58379`, `58380`, `58381`, `58383`, `58384`, `58385`, `58388`, `58390`, `58391`, `58393`, `58394`, `58395`, `58396`, `58398`, `58399`, `58401`, `58402`, `58403`, `58405`, `58407`, `58409`, `58411`, `58413`, `58414`, `58416`, `58417`, `58418`, `58420`, `58421`, `58423`, `58425`, `58426`, `58428`, `58431`, `58432`, `58434`, `58436`, `58438`, `58440`, `58443`, `58445`, `58447`, `58449`, `58451`, `58454`, `58456`, `58457`, `58458`, `58459`, `58460`, `58463`, `58465`, `58466`, `58468`, `58470`, `58472`, `58473`, `58475`, `58477`, `58479`, `58480`, `58481`, `58483`, `58485`, `58486`, `58488`, `58489`, `58491`, `58493`, `58494`, `58495`, `58497`, `58499`, `58500`, `58501`, `58503`, `58505`, `58507`, `58508`, `58510`, `58511`, `58513`, `58514`, `58516`, `58518`, `58520`, `58521`, `58522`, `58524`, `58526`, `58528`, `58529`, `58530`, `58531`, `58534`, `58536`, `58538`, `58540`, `58542`, `58544`, `58547`, `58548`, `58549`, `58551`, `58553`, `58555`, `58556`, `58557`, `58558`, `58560`, `58564`, `58566`, `58568`, `58569`, `58571`, `58572`, `58573`, `58575`, `58576`, `58578`, `58580`, `58582`, `58583`, `58585`, `58586`, `58588`, `58590`, `58591`, `58593`, `58594`, `58596`, `58598`, `58600`, `58601`, `58603`, `58607`, `58608`, `58610`, `58613`, `58614`, `58618`, `58620`, `58622`, `58623`, `58624`, `58626`, `58627`, `58628`, `58629`, `58631`, `58633`, `58634`, `58636`, `58638`, `58640`, `58642`, `58644`, `58645`, `58647`, `58650`, `58652`, `58653`, `58654`, `58656`, `58657`, `58659`, `58661`, `58663`, `58665`, `58667`, `58669`, `58671`, `58672`, `58674`, `58678`, `58680`, `58681`, `58684`, `58686`, `58688`, `58690`, `58692`, `58694`, `58695`, `58697`, `58699`, `58700`, `58701`, `58705`, `58709`, `58710`, `58711`, `58712`, `58715`, `58717`, `58718`, `58720`, `58724`, `58726`, `58727`, `58728`, `58730`, `58731`, `422`, `58733`, `58735`, `58737`, `58740`, `58742`, `58743`, `58745`, `58748`, `58750`, `58751`, `58753`, `58755`, `58757`, `58759`, `58761`, `58763`, `58765`, `58767`, `58769`, `58771`, `58773`, `58775`, `58777`, `58779`, `58781`, `58783`, `58786`, `58788`, `58789`, `58791`, `58793`, `58795`, `58797`, `58798`, `58801`, `58802`, `58804`, `58806`, `58807`, `58809`, `58810`, `58812`, `58813`, `58814`, `58816`, `58818`, `58820`, `58821`, `58823`, `58825`, `58827`, `58828`, `58830`, `58831`, `58833`, `58835`, `58837`, `58840`, `58842`, `58843`, `58845`, `58846`, `58848`, `58849`, `58853`, `58855`, `58856`, `58858`, `58859`, `58860`, `58864`, `58865`, `58866`, `58868`, `58870`, `58872`, `58874`, `58875`, `58876`, `58878`, `58880`, `58881`, `58882`, `58883`, `58884`, `58885`, `58886`, `58888`, `58889`, `58890`, `58892`, `58894`, `58895`, `58896`, `58897`, `58901`, `58903`, `58904`, `58906`, `58908`, `58909`, `58911`, `58912`, `58916`, `58917`, `58919`, `58920`, `58921`, `58923`, `58925`, `58927`, `58929`, `58931`, `58932`, `58934`, `58935`, `58937`, `58939`, `58940`, `58942`, `58944`, `58945`, `58947`, `58948`, `58949`, `58951`, `58953`, `58954`, `58956`, `58958`, `58959`, `58960`, `58962`, `58964`, `58966`, `58968`, `58970`, `58971`, `58973`, `58977`, `58980`, `58982`, `58985`, `58987`, `58988`, `58989`, `58990`, `58991`, `58993`, `58995`, `58997`, `58999`, `59001`, `59002`, `59005`, `59007`, `59009`, `59010`, `59011`, `59013`, `59015`, `59017`, `59019`, `59021`, `59025`, `59030`, `59032`, `59034`, `59036`, `59039`, `59043`, `59046`, `59048`, `59049`, `59051`, `59054`, `59055`, `59056`, `59059`, `59061`, `59063`, `59066`, `59069`, `59070`, `59072`, `59075`, `59077`, `59080`, `59084`, `59086`, `59088`, `59090`, `59091`, `59094`, `59096`, `59098`, `59100`, `59101`, `59102`, `59104`, `59105`, `59106`, `59107`, `59109`, `59110`, `59111`, `59113`, `59114`, `59115`, `59116`, `59118`, `59120`, `59122`, `59126`, `59127`, `59129`, `59131`, `59133`, `59134`, `59136`, `59140`, `59142`, `59143`, `59145`, `59146`, `59148`, `59152`, `59153`, `59154`, `59156`, `59157`, `59159`, `59160`, `59162`, `59164`, `59166`, `59168`, `59169`, `59170`, `59171`, `59173`, `59174`, `59177`, `59178`, `59179`, `59181`, `59183`, `59184`, `59186`, `59188`, `59190`, `59192`, `59194`, `59196`, `59198`, `59201`, `59202`, `59204`, `59206`, `59208`, `59209`, `59211`, `59213`, `59216`, `59218`, `59220`, `59222`, `59224`, `59226`, `59228`, `59229`, `59231`, `59232`, `59234`, `59235`, `59236`, `59239`, `59241`, `59243`, `59245`, `59246`, `59247`, `59248`, `59251`, `59252`, `59253`, `59254`, `59256`, `59257`, `59259`, `59261`, `59263`, `59265`, `59267`, `59269`, `59271`, `59272`, `59273`, `59275`, `59276`, `59277`, `59279`, `59281`, `59283`, `59286`, `59287`, `59289`, `59291`, `59293`, `59295`, `59297`, `59299`, `59301`, `59303`, `59305`, `59306`, `59307`, `59309`, `59311`, `59313`, `59315`, `59317`, `59318`, `59320`, `59322`, `59324`, `59326`, `59327`, `59330`, `59332`, `59334`, `59335`, `59337`, `59338`, `59340`, `59341`, `59343`, `59344`, `59346`, `59348`, `59350`, `59352`, `59354`, `59355`, `59356`, `59358`, `59360`, `59361`, `59363`, `59366`, `59368`, `59370`, `59373`, `59374`, `59376`, `59378`, `59380`, `59382`, `59384`, `59387`, `59389`, `59391`, `59393`, `59394`, `59396`, `59397`, `59399`, `59401`, `59403`, `59405`, `59409`, `59412`, `59413`, `59415`, `59417`, `59419`, `59421`, `59423`, `59424`, `59426`, `59428`, `59430`, `59432`, `59433`, `59434`, `59435`, `59436`, `59437`, `59438`, `59443`, `59445`, `59446`, `59448`, `59450`, `59451`, `59453`, `59455`, `59457`, `59458`, `59459`, `59462`, `59464`, `59465`, `59467`, `59468`, `59470`, `59472`, `59474`, `59476`, `59477`, `59478`, `59479`, `59481`, `59483`, `59485`, `59486`, `59489`, `59492`, `59494`, `59496`, `59498`, `59500`, `59502`, `59505`, `59506`, `59507`, `59510`, `59512`, `59514`, `59515`, `59516`, `59518`, `59520`, `59522`, `59523`, `59524`, `59525`, `59526`, `59528`, `59529`, `59531`, `59533`, `59534`, `59535`, `59536`, `59537`, `59538`, `59541`, `59543`, `59545`, `59547`, `59548`, `59549`, `59553`, `59554`, `59556`, `59557`, `59558`, `59560`, `59561`, `59563`, `59565`, `59567`, `59569`, `59571`, `59572`, `59574`, `59576`, `59578`, `59579`, `59580`, `59581`, `59583`, `59585`, `59587`, `59589`, `59590`, `59591`, `59593`, `59594`, `59596`, `59598`, `59600`, `59602`, `59603`, `59605`, `59608`, `59610`, `59613`, `59615`, `59617`, `59619`, `59621`, `59623`, `59625`, `59626`, `59628`, `59630`, `59631`, `59633`, `59635`, `59637`, `59641`, `59643`, `59644`, `59646`, `59648`, `59649`, `59650`, `59652`, `59654`, `59656`, `59657`, `59659`, `59661`, `59663`, `59665`, `59667`, `59669`, `59670`, `59672`, `59674`, `59676`, `59678`, `59680`, `59682`, `59685`, `59687`, `59689`, `59691`, `59692`, `59694`, `59696`, `59698`, `59699`, `59700`, `59701`, `59704`, `59705`, `59706`, `59708`, `59709`, `59712`, `59713`, `59715`, `59716`, `59718`, `59719`, `59722`, `59724`, `59726`, `59728`, `59730`, `59732`, `59735`, `59736`, `59737`, `59738`, `59740`, `59742`, `59743`, `59744`, `59748`, `59749`, `59751`, `59752`, `59753`, `59755`, `59757`, `59759`, `59761`, `59763`, `59765`, `59766`, `59767`, `59769`, `59771`, `59772`, `59773`, `59774`, `59775`, `59777`, `59779`, `59782`, `59783`, `59785`, `59787`, `59789`, `59792`, `59794`, `59795`, `59797`, `59799`, `59800`, `59802`, `59804`, `59805`, `59807`, `59809`, `59811`, `59812`, `59814`, `59816`, `59818`, `59820`, `59822`, `59823`, `59825`, `59826`, `59828`, `59830`, `59833`, `59835`, `59837`, `59838`, `59839`, `59841`, `59842`, `59843`, `59845`, `59846`, `59848`, `59850`, `59852`, `59855`, `59856`, `59857`, `59858`, `59859`, `59861`, `59863`, `59864`, `59866`, `59867`, `59869`, `59871`, `59873`, `59874`, `59876`, `59878`, `59879`, `59881`, `59882`, `59883`, `59886`, `59888`, `59891`, `59893`, `59896`, `59897`, `59900`, `59902`, `59904`, `59905`, `59907`, `59909`, `59910`, `59911`, `59914`, `59918`, `59919`, `59921`, `59926`, `59928`, `59929`, `59930`, `59931`, `59932`, `59934`, `59936`, `59937`, `59939`, `59941`, `59944`, `59945`, `59946`, `59949`, `59950`, `59954`, `59956`, `59958`, `59960`, `59962`, `59964`, `59966`, `59968`, `59970`, `59972`, `59973`, `59975`, `59978`, `59980`, `59981`, `59982`, `59983`, `59984`, `59986`, `59988`, `59990`, `59991`, `59992`, `59994`, `59997`, `59999`, `60000`, `60001`, `60003`, `60005`, `60007`, `60009`, `60010`, `60012`, `60014`, `60016`, `60018`, `60020`, `60022`, `60023`, `60025`, `60027`, `60029`, `60030`, `60031`, `60036`, `60038`, `60039`, `60041`, `60043`, `60044`, `60046`, `60048`, `60050`, `60052`, `60054`, `60056`, `60057`, `60059`, `60061`, `60062`, `60063`, `60066`, `60068`, `60070`, `60073`, `60075`, `60078`, `60079`, `60080`, `60082`, `60084`, `60085`, `60088`, `60089`, `60091`, `60096`, `60097`, `60098`, `60100`, `60102`, `60104`, `60106`, `60107`, `60108`, `60110`, `60112`, `60114`, `60116`, `60118`, `60119`, `60121`, `60123`, `60125`, `60127`, `60129`, `60131`, `60133`, `60135`, `60137`, `60138`, `60140`, `60141`, `60143`, `60144`, `60145`, `60146`, `60147`, `60149`, `60152`, `60154`, `60155`, `60157`, `60158`, `60159`, `60160`, `60164`, `60166`, `60168`, `60170`, `60171`, `60173`, `60177`, `60178`, `60179`, `60180`, `60182`, `60183`, `60185`, `60187`, `60189`, `60191`, `60193`, `60194`, `60196`, `60198`, `60200`, `60202`, `60204`, `60206`, `60208`, `60209`, `60213`, `60214`, `60215`, `60217`, `60219`, `60221`, `60223`, `60224`, `60226`, `60227`, `60229`, `60231`, `60235`, `60237`, `60239`, `60241`, `60243`, `60244`, `60245`, `60248`, `60249`, `60250`, `60251`, `60253`, `60254`, `60256`, `60258`, `60260`, `60262`, `60265`, `60267`, `60269`, `60271`, `60273`, `60275`, `60276`, `60278`, `60279`, `60281`, `60282`, `60284`, `60285`, `60287`, `60289`, `60291`, `60293`, `60296`, `60298`, `60299`, `60301`, `60303`, `60305`, `60306`, `60307`, `60309`, `60311`, `60312`, `60314`, `60316`, `60318`, `60320`, `60322`, `60324`, `60326`, `60327`, `60329`, `60331`, `60333`, `60335`, `60337`, `60340`, `60342`, `60343`, `60344`, `60346`, `60350`, `60352`, `60354`, `60355`, `60356`, `60358`, `60359`, `60361`, `60363`, `60365`, `60367`, `60368`, `60370`, `60372`, `60373`, `60375`, `60376`, `60378`, `60379`, `60380`, `60382`, `60384`, `60386`, `60388`, `60389`, `60391`, `60393`, `49647`, `60395`, `60397`, `60399`, `60401`, `60403`, `60405`, `60407`, `60409`, `60411`, `60412`, `60413`, `60415`, `60417`, `60418`, `60419`, `60421`, `60423`, `60424`, `60426`, `60428`, `60430`, `60432`, `2476`, `60434`, `60436`, `60439`, `60441`, `60443`, `60444`, `60446`, `60448`, `60450`, `60452`, `60455`, `60457`, `60461`, `60463`, `60464`, `60466`, `60467`, `60468`, `60473`, `60477`, `60479`, `60481`, `60482`, `60484`, `60485`, `60487`, `60489`, `60491`, `60495`, `60497`, `60498`, `60499`, `60501`, `60503`, `60504`, `60505`, `60508`, `60509`, `60511`, `60513`, `60515`, `60516`, `60518`, `60519`, `60520`, `60522`, `60524`, `60526`, `60527`, `60529`, `60531`, `60532`, `60534`, `60536`, `60537`, `60539`, `60541`, `60542`, `60544`, `60546`, `60548`, `60550`, `60552`, `60553`, `60554`, `60557`, `60559`, `60560`, `60562`, `60564`, `60566`, `60569`, `60570`, `60574`, `60576`, `60578`, `60581`, `60582`, `60584`, `60586`, `60587`, `60588`, `60592`, `60593`, `60595`, `60596`, `60598`, `60599`, `60600`, `60602`, `60604`, `60605`, `60606`, `60607`, `60608`, `60610`, `60611`, `60613`, `60615`, `60617`, `60618`, `60619`, `60621`, `60623`, `60626`, `60628`, `60630`, `60632`, `60634`, `60636`, `60638`, `60639`, `60641`, `60643`, `60645`, `60646`, `60648`, `60650`, `60652`, `60654`, `60655`, `60657`, `60661`, `60663`, `60664`, `60666`, `60668`, `60670`, `60672`, `60674`, `60676`, `60678`, `60680`, `60681`, `60682`, `60684`, `60687`, `60689`, `60690`, `60692`, `60693`, `60694`, `60696`, `60698`, `60699`, `60701`, `60702`, `60704`, `60705`, `60707`, `60711`, `60715`, `60716`, `60718`, `60720`, `60722`, `60724`, `60725`, `60727`, `60729`, `60731`, `60732`, `60733`, `60734`, `60736`, `60737`, `60739`, `60740`, `60741`, `60744`, `60746`, `60747`, `60748`, `60752`, `60754`, `60756`, `60758`, `60763`, `60765`, `60767`, `60769`, `60771`, `60772`, `60773`, `60774`, `60776`, `60779`, `60781`, `60784`, `60787`, `60789`, `60790`, `60792`, `60795`, `60796`, `60798`, `60800`, `60801`, `60802`, `60804`, `60806`, `60808`, `60809`, `60810`, `60811`, `60813`, `60814`, `60815`, `60816`, `60818`, `60820`, `60822`, `60823`, `60824`, `60825`, `60826`, `60828`, `60830`, `60831`, `60833`, `60834`, `60836`, `60838`, `60840`, `60841`, `60843`, `60845`, `60847`, `60848`, `60849`, `60851`, `60852`, `60854`, `60855`, `60857`, `60859`, `60860`, `60862`, `60863`, `60864`, `60866`, `60868`, `60870`, `60872`, `60873`, `60875`, `60876`, `60877`, `60879`, `60881`, `60883`, `60884`, `60889`, `60890`, `60892`, `60893`, `60895`, `60897`, `60898`, `60899`, `60900`, `60902`, `60903`, `60904`, `60906`, `60908`, `60909`, `60914`, `60918`, `60919`, `60921`, `60923`, `60925`, `60927`, `60929`, `60930`, `60932`, `60933`, `60934`, `60937`, `60939`, `60940`, `60943`, `60944`, `60946`, `60948`, `60949`, `60951`, `60953`, `60955`, `60957`, `60959`, `60961`, `60963`, `60965`, `60967`, `60969`, `60970`, `60972`, `60975`, `60977`, `60978`, `60980`, `60982`, `60984`, `60986`, `60988`, `60991`, `60993`, `60996`, `60998`, `61000`, `61002`, `61004`, `61005`, `61006`, `61008`, `61009`, `61011`, `61014`, `61015`, `61016`, `61018`, `61020`, `61022`, `61023`, `61025`, `61027`, `61029`, `61031`, `61033`, `61035`, `61037`, `61039`, `61040`, `61041`, `61042`, `61043`, `61044`, `61046`, `61048`, `61050`, `61052`, `61054`, `61055`, `61056`, `61057`, `61058`, `61059`, `61061`, `61063`, `61065`, `61066`, `61067`, `61068`, `61070`, `61072`, `61076`, `61078`, `61079`, `61081`, `61083`, `61085`, `61088`, `61089`, `61091`, `61094`, `61095`, `61096`, `61098`, `61100`, `61102`, `61104`, `61105`, `61106`, `61108`, `61110`, `61112`, `61114`, `61115`, `61117`, `61118`, `61120`, `61123`, `61125`, `61126`, `61127`, `61128`, `61130`, `61132`, `61133`, `61135`, `61136`, `61138`, `61139`, `61141`, `61142`, `61144`, `61145`, `61147`, `61149`, `61151`, `61153`, `61155`, `61157`, `61159`, `61160`, `61161`, `61163`, `61166`, `61170`, `61172`, `61174`, `61176`, `61178`, `61180`, `61182`, `61183`, `61185`, `61187`, `61188`, `61189`, `61191`, `61193`, `61194`, `61196`, `61198`, `61199`, `61200`, `61201`, `61202`, `61203`, `61204`, `61205`, `61207`, `61209`, `61211`, `61214`, `61215`, `61216`, `61218`, `61220`, `61221`, `61222`, `61223`, `61225`, `61227`, `61230`, `61232`, `61234`, `61237`, `61238`, `61240`, `61242`, `61244`, `61245`, `61247`, `61248`, `61250`, `61251`, `61252`, `61253`, `61255`, `61257`, `61259`, `61263`, `61265`, `61266`, `61268`, `61269`, `61271`, `61273`, `61275`, `61277`, `61279`, `61280`, `61281`, `61283`, `61285`, `61286`, `61287`, `61289`, `61291`, `61293`, `61295`, `61296`, `61297`, `61299`, `61300`, `61302`, `61304`, `61306`, `61307`, `61309`, `61311`, `61313`, `61315`, `61316`, `61318`, `61320`, `61322`, `61324`, `61325`, `61326`, `61328`, `61330`, `61332`, `61333`, `61335`, `61336`, `61337`, `61339`, `61341`, `61343`, `61345`, `61347`, `61349`, `61351`, `61352`, `61354`, `61355`, `61357`, `61358`, `61360`, `61361`, `61363`, `61364`, `61365`, `61367`, `61368`, `61369`, `61371`, `61373`, `61375`, `61377`, `61379`, `61381`, `61383`, `61387`, `61389`, `61391`, `61392`, `61394`, `61396`, `61398`, `61399`, `61401`, `61403`, `61404`, `61405`, `61407`, `272`, `61408`, `61410`, `61412`, `61414`, `61415`, `61416`, `61420`, `61422`, `61424`, `61427`, `61429`, `61431`, `61433`, `61436`, `61438`, `61439`, `61442`, `61444`, `61447`, `61449`, `61450`, `61452`, `61454`, `61456`, `61459`, `61461`, `61462`, `61464`, `61466`, `61467`, `61469`, `61470`, `61472`, `61476`, `61478`, `61480`, `61484`, `61486`, `61488`, `61490`, `61491`, `61493`, `61495`, `61496`, `61498`, `61500`, `61502`, `61503`, `61505`, `61506`, `61508`, `61510`, `61513`, `61514`, `61516`, `61518`, `61521`, `61522`, `61523`, `61524`, `61525`, `61527`, `61528`, `61530`, `61531`, `61533`, `61535`, `61537`, `61539`, `61540`, `61541`, `61542`, `61543`, `61544`, `61545`, `61547`, `61549`, `61551`, `61553`, `61555`, `61559`, `61561`, `61562`, `61564`, `61565`, `61566`, `61568`, `61571`, `61573`, `61575`, `61577`, `61580`, `61582`, `61584`, `61585`, `61586`, `61588`, `61589`, `61590`, `61592`, `61595`, `61596`, `61598`, `61600`, `61602`, `61604`, `61606`, `61607`, `61608`, `61610`, `61612`, `61613`, `61614`, `61616`, `61618`, `61620`, `61624`, `61625`, `61628`, `61629`, `61630`, `61632`, `61634`, `61636`, `61638`, `61641`, `61645`, `61647`, `61651`, `61653`, `61656`, `61658`, `61660`, `61662`, `61664`, `61666`, `61668`, `61670`, `61672`, `61673`, `61675`, `61677`, `61679`, `61680`, `61682`, `61684`, `61686`, `61688`, `61690`, `61691`, `61693`, `61695`, `61697`, `61701`, `61702`, `61703`, `61705`, `61707`, `61708`, `61710`, `61712`, `61714`, `61716`, `61717`, `61719`, `61721`, `29340`, `61723`, `61725`, `61726`, `61728`, `61731`, `61733`, `61734`, `61735`, `61738`, `61740`, `61741`, `61743`, `61744`, `61746`, `61748`, `61749`, `61751`, `61753`, `61755`, `61756`, `61757`, `61759`, `61761`, `61763`, `61765`, `61767`, `61768`, `61770`, `61771`, `61772`, `61773`, `61775`, `61777`, `61779`, `61781`, `61782`, `61784`, `61785`, `61787`, `61789`, `61791`, `61792`, `61794`, `61796`, `61798`, `61801`, `61803`, `61806`, `61808`, `61809`, `61810`, `61811`, `61813`, `61815`, `61817`, `61818`, `61820`, `61822`, `61823`, `61825`, `61826`, `61828`, `61830`, `61831`, `61832`, `61834`, `61836`, `61838`, `61839`, `61841`, `61842`, `61844`, `61847`, `61849`, `61850`, `61853`, `61855`, `61859`, `61861`, `61864`, `61868`, `61870`, `61874`, `61875`, `61877`, `61879`, `61881`, `61883`, `61885`, `61889`, `61891`, `61894`, `61896`, `61898`, `61899`, `61904`, `61908`, `61910`, `61912`, `61914`, `61916`, `61918`, `61919`, `61923`, `61924`, `61926`, `61928`, `61930`, `61932`, `61934`, `61936`, `61938`, `61940`, `61942`, `61943`, `61945`, `61949`, `61951`, `61952`, `61954`, `61956`, `61957`, `61959`, `61961`, `61963`, `61964`, `61965`, `61966`, `61969`, `61971`, `61973`, `61974`, `61975`, `61977`, `61980`, `61981`, `61983`, `61985`, `61987`, `61989`, `61990`, `61992`, `61994`, `61996`, `61997`, `61999`, `62000`, `62002`, `62003`, `62005`, `62006`, `62008`, `62009`, `62010`, `62011`, `62013`, `62015`, `62016`, `62018`, `62020`, `62022`, `62024`, `62025`, `62027`, `62029`, `62031`, `62033`, `62035`, `62037`, `62039`, `62041`, `62045`, `62047`, `62049`, `62051`, `62053`, `62055`, `62056`, `62064`, `62066`, `62068`, `62070`, `62071`, `62073`, `62075`, `62076`, `62078`, `62080`, `62082`, `62084`, `62086`, `62089`, `62091`, `62092`, `62096`, `62097`, `62099`, `62101`, `62102`, `62104`, `62106`, `62107`, `62108`, `62110`, `62112`, `62113`, `62114`, `62116`, `62117`, `62118`, `62119`, `62121`, `62123`, `62124`, `62126`, `62127`, `62129`, `62130`, `62132`, `62134`, `62135`, `62136`, `62138`, `62140`, `62142`, `62143`, `62144`, `62145`, `62147`, `62148`, `62151`, `62153`, `62155`, `62156`, `62158`, `62160`, `62162`, `62164`, `62166`, `62168`, `62169`, `62171`, `62172`, `62174`, `62175`, `62177`, `62178`, `62180`, `62182`, `62183`, `62185`, `62187`, `62189`, `62191`, `62193`, `62195`, `62196`, `62197`, `62199`, `62201`, `62203`, `62205`, `62207`, `62209`, `62211`, `62213`, `62215`, `62216`, `62218`, `62220`, `62222`, `62223`, `62225`, `62227`, `62229`, `62231`, `62232`, `62234`, `62236`, `62238`, `62239`, `62246`, `62248`, `62252`, `62254`, `62256`, `62257`, `62259`, `62260`, `62262`, `62264`, `62266`, `62268`, `62270`, `62273`, `62275`, `62277`, `62279`, `62281`, `62283`, `62284`, `62285`, `62287`, `62289`, `62290`, `62291`, `62292`, `62293`, `62295`, `62297`, `62300`, `62303`, `62306`, `62307`, `62308`, `62309`, `62310`, `62313`, `62315`, `62317`, `62318`, `62320`, `62321`, `62323`, `62324`, `62326`, `62327`, `62329`, `62330`, `62332`, `62333`, `62336`, `62337`, `62339`, `62341`, `62343`, `62344`, `62345`, `62348`, `62350`, `62351`, `62352`, `62354`, `62355`, `62357`, `62359`, `62361`, `62362`, `62364`, `62365`, `62367`, `62369`, `62371`, `62373`, `62375`, `62377`, `62379`, `62381`, `62383`, `62385`, `62387`, `62390`, `62392`, `62393`, `62395`, `62397`, `62399`, `62401`, `62403`, `62406`, `62408`, `62410`, `62411`, `62413`, `62414`, `62416`, `62418`, `62419`, `62421`, `62423`, `62424`, `62426`, `62428`, `62429`, `62430`, `62431`, `62433`, `62434`, `62436`, `62439`, `62441`, `62443`, `62446`, `62450`, `62451`, `62453`, `62455`, `62457`, `62459`, `62461`, `62464`, `62465`, `62467`, `62468`, `62470`, `62472`, `62474`, `62476`, `62477`, `62479`, `62481`, `62483`, `62485`, `62487`, `62489`, `62490`, `62492`, `62493`, `62499`, `62501`, `62503`, `62505`, `62506`, `62509`, `62511`, `62513`, `62515`, `62516`, `62517`, `62519`, `62521`, `62523`, `62525`, `62526`, `62528`, `62530`, `62532`, `62534`, `62536`, `62538`, `62540`, `62542`, `62544`, `62546`, `62548`, `62550`, `62552`, `62554`, `62555`, `62557`, `62559`, `62561`, `62563`, `62565`, `62567`, `62569`, `62570`, `62572`, `62574`, `62576`, `62578`, `62580`, `62581`, `62583`, `62585`, `62587`, `62588`, `62591`, `62592`, `62593`, `62595`, `62601`, `62604`, `62606`, `62609`, `62611`, `62615`, `62617`, `62621`, `62623`, `62624`, `62625`, `62627`, `62631`, `62633`, `62634`, `62635`, `62636`, `62639`, `62641`, `62643`, `62646`, `62647`, `62649`, `62651`, `62652`, `62653`, `62654`, `62655`, `62656`, `62658`, `62660`, `62663`, `62665`, `62667`, `62668`, `62670`, `62672`, `62674`, `62675`, `62677`, `62679`, `62681`, `62682`, `62683`, `62685`, `62686`, `62688`, `62691`, `62693`, `62694`, `62695`, `62696`, `62698`, `62700`, `62702`, `62704`, `62706`, `62708`, `62709`, `62710`, `62712`, `62714`, `62717`, `62719`, `62722`, `62725`, `62726`, `62728`, `62729`, `62731`, `62735`, `62736`, `62738`, `62740`, `62742`, `62744`, `62746`, `62748`, `62750`, `62752`, `62754`, `62755`, `62758`, `62761`, `62763`, `62764`, `62766`, `62768`, `62771`, `62773`, `62774`, `62776`, `62778`, `62780`, `62781`, `62782`, `62783`, `62785`, `62787`, `62788`, `62791`, `62792`, `62793`, `62795`, `62797`, `62799`, `62801`, `62803`, `62805`, `62807`, `62809`, `62811`, `62813`, `62815`, `62817`, `62818`, `62819`, `62821`, `62823`, `62825`, `62827`, `62829`, `62830`, `62831`, `62832`, `62834`, `62836`, `62838`, `62840`, `62842`, `62843`, `62845`, `62847`, `62849`, `62851`, `62854`, `62859`, `62860`, `62863`, `62865`, `62867`, `62869`, `62870`, `62871`, `62873`, `62875`, `62876`, `62877`, `62878`, `62880`, `62881`, `62883`, `62885`, `62886`, `62889`, `62891`, `62893`, `62895`, `62897`, `62898`, `62900`, `62901`, `62904`, `62906`, `62908`, `62910`, `62912`, `62913`, `62915`, `62916`, `62918`, `62920`, `62922`, `62924`, `62926`, `62928`, `62930`, `62932`, `62935`, `62938`, `62940`, `62942`, `62944`, `62946`, `62948`, `62950`, `62952`, `62954`, `62956`, `62957`, `62959`, `62961`, `62963`, `62964`, `62966`, `62967`, `62968`, `62970`, `62972`, `62973`, `62975`, `62977`, `62978`, `62980`, `62981`, `62982`, `62984`, `62986`, `62988`, `62990`, `62992`, `62997`, `62999`, `63004`, `63006`, `63010`, `63012`, `63015`, `63017`, `63018`, `63020`, `63022`, `63024`, `63025`, `63027`, `63029`, `63031`, `63033`, `63035`, `63037`, `63039`, `63041`, `63045`, `63046`, `63047`, `63049`, `63050`, `63052`, `63054`, `63055`, `63057`, `63059`, `63061`, `63062`, `63064`, `63068`, `63070`, `63072`, `63074`, `63078`, `63080`, `63082`, `63084`, `63086`, `63088`, `63090`, `63093`, `63095`, `63097`, `63099`, `63101`, `63103`, `63105`, `63107`, `63109`, `63110`, `63112`, `63114`, `63118`, `63120`, `63121`, `63123`, `63125`, `63127`, `63128`, `63129`, `63131`, `63133`, `63136`, `63137`, `63138`, `63140`, `63141`, `63142`, `63143`, `63145`, `63147`, `63149`, `63150`, `63152`, `63154`, `63156`, `63158`, `63160`, `63161`, `63163`, `63165`, `63166`, `63168`, `63170`, `63172`, `63175`, `63177`, `63179`, `63180`, `63183`, `63187`, `63189`, `63190`, `63192`, `63194`, `63196`, `63198`, `63200`, `63202`, `63204`, `63206`, `63208`, `63209`, `63211`, `63213`, `63215`, `63217`, `63219`, `63221`, `63222`, `63223`, `63224`, `63226`, `63227`, `63228`, `63229`, `63230`, `63232`, `63234`, `63236`, `63239`, `63242`, `63244`, `63248`, `63249`, `63250`, `63252`, `63253`, `63254`, `63256`, `63258`, `63259`, `63261`, `63262`, `63264`, `63266`, `63268`, `63270`, `63271`, `63273`, `63276`, `63278`, `63279`, `63281`, `63284`, `63285`, `63286`, `63287`, `63288`, `63290`, `63291`, `63293`, `63295`, `63296`, `63298`, `63300`, `63301`, `63302`, `63304`, `63306`, `63310`, `63312`, `63313`, `63315`, `63318`, `63320`, `63322`, `63324`, `63325`, `63327`, `63328`, `63330`, `63332`, `63333`, `63335`, `63337`, `63339`, `63341`, `63343`, `63344`, `63346`, `63348`, `63350`, `63352`, `63353`, `63355`, `63356`, `63358`, `63360`, `63361`, `63363`, `63364`, `63366`, `63368`, `63372`, `63374`, `63377`, `63379`, `63380`, `63382`, `63384`, `63385`, `63387`, `63388`, `63390`, `63391`, `63395`, `63399`, `63401`, `63402`, `63404`, `63406`, `63408`, `63410`, `63412`, `63413`, `63416`, `63418`, `63420`, `63421`, `63423`, `63425`, `63428`, `63430`, `63432`, `63434`, `63436`, `63438`, `63440`, `63442`, `63443`, `63445`, `63447`, `63448`, `63450`, `63451`, `63453`, `63454`, `63455`, `63456`, `63458`, `63460`, `63462`, `63464`, `63465`, `63467`, `63469`, `63471`, `63473`, `63474`, `63475`, `63477`, `63479`, `63480`, `63481`, `63488`, `63493`, `63496`, `63498`, `63500`, `63502`, `63507`, `63508`, `63510`, `63512`, `63514`, `63517`, `63520`, `63521`, `63523`, `63525`, `63527`, `63529`, `63531`, `63533`, `63535`, `63537`, `63538`, `63539`, `63541`, `63542`, `63544`, `63545`, `63546`, `63548`, `63549`, `63550`, `63552`, `63553`, `63554`, `63556`, `63558`, `63560`, `63561`, `63563`, `63565`, `63567`, `63569`, `63571`, `63573`, `63576`, `63579`, `63581`, `63583`, `63584`, `63586`, `63588`, `63590`, `63594`, `63595`, `63598`, `63600`, `63603`, `63604`, `63606`, `63608`, `63610`, `63612`, `63614`, `63615`, `63616`, `63619`, `63621`, `63622`, `63624`, `63626`, `63628`, `63631`, `63633`, `63634`, `63635`, `63637`, `63638`, `63639`, `63642`, `63644`, `63646`, `63648`, `63650`, `63652`, `63653`, `63654`, `63656`, `63657`, `63659`, `63661`, `63663`, `63665`, `63666`, `63668`, `63669`, `63671`, `63673`, `63675`, `63677`, `63679`, `63681`, `63683`, `63684`, `63686`, `63688`, `63690`, `63692`, `63693`, `63694`, `63697`, `63699`, `63701`, `63703`, `63705`, `63707`, `63709`, `63711`, `63713`, `63717`, `63719`, `63721`, `63722`, `63723`, `63724`, `63726`, `63728`, `63730`, `63732`, `63733`, `63735`, `63737`, `63738`, `63742`, `63744`, `63745`, `63747`, `63749`, `63750`, `63752`, `63756`, `63757`, `63758`, `63760`, `63762`, `63764`, `63766`, `63768`, `63770`, `63772`, `63774`, `63776`, `63778`, `63779`, `63782`, `63783`, `63785`, `63787`, `63789`, `63791`, `63794`, `63797`, `63799`, `63802`, `63803`, `63805`, `63807`, `63809`, `63811`, `63812`, `63813`, `63814`, `63816`, `63819`, `63820`, `63822`, `63824`, `63826`, `63828`, `63830`, `63831`, `63833`, `63834`, `63838`, `63839`, `63841`, `63843`, `63845`, `63847`, `63849`, `63851`, `63853`, `63854`, `63856`, `63858`, `63860`, `63861`, `63863`, `63865`, `63869`, `63871`, `63876`, `63878`, `63880`, `63882`, `63884`, `63886`, `63887`, `63888`, `63889`, `63892`, `63895`, `63897`, `63899`, `63901`, `63903`, `63906`, `63908`, `63909`, `63910`, `63912`, `63914`, `63916`, `63917`, `63919`, `63921`, `63922`, `63925`, `63927`, `63929`, `63932`, `63934`, `63936`, `63937`, `63941`, `63942`, `63944`, `63946`, `63947`, `63948`, `63950`, `63952`, `63953`, `63955`, `63957`, `63960`, `63961`, `63962`, `63964`, `63966`, `63969`, `63972`, `63976`, `63978`, `63980`, `63982`, `63984`, `63986`, `63988`, `63990`, `63991`, `63993`, `63995`, `63997`, `63999`, `64001`, `64003`, `64005`, `64006`, `64008`, `64010`, `64011`, `64012`, `64014`, `64015`, `64017`, `64019`, `64021`, `64024`, `64026`, `64027`, `64029`, `64031`, `64032`, `64035`, `64038`, `64040`, `64042`, `64044`, `64046`, `64049`, `64050`, `64052`, `64054`, `64056`, `64058`, `64060`, `64062`, `64064`, `64066`, `64068`, `64070`, `64072`, `64074`, `64075`, `64077`, `64079`, `64080`, `64082`, `64084`, `64086`, `64088`, `64090`, `64092`, `64093`, `64095`, `64096`, `64098`, `64099`, `64100`, `64102`, `64104`, `64106`, `64107`, `64109`, `64110`, `64111`, `64112`, `64114`, `64115`, `64117`, `64118`, `64120`, `64122`, `64124`, `64127`, `64128`, `64129`, `64131`, `64133`, `64135`, `64137`, `64139`, `64143`, `64145`, `64146`, `64148`, `64150`, `64151`, `64153`, `64155`, `64156`, `64159`, `64161`, `64163`, `64164`, `64166`, `64167`, `64169`, `64171`, `64172`, `64174`, `64176`, `64177`, `64179`, `64181`, `64183`, `64184`, `64186`, `64187`, `64189`, `64190`, `64192`, `64194`, `64196`, `64197`, `64199`, `64201`, `64206`, `64207`, `64209`, `64210`, `64211`, `64212`, `64214`, `64216`, `64219`, `64220`, `64221`, `64223`, `64224`, `64226`, `64227`, `64229`, `64231`, `64232`, `64234`, `64235`, `64237`, `64239`, `64240`, `64242`, `64244`, `64246`, `64247`, `64248`, `64249`, `64250`, `64251`, `64253`, `64255`, `64256`, `64257`, `64259`, `64261`, `64262`, `64264`, `64266`, `64267`, `64269`, `64271`, `64273`, `64275`, `64276`, `64278`, `64280`, `64282`, `64284`, `64289`, `64291`, `64293`, `64295`, `64297`, `64299`, `64302`, `64305`, `64306`, `64310`, `64312`, `64314`, `64316`, `64317`, `64319`, `64321`, `64323`, `64324`, `64327`, `64328`, `64330`, `64332`, `64333`, `64334`, `64336`, `64338`, `64340`, `64342`, `64344`, `64349`, `64351`, `64354`, `64356`, `64357`, `64359`, `64361`, `64362`, `64364`, `64366`, `64369`, `64370`, `64371`, `64373`, `64375`, `64377`, `64378`, `64380`, `64382`, `64386`, `64388`, `64389`, `64391`, `64393`, `64394`, `64396`, `64398`, `64400`, `64402`, `64404`, `64406`, `64407`, `64408`, `64410`, `64412`, `64414`, `64416`, `64418`, `64419`, `64421`, `64423`, `64425`, `64426`, `64430`, `64432`, `64433`, `64434`, `64436`, `64437`, `64439`, `64441`, `64442`, `64444`, `64445`, `64447`, `64449`, `64451`, `64454`, `64456`, `64458`, `64461`, `64463`, `64465`, `64467`, `64469`, `64471`, `64473`, `64474`, `64476`, `64478`, `64480`, `64482`, `64484`, `64485`, `64487`, `64489`, `64490`, `64491`, `64493`, `64494`, `64495`, `64496`, `64497`, `64499`, `64501`, `64503`, `64504`, `64506`, `64507`, `64509`, `64512`, `64514`, `64516`, `64518`, `64519`, `64521`, `64522`, `64523`, `64525`, `64527`, `64530`, `64532`, `64534`, `64536`, `64537`, `64539`, `64542`, `64543`, `64545`, `64547`, `64549`, `64551`, `64553`, `64554`, `64555`, `64557`, `64559`, `64561`, `64563`, `64564`, `64566`, `64568`, `64570`, `64572`, `64574`, `64575`, `64577`, `64579`, `64581`, `64583`, `64585`, `64586`, `64589`, `64590`, `64592`, `64594`, `64596`, `64598`, `64600`, `64601`, `64603`, `64605`, `64607`, `64609`, `64611`, `64613`, `64615`, `64617`, `64619`, `64621`, `64623`, `64625`, `64626`, `64627`, `64628`, `64630`, `64632`, `64634`, `64636`, `64638`, `64639`, `64641`, `64643`, `64645`, `64647`, `64650`, `64652`, `64656`, `64658`, `64660`, `64662`, `64664`, `64666`, `64667`, `64669`, `64670`, `64672`, `64674`, `64676`, `64678`, `64683`, `64684`, `64686`, `64688`, `64690`, `64691`, `64692`, `64696`, `64698`, `64700`, `64702`, `64704`, `64705`, `64707`, `64708`, `64712`, `64715`, `64716`, `64717`, `64718`, `64721`, `64722`, `64723`, `64725`, `64726`, `64727`, `64729`, `64731`, `64732`, `64735`, `64737`, `64739`, `64741`, `64742`, `64744`, `64745`, `64747`, `64749`, `64750`, `64752`, `64753`, `64755`, `64757`, `64758`, `64759`, `64761`, `64763`, `64765`, `64766`, `64768`, `64769`, `64771`, `64772`, `64773`, `64776`, `64777`, `64778`, `64779`, `64781`, `64782`, `64784`, `64786`, `64789`, `64791`, `64793`, `64797`, `64799`, `64801`, `64803`, `64804`, `64807`, `64808`, `64810`, `64812`, `64814`, `64816`, `64818`, `64820`, `64822`, `64823`, `64826`, `64827`, `64829`, `64830`, `64832`, `64834`, `64836`, `64838`, `64840`, `64842`, `64844`, `64846`, `64848`, `64850`, `64852`, `64854`, `64857`, `64859`, `64862`, `64865`, `64867`, `64868`, `64869`, `64870`, `64872`, `64874`, `64875`, `64877`, `64878`, `64881`, `64883`, `64886`, `64888`, `64890`, `64893`, `64895`, `64897`, `64898`, `64899`, `64901`, `64903`, `64904`, `64905`, `64907`, `64909`, `64911`, `64913`, `64915`, `64917`, `64918`, `64919`, `64920`, `64922`, `64925`, `64927`, `64928`, `64929`, `64930`, `64932`, `64934`, `64936`, `64938`, `64939`, `64940`, `64942`, `64944`, `64946`, `64948`, `64950`, `64952`, `64953`, `64955`, `64957`, `64958`, `64960`, `64961`, `64962`, `64964`, `64966`, `64968`, `64970`, `64973`, `64977`, `64981`, `64982`, `64984`, `64986`, `64988`, `64990`, `64992`, `64994`, `64996`, `64998`, `65000`, `65001`, `65002`, `65004`, `65006`, `65008`, `65010`, `65012`, `65014`, `65016`, `65018`, `65020`, `65021`, `65022`, `65024`, `65026`, `65028`, `65030`, `65032`, `65034`, `65035`, `65036`, `65038`, `65039`, `65041`, `65043`, `65045`, `65047`, `65049`, `65053`, `65055`, `65056`, `65058`, `65060`, `65062`, `65064`, `65065`, `65067`, `65069`, `65071`, `65074`, `65076`, `65078`, `65080`, `65083`, `65085`, `65086`, `65090`, `65091`, `65093`, `65095`, `65096`, `65098`, `65099`, `65101`, `65103`, `65105`, `65107`, `65109`, `65111`, `65112`, `65113`, `65115`, `65118`, `65120`, `65122`, `65124`, `65125`, `65129`, `65131`, `65133`, `65134`, `65137`, `65139`, `65140`, `65142`, `65143`, `65145`, `65146`, `65148`, `65150`, `65151`, `65153`, `65154`, `65156`, `65157`, `65158`, `65159`, `65161`, `65166`, `65167`, `65169`, `65171`, `65172`, `65173`, `65175`, `65176`, `65178`, `65179`, `65180`, `65182`, `65184`, `65186`, `65188`, `65190`, `65192`, `65193`, `65195`, `65196`, `65197`, `65198`, `65199`, `65200`, `65202`, `65204`, `65205`, `65209`, `65211`, `65213`, `65215`, `65217`, `65218`, `65219`, `65220`, `65221`, `65223`, `65226`, `65229`, `65231`, `65233`, `65235`, `65236`, `65239`, `65241`, `65243`, `65245`, `65247`, `65250`, `65251`, `65252`, `65254`, `65257`, `65259`, `65261`, `65263`, `65265`, `65267`, `65268`, `65270`, `65272`, `65273`, `65275`, `65276`, `65278`, `65279`, `65281`, `65284`, `65285`, `65286`, `65287`, `65289`, `65290`, `65292`, `65294`, `65297`, `65299`, `65300`, `65301`, `65302`, `65304`, `65306`, `65308`, `65310`, `65311`, `65313`, `65315`, `65318`, `65319`, `65320`, `65322`, `65324`, `65326`, `65327`, `65329`, `65331`, `65335`, `65337`, `65339`, `65341`, `65342`, `65343`, `65345`, `65346`, `65348`, `65350`, `65352`, `65354`, `65356`, `65357`, `65361`, `65362`, `65364`, `65366`, `65367`, `65369`, `65371`, `65373`, `65374`, `65375`, `65377`, `65378`, `65379`, `65381`, `65382`, `65384`, `65386`, `65388`, `65390`, `65392`, `65394`, `65395`, `65397`, `65399`, `65403`, `65405`, `65406`, `65407`, `65408`, `65410`, `65412`, `65416`, `65420`, `65422`, `65424`, `65425`, `65427`, `65429`, `65433`, `65436`, `65438`, `65439`, `65441`, `65442`, `65443`, `65445`, `65447`, `65449`, `65451`, `65453`, `65455`, `65457`, `65458`, `65460`, `65462`, `65463`, `65465`, `65466`, `65468`, `65469`, `65470`, `65472`, `65474`, `65476`, `65478`, `65479`, `65480`, `65482`, `65483`, `65484`, `65487`, `65489`, `65491`, `65492`, `65494`, `65495`, `65497`, `65499`, `65501`, `65502`, `65503`, `65505`, `65507`, `65509`, `65511`, `65513`, `65514`, `65516`, `65518`, `65519`, `65520`, `65522`, `65524`, `65525`, `65529`, `65531`, `65533`, `65534`, `65536`, `65537`, `65539`, `65541`, `65543`, `65544`, `65546`, `65548`, `65550`, `65552`, `65554`, `65555`, `65557`, `65560`, `65562`, `65564`, `65566`, `65567`, `65569`, `65570`, `65572`, `65574`, `65575`, `65576`, `65578`, `65580`, `65581`, `65583`, `65584`, `65585`, `65587`, `65589`, `65591`, `65593`, `65595`, `65597`, `65598`, `65600`, `65602`, `65603`, `65604`, `65606`, `65608`, `65610`, `65612`, `65614`, `65616`, `65617`, `65618`, `65619`, `65620`, `65622`, `65624`, `65625`, `65627`, `65629`, `65631`, `65633`, `65635`, `65637`, `65638`, `65640`, `65642`, `65644`, `65646`, `65647`, `65649`, `65651`, `65654`, `65656`, `65657`, `65658`, `65660`, `65661`, `65663`, `65666`, `65670`, `65673`, `65674`, `65675`, `65676`, `65678`, `65680`, `65681`, `65683`, `65684`, `65686`, `65688`, `65690`, `65692`, `65694`, `65695`, `65697`, `65699`, `65700`, `65702`, `65704`, `65706`, `65708`, `65709`, `65711`, `65713`, `65715`, `65717`, `65719`, `65720`, `65722`, `65725`, `65726`, `65728`, `65730`, `65731`, `65733`, `65735`, `65739`, `65741`, `65743`, `65744`, `65746`, `65748`, `65750`, `65752`, `65754`, `65756`, `65759`, `65761`, `65762`, `65764`, `65768`, `65770`, `65771`, `65772`, `65773`, `65775`, `65776`, `65778`, `65780`, `65782`, `65783`, `65785`, `65787`, `65789`, `65791`, `65793`, `65794`, `65796`, `65798`, `65799`, `65800`, `65802`, `65805`, `65807`, `65809`, `65811`, `65813`, `65815`, `65817`, `65819`, `65820`, `65821`, `65823`, `65824`, `65826`, `65828`, `65829`, `65831`, `65832`, `65834`, `65836`, `65837`, `65838`, `65839`, `65840`, `65842`, `65846`, `65849`, `65854`, `65858`, `65859`, `65861`, `65865`, `65867`, `65869`, `65871`, `65873`, `65875`, `65877`, `65879`, `65881`, `65884`, `65887`, `65890`, `65892`, `65895`, `65897`, `65899`, `65900`, `65904`, `65906`, `65907`, `65908`, `65909`, `65910`, `65911`, `65912`, `65913`, `65914`, `65916`, `65917`, `65918`, `65920`, `65925`, `65927`, `65929`, `65931`, `65933`, `65935`, `65937`, `65939`, `65941`, `65944`, `65946`, `65948`, `65950`, `65952`, `65953`, `65954`, `65955`, `65958`, `65960`, `65962`, `65964`, `65966`, `65968`, `65969`, `65971`, `65972`, `65974`, `65976`, `65979`, `65981`, `65983`, `65984`, `65985`, `65987`, `65989`, `65991`, `65992`, `65993`, `65994`, `65996`, `65998`, `65999`, `66003`, `66004`, `66006`, `66007`, `66009`, `66010`, `66011`, `66013`, `66015`, `66017`, `66019`, `66021`, `66023`, `66025`, `66026`, `66028`, `66030`, `66031`, `66033`, `66034`, `66036`, `66038`, `66040`, `66041`, `66044`, `66045`, `66046`, `66048`, `66050`, `66051`, `66053`, `66056`, `66057`, `66058`, `66062`, `66063`, `66065`, `66067`, `66068`, `66070`, `66072`, `66074`, `66076`, `66078`, `66080`, `66082`, `66085`, `66086`, `66088`, `66089`, `66092`, `66093`, `66094`, `66095`, `66097`, `66099`, `66100`, `66102`, `66104`, `66106`, `66107`, `66108`, `66109`, `66110`, `66111`, `66113`, `66114`, `66116`, `66119`, `66121`, `66122`, `66124`, `66130`, `66132`, `66133`, `66137`, `66139`, `66141`, `66143`, `66145`, `66147`, `66149`, `66151`, `66153`, `66154`, `66155`, `66156`, `66158`, `66160`, `66162`, `66163`, `66164`, `66165`, `66168`, `66169`, `66171`, `66172`, `66174`, `66175`, `66177`, `66180`, `66181`, `66185`, `66187`, `66188`, `66189`, `66190`, `66192`, `66193`, `66194`, `66195`, `66196`, `66198`, `66200`, `66204`, `66205`, `66206`, `66208`, `66209`, `66211`, `66213`, `66215`, `66216`, `66218`, `66220`, `66221`, `66223`, `66224`, `66226`, `66227`, `66228`, `66230`, `66232`, `66233`, `66234`, `66236`, `66237`, `66239`, `66241`, `66243`, `66244`, `66245`, `66249`, `66251`, `66252`, `66254`, `66256`, `66258`, `66260`, `66261`, `66263`, `66265`, `66267`, `66269`, `66271`, `66272`, `66274`, `66276`, `66278`, `66279`, `66281`, `66283`, `66285`, `66288`, `66289`, `66291`, `66293`, `66294`, `66296`, `66298`, `66300`, `66302`, `66303`, `66305`, `66307`, `66309`, `66311`, `66313`, `66315`, `66320`, `66323`, `66324`, `66325`, `66327`, `66329`, `66331`, `66332`, `66333`, `66335`, `66337`, `66339`, `66341`, `66342`, `66344`, `66345`, `66347`, `66348`, `66350`, `66352`, `66353`, `66355`, `66356`, `66357`, `66358`, `66359`, `66361`, `66362`, `66363`, `66365`, `66367`, `66369`, `66371`, `66374`, `66376`, `66377`, `66378`, `66380`, `66381`, `66383`, `66384`, `66386`, `66388`, `66390`, `66391`, `66393`, `66395`, `66396`, `66398`, `66401`, `66403`, `66404`, `66406`, `66408`, `66410`, `66412`, `66414`, `66416`, `66419`, `66420`, `66421`, `66423`, `66424`, `66425`, `66427`, `66428`, `66430`, `66432`, `66433`, `66434`, `66435`, `66438`, `66440`, `66441`, `66442`, `66444`, `66446`, `66448`, `66450`, `66452`, `66453`, `66455`, `66457`, `66459`, `66460`, `66462`, `66463`, `66464`, `66466`, `66468`, `66469`, `66470`, `66472`, `66475`, `66477`, `66480`, `66483`, `66485`, `66487`, `66491`, `66493`, `66495`, `66497`, `66499`, `66501`, `66503`, `66504`, `66506`, `66508`, `66510`, `66514`, `66515`, `66516`, `66518`, `66519`, `66521`, `66523`, `66524`, `66526`, `66527`, `66528`, `66530`, `66532`, `66533`, `66534`, `66537`, `66539`, `66541`, `66542`, `66544`, `66547`, `66549`, `66551`, `66553`, `66555`, `66557`, `66558`, `66560`, `66562`, `66564`, `66566`, `66568`, `66572`, `66574`, `66576`, `66578`, `66580`, `66582`, `66584`, `66585`, `66586`, `66587`, `66588`, `66589`, `66590`, `66591`, `66593`, `66594`, `66595`, `66597`, `66599`, `66602`, `66604`, `66606`, `66607`, `66609`, `66611`, `66613`, `66615`, `66617`, `66619`, `66621`, `66623`, `66625`, `66626`, `66627`, `66631`, `66633`, `66634`, `66636`, `66638`, `66640`, `66641`, `66643`, `66645`, `66646`, `66648`, `66650`, `66652`, `66654`, `66656`, `66658`, `66661`, `66664`, `66666`, `66668`, `66670`, `66672`, `66675`, `66677`, `66679`, `66681`, `66683`, `66684`, `66686`, `66688`, `66689`, `66690`, `66691`, `66692`, `66695`, `66697`, `66699`, `66701`, `66703`, `66704`, `66705`, `66706`, `66708`, `66711`, `66713`, `66714`, `66715`, `66717`, `66720`, `66721`, `66723`, `66725`, `66727`, `66729`, `66733`, `66735`, `66737`, `66739`, `66741`, `66743`, `66745`, `66746`, `66750`, `66752`, `66757`, `66759`, `66761`, `66762`, `66764`, `66765`, `66767`, `66769`, `66770`, `66773`, `66775`, `66776`, `66778`, `66780`, `66783`, `66785`, `66787`, `66788`, `66789`, `66791`, `66793`, `66795`, `66799`, `66802`, `66803`, `66807`, `66809`, `66811`, `66813`, `66815`, `66816`, `66817`, `66819`, `66822`, `66825`, `66827`, `66829`, `66831`, `66833`, `66836`, `66838`, `66839`, `66841`, `66842`, `66844`, `66845`, `66848`, `66850`, `66851`, `66853`, `66855`, `66856`, `66857`, `66859`, `66860`, `66863`, `66866`, `66867`, `66868`, `66870`, `66872`, `66874`, `66878`, `66880`, `66882`, `66884`, `66886`, `66887`, `66888`, `66890`, `66891`, `66893`, `66894`, `66896`, `66897`, `66898`, `66899`, `66901`, `66902`, `66904`, `66907`, `66909`, `66910`, `66912`, `66914`, `66915`, `66916`, `66920`, `66922`, `66924`, `66926`, `66928`, `66931`, `66933`, `66934`, `66935`, `66936`, `66937`, `66939`, `66941`, `66943`, `66945`, `66947`, `66949`, `66950`, `66953`, `66955`, `66957`, `66959`, `66963`, `66965`, `66968`, `66970`, `66971`, `66973`, `66974`, `66976`, `66978`, `66979`, `66980`, `66981`, `66982`, `66983`, `66984`, `66986`, `66988`, `66989`, `66991`, `66993`, `66995`, `66996`, `66998`, `66999`, `67003`, `67005`, `67006`, `67007`, `67009`, `67011`, `67013`, `67015`, `67016`, `67017`, `67018`, `67020`, `67022`, `67024`, `67026`, `67028`, `67030`, `67032`, `67035`, `67037`, `67040`, `67042`, `67043`, `67045`, `67046`, `67048`, `67049`, `67050`, `67052`, `67053`, `67055`, `67057`, `67058`, `67060`, `67061`, `67062`, `67063`, `67064`, `67067`, `67068`, `67071`, `67073`, `67074`, `67076`, `67080`, `67081`, `67083`, `67085`, `67087`, `67088`, `67090`, `67091`, `67092`, `67097`, `67099`, `67100`, `67102`, `67104`, `67106`, `67108`, `67109`, `67110`, `67113`, `67115`, `67117`, `67119`, `67120`, `67122`, `67124`, `67126`, `67128`, `67130`, `67132`, `67134`, `67136`, `67138`, `67140`, `67142`, `67146`, `67148`, `67152`, `67155`, `67163`, `67165`, `67168`, `67169`, `67172`, `67174`, `67175`, `67177`, `67179`, `67180`, `67182`, `67183`, `67186`, `67188`, `67189`, `67191`, `67193`, `67194`, `67195`, `67197`, `67199`, `67201`, `67205`, `67207`, `67209`, `67210`, `67212`, `67214`, `67216`, `67218`, `67219`, `67221`, `67223`, `67225`, `67227`, `67228`, `67230`, `67231`, `67232`, `67233`, `67235`, `67237`, `67239`, `67242`, `67244`, `67246`, `67248`, `67250`, `67252`, `67254`, `67257`, `67261`, `67263`, `67266`, `67268`, `67270`, `67272`, `67274`, `67276`, `67277`, `67279`, `67282`, `67284`, `67286`, `67289`, `67292`, `67294`, `67296`, `67297`, `67299`, `67300`, `67302`, `67303`, `67305`, `67306`, `67308`, `67309`, `67312`, `67313`, `67314`, `67316`, `67318`, `67319`, `67320`, `67324`, `67325`, `67327`, `67328`, `67329`, `67331`, `67332`, `67334`, `67336`, `67338`, `67339`, `67341`, `67343`, `67345`, `67346`, `67348`, `67350`, `67351`, `67353`, `67355`, `67356`, `67359`, `67360`, `67362`, `67364`, `67365`, `67366`, `67367`, `67368`, `67370`, `67373`, `67375`, `67377`, `67379`, `67381`, `67383`, `67385`, `67388`, `67391`, `67392`, `67394`, `67396`, `67398`, `67400`, `67401`, `67403`, `67405`, `67408`, `67409`, `67410`, `67412`, `67414`, `67415`, `67416`, `67418`, `67420`, `67421`, `67423`, `67425`, `67427`, `67429`, `67431`, `67433`, `67435`, `67437`, `67439`, `67441`, `67442`, `67443`, `67444`, `67445`, `67447`, `67449`, `67450`, `67451`, `67453`, `67454`, `67456`, `67457`, `67458`, `67460`, `67461`, `67463`, `67465`, `67466`, `67467`, `67469`, `67471`, `67473`, `67475`, `67477`, `67479`, `67481`, `67482`, `67483`, `67485`, `67487`, `67488`, `67490`, `67492`, `67495`, `67496`, `67500`, `67501`, `67503`, `67505`, `67506`, `67508`, `67510`, `67512`, `67514`, `67515`, `67517`, `67518`, `67520`, `67522`, `67523`, `67525`, `67526`, `67527`, `67528`, `67529`, `67532`, `67534`, `67536`, `67537`, `67538`, `67540`, `67542`, `67546`, `67549`, `67550`, `67551`, `67552`, `67554`, `67555`, `67556`, `67558`, `67560`, `67561`, `67562`, `67564`, `67566`, `67568`, `67569`, `67570`, `67572`, `67575`, `67576`, `67578`, `67580`, `67582`, `67584`, `67586`, `67591`, `67592`, `67594`, `67595`, `67596`, `67597`, `67598`, `67599`, `67601`, `67603`, `67605`, `67609`, `67611`, `67613`, `67614`, `67615`, `67616`, `67617`, `67618`, `67620`, `67622`, `67623`, `67625`, `67627`, `67629`, `67631`, `67632`, `67634`, `67636`, `67637`, `67639`, `67641`, `67643`, `67645`, `67648`, `67650`, `67652`, `67655`, `67656`, `67658`, `67660`, `67662`, `67664`, `67665`, `67667`, `67668`, `67669`, `67670`, `67671`, `67673`, `67674`, `67675`, `67677`, `67680`, `67682`, `67684`, `67686`, `67690`, `67692`, `67694`, `67696`, `67697`, `67699`, `67700`, `67701`, `67702`, `67705`, `67707`, `67711`, `67713`, `67714`, `67715`, `67716`, `67718`, `67720`, `67721`, `67722`, `67724`, `67725`, `67726`, `67727`, `67728`, `67729`, `67731`, `67733`, `67735`, `67737`, `67739`, `67740`, `67742`, `67744`, `67745`, `67746`, `67747`, `67748`, `67750`, `67751`, `67752`, `67754`, `67756`, `67758`, `67761`, `67763`, `67764`, `67766`, `67769`, `67770`, `18694`, `67774`, `67776`, `67778`, `67780`, `67782`, `67784`, `67786`, `67788`, `67789`, `67791`, `67793`, `67794`, `67796`, `67798`, `67799`, `67802`, `67803`, `67805`, `67807`, `67808`, `67810`, `67811`, `67812`, `67814`, `67815`, `67817`, `67819`, `67822`, `67824`, `67825`, `67827`, `67828`, `67829`, `67831`, `67832`, `67834`, `67838`, `67840`, `67843`, `67845`, `67847`, `67849`, `67850`, `67851`, `67854`, `67855`, `67857`, `67859`, `67861`, `67862`, `67863`, `67865`, `67866`, `67868`, `67871`, `67872`, `67874`, `67877`, `67879`, `67881`, `67883`, `67884`, `67885`, `67887`, `67889`, `67890`, `67892`, `67894`, `67896`, `67898`, `67899`, `67901`, `67902`, `67903`, `67905`, `67907`, `67909`, `67911`, `67913`, `67915`, `67917`, `67918`, `67919`, `67921`, `67923`, `67925`, `67927`, `67929`, `67931`, `67933`, `67935`, `67937`, `67939`, `67940`, `67942`, `67944`, `67948`, `67950`, `67951`, `67953`, `67954`, `67956`, `67958`, `67960`, `67962`, `67964`, `67965`, `67966`, `67968`, `67970`, `67972`, `67973`, `67974`, `67977`, `67978`, `67980`, `67981`, `67982`, `67983`, `67985`, `67986`, `67988`, `67990`, `67992`, `67994`, `67995`, `67996`, `67998`, `67999`, `68002`, `68004`, `68006`, `68008`, `68010`, `68011`, `68013`, `68016`, `68018`, `68020`, `68021`, `68023`, `68025`, `68026`, `68027`, `68029`, `68030`, `68032`, `68033`, `68034`, `68035`, `68037`, `68039`, `68041`, `68043`, `68045`, `68047`, `68048`, `68050`, `68051`, `68052`, `68053`, `68055`, `68057`, `68059`, `68060`, `68062`, `68064`, `68067`, `68068`, `68069`, `68073`, `68075`, `68077`, `68079`, `68081`, `68084`, `68086`, `68089`, `68091`, `68093`, `68095`, `68097`, `68098`, `68100`, `68102`, `68104`, `68105`, `68107`, `68109`, `68111`, `68112`, `68113`, `68115`, `68116`, `68117`, `68119`, `68121`, `68123`, `68125`, `68126`, `68129`, `68131`, `68133`, `68134`, `68136`, `68137`, `68139`, `68140`, `68142`, `68145`, `68148`, `68149`, `68151`, `68153`, `68155`, `68157`, `68160`, `68166`, `68167`, `68168`, `68169`, `68171`, `68173`, `68174`, `68176`, `68178`, `68180`, `68181`, `68182`, `68184`, `68186`, `68188`, `68189`, `68191`, `68192`, `68194`, `68196`, `68198`, `68199`, `68200`, `68201`, `68203`, `68205`, `68207`, `68209`, `68211`, `68213`, `68215`, `68218`, `68220`, `68221`, `68222`, `68223`, `68224`, `68225`, `68227`, `68229`, `68230`, `68234`, `68236`, `68238`, `68240`, `68242`, `68245`, `68246`, `68247`, `68248`, `68250`, `68252`, `68254`, `68256`, `68257`, `68259`, `68261`, `68262`, `68263`, `68265`, `68267`, `68270`, `68271`, `68273`, `68275`, `68276`, `68279`, `68280`, `68281`, `68283`, `68285`, `68286`, `68288`, `68290`, `68291`, `68293`, `68295`, `68296`, `68297`, `68300`, `68301`, `68303`, `68305`, `68307`, `68308`, `68309`, `68311`, `68313`, `68315`, `68316`, `68318`, `68319`, `68321`, `68323`, `68324`, `68325`, `68327`, `68328`, `68329`, `68330`, `68331`, `68333`, `68335`, `68339`, `68341`, `68343`, `68345`, `68346`, `68348`, `68350`, `68353`, `68355`, `68356`, `68358`, `68360`, `68361`, `68363`, `68365`, `68368`, `68370`, `68372`, `68374`, `68375`, `68376`, `68377`, `68378`, `68380`, `68383`, `68384`, `68385`, `68387`, `68389`, `68391`, `68392`, `68394`, `68397`, `68402`, `68404`, `68406`, `68408`, `68411`, `68413`, `68415`, `68417`, `68418`, `68421`, `68423`, `68425`, `68426`, `68429`, `68430`, `68432`, `68433`, `68434`, `68436`, `68438`, `68440`, `68441`, `68443`, `68445`, `68446`, `68447`, `68449`, `68450`, `68451`, `68453`, `68454`, `68456`, `68457`, `68459`, `68461`, `68463`, `68464`, `68466`, `68467`, `68468`, `68469`, `68471`, `68472`, `68473`, `68475`, `68476`, `68478`, `68480`, `68482`, `68484`, `68485`, `68487`, `68489`, `68490`, `68491`, `68493`, `68494`, `68495`, `68496`, `68497`, `68499`, `68500`, `68502`, `68504`, `68505`, `68507`, `68508`, `68510`, `68512`, `68513`, `68515`, `68516`, `68518`, `68520`, `68522`, `68525`, `68526`, `68528`, `68531`, `68532`, `68534`, `68536`, `68538`, `68539`, `68541`, `68542`, `68543`, `68546`, `68549`, `68551`, `68553`, `68555`, `68557`, `68559`, `68561`, `68562`, `68565`, `68566`, `68567`, `68568`, `68570`, `68571`, `68573`, `68575`, `68577`, `68578`, `68580`, `68581`, `68582`, `68584`, `68586`, `68588`, `68589`, `68591`, `68593`, `68595`, `68597`, `68598`, `68599`, `68600`, `68602`, `68604`, `68605`, `68606`, `68608`, `68609`, `68611`, `68613`, `68615`, `68617`, `68619`, `68621`, `68622`, `68625`, `68627`, `68628`, `68630`, `68632`, `68633`, `68635`, `68636`, `68638`, `68639`, `68642`, `68643`, `68645`, `68647`, `68649`, `68650`, `68651`, `68652`, `68653`, `68655`, `68657`, `68658`, `68661`, `68663`, `68665`, `68667`, `68669`, `68670`, `68671`, `68672`, `68674`, `68676`, `68677`, `68679`, `68681`, `68683`, `68684`, `68686`, `68689`, `68690`, `68693`, `68694`, `68696`, `68698`, `68700`, `68701`, `68704`, `68706`, `68707`, `68709`, `68711`, `68712`, `68714`, `68716`, `68718`, `68720`, `68722`, `68724`, `68726`, `68728`, `68729`, `68730`, `68732`, `68734`, `68736`, `68737`, `68738`, `68739`, `68740`, `68742`, `68743`, `68745`, `68746`, `68748`, `68750`, `68751`, `68752`, `68755`, `68756`, `68757`, `68760`, `68761`, `68763`, `68765`, `68767`, `68768`, `68770`, `68773`, `68774`, `68776`, `68777`, `68779`, `68780`, `68781`, `68783`, `68785`, `68787`, `68788`, `68790`, `68792`, `68794`, `68795`, `68797`, `68798`, `68799`, `68801`, `68802`, `68803`, `68805`, `68806`, `68808`, `68811`, `68812`, `68814`, `68816`, `68818`, `68820`, `68821`, `68824`, `68825`, `68827`, `68828`, `68829`, `68831`, `68834`, `68835`, `68837`, `68840`, `68842`, `68844`, `68846`, `68850`, `68851`, `68852`, `68853`, `68857`, `68858`, `68859`, `68861`, `68863`, `68865`, `68867`, `68869`, `68870`, `68872`, `68873`, `68874`, `68876`, `68878`, `68880`, `68881`, `68883`, `68884`, `68885`, `68887`, `68889`, `68892`, `68894`, `68896`, `68898`, `68902`, `68904`, `68905`, `68907`, `68909`, `68911`, `68913`, `68914`, `68916`, `68917`, `68919`, `68921`, `68923`, `68924`, `68925`, `68927`, `68928`, `68930`, `68931`, `68933`, `68937`, `68938`, `68941`, `68942`, `68944`, `68946`, `68947`, `68949`, `68951`, `68953`, `68954`, `68955`, `68957`, `68959`, `68961`, `68963`, `68966`, `68968`, `68970`, `68972`, `68974`, `68977`, `68978`, `68982`, `68984`, `68986`, `68988`, `68991`, `68992`, `68993`, `68995`, `68997`, `68998`, `68999`, `69002`, `69003`, `69004`, `69005`, `69006`, `69009`, `69011`, `69013`, `69014`, `69016`, `69018`, `69019`, `69022`, `69026`, `69028`, `69029`, `69031`, `69033`, `69035`, `69036`, `69038`, `69040`, `69042`, `69044`, `69045`, `69047`, `69050`, `69051`, `69052`, `69055`, `69057`, `69059`, `69060`, `69062`, `69064`, `69066`, `69068`, `69070`, `69071`, `69072`, `69074`, `69075`, `69079`, `69081`, `69083`, `69085`, `69086`, `69087`, `69089`, `69091`, `69093`, `69094`, `69096`, `69097`, `69099`, `69100`, `69102`, `69103`, `69105`, `69106`, `69108`, `69109`, `69111`, `69113`, `69115`, `69116`, `69118`, `69120`, `69121`, `69124`, `69125`, `69126`, `69127`, `69129`, `69131`, `69132`, `69134`, `69136`, `69137`, `69139`, `69141`, `69143`, `69144`, `69145`, `69146`, `69147`, `69149`, `69151`, `69152`, `69154`, `69156`, `69157`, `69160`, `69161`, `69162`, `69163`, `69164`, `69165`, `69166`, `69167`, `69169`, `69172`, `69174`, `69176`, `69178`, `69179`, `69181`, `69183`, `69184`, `69186`, `69187`, `69189`, `69191`, `69192`, `69194`, `69195`, `69197`, `69198`, `69200`, `69201`, `69203`, `69205`, `69207`, `69209`, `69211`, `69213`, `69215`, `69217`, `69219`, `69221`, `69223`, `69226`, `69229`, `69230`, `69232`, `69234`, `69236`, `69237`, `69240`, `69242`, `69243`, `69245`, `69246`, `69247`, `69248`, `69250`, `69252`, `69254`, `69257`, `69258`, `69259`, `69261`, `69262`, `69264`, `69266`, `69268`, `69270`, `69273`, `69275`, `69277`, `69279`, `69281`, `69283`, `69286`, `69288`, `69289`, `69290`, `69291`, `69293`, `69295`, `69297`, `69298`, `69304`, `69305`, `69308`, `69310`, `69312`, `69314`, `69318`, `69319`, `69320`, `69321`, `69323`, `69324`, `69326`, `69328`, `69330`, `69331`, `69333`, `69335`, `69336`, `69338`, `69341`, `69344`, `69346`, `69348`, `69351`, `69354`, `69357`, `69358`, `69359`, `69361`, `69363`, `69364`, `69366`, `69368`, `69370`, `69372`, `69373`, `69375`, `69377`, `69379`, `69381`, `69383`, `69385`, `69387`, `69388`, `69390`, `69392`, `69394`, `69396`, `69398`, `69399`, `69401`, `69403`, `69405`, `69406`, `69408`, `69410`, `69412`, `69413`, `69415`, `69416`, `69418`, `69419`, `69421`, `69423`, `69425`, `69427`, `69430`, `69431`, `69432`, `69433`, `69436`, `69437`, `69439`, `69440`, `69442`, `69444`, `69445`, `69447`, `69449`, `69451`, `69452`, `69454`, `69455`, `69456`, `69458`, `69459`, `69461`, `69463`, `69465`, `69466`, `69468`, `69469`, `69471`, `69472`, `69474`, `69478`, `69480`, `69481`, `69483`, `69484`, `69488`, `69489`, `69491`, `69493`, `69495`, `69497`, `69499`, `69500`, `69501`, `69502`, `69503`, `69505`, `69506`, `69508`, `69509`, `69510`, `69511`, `69513`, `69515`, `69517`, `69521`, `69523`, `69525`, `69527`, `69529`, `69530`, `69533`, `69535`, `69537`, `69539`, `69541`, `69543`, `69545`, `69547`, `69548`, `69551`, `69553`, `69556`, `69558`, `69560`, `69562`, `69564`, `69565`, `69566`, `69567`, `69569`, `69571`, `69574`, `69576`, `69578`, `69580`, `69582`, `69584`, `69586`, `69588`, `69590`, `69592`, `69594`, `69597`, `69599`, `69602`, `69604`, `69605`, `69607`, `69608`, `69613`, `69615`, `69617`, `69619`, `69621`, `69623`, `69625`, `69627`, `69630`, `69631`, `69632`, `69633`, `69635`, `69637`, `69639`, `69641`, `69643`, `69645`, `69647`, `69649`, `69651`, `69653`, `69654`, `69655`, `69657`, `69659`, `69661`, `69663`, `69665`, `69667`, `69669`, `69671`, `69673`, `69675`, `69676`, `69677`, `69678`, `69679`, `69683`, `69685`, `69688`, `69690`, `69692`, `69693`, `69695`, `69697`, `69699`, `69701`, `69703`, `69706`, `69708`, `69710`, `69711`, `69713`, `69714`, `69716`, `69718`, `69720`, `69721`, `69722`, `69724`, `69725`, `69727`, `69729`, `69731`, `69733`, `69734`, `69736`, `69738`, `69740`, `69742`, `69744`, `69746`, `69748`, `69750`, `69753`, `69756`, `69758`, `69759`, `69761`, `69763`, `69764`, `69765`, `69767`, `69769`, `69771`, `69773`, `69775`, `69777`, `69779`, `69780`, `69782`, `69784`, `69786`, `69787`, `69789`, `69791`, `69792`, `69794`, `69797`, `69799`, `69800`, `69802`, `69804`, `69805`, `69806`, `69808`, `69810`, `69811`, `69812`, `69814`, `69816`, `69818`, `69819`, `69821`, `69823`, `69824`, `69826`, `69828`, `69830`, `69831`, `69832`, `69835`, `69837`, `69839`, `69841`, `69842`, `69844`, `69845`, `69847`, `69849`, `69850`, `69852`, `69853`, `69854`, `69855`, `69857`, `69859`, `69860`, `69863`, `69865`, `69866`, `69868`, `69869`, `69870`, `69872`, `69874`, `69876`, `69877`, `69879`, `69882`, `69884`, `69888`, `69890`, `69893`, `69894`, `69896`, `69898`, `69900`, `69901`, `69902`, `69904`, `69906`, `69908`, `69910`, `69911`, `69912`, `69913`, `69914`, `69916`, `69918`, `69920`, `69922`, `69924`, `69926`, `69929`, `69931`, `69933`, `69935`, `69936`, `69938`, `69940`, `69941`, `69943`, `69945`, `69947`, `69949`, `69950`, `38693`, `69952`, `69953`, `69955`, `69956`, `69958`, `69960`, `69962`, `69964`, `69966`, `69968`, `69969`, `69970`, `69972`, `69973`, `69975`, `69977`, `69978`, `69980`, `69981`, `69983`, `69984`, `69986`, `69987`, `69988`, `69990`, `69992`, `69996`, `69998`, `70000`, `70001`, `70003`, `70005`, `70006`, `70007`, `70008`, `70010`, `70012`, `70014`, `70015`, `70019`, `70021`, `70022`, `70023`, `70025`, `70027`, `70029`, `70030`, `70032`, `70033`, `70035`, `70037`, `70039`, `70041`, `70043`, `70045`, `70047`, `70048`, `70050`, `70055`, `70056`, `70057`, `70061`, `70064`, `70066`, `70068`, `70070`, `70072`, `70073`, `70074`, `70075`, `70077`, `70079`, `70081`, `70082`, `70084`, `70086`, `70088`, `70090`, `70092`, `70093`, `70094`, `70096`, `70097`, `70099`, `70100`, `70102`, `70104`, `70106`, `70108`, `70110`, `70111`, `70113`, `70115`, `70117`, `70119`, `70122`, `70124`, `70126`, `70128`, `70130`, `70132`, `70134`, `70136`, `70138`, `70140`, `70142`, `70144`, `70146`, `70148`, `70150`, `70153`, `70154`, `70155`, `70157`, `70159`, `70161`, `70162`, `70164`, `70165`, `70167`, `70170`, `70172`, `70174`, `70175`, `70177`, `70178`, `70180`, `70181`, `70182`, `70184`, `70186`, `70187`, `70188`, `70190`, `70192`, `70193`, `70194`, `70195`, `70197`, `70198`, `70200`, `70202`, `70203`, `70204`, `70206`, `70208`, `70210`, `70212`, `70213`, `70215`, `70216`, `70217`, `70218`, `70220`, `70222`, `70223`, `70225`, `70228`, `70230`, `70231`, `70233`, `70235`, `70238`, `70239`, `70241`, `70246`, `70247`, `70249`, `70252`, `70254`, `70255`, `70257`, `70258`, `70260`, `70262`, `70263`, `70265`, `70267`, `70268`, `70270`, `70272`, `70274`, `70275`, `70277`, `70280`, `70282`, `70285`, `70286`, `70288`, `70290`, `70292`, `70295`, `70297`, `70299`, `70301`, `70303`, `70307`, `70308`, `70310`, `70312`, `70316`, `70318`, `70320`, `70322`, `70323`, `70325`, `70327`, `70329`, `70331`, `70336`, `70338`, `70341`, `70342`, `70343`, `70345`, `70347`, `70349`, `70351`, `70353`, `70355`, `70357`, `70359`, `70360`, `70362`, `70363`, `70364`, `70367`, `70370`, `70372`, `70374`, `70375`, `70377`, `70379`, `70381`, `70382`, `70384`, `70385`, `70387`, `70388`, `70390`, `70393`, `70394`, `70395`, `70396`, `70398`, `70400`, `70402`, `70404`, `70406`, `70408`, `70410`, `70411`, `70413`, `70415`, `70416`, `70418`, `70420`, `70422`, `70424`, `70426`, `70428`, `70430`, `70432`, `70434`, `70435`, `70437`, `70440`, `70441`, `70442`, `70443`, `70445`, `70446`, `70448`, `70450`, `70451`, `70452`, `70454`, `70455`, `70457`, `70459`, `70460`, `70462`, `70464`, `70467`, `70469`, `70471`, `70473`, `70475`, `70476`, `70478`, `70479`, `70481`, `70483`, `70486`, `70489`, `70491`, `70493`, `70494`, `70495`, `70496`, `70498`, `70499`, `70500`, `70501`, `70502`, `70504`, `70506`, `70508`, `70510`, `70512`, `70514`, `70516`, `70518`, `70520`, `70521`, `70523`, `70525`, `70526`, `70527`, `70529`, `70531`, `70532`, `70534`, `70536`, `70538`, `70542`, `70544`, `70546`, `70548`, `70552`, `70554`, `70556`, `70558`, `70559`, `70560`, `70562`, `70563`, `70564`, `70566`, `70568`, `70569`, `70570`, `70572`, `70573`, `70574`, `70576`, `70578`, `70579`, `70580`, `70582`, `70584`, `70586`, `70587`, `70589`, `70591`, `70593`, `70595`, `70597`, `70598`, `70599`, `70600`, `70602`, `70603`, `70604`, `70606`, `70608`, `70609`, `70611`, `70612`, `70614`, `70616`, `70617`, `70619`, `70621`, `70622`, `70624`, `70626`, `70629`, `70630`, `70631`, `70634`, `70636`, `70637`, `70638`, `70639`, `70640`, `70641`, `70642`, `70643`, `70644`, `70646`, `70647`, `70649`, `70650`, `70652`, `70653`, `70655`, `70657`, `70659`, `70661`, `70663`, `70665`, `70666`, `70667`, `70668`, `70670`, `70671`, `70674`, `70676`, `70677`, `70678`, `70681`, `70682`, `70687`, `70690`, `70692`, `70693`, `70694`, `70695`, `70697`, `70699`, `70701`, `70706`, `70708`, `70712`, `70714`, `70716`, `70718`, `70720`, `70721`, `70722`, `70723`, `70724`, `70725`, `70726`, `70728`, `70730`, `70732`, `70733`, `70734`, `70736`, `70737`, `70738`, `70740`, `70742`, `70744`, `70746`, `70747`, `70750`, `70752`, `70754`, `70756`, `70758`, `70759`, `70760`, `70762`, `70765`, `70766`, `70767`, `70768`, `70770`, `70772`, `70774`, `70775`, `70777`, `70779`, `70781`, `70782`, `70784`, `70785`, `70786`, `70790`, `70792`, `70794`, `70795`, `70797`, `70799`, `70802`, `70804`, `70806`, `70807`, `70810`, `70811`, `70812`, `70813`, `70815`, `70817`, `70818`, `70820`, `70822`, `70823`, `70825`, `70827`, `70828`, `70829`, `70832`, `70837`, `70839`, `70840`, `70842`, `70844`, `70846`, `70847`, `70849`, `70850`, `70852`, `70853`, `70854`, `70855`, `70857`, `70859`, `70860`, `70861`, `70863`, `70865`, `70866`, `70868`, `70869`, `70872`, `70873`, `70878`, `70879`, `70881`, `70882`, `70884`, `70886`, `70888`, `70890`, `70891`, `70892`, `70894`, `70898`, `70900`, `70902`, `70904`, `70906`, `70908`, `70910`, `70912`, `70914`, `70916`, `70917`, `70918`, `70919`, `70921`, `70923`, `70925`, `70926`, `70927`, `70929`, `70930`, `70931`, `70933`, `70934`, `70935`, `70937`, `70938`, `70939`, `70941`, `70942`, `70943`, `70945`, `70947`, `70948`, `70950`, `70951`, `70953`, `70954`, `70955`, `70956`, `70957`, `70959`, `70961`, `70962`, `70964`, `70965`, `70966`, `70968`, `70970`, `70973`, `70975`, `70979`, `70981`, `70983`, `70985`, `70987`, `70989`, `70990`, `70992`, `70994`, `70997`, `70999`, `71001`, `71003`, `71005`, `71006`, `71007`, `71009`, `71010`, `71012`, `71013`, `71014`, `71016`, `71018`, `71020`, `71022`, `71024`, `71025`, `71027`, `71028`, `71029`, `71031`, `71033`, `71034`, `71037`, `71038`, `71040`, `71043`, `71044`, `71046`, `71048`, `71050`, `71052`, `71055`, `71057`, `71058`, `71060`, `71062`, `71064`, `71069`, `71071`, `71073`, `71075`, `71076`, `71078`, `71080`, `71082`, `71084`, `71086`, `71088`, `71090`, `71091`, `71092`, `71093`, `71095`, `71096`, `71097`, `71099`, `71103`, `71105`, `71109`, `71110`, `71112`, `71113`, `71115`, `71117`, `71119`, `71120`, `71122`, `71124`, `71125`, `71127`, `71128`, `71130`, `71132`, `71135`, `71137`, `71139`, `71142`, `71143`, `71145`, `71147`, `71149`, `71150`, `71152`, `71153`, `71155`, `71157`, `71159`, `71162`, `71164`, `71165`, `71167`, `71168`, `71170`, `71171`, `71173`, `71174`, `71175`, `71176`, `71180`, `71182`, `71184`, `71186`, `71189`, `71191`, `71193`, `71195`, `71196`, `71198`, `71203`, `71204`, `71205`, `71207`, `71209`, `71211`, `71213`, `71216`, `71218`, `71220`, `71221`, `71223`, `71225`, `71226`, `71227`, `71229`, `71230`, `71231`, `71232`, `71235`, `71238`, `71241`, `71243`, `71244`, `71245`, `71247`, `71249`, `71250`, `71253`, `71254`, `71256`, `71258`, `71260`, `71262`, `71264`, `71266`, `71268`, `71270`, `71272`, `71274`, `71276`, `71277`, `71279`, `71281`, `71283`, `71285`, `71289`, `71291`, `71294`, `71298`, `71299`, `71300`, `71302`, `71303`, `71305`, `71306`, `71308`, `71310`, `71312`, `71314`, `71316`, `71318`, `71320`, `71322`, `71324`, `71326`, `71327`, `71329`, `71331`, `71332`, `71334`, `71335`, `71336`, `71337`, `71339`, `71340`, `71341`, `71343`, `71345`, `71347`, `71349`, `71351`, `71353`, `71355`, `71357`, `71359`, `71360`, `71362`, `71364`, `71366`, `71368`, `71370`, `71372`, `71374`, `71375`, `71376`, `71379`, `71380`, `71381`, `71382`, `71384`, `71386`, `71387`, `71388`, `71389`, `71391`, `71393`, `71395`, `71397`, `71399`, `71401`, `71402`, `71403`, `71406`, `71408`, `71410`, `71412`, `71413`, `71416`, `71417`, `71419`, `71421`, `71423`, `71425`, `71427`, `71429`, `71430`, `71432`, `71434`, `71436`, `71438`, `71440`, `71442`, `71444`, `71445`, `71447`, `71449`, `71451`, `71452`, `71453`, `71456`, `71458`, `71459`, `71461`, `71462`, `71464`, `71466`, `71468`, `71470`, `71472`, `71473`, `71475`, `71477`, `71478`, `71482`, `71484`, `71486`, `71488`, `71489`, `71491`, `71493`, `71495`, `71497`, `71499`, `71501`, `71503`, `71504`, `71505`, `71506`, `71507`, `71509`, `71510`, `71512`, `71515`, `71517`, `71518`, `71520`, `71522`, `71525`, `71527`, `71530`, `71531`, `71532`, `71534`, `71535`, `71537`, `71539`, `71541`, `71543`, `71544`, `71546`, `71549`, `71553`, `71557`, `71558`, `71560`, `71561`, `71562`, `71563`, `71567`, `71572`, `71573`, `71576`, `71577`, `71578`, `71580`, `71582`, `71583`, `71585`, `71587`, `71589`, `71591`, `71592`, `71593`, `71594`, `71598`, `71599`, `71601`, `71603`, `71604`, `71605`, `71607`, `71608`, `71610`, `71611`, `71612`, `71613`, `71615`, `71616`, `71618`, `71619`, `71621`, `71623`, `71624`, `71626`, `71628`, `71631`, `71632`, `71633`, `71635`, `71637`, `71639`, `71641`, `71642`, `71643`, `71644`, `71646`, `71647`, `71649`, `71651`, `71652`, `71654`, `71656`, `71658`, `71660`, `71662`, `71664`, `71666`, `71668`, `71669`, `71670`, `71671`, `71673`, `71677`, `71679`, `71681`, `71683`, `71685`, `71686`, `71688`, `71690`, `71692`, `71693`, `71695`, `71697`, `71701`, `71703`, `71705`, `71707`, `71708`, `71709`, `71711`, `71712`, `71716`, `71717`, `71718`, `71720`, `71721`, `71722`, `71724`, `71726`, `71728`, `71729`, `71730`, `71731`, `71732`, `71733`, `71734`, `71736`, `71739`, `71741`, `71745`, `71747`, `71749`, `71751`, `71755`, `71757`, `71759`, `71760`, `71761`, `71763`, `71765`, `71767`, `71769`, `71770`, `71771`, `71773`, `71775`, `71777`, `71778`, `71780`, `71781`, `71782`, `71783`, `71785`, `71787`, `71788`, `71789`, `71791`, `71793`, `71795`, `71797`, `71799`, `71800`, `71801`, `71803`, `71805`, `71806`, `71808`, `71810`, `71812`, `71813`, `71815`, `71818`, `71822`, `71824`, `71826`, `71828`, `71830`, `71833`, `71835`, `71837`, `71839`, `71841`, `71842`, `71844`, `71846`, `71847`, `71849`, `71851`, `71853`, `71855`, `71858`, `71860`, `71861`, `71862`, `71864`, `71867`, `71869`, `71871`, `71874`, `71875`, `71876`, `71877`, `71879`, `71881`, `71885`, `71887`, `71889`, `71891`, `71893`, `71895`, `71897`, `71899`, `71904`, `71906`, `71909`, `71914`, `71916`, `71918`, `71922`, `71924`, `71927`, `71928`, `71929`, `71930`, `71931`, `71932`, `71934`, `71936`, `71937`, `71939`, `71940`, `71941`, `71943`, `71945`, `71948`, `71950`, `71952`, `71953`, `71955`, `71956`, `71958`, `71962`, `71963`, `71965`, `71966`, `71968`, `71970`, `71972`, `71973`, `71975`, `71977`, `71980`, `71981`, `71983`, `71985`, `71987`, `71988`, `71989`, `71990`, `71991`, `71992`, `71993`, `71994`, `71995`, `71997`, `71999`, `72003`, `72004`, `72006`, `72009`, `72012`, `72016`, `72018`, `72020`, `72022`, `72024`, `72025`, `72026`, `72028`, `72029`, `72030`, `72032`, `72034`, `72036`, `72038`, `72039`, `72041`, `72043`, `72045`, `72049`, `72050`, `72052`, `72054`, `72056`, `72057`, `72059`, `72060`, `72062`, `72064`, `72066`, `72071`, `72072`, `72074`, `72076`, `72078`, `72080`, `72082`, `72083`, `72085`, `72087`, `72089`, `72093`, `72094`, `72095`, `72096`, `72098`, `72100`, `72102`, `72104`, `72106`, `72108`, `72109`, `72110`, `72111`, `72113`, `72115`, `72117`, `72119`, `72121`, `72123`, `72125`, `72126`, `72129`, `72130`, `72133`, `72135`, `72137`, `72139`, `72140`, `72142`, `72145`, `72147`, `72149`, `72151`, `72152`, `72153`, `72156`, `72157`, `72158`, `72162`, `72164`, `72165`, `72167`, `72169`, `72170`, `72172`, `72174`, `72175`, `72177`, `72181`, `72183`, `72185`, `72187`, `72190`, `72191`, `72193`, `72197`, `72198`, `72199`, `72200`, `72202`, `72204`, `72206`, `72208`, `72211`, `72213`, `72215`, `72216`, `72219`, `72220`, `72223`, `72225`, `72227`, `72228`, `72230`, `72231`, `72232`, `72233`, `72235`, `72237`, `72238`, `72240`, `72242`, `72244`, `72246`, `72247`, `72248`, `72250`, `72251`, `72252`, `72255`, `72257`, `72259`, `72260`, `72262`, `72263`, `72264`, `72266`, `72267`, `72269`, `72271`, `72273`, `72275`, `72276`, `72278`, `72279`, `72281`, `72282`, `72284`, `72286`, `72287`, `72289`, `72292`, `72293`, `72295`, `72296`, `72298`, `72300`, `72302`, `72304`, `72305`, `72307`, `72308`, `72310`, `72312`, `72314`, `72315`, `72317`, `72319`, `72320`, `72322`, `72325`, `72330`, `72332`, `72334`, `72336`, `72337`, `72338`, `72340`, `72341`, `72342`, `72344`, `72346`, `72348`, `72350`, `72351`, `72353`, `72356`, `72358`, `72360`, `72361`, `72362`, `72366`, `72369`, `72373`, `72375`, `72377`, `72379`, `72383`, `72386`, `72388`, `72390`, `72392`, `72394`, `72396`, `72397`, `72399`, `72401`, `72403`, `72404`, `72406`, `72407`, `72409`, `72411`, `72412`, `72413`, `72414`, `72415`, `72417`, `72419`, `72420`, `72421`, `72423`, `72424`, `72427`, `72429`, `72430`, `72432`, `72434`, `72438`, `72440`, `72442`, `72444`, `72445`, `72449`, `72450`, `72451`, `72452`, `72454`, `72455`, `72456`, `72458`, `72460`, `72462`, `72464`, `72466`, `72468`, `72470`, `72472`, `72474`, `72476`, `72478`, `72480`, `72481`, `72483`, `72485`, `72487`, `72488`, `72489`, `72491`, `72493`, `72495`, `72496`, `72498`, `72500`, `72502`, `72504`, `72506`, `72509`, `72511`, `72515`, `72517`, `72519`, `72521`, `72523`, `72525`, `72527`, `72528`, `72529`, `72531`, `72533`, `72535`, `72536`, `72537`, `72538`, `72539`, `72541`, `72544`, `72546`, `72548`, `72550`, `72551`, `72553`, `72554`, `72555`, `72557`, `72559`, `72561`, `72562`, `72566`, `72569`, `72571`, `72574`, `72576`, `72577`, `72579`, `72581`, `72582`, `72583`, `72584`, `72586`, `72587`, `72588`, `72590`, `72592`, `72594`, `72596`, `72597`, `72600`, `72602`, `72605`, `72606`, `72607`, `72609`, `72610`, `72612`, `72614`, `72616`, `72617`, `72618`, `72620`, `72622`, `72624`, `72626`, `72627`, `72629`, `72630`, `72632`, `72634`, `72636`, `72638`, `72640`, `72643`, `72644`, `72646`, `72648`, `72650`, `72652`, `72653`, `72654`, `72655`, `72658`, `72659`, `72661`, `72662`, `72663`, `72664`, `72665`, `72666`, `72667`, `72669`, `72671`, `72673`, `72674`, `72675`, `72676`, `72677`, `72678`, `72680`, `72681`, `72683`, `72685`, `72690`, `72692`, `72694`, `72696`, `72697`, `72699`, `72701`, `72702`, `72703`, `72705`, `72707`, `72709`, `72711`, `72712`, `72714`, `72715`, `72717`, `72719`, `72721`, `72724`, `72725`, `72728`, `72729`, `72732`, `72734`, `72735`, `72736`, `72738`, `72739`, `72741`, `72743`, `72745`, `72746`, `72747`, `72748`, `72749`, `72753`, `72754`, `72756`, `72758`, `72760`, `72761`, `72765`, `72766`, `72770`, `72772`, `72774`, `72776`, `72777`, `72779`, `72781`, `72782`, `72783`, `72785`, `72787`, `72788`, `72792`, `72794`, `72796`, `72797`, `72798`, `72800`, `72802`, `72804`, `72806`, `72807`, `72809`, `72811`, `72814`, `72816`, `72818`, `72820`, `72821`, `72823`, `72825`, `72827`, `72829`, `72830`, `72831`, `72833`, `72834`, `72835`, `72836`, `72838`, `72840`, `72842`, `72844`, `72846`, `72848`, `72849`, `72851`, `72852`, `72854`, `72856`, `72857`, `72859`, `72861`, `72863`, `72864`, `72865`, `72867`, `72869`, `72870`, `72873`, `72875`, `72877`, `72878`, `72880`, `72882`, `72884`, `72887`, `72889`, `72891`, `72893`, `72895`, `72897`, `72899`, `72901`, `72902`, `72903`, `72906`, `72908`, `72910`, `72912`, `72915`, `72917`, `72918`, `72919`, `72921`, `72922`, `72924`, `72926`, `72927`, `72928`, `72932`, `72934`, `72936`, `72938`, `72941`, `72943`, `72944`, `72946`, `72948`, `72949`, `72951`, `72952`, `72954`, `72955`, `72957`, `72960`, `72961`, `72963`, `72965`, `72967`, `72968`, `72969`, `72972`, `72974`, `72975`, `72977`, `72982`, `72984`, `72985`, `72987`, `72989`, `72993`, `72996`, `72998`, `73000`, `73003`, `73005`, `73006`, `73007`, `73009`, `73010`, `73012`, `73013`, `73015`, `73017`, `73021`, `73023`, `73025`, `73028`, `73030`, `73032`, `73035`, `73036`, `73038`, `73040`, `73042`, `73044`, `73045`, `73046`, `73048`, `73050`, `73052`, `73054`, `73057`, `73059`, `73060`, `73061`, `73063`, `73065`, `73067`, `73068`, `73070`, `73071`, `73072`, `73074`, `73076`, `73077`, `73079`, `73081`, `73082`, `73084`, `73086`, `73087`, `73090`, `73093`, `73095`, `73097`, `73098`, `73100`, `73102`, `73103`, `73105`, `73106`, `73108`, `73110`, `73112`, `73113`, `73115`, `73117`, `73118`, `73120`, `73122`, `73124`, `73126`, `73127`, `73129`, `73132`, `73133`, `73135`, `73136`, `73138`, `73139`, `73140`, `73142`, `73144`, `73146`, `73148`, `73150`, `73152`, `73154`, `73155`, `73156`, `73157`, `73159`, `73160`, `73161`, `73163`, `73165`, `73166`, `73168`, `73170`, `73172`, `73173`, `73174`, `73175`, `73177`, `73178`, `73179`, `73182`, `73184`, `73186`, `73187`, `73189`, `73191`, `73192`, `73193`, `73194`, `73195`, `73196`, `73198`, `73199`, `73201`, `73203`, `73206`, `73207`, `73209`, `73210`, `73212`, `73214`, `73216`, `73217`, `73219`, `73222`, `73223`, `73225`, `73229`, `73230`, `73232`, `73234`, `73236`, `73238`, `73240`, `73242`, `73244`, `73246`, `73248`, `73250`, `73251`, `73252`, `73254`, `73256`, `73258`, `73259`, `73261`, `73262`, `73263`, `73265`, `73267`, `73268`, `73269`, `73271`, `73273`, `73275`, `73276`, `73278`, `73280`, `73282`, `73283`, `73284`, `73285`, `73286`, `73287`, `73289`, `73290`, `73291`, `73293`, `73294`, `73296`, `73301`, `73303`, `73305`, `73307`, `73309`, `73310`, `73314`, `73316`, `73319`, `73321`, `73322`, `73325`, `73327`, `73329`, `73330`, `73331`, `73333`, `73335`, `73337`, `73338`, `73342`, `73344`, `73345`, `73346`, `73347`, `73349`, `73350`, `73351`, `73353`, `73357`, `73359`, `73361`, `73362`, `73364`, `73366`, `73367`, `73368`, `73370`, `73372`, `73374`, `73375`, `73376`, `73377`, `73379`, `73381`, `73383`, `73385`, `73386`, `73388`, `73390`, `73391`, `73393`, `73395`, `73398`, `73399`, `73400`, `73402`, `73403`, `73404`, `73406`, `73407`, `73411`, `73412`, `73414`, `73416`, `73418`, `73420`, `73421`, `73423`, `73425`, `73427`, `73429`, `73430`, `73432`, `73433`, `73435`, `73437`, `73438`, `73439`, `73441`, `73442`, `73443`, `73444`, `73446`, `73447`, `73448`, `73450`, `73452`, `73454`, `73457`, `73458`, `73460`, `73462`, `73464`, `73465`, `73467`, `73468`, `73469`, `73471`, `73472`, `73474`, `73475`, `73477`, `73480`, `73481`, `73483`, `73484`, `73486`, `73488`, `73490`, `73492`, `73494`, `73497`, `73499`, `73501`, `73503`, `73505`, `73506`, `73507`, `73508`, `73510`, `73512`, `73514`, `73516`, `73519`, `73521`, `73523`, `73526`, `73528`, `73530`, `73531`, `73533`, `73535`, `73536`, `73539`, `73540`, `73541`, `73543`, `73544`, `73546`, `73548`, `73549`, `73551`, `73553`, `73555`, `73557`, `73559`, `73561`, `73563`, `73565`, `73567`, `73573`, `28343`, `73574`, `73576`, `73578`, `73580`, `73582`, `73583`, `73584`, `73585`, `73587`, `73589`, `73591`, `73593`, `73595`, `73596`, `73600`, `73602`, `73604`, `73605`, `73606`, `73608`, `73610`, `73611`, `73613`, `73614`, `73616`, `73618`, `73619`, `73620`, `73622`, `73624`, `73626`, `73628`, `73630`, `73631`, `73633`, `73635`, `73636`, `73640`, `73642`, `73644`, `73645`, `73646`, `73647`, `73648`, `73649`, `73651`, `73652`, `73654`, `73656`, `73657`, `73659`, `73661`, `73664`, `73666`, `73667`, `73669`, `73671`, `73673`, `73674`, `73675`, `73679`, `73681`, `73682`, `73684`, `73685`, `73687`, `73689`, `73694`, `73696`, `73697`, `73699`, `73701`, `73702`, `73704`, `73705`, `73707`, `73709`, `73710`, `73713`, `73716`, `73718`, `73719`, `73720`, `73722`, `73723`, `73725`, `73727`, `73728`, `73732`, `73734`, `73736`, `73738`, `73740`, `73741`, `73743`, `73745`, `73746`, `73748`, `73749`, `73751`, `73752`, `73753`, `73757`, `73759`, `73760`, `73761`, `73763`, `73765`, `73766`, `73768`, `73769`, `73773`, `73775`, `73777`, `73778`, `73780`, `73782`, `73784`, `73786`, `73788`, `73789`, `73792`, `73795`, `73797`, `73799`, `73800`, `73801`, `73803`, `73805`, `73807`, `73809`, `73810`, `73812`, `73814`, `73817`, `73819`, `73820`, `73822`, `73824`, `73826`, `73828`, `73830`, `73832`, `73834`, `73836`, `73838`, `73840`, `73842`, `73844`, `73845`, `73847`, `73849`, `73850`, `73851`, `73852`, `73854`, `73857`, `73858`, `73859`, `73861`, `73863`, `73864`, `73865`, `73867`, `73869`, `73871`, `73873`, `73874`, `73875`, `73879`, `73882`, `73883`, `73885`, `73887`, `73889`, `73891`, `73893`, `73895`, `73897`, `73899`, `73900`, `73903`, `73904`, `73905`, `73907`, `73909`, `73910`, `73911`, `73913`, `73915`, `73916`, `73917`, `73921`, `73922`, `73924`, `73925`, `73927`, `73929`, `73931`, `73933`, `73935`, `73936`, `73938`, `73940`, `73941`, `73944`, `73945`, `73947`, `73948`, `73949`, `73951`, `73953`, `73955`, `73957`, `73959`, `73961`, `73963`, `73966`, `73967`, `73968`, `73972`, `73973`, `73975`, `73977`, `73978`, `73979`, `73981`, `73982`, `73984`, `73986`, `73988`, `73989`, `73991`, `73993`, `73996`, `73997`, `73998`, `73999`, `74002`, `74004`, `74006`, `74008`, `74010`, `74012`, `74014`, `74016`, `74017`, `74019`, `74021`, `74022`, `74023`, `74024`, `74025`, `74026`, `74027`, `74029`, `74030`, `74032`, `74034`, `74035`, `74036`, `74038`, `74040`, `74042`, `74044`, `74046`, `74048`, `74051`, `74053`, `74055`, `74057`, `74060`, `74062`, `74064`, `74066`, `74068`, `74069`, `74071`, `74073`, `74075`, `74077`, `74078`, `74080`, `74081`, `74082`, `74084`, `74086`, `74088`, `74090`, `74091`, `74092`, `74094`, `74096`, `74098`, `74100`, `74102`, `74103`, `74104`, `74106`, `74108`, `74109`, `74112`, `74114`, `74116`, `74117`, `74118`, `74121`, `74123`, `74124`, `74126`, `74128`, `74130`, `74132`, `74134`, `74136`, `74139`, `74140`, `74142`, `74143`, `74145`, `74147`, `74149`, `74150`, `74152`, `74155`, `74156`, `74158`, `74160`, `74162`, `74163`, `74164`, `74166`, `74169`, `74171`, `74173`, `74175`, `74177`, `74179`, `74180`, `74183`, `74185`, `74186`, `74187`, `74190`, `74192`, `74194`, `74197`, `74198`, `74200`, `74201`, `74203`, `74204`, `74205`, `74207`, `74209`, `74210`, `74212`, `74214`, `74216`, `74221`, `74223`, `74225`, `74226`, `74228`, `74230`, `74232`, `74233`, `74235`, `74238`, `74240`, `74242`, `74243`, `74245`, `74246`, `74248`, `74250`, `74251`, `74252`, `74253`, `74255`, `74257`, `74259`, `74261`, `74263`, `74265`, `74266`, `74267`, `74268`, `74270`, `74272`, `74273`, `74274`, `74276`, `74278`, `74279`, `74281`, `74283`, `74285`, `74287`, `74288`, `74290`, `74292`, `74294`, `74295`, `74297`, `74299`, `74300`, `74303`, `74304`, `74307`, `74308`, `74310`, `74312`, `74314`, `74315`, `74317`, `74319`, `74320`, `74322`, `74323`, `74324`, `74326`, `74328`, `74330`, `74333`, `74335`, `74336`, `74337`, `74339`, `74345`, `74347`, `74350`, `74353`, `74354`, `74355`, `74357`, `74359`, `74360`, `74362`, `74364`, `74365`, `74367`, `74369`, `74370`, `74371`, `74373`, `74375`, `74377`, `74379`, `74381`, `74385`, `74387`, `74388`, `74389`, `74391`, `74392`, `74395`, `74396`, `74397`, `74398`, `74400`, `74402`, `74404`, `74405`, `74406`, `74407`, `74409`, `74410`, `74412`, `74413`, `74416`, `74418`, `74420`, `74423`, `74425`, `74426`, `74431`, `74433`, `74434`, `74436`, `74437`, `74439`, `74440`, `74442`, `74444`, `74445`, `74446`, `74447`, `74449`, `74450`, `74452`, `74453`, `74454`, `74456`, `74458`, `74460`, `74462`, `74464`, `74466`, `74468`, `74470`, `74472`, `74474`, `74476`, `74478`, `74480`, `74484`, `74486`, `74489`, `74490`, `74491`, `74493`, `74495`, `74497`, `74499`, `74500`, `74501`, `74502`, `74504`, `74506`, `74509`, `74511`, `74513`, `74517`, `74518`, `74520`, `74521`, `74522`, `74524`, `74525`, `74528`, `74530`, `74533`, `74535`, `74537`, `74538`, `74540`, `74542`, `74543`, `74546`, `74548`, `74549`, `74552`, `74554`, `74556`, `74557`, `74558`, `74560`, `74561`, `74563`, `74564`, `74566`, `74568`, `74569`, `74570`, `74572`, `74573`, `74575`, `74577`, `74578`, `74580`, `74584`, `74586`, `74588`, `74589`, `74590`, `74594`, `74596`, `74597`, `74598`, `74600`, `74601`, `74603`, `74604`, `74605`, `74607`, `74608`, `74610`, `74612`, `74613`, `74615`, `74617`, `74618`, `74619`, `74621`, `74622`, `74624`, `74625`, `74627`, `74630`, `74632`, `74633`, `74634`, `74636`, `74638`, `74640`, `74642`, `74643`, `74645`, `74647`, `74649`, `74652`, `74655`, `74657`, `74659`, `74661`, `74664`, `74665`, `74666`, `74667`, `74669`, `74671`, `74673`, `74676`, `74677`, `74679`, `74680`, `74681`, `74683`, `74685`, `74687`, `74688`, `74689`, `74691`, `74693`, `74694`, `74695`, `74697`, `74699`, `74700`, `74702`, `74703`, `74705`, `74708`, `74710`, `74711`, `74713`, `74714`, `74716`, `74718`, `74721`, `74723`, `74725`, `74726`, `74730`, `74732`, `74734`, `74736`, `74738`, `74740`, `74742`, `74744`, `74746`, `74748`, `74751`, `74752`, `74754`, `74757`, `74758`, `74760`, `74762`, `74764`, `74766`, `74768`, `74770`, `74771`, `74773`, `74775`, `74778`, `74779`, `74780`, `74782`, `74783`, `74785`, `74786`, `74788`, `74790`, `74791`, `74793`, `74797`, `74798`, `74799`, `74801`, `74803`, `74804`, `74806`, `74807`, `74809`, `74811`, `74813`, `74814`, `74816`, `74818`, `74820`, `74822`, `74824`, `74825`, `74827`, `74828`, `74831`, `74833`, `74834`, `74836`, `74838`, `74839`, `74841`, `74842`, `19402`, `74843`, `74845`, `74846`, `74847`, `74848`, `74850`, `74852`, `74853`, `74855`, `74857`, `74859`, `74861`, `74862`, `74863`, `74865`, `74866`, `74867`, `74868`, `74870`, `74872`, `74874`, `74877`, `74879`, `74881`, `74883`, `74884`, `74885`, `74886`, `74888`, `74890`, `74892`, `74894`, `74895`, `74896`, `74897`, `74898`, `74899`, `74903`, `74905`, `74906`, `74908`, `74909`, `74910`, `74911`, `74913`, `74915`, `74917`, `74919`, `74921`, `74923`, `74924`, `74926`, `74928`, `74930`, `74932`, `74934`, `74936`, `74937`, `74939`, `74941`, `74943`, `74945`, `74948`, `74949`, `74950`, `74952`, `74954`, `74956`, `74958`, `74961`, `74962`, `74963`, `74965`, `74967`, `74969`, `74970`, `74971`, `74973`, `74975`, `74977`, `74978`, `74979`, `74980`, `74982`, `74983`, `74986`, `74987`, `74989`, `74991`, `74993`, `74995`, `74998`, `75000`, `75002`, `75005`, `75006`, `75008`, `75009`, `75011`, `75012`, `75014`, `75016`, `75017`, `75019`, `75021`, `75023`, `75024`, `75025`, `75026`, `75028`, `75030`, `75032`, `75035`, `75036`, `75037`, `75040`, `75042`, `75044`, `75046`, `75048`, `75049`, `75051`, `75053`, `75054`, `75055`, `75056`, `75058`, `75060`, `75062`, `75063`, `75065`, `75066`, `75068`, `75070`, `75072`, `75074`, `75076`, `75078`, `75079`, `75080`, `75082`, `75084`, `75087`, `75089`, `75091`, `75094`, `75095`, `75096`, `75098`, `75100`, `75101`, `75102`, `75104`, `75106`, `75108`, `75109`, `75111`, `75113`, `75115`, `75117`, `75119`, `75120`, `75123`, `75125`, `75127`, `75128`, `75129`, `75130`, `75131`, `75133`, `75135`, `75137`, `75140`, `75142`, `75143`, `75145`, `75146`, `75148`, `75150`, `75152`, `75155`, `75158`, `75160`, `75161`, `75163`, `75165`, `75167`, `75169`, `75171`, `75172`, `75173`, `75176`, `75177`, `75179`, `75181`, `75183`, `75184`, `75185`, `75186`, `75188`, `75190`, `75192`, `75195`, `75196`, `75198`, `75200`, `75202`, `75204`, `75205`, `75207`, `75209`, `75211`, `75212`, `75213`, `75215`, `75216`, `75218`, `75220`, `75221`, `75223`, `75226`, `75229`, `75231`, `75233`, `75234`, `75235`, `75237`, `75239`, `75240`, `75242`, `75243`, `75244`, `75246`, `75248`, `75250`, `75252`, `75253`, `75255`, `75257`, `75258`, `75259`, `75261`, `75263`, `75267`, `75269`, `75271`, `75273`, `75275`, `75276`, `75277`, `75279`, `75280`, `75282`, `75284`, `75286`, `75287`, `75289`, `75291`, `75292`, `75293`, `75294`, `75296`, `75298`, `75299`, `75300`, `75301`, `75303`, `75305`, `75306`, `75308`, `75310`, `75312`, `75314`, `75315`, `75316`, `75319`, `75321`, `75323`, `75325`, `75326`, `75328`, `75329`, `75331`, `75332`, `75333`, `75335`, `75336`, `75338`, `75339`, `75341`, `75343`, `75344`, `75345`, `75346`, `75349`, `75351`, `75353`, `75354`, `75356`, `75358`, `75359`, `75360`, `75361`, `75363`, `75364`, `75365`, `75366`, `75367`, `75369`, `75371`, `75373`, `75374`, `75376`, `75377`, `75379`, `75381`, `75383`, `75385`, `75386`, `75390`, `75391`, `75392`, `75394`, `75395`, `75396`, `75398`, `75399`, `75401`, `75404`, `75405`, `75407`, `75409`, `75410`, `75412`, `75414`, `75417`, `75419`, `75421`, `75424`, `75425`, `75426`, `75429`, `75433`, `75434`, `75435`, `75437`, `75439`, `75442`, `75443`, `75445`, `75447`, `75449`, `75451`, `75452`, `75456`, `75458`, `75461`, `75463`, `75464`, `75467`, `75469`, `75470`, `75471`, `75473`, `75476`, `75477`, `75480`, `75481`, `75483`, `75485`, `75486`, `75488`, `75489`, `75491`, `75493`, `75494`, `75495`, `75497`, `75498`, `75499`, `75500`, `75502`, `75505`, `75507`, `75509`, `75510`, `75512`, `75513`, `75516`, `75517`, `75518`, `75520`, `75524`, `75526`, `75528`, `75530`, `75532`, `75533`, `75535`, `75536`, `75538`, `75540`, `75543`, `75545`, `75546`, `75548`, `75550`, `75552`, `75554`, `75555`, `75557`, `75559`, `75561`, `75564`, `75566`, `75567`, `75568`, `75570`, `75573`, `75575`, `75576`, `75578`, `75579`, `75581`, `75583`, `75585`, `75586`, `75588`, `75591`, `75592`, `75593`, `75594`, `75595`, `75598`, `75600`, `75602`, `75604`, `75606`, `75607`, `75609`, `75611`, `75616`, `75618`, `75620`, `75622`, `75623`, `75625`, `75627`, `75628`, `75630`, `75632`, `75634`, `75636`, `75642`, `75644`, `75646`, `75647`, `75649`, `75651`, `75652`, `75654`, `75655`, `75657`, `75658`, `75660`, `75662`, `75664`, `75666`, `75668`, `75670`, `75672`, `75675`, `75676`, `75677`, `75679`, `75681`, `75683`, `75684`, `75685`, `75686`, `75690`, `75692`, `75694`, `75696`, `75698`, `75700`, `75702`, `75704`, `75706`, `75708`, `75710`, `75712`, `75713`, `75715`, `75717`, `75718`, `75720`, `75722`, `75723`, `75727`, `75729`, `75730`, `75732`, `75734`, `75737`, `75738`, `75740`, `75742`, `75744`, `75745`, `75747`, `75748`, `75750`, `75751`, `75753`, `75755`, `75758`, `75759`, `75760`, `75761`, `75763`, `75765`, `75766`, `75767`, `75769`, `75770`, `75772`, `75774`, `75775`, `75776`, `75778`, `75779`, `75780`, `75782`, `75783`, `75784`, `75786`, `75788`, `75789`, `75790`, `75792`, `75794`, `75795`, `75797`, `75799`, `75802`, `75804`, `75805`, `75807`, `75809`, `75811`, `75814`, `75816`, `75818`, `75820`, `75822`, `75825`, `75827`, `75829`, `75830`, `75832`, `75834`, `75837`, `75838`, `75840`, `75842`, `75844`, `75845`, `75846`, `75848`, `75850`, `75852`, `75853`, `75854`, `75856`, `75857`, `75858`, `75860`, `75862`, `75865`, `75867`, `75870`, `75871`, `75872`, `75874`, `75876`, `75877`, `75879`, `75880`, `75882`, `75884`, `75886`, `75887`, `75889`, `75890`, `75892`, `75893`, `75894`, `75898`, `75900`, `75902`, `75904`, `75905`, `75906`, `75908`, `75910`, `75912`, `75914`, `75915`, `75917`, `75918`, `75920`, `75926`, `75927`, `75929`, `75930`, `75932`, `75934`, `75935`, `75936`, `75938`, `75939`, `75941`, `75942`, `75944`, `75946`, `75948`, `75949`, `75951`, `75953`, `75954`, `75956`, `75957`, `75958`, `75959`, `75960`, `75961`, `75963`, `75965`, `75967`, `75968`, `75969`, `75971`, `75972`, `75973`, `75974`, `75975`, `75976`, `75978`, `75980`, `75981`, `75983`, `75984`, `75985`, `75987`, `75992`, `75995`, `75996`, `75998`, `75999`, `76001`, `76004`, `76006`, `76008`, `76010`, `76012`, `76014`, `76016`, `76018`, `76019`, `76021`, `76023`, `76024`, `76026`, `76028`, `76029`, `76030`, `76032`, `76034`, `76037`, `76039`, `76041`, `76043`, `76046`, `76047`, `76049`, `76051`, `76052`, `76054`, `76056`, `76058`, `76060`, `76062`, `76064`, `76066`, `76067`, `76069`, `76070`, `76072`, `76074`, `76075`, `76077`, `76079`, `76081`, `76083`, `76084`, `76086`, `76088`, `76090`, `76091`, `76092`, `76095`, `76097`, `76099`, `76101`, `76103`, `76106`, `76108`, `76110`, `76112`, `76113`, `76115`, `76116`, `76119`, `76121`, `76122`, `76124`, `76126`, `76128`, `76130`, `76132`, `76134`, `76135`, `76138`, `76140`, `76141`, `76142`, `76143`, `76145`, `76146`, `76147`, `76151`, `76152`, `76153`, `76155`, `76156`, `76157`, `76158`, `76159`, `76161`, `76162`, `76165`, `76166`, `76167`, `76169`, `76171`, `76172`, `76174`, `76176`, `76177`, `76179`, `76181`, `76184`, `76185`, `76186`, `76187`, `76188`, `76190`, `76192`, `76194`, `76195`, `76197`, `76199`, `76200`, `76201`, `76203`, `76205`, `76206`, `76210`, `76212`, `76213`, `76215`, `76216`, `76217`, `76219`, `76221`, `76222`, `76224`, `76227`, `76229`, `76231`, `76233`, `76235`, `76236`, `76238`, `76240`, `76242`, `76244`, `76245`, `76247`, `76251`, `76252`, `76254`, `76256`, `76259`, `76261`, `76263`, `76265`, `76266`, `76268`, `76272`, `76278`, `76280`, `76282`, `76284`, `76287`, `76289`, `76291`, `76294`, `76296`, `76298`, `76300`, `76301`, `76302`, `76303`, `76305`, `76306`, `76307`, `76309`, `76310`, `76312`, `76316`, `76317`, `76319`, `76321`, `76323`, `76325`, `76327`, `76331`, `76332`, `76334`, `76335`, `76337`, `76338`, `76339`, `76340`, `76342`, `76344`, `76346`, `76347`, `76349`, `76350`, `76353`, `76354`, `76355`, `76356`, `76357`, `76359`, `76361`, `76363`, `76365`, `76366`, `76368`, `76370`, `76372`, `76374`, `76377`, `76379`, `76380`, `76382`, `76384`, `76386`, `76388`, `76390`, `76392`, `76394`, `76396`, `76397`, `76398`, `76400`, `76402`, `76404`, `76405`, `76407`, `76408`, `76409`, `76411`, `76413`, `76414`, `76416`, `76419`, `76421`, `76422`, `76425`, `76427`, `76428`, `76432`, `76433`, `76434`, `76435`, `76436`, `76438`, `76440`, `76441`, `76443`, `76444`, `76445`, `76446`, `76448`, `76449`, `76451`, `76454`, `76457`, `76459`, `76461`, `76463`, `76465`, `76466`, `76467`, `76469`, `76471`, `76472`, `76473`, `76476`, `76478`, `76480`, `76481`, `76483`, `76484`, `76486`, `76488`, `76489`, `76491`, `76493`, `76494`, `76496`, `76498`, `76500`, `76501`, `76503`, `76504`, `76506`, `76507`, `76508`, `76510`, `76512`, `76514`, `76516`, `76517`, `76518`, `76520`, `76522`, `76524`, `76526`, `76529`, `76531`, `76532`, `76534`, `76535`, `76536`, `76538`, `76539`, `76540`, `76542`, `76544`, `76546`, `76548`, `76550`, `76552`, `76554`, `76555`, `76557`, `76559`, `76560`, `76564`, `76566`, `76567`, `76568`, `76569`, `76571`, `76573`, `76574`, `76575`, `76576`, `76577`, `76579`, `76581`, `76584`, `76585`, `76587`, `76589`, `76591`, `76593`, `76594`, `76595`, `76597`, `76598`, `76600`, `76602`, `76604`, `76606`, `76607`, `76609`, `76611`, `76613`, `76615`, `76617`, `76619`, `76621`, `76624`, `76626`, `76627`, `76629`, `76630`, `76631`, `76632`, `76633`, `76634`, `76635`, `76636`, `76638`, `76640`, `76641`, `76643`, `76645`, `76647`, `76649`, `76651`, `76653`, `76655`, `76657`, `76659`, `76661`, `76663`, `76665`, `76667`, `76669`, `76671`, `76674`, `76676`, `76678`, `76680`, `76681`, `76683`, `76685`, `76687`, `76688`, `76690`, `76692`, `76693`, `76695`, `76697`, `76698`, `76700`, `76702`, `76704`, `76705`, `76706`, `76707`, `76709`, `76710`, `76712`, `76713`, `76715`, `76717`, `76718`, `76720`, `76721`, `76725`, `76728`, `76729`, `76731`, `76732`, `76734`, `76736`, `76737`, `76739`, `76741`, `76743`, `76747`, `76749`, `76751`, `76752`, `76754`, `76756`, `76758`, `76759`, `76761`, `76763`, `76764`, `76765`, `76767`, `76768`, `76770`, `76772`, `76774`, `76775`, `76776`, `76778`, `76780`, `76782`, `76784`, `76786`, `76788`, `76789`, `76791`, `76792`, `76794`, `76795`, `76798`, `76799`, `76801`, `76804`, `76805`, `76807`, `76809`, `76811`, `76815`, `76816`, `76820`, `76822`, `76824`, `76825`, `76826`, `76828`, `76830`, `76832`, `76834`, `76836`, `76837`, `76838`, `76841`, `76843`, `76845`, `76848`, `76851`, `76853`, `76855`, `76857`, `76859`, `76861`, `76862`, `76864`, `76866`, `76867`, `76869`, `76871`, `76873`, `76875`, `76876`, `76878`, `76879`, `76880`, `76881`, `76883`, `76885`, `76887`, `76890`, `76891`, `76894`, `76896`, `76898`, `76900`, `76902`, `76904`, `76905`, `76907`, `76908`, `76909`, `76911`, `76913`, `76915`, `76917`, `76918`, `76919`, `76920`, `76921`, `76925`, `76927`, `76929`, `76930`, `76932`, `76934`, `76935`, `76937`, `76938`, `76940`, `76942`, `76943`, `76944`, `76946`, `76947`, `76949`, `76950`, `76951`, `76953`, `76954`, `76955`, `76956`, `76958`, `76959`, `76960`, `76961`, `76962`, `76963`, `76965`, `76966`, `76968`, `76970`, `76971`, `76974`, `76976`, `76977`, `76979`, `76981`, `76983`, `76985`, `76987`, `76989`, `76991`, `76992`, `76994`, `76996`, `76998`, `77000`, `77003`, `77005`, `77007`, `77009`, `77013`, `77015`, `77017`, `77019`, `77023`, `77024`, `77026`, `77027`, `77029`, `77030`, `77032`, `77033`, `77035`, `77036`, `77038`, `77040`, `77042`, `77044`, `77046`, `77048`, `77050`, `77052`, `77054`, `77055`, `77056`, `77058`, `77059`, `77061`, `77062`, `77064`, `77065`, `77066`, `77067`, `77070`, `77072`, `77074`, `77076`, `77077`, `77079`, `77082`, `77084`, `77086`, `77088`, `77090`, `77091`, `77092`, `77094`, `77095`, `77096`, `77097`, `77099`, `77100`, `77102`, `77106`, `77108`, `77110`, `77112`, `77113`, `77114`, `77116`, `77117`, `77119`, `77121`, `77123`, `77124`, `77125`, `77126`, `77127`, `77128`, `77130`, `77132`, `77134`, `77135`, `77137`, `77139`, `77141`, `77142`, `77143`, `77144`, `77146`, `77148`, `77150`, `77152`, `77153`, `77155`, `77157`, `77159`, `77160`, `77161`, `77163`, `77165`, `77166`, `77167`, `77169`, `77171`, `77172`, `77174`, `77175`, `77176`, `77178`, `77180`, `77182`, `77184`, `77185`, `77187`, `77189`, `77191`, `77193`, `77195`, `77198`, `77199`, `77200`, `77203`, `77204`, `77206`, `77208`, `77209`, `77210`, `77211`, `77213`, `77215`, `77217`, `77218`, `77219`, `77221`, `77222`, `77223`, `77224`, `77226`, `77227`, `77229`, `77230`, `77232`, `77234`, `77235`, `77238`, `77240`, `77244`, `77246`, `77248`, `77250`, `77251`, `77253`, `77255`, `77258`, `77260`, `77261`, `77264`, `77266`, `77268`, `77269`, `77270`, `77271`, `77273`, `77275`, `77276`, `77278`, `77281`, `77283`, `77285`, `77286`, `77288`, `77290`, `77292`, `77294`, `77295`, `77297`, `77299`, `77301`, `77303`, `77304`, `77305`, `77306`, `77308`, `77309`, `77310`, `77313`, `77315`, `77316`, `77317`, `77319`, `77324`, `77326`, `77329`, `77331`, `77332`, `77334`, `77336`, `77337`, `77339`, `77341`, `77343`, `77345`, `77347`, `77349`, `77351`, `77354`, `77355`, `77356`, `77358`, `77360`, `77362`, `77363`, `77365`, `77366`, `77368`, `77370`, `77372`, `77374`, `77375`, `77376`, `77378`, `77380`, `77381`, `77383`, `77384`, `77386`, `77387`, `77389`, `77390`, `77391`, `77392`, `77393`, `77394`, `77396`, `77398`, `77400`, `77403`, `77406`, `77407`, `77408`, `77410`, `77411`, `77412`, `77413`, `77415`, `77417`, `77419`, `77421`, `77423`, `77424`, `77427`, `77430`, `77432`, `77434`, `77435`, `77436`, `77438`, `77440`, `77441`, `77444`, `77448`, `77450`, `77452`, `77454`, `77456`, `77457`, `77459`, `77461`, `77463`, `77464`, `77466`, `77468`, `77470`, `77472`, `77474`, `77476`, `77478`, `77480`, `77482`, `77485`, `77487`, `77489`, `77491`, `77492`, `77495`, `77497`, `77498`, `77499`, `77500`, `77502`, `77504`, `77505`, `77507`, `77509`, `77510`, `77512`, `77514`, `77515`, `77516`, `77518`, `77520`, `77521`, `77523`, `77525`, `77527`, `77528`, `77529`, `77531`, `77533`, `77535`, `77536`, `77537`, `77538`, `77540`, `77542`, `77544`, `77546`, `77548`, `77550`, `77552`, `77555`, `77556`, `77558`, `77559`, `77560`, `77561`, `77562`, `77564`, `77566`, `77569`, `77571`, `77574`, `77576`, `77578`, `77580`, `77582`, `77584`, `77585`, `77586`, `77588`, `77590`, `77592`, `77593`, `77595`, `77596`, `77597`, `77601`, `77603`, `77604`, `77606`, `77607`, `77609`, `77611`, `77613`, `77615`, `77617`, `77618`, `77619`, `77622`, `77623`, `77625`, `77627`, `77628`, `77630`, `77631`, `77633`, `77635`, `77639`, `77641`, `77643`, `77645`, `77646`, `77648`, `77649`, `77651`, `77653`, `77654`, `77656`, `77658`, `77660`, `77661`, `77663`, `77665`, `77668`, `77669`, `77671`, `77672`, `77674`, `77675`, `77677`, `77679`, `77680`, `77682`, `77684`, `77685`, `77687`, `77689`, `77691`, `77692`, `77694`, `77696`, `77698`, `77701`, `77704`, `77706`, `77708`, `77710`, `77713`, `77715`, `77716`, `77717`, `77719`, `77720`, `77722`, `77724`, `77726`, `77728`, `77730`, `77731`, `77732`, `77734`, `77735`, `77737`, `77739`, `77741`, `77743`, `77744`, `77746`, `77747`, `77749`, `77751`, `77752`, `77754`, `77756`, `77758`, `77760`, `77763`, `77765`, `77769`, `77770`, `77772`, `77773`, `77775`, `77777`, `77779`, `77781`, `77782`, `77784`, `77786`, `77787`, `77789`, `77791`, `77792`, `77793`, `77795`, `77798`, `77800`, `77802`, `77804`, `77806`, `77808`, `77810`, `77811`, `77812`, `77813`, `77817`, `77818`, `77820`, `77823`, `77824`, `77827`, `77828`, `77829`, `77831`, `77832`, `77834`, `77836`, `77837`, `77839`, `77840`, `77842`, `77845`, `77846`, `77848`, `77849`, `77851`, `77853`, `77855`, `77857`, `77859`, `77861`, `77863`, `77865`, `77867`, `77868`, `77870`, `77871`, `77872`, `77873`, `77874`, `77876`, `77878`, `77879`, `77880`, `77882`, `77883`, `77885`, `77886`, `77888`, `77890`, `77892`, `77893`, `77895`, `77897`, `77899`, `77900`, `77902`, `77904`, `77905`, `77907`, `77909`, `77910`, `77912`, `77914`, `77916`, `77917`, `77918`, `77919`, `77922`, `77924`, `77926`, `77928`, `77930`, `77934`, `77936`, `77938`, `77940`, `77941`, `77943`, `77945`, `77947`, `77949`, `77951`, `77952`, `77954`, `77956`, `77958`, `77959`, `77960`, `77962`, `77963`, `77965`, `77966`, `77968`, `77970`, `77972`, `77974`, `77976`, `77977`, `77979`, `77981`, `77982`, `77984`, `1041`, `77986`, `77988`, `77990`, `77993`, `77995`, `77997`, `77999`, `78001`, `78002`, `78003`, `78006`, `78008`, `78010`, `78012`, `78014`, `78017`, `78019`, `78020`, `78022`, `78023`, `78024`, `78025`, `78027`, `78029`, `78031`, `78033`, `78034`, `78036`, `78038`, `78040`, `78042`, `78043`, `78044`, `78045`, `78050`, `78052`, `78054`, `78056`, `78059`, `78061`, `78063`, `78064`, `78066`, `78068`, `78070`, `78071`, `78073`, `78075`, `78077`, `78078`, `78079`, `78083`, `78087`, `78091`, `78093`, `78096`, `78097`, `78099`, `78101`, `78103`, `78105`, `78106`, `78107`, `78109`, `78110`, `78111`, `78112`, `78113`, `78114`, `78115`, `78117`, `78118`, `78120`, `78122`, `78124`, `78126`, `78127`, `78129`, `78130`, `78131`, `78132`, `78134`, `78136`, `78138`, `78140`, `78141`, `78143`, `78145`, `78146`, `78147`, `78148`, `78150`, `78151`, `78153`, `78156`, `78158`, `78159`, `78160`, `78162`, `78163`, `78166`, `78168`, `78170`, `78172`, `78173`, `78175`, `78176`, `78177`, `78179`, `78181`, `78182`, `78184`, `78185`, `78186`, `78188`, `78190`, `78191`, `78192`, `78193`, `78194`, `78196`, `78198`, `78200`, `78202`, `78204`, `78205`, `78207`, `78208`, `78209`, `78210`, `78213`, `78215`, `78217`, `78219`, `78221`, `78223`, `78224`, `78226`, `78228`, `78229`, `78230`, `78231`, `78233`, `78234`, `78235`, `78236`, `78238`, `78240`, `78241`, `78243`, `78245`, `78247`, `78249`, `78250`, `78252`, `78253`, `78255`, `78257`, `78258`, `78259`, `78260`, `78261`, `78263`, `78264`, `78266`, `78267`, `78268`, `78269`, `78270`, `78273`, `78275`, `78277`, `78279`, `78281`, `78282`, `78284`, `78285`, `78286`, `78288`, `78289`, `78291`, `78292`, `78294`, `78296`, `78297`, `78299`, `78301`, `78303`, `78305`, `78309`, `78311`, `78312`, `78314`, `78316`, `78317`, `78319`, `78320`, `78322`, `78324`, `78326`, `78327`, `78328`, `78329`, `78330`, `78331`, `78332`, `78334`, `78336`, `78338`, `78339`, `78342`, `78343`, `78345`, `78347`, `78351`, `78353`, `78355`, `78357`, `78359`, `78361`, `78363`, `78367`, `78369`, `78371`, `78373`, `78375`, `78377`, `78379`, `78381`, `78383`, `78385`, `78387`, `78389`, `78390`, `78392`, `78393`, `78395`, `78397`, `78399`, `78400`, `78402`, `78405`, `78407`, `78408`, `78410`, `78412`, `78413`, `78414`, `78417`, `78419`, `78421`, `78423`, `78424`, `78426`, `78427`, `78429`, `78431`, `78432`, `78433`, `78435`, `78437`, `78438`, `78439`, `78440`, `78442`, `78444`, `78446`, `78448`, `78449`, `78450`, `78452`, `78454`, `78455`, `78456`, `78457`, `78459`, `78461`, `78463`, `78465`, `78466`, `78468`, `78471`, `78473`, `78475`, `78477`, `78481`, `78483`, `78484`, `78485`, `78487`, `78489`, `78491`, `78492`, `78494`, `78495`, `78496`, `78497`, `78499`, `78501`, `78502`, `78504`, `78506`, `78507`, `78508`, `78510`, `78511`, `78513`, `78514`, `78519`, `78521`, `78523`, `78525`, `78527`, `78529`, `78530`, `78532`, `78534`, `78535`, `78537`, `78539`, `78540`, `78541`, `78543`, `78545`, `78547`, `78549`, `78550`, `78551`, `78553`, `78555`, `78557`, `78559`, `78561`, `78563`, `78565`, `78568`, `78569`, `78572`, `78574`, `78576`, `78578`, `78579`, `78581`, `78582`, `78583`, `78584`, `78586`, `78587`, `78589`, `78591`, `78592`, `78593`, `78594`, `78595`, `78596`, `78598`, `78600`, `78601`, `78603`, `78605`, `78606`, `78609`, `78612`, `78614`, `78615`, `78617`, `78619`, `78621`, `78623`, `78624`, `78626`, `78627`, `78628`, `78629`, `78630`, `78631`, `78632`, `78634`, `78636`, `78638`, `78639`, `78641`, `78645`, `78647`, `78649`, `78651`, `78652`, `78653`, `78655`, `78656`, `78658`, `78660`, `78662`, `78665`, `78666`, `78668`, `78669`, `78672`, `78674`, `78675`, `78676`, `78677`, `78679`, `78680`, `78682`, `78684`, `78685`, `78687`, `78688`, `78689`, `78691`, `78692`, `78694`, `78696`, `78697`, `78698`, `78700`, `78702`, `78703`, `78705`, `78707`, `78709`, `78711`, `78712`, `78714`, `78716`, `78717`, `78718`, `78719`, `78720`, `78721`, `78723`, `78725`, `78727`, `78728`, `78729`, `78731`, `78733`, `78735`, `78736`, `78737`, `78739`, `78740`, `78742`, `78744`, `78746`, `78747`, `78748`, `78749`, `78753`, `78755`, `78756`, `78757`, `78758`, `78759`, `78760`, `78762`, `78763`, `78765`, `78767`, `78769`, `78770`, `78771`, `78775`, `78776`, `78777`, `78778`, `78780`, `78782`, `78784`, `78786`, `78787`, `78789`, `78791`, `78793`, `78794`, `78796`, `78797`, `78798`, `78799`, `78800`, `78802`, `78803`, `78805`, `78806`, `78810`, `78812`, `78815`, `78817`, `78818`, `78819`, `78820`, `78823`, `78826`, `78827`, `78828`, `78830`, `78833`, `78835`, `78837`, `78839`, `78841`, `78842`, `78843`, `78844`, `78845`, `78847`, `78848`, `78850`, `78852`, `78854`, `78855`, `78857`, `78860`, `78862`, `78863`, `78865`, `78867`, `78869`, `78870`, `78872`, `78873`, `78875`, `78876`, `78877`, `78879`, `78881`, `78882`, `78883`, `78885`, `78887`, `78889`, `78892`, `78895`, `78897`, `78900`, `78902`, `78904`, `78906`, `78907`, `78909`, `78910`, `78911`, `78915`, `78917`, `78919`, `78921`, `78923`, `78925`, `78927`, `78929`, `78931`, `78935`, `78937`, `78938`, `78939`, `78941`, `78943`, `78945`, `78947`, `78949`, `78950`, `78952`, `78954`, `78956`, `78957`, `78959`, `78961`, `78963`, `78964`, `78966`, `78968`, `78973`, `78975`, `78976`, `78978`, `78980`, `78982`, `78984`, `78986`, `78988`, `78991`, `78992`, `78994`, `78996`, `78998`, `78999`, `79000`, `79002`, `79004`, `79006`, `79008`, `79010`, `79012`, `79014`, `79016`, `79018`, `79021`, `79023`, `79025`, `79027`, `79029`, `79030`, `79032`, `79033`, `79035`, `79037`, `79038`, `79040`, `79042`, `79044`, `79046`, `79047`, `79049`, `79051`, `79053`, `79055`, `79057`, `79058`, `79060`, `79061`, `79063`, `79066`, `79067`, `79069`, `79070`, `79072`, `79073`, `79074`, `79076`, `79077`, `79079`, `79083`, `79084`, `79087`, `79088`, `79090`, `79091`, `79092`, `79094`, `79096`, `79097`, `79099`, `79101`, `79103`, `79105`, `79107`, `79109`, `79110`, `79112`, `79114`, `79115`, `79116`, `79117`, `79118`, `79120`, `79121`, `79123`, `79124`, `79126`, `79128`, `79130`, `79133`, `79135`, `79139`, `79140`, `79142`, `79143`, `79146`, `79148`, `79149`, `79151`, `79153`, `79155`, `79158`, `79161`, `79163`, `79164`, `79165`, `79167`, `79169`, `79171`, `79173`, `79175`, `79177`, `79179`, `79181`, `79183`, `79184`, `79186`, `79187`, `79189`, `79192`, `79194`, `79196`, `79198`, `79200`, `79202`, `79204`, `79207`, `79209`, `79211`, `79213`, `79215`, `79217`, `79219`, `79221`, `79223`, `79224`, `79226`, `79228`, `79230`, `79232`, `79234`, `79236`, `79238`, `79240`, `79242`, `79244`, `79247`, `79249`, `79250`, `79252`, `79254`, `79255`, `79256`, `79258`, `79259`, `79260`, `79262`, `79267`, `79269`, `79271`, `79273`, `79275`, `79276`, `79277`, `79278`, `79280`, `79282`, `79284`, `79288`, `79289`, `79291`, `79293`, `79294`, `79295`, `79297`, `79299`, `79300`, `79301`, `79303`, `79304`, `79306`, `79308`, `79309`, `79311`, `79313`, `79314`, `79315`, `79318`, `79320`, `79321`, `79323`, `79325`, `79326`, `79329`, `79332`, `79333`, `79335`, `79336`, `79337`, `79339`, `79341`, `79342`, `79345`, `79347`, `79349`, `79351`, `79352`, `79354`, `79356`, `79361`, `79363`, `79365`, `79367`, `79369`, `79371`, `79373`, `79374`, `79376`, `79378`, `79380`, `79381`, `79382`, `79384`, `79386`, `79388`, `79390`, `79392`, `79394`, `79395`, `79397`, `79399`, `79401`, `79404`, `79406`, `79408`, `79409`, `79411`, `79413`, `79414`, `79415`, `79417`, `79419`, `79421`, `79423`, `79425`, `79427`, `79428`, `79429`, `79431`, `79434`, `79436`, `79438`, `79439`, `79441`, `79443`, `79444`, `79446`, `79448`, `79449`, `79451`, `79453`, `79455`, `79457`, `79459`, `79461`, `79463`, `79465`, `79466`, `79467`, `79468`, `79470`, `79474`, `79477`, `79479`, `79481`, `79484`, `79486`, `79487`, `79488`, `79489`, `79490`, `79491`, `79492`, `79494`, `79496`, `79498`, `79499`, `79501`, `79502`, `79504`, `79506`, `79507`, `79508`, `79509`, `79511`, `79513`, `79515`, `79517`, `79518`, `79521`, `79523`, `79525`, `79527`, `79529`, `79530`, `79533`, `79535`, `79536`, `79538`, `79539`, `79541`, `79542`, `79544`, `79548`, `79550`, `79552`, `79553`, `79554`, `79555`, `79557`, `79558`, `79560`, `79561`, `79563`, `79564`, `79565`, `79566`, `79567`, `79569`, `79571`, `79573`, `79574`, `79576`, `79578`, `79580`, `79581`, `79583`, `79584`, `79585`, `79587`, `79589`, `79590`, `79594`, `79595`, `79597`, `79599`, `79600`, `79602`, `79603`, `79605`, `79606`, `79608`, `79610`, `79612`, `79613`, `79614`, `79615`, `79616`, `79619`, `79621`, `79623`, `79625`, `79627`, `79630`, `79632`, `79634`, `70207`, `79636`, `79638`, `79642`, `79644`, `79646`, `79647`, `79649`, `79651`, `79654`, `79656`, `79658`, `79661`, `79663`, `79665`, `79667`, `79669`, `79671`, `79673`, `79674`, `79676`, `79678`, `79679`, `79680`, `79681`, `79683`, `79686`, `79687`, `79688`, `79689`, `79690`, `79691`, `79693`, `79695`, `79697`, `79699`, `79700`, `79701`, `79702`, `79703`, `79704`, `79706`, `79707`, `79708`, `79712`, `79714`, `79715`, `79716`, `79717`, `79719`, `79721`, `79723`, `79725`, `79727`, `79729`, `79730`, `79731`, `79732`, `79733`, `79734`, `79735`, `79737`, `79738`, `79740`, `79742`, `79743`, `79746`, `79747`, `79748`, `79749`, `79750`, `79751`, `79755`, `79757`, `79758`, `79759`, `79761`, `79765`, `79767`, `79770`, `79772`, `79774`, `79776`, `79777`, `79779`, `79781`, `79783`, `79785`, `79788`, `79789`, `79791`, `79793`, `79794`, `79796`, `79798`, `79800`, `79802`, `79804`, `79805`, `79807`, `79808`, `79809`, `79810`, `79811`, `79813`, `79817`, `79819`, `79821`, `79823`, `79824`, `79825`, `79826`, `79828`, `79830`, `79832`, `79834`, `79836`, `79838`, `79839`, `79841`, `79843`, `79846`, `79847`, `79849`, `79851`, `79853`, `79854`, `79856`, `79859`, `79865`, `79867`, `79868`, `79869`, `79870`, `79872`, `79874`, `79875`, `79876`, `79878`, `79879`, `79881`, `79882`, `79884`, `79886`, `79889`, `79890`, `79891`, `79892`, `79894`, `79896`, `79897`, `79898`, `79900`, `79902`, `79907`, `79909`, `79911`, `79913`, `79915`, `79917`, `79918`, `79919`, `79921`, `79923`, `79925`, `79927`, `79929`, `79931`, `79933`, `79934`, `79936`, `79938`, `79940`, `79942`, `79944`, `79946`, `79948`, `79950`, `79952`, `79954`, `79956`, `79958`, `79960`, `79962`, `79964`, `79965`, `79967`, `79970`, `79972`, `79974`, `79978`, `79980`, `79982`, `79983`, `79985`, `79988`, `79989`, `79990`, `79992`, `79995`, `79997`, `79999`, `80001`, `80003`, `80005`, `80009`, `80011`, `80014`, `80019`, `80022`, `80024`, `80025`, `80028`, `80030`, `80031`, `80032`, `80033`, `80035`, `80039`, `80041`, `80043`, `80045`, `80046`, `80049`, `80052`, `80054`, `80056`, `80058`, `80060`, `80062`, `80064`, `80066`, `80068`, `80070`, `80071`, `80072`, `80073`, `80074`, `80077`, `80079`, `80081`, `80083`, `80085`, `80086`, `80087`, `80089`, `80091`, `80094`, `80096`, `80098`, `80099`, `80100`, `80102`, `80104`, `80106`, `80108`, `80110`, `80112`, `80114`, `80116`, `80117`, `80118`, `80119`, `80121`, `80123`, `80125`, `80127`, `80129`, `80131`, `80133`, `80135`, `80136`, `80137`, `80140`, `80142`, `80143`, `80145`, `80147`, `80149`, `80151`, `80152`, `80154`, `80155`, `80157`, `80158`, `80160`, `80161`, `80163`, `80165`, `80166`, `80167`, `80168`, `80170`, `80172`, `80175`, `80176`, `80178`, `80180`, `80182`, `80184`, `80186`, `80188`, `80190`, `80192`, `80194`, `80196`, `80197`, `80199`, `80201`, `80203`, `80204`, `80206`, `80207`, `80208`, `80210`, `80212`, `80213`, `80215`, `80216`, `80218`, `80219`, `80221`, `80223`, `80224`, `80225`, `80227`, `80228`, `80230`, `80232`, `80235`, `80238`, `80242`, `80244`, `80246`, `80248`, `80250`, `80252`, `80254`, `80256`, `80258`, `80259`, `80261`, `80264`, `80266`, `80268`, `80270`, `80271`, `80272`, `80274`, `80276`, `80279`, `80281`, `80283`, `80284`, `80286`, `80287`, `80289`, `80291`, `80293`, `80294`, `80296`, `80298`, `80300`, `80301`, `80303`, `80305`, `80307`, `80309`, `80311`, `80313`, `80314`, `80316`, `80317`, `80319`, `80321`, `80323`, `80324`, `80327`, `80328`, `80330`, `80332`, `80334`, `80336`, `80337`, `80339`, `80340`, `80343`, `80345`, `80347`, `80349`, `80351`, `80353`, `80355`, `80359`, `80361`, `80363`, `80365`, `80367`, `80369`, `80371`, `80373`, `80375`, `80376`, `80378`, `80379`, `80380`, `80382`, `80384`, `80386`, `80387`, `80388`, `80390`, `80391`, `80392`, `80394`, `80396`, `80398`, `80400`, `80402`, `80404`, `80406`, `80408`, `80410`, `80411`, `80414`, `80416`, `80418`, `80419`, `80420`, `80422`, `80424`, `80426`, `80428`, `80429`, `80431`, `80433`, `80435`, `80437`, `80439`, `80441`, `80442`, `80444`, `80446`, `80449`, `80450`, `80452`, `80454`, `80456`, `80458`, `80460`, `80461`, `80462`, `80464`, `80466`, `80468`, `80470`, `80471`, `80473`, `80475`, `80478`, `80480`, `80483`, `80485`, `80487`, `80489`, `80490`, `80494`, `80496`, `80498`, `80500`, `80501`, `80502`, `80504`, `80505`, `80507`, `80510`, `80511`, `80513`, `80515`, `80516`, `80518`, `80520`, `80522`, `80524`, `80526`, `80528`, `80529`, `80531`, `80533`, `80534`, `80535`, `80538`, `80540`, `80542`, `80544`, `80546`, `80548`, `80550`, `80551`, `80553`, `80554`, `80556`, `80558`, `80559`, `80561`, `80563`, `80564`, `80566`, `80568`, `80570`, `80572`, `80573`, `80574`, `80576`, `80578`, `80580`, `80582`, `80584`, `80586`, `80588`, `80589`, `80593`, `80594`, `80596`, `80597`, `80598`, `80600`, `80602`, `80603`, `80605`, `80606`, `80607`, `80609`, `80610`, `80612`, `80614`, `80620`, `80623`, `80626`, `80628`, `80629`, `80631`, `80633`, `80635`, `80637`, `80638`, `80640`, `80642`, `80643`, `80645`, `80647`, `80649`, `80651`, `80653`, `80655`, `80656`, `80658`, `80659`, `80661`, `80663`, `80666`, `80669`, `80671`, `80673`, `80675`, `80677`, `80682`, `80683`, `80685`, `80687`, `80689`, `80691`, `80693`, `80695`, `80696`, `80698`, `80699`, `80701`, `80703`, `80705`, `80707`, `80709`, `80710`, `80711`, `80712`, `80713`, `80717`, `80719`, `80721`, `80722`, `80723`, `80725`, `80727`, `80730`, `80732`, `80734`, `80736`, `80739`, `80741`, `80743`, `80744`, `80746`, `80747`, `80748`, `80750`, `80752`, `80754`, `80756`, `80757`, `80759`, `80761`, `80762`, `80763`, `80765`, `80766`, `80768`, `80770`, `80772`, `80774`, `80776`, `80778`, `80780`, `80782`, `80784`, `80786`, `80788`, `80790`, `80792`, `80793`, `80795`, `80797`, `80799`, `80800`, `80801`, `80803`, `80805`, `80807`, `80808`, `80810`, `80812`, `80814`, `80815`, `80817`, `80819`, `80821`, `80825`, `80827`, `80828`, `80829`, `80830`, `80832`, `80834`, `80835`, `80836`, `80838`, `80839`, `80840`, `80842`, `80843`, `80845`, `80847`, `80848`, `80850`, `80852`, `80854`, `80856`, `80858`, `80860`, `80862`, `80863`, `80864`, `80866`, `80868`, `80870`, `80873`, `80875`, `80876`, `80877`, `80878`, `80879`, `80881`, `80883`, `80885`, `80886`, `80888`, `80892`, `80893`, `80896`, `80897`, `80899`, `80901`, `80902`, `80903`, `80905`, `80908`, `80911`, `80913`, `80914`, `80918`, `80919`, `80920`, `80922`, `80923`, `80924`, `80925`, `80927`, `80929`, `80931`, `80932`, `80933`, `80935`, `80937`, `80939`, `80940`, `80942`, `80944`, `80945`, `80947`, `80948`, `80950`, `80952`, `80954`, `80956`, `80958`, `80959`, `80961`, `80962`, `80964`, `80967`, `80969`, `80972`, `80974`, `80976`, `80978`, `80980`, `80981`, `80982`, `80984`, `80986`, `80988`, `80990`, `80992`, `80994`, `80995`, `80997`, `80999`, `81001`, `81003`, `81005`, `81007`, `81009`, `81014`, `81016`, `81017`, `81019`, `81020`, `81021`, `81023`, `81025`, `81029`, `81031`, `81033`, `81035`, `81036`, `81038`, `81040`, `81042`, `81045`, `81046`, `81047`, `81048`, `81050`, `81052`, `81053`, `81056`, `81058`, `81060`, `81061`, `81063`, `81064`, `81066`, `81068`, `81070`, `81072`, `81075`, `81076`, `81078`, `81080`, `81081`, `81083`, `81085`, `81087`, `81089`, `81091`, `81092`, `81093`, `81097`, `81101`, `81104`, `81106`, `81108`, `81110`, `81112`, `81113`, `81114`, `81116`, `81118`, `81120`, `81122`, `81124`, `81126`, `81128`, `81130`, `81132`, `81134`, `81136`, `81138`, `81140`, `81142`, `81144`, `81146`, `81148`, `81150`, `81151`, `81153`, `81156`, `81158`, `81160`, `81162`, `81164`, `81166`, `81167`, `81168`, `81170`, `81172`, `81173`, `81175`, `81176`, `81178`, `81180`, `81182`, `81183`, `81184`, `81185`, `81187`, `81189`, `81191`, `81193`, `81195`, `81196`, `81197`, `81199`, `81202`, `81204`, `81206`, `81208`, `81209`, `81211`, `81213`, `81214`, `81216`, `81221`, `81223`, `81224`, `81226`, `81228`, `81230`, `81231`, `81233`, `81235`, `81236`, `81239`, `81241`, `81243`, `81245`, `81247`, `81249`, `81250`, `81251`, `81254`, `81256`, `81259`, `81261`, `81263`, `81265`, `81269`, `81271`, `81272`, `81274`, `81276`, `81278`, `81279`, `81281`, `81282`, `81284`, `81286`, `81288`, `81290`, `81292`, `81294`, `81296`, `81299`, `81300`, `81302`, `81304`, `81305`, `81307`, `81309`, `81311`, `81313`, `81314`, `81315`, `81319`, `81321`, `81323`, `81325`, `81327`, `81329`, `81330`, `81332`, `81334`, `81336`, `81337`, `81339`, `81341`, `81343`, `81344`, `81346`, `81347`, `81348`, `81349`, `81351`, `81353`, `81355`, `81356`, `81358`, `81360`, `81361`, `81362`, `81364`, `81366`, `81368`, `81369`, `81371`, `81373`, `81375`, `81377`, `81378`, `81379`, `81381`, `81382`, `81384`, `81386`, `81387`, `81390`, `81391`, `81392`, `81393`, `81395`, `81396`, `81398`, `81399`, `81400`, `81402`, `81404`, `81406`, `81407`, `81409`, `81411`, `81413`, `81414`, `81417`, `81419`, `81420`, `81421`, `81423`, `81424`, `81426`, `81428`, `81429`, `81431`, `81432`, `81434`, `81436`, `81437`, `81439`, `81441`, `81442`, `81444`, `81446`, `81447`, `81448`, `81452`, `81453`, `81455`, `81457`, `81459`, `81460`, `81462`, `81464`, `81465`, `81467`, `81469`, `81471`, `81473`, `81475`, `81478`, `81480`, `81481`, `81483`, `81484`, `81485`, `81487`, `81489`, `81490`, `81492`, `81493`, `81494`, `81495`, `81497`, `81499`, `81501`, `81503`, `81505`, `81507`, `81509`, `81511`, `81513`, `81515`, `81516`, `81517`, `81519`, `81521`, `81523`, `81525`, `81528`, `81530`, `81532`, `81534`, `81536`, `81537`, `81539`, `81543`, `81545`, `81546`, `81548`, `81550`, `81552`, `81554`, `81555`, `81557`, `81559`, `81560`, `81565`, `81566`, `81567`, `81569`, `81570`, `81572`, `81574`, `81576`, `81577`, `81580`, `81582`, `81583`, `81584`, `81585`, `81586`, `81587`, `81589`, `81591`, `81593`, `81596`, `81597`, `81598`, `81600`, `81601`, `81604`, `81606`, `81611`, `81613`, `81614`, `81615`, `81616`, `81618`, `81621`, `81622`, `81625`, `81626`, `81628`, `81630`, `81632`, `81633`, `81635`, `81637`, `81640`, `81642`, `81643`, `81644`, `81646`, `81648`, `81649`, `81650`, `81652`, `81656`, `81658`, `81659`, `81660`, `81661`, `81663`, `81665`, `81666`, `81668`, `81670`, `81672`, `81674`, `81676`, `81678`, `81680`, `81681`, `81682`, `81684`, `81687`, `81689`, `81692`, `81694`, `81696`, `81697`, `81698`, `81699`, `81701`, `81704`, `81705`, `81706`, `81707`, `81708`, `81710`, `81711`, `81712`, `81713`, `81714`, `81716`, `81718`, `81720`, `81722`, `81723`, `81725`, `81726`, `81728`, `81730`, `81732`, `81733`, `81734`, `81737`, `81739`, `81741`, `81743`, `81745`, `81748`, `81750`, `81751`, `81753`, `81754`, `81756`, `81758`, `81760`, `81762`, `81764`, `81766`, `81767`, `81769`, `81771`, `81773`, `81774`, `81776`, `81778`, `81779`, `81783`, `81785`, `81787`, `81790`, `81793`, `81795`, `81797`, `81798`, `81800`, `81802`, `81804`, `81805`, `81806`, `81808`, `81810`, `81811`, `81812`, `81813`, `81814`, `81816`, `81818`, `81822`, `81824`, `81825`, `81827`, `81829`, `81830`, `81831`, `81832`, `81833`, `81835`, `81836`, `81838`, `81839`, `81840`, `81844`, `81846`, `81848`, `81850`, `81852`, `81853`, `81855`, `81856`, `81858`, `81860`, `81862`, `81864`, `81865`, `81867`, `81869`, `81871`, `81873`, `81874`, `81877`, `81878`, `81880`, `81881`, `81883`, `81885`, `81887`, `81888`, `81889`, `81891`, `81893`, `81895`, `81897`, `81898`, `81900`, `81902`, `81903`, `81905`, `81906`, `81908`, `81912`, `81917`, `81920`, `81922`, `81924`, `81926`, `81927`, `81929`, `81930`, `81931`, `81932`, `81933`, `81935`, `81937`, `81939`, `81940`, `81941`, `81942`, `81944`, `81946`, `81948`, `81950`, `81952`, `81954`, `81955`, `81957`, `81958`, `81960`, `81962`, `81963`, `81965`, `81967`, `81970`, `81971`, `81973`, `81974`, `81975`, `81976`, `81978`, `81979`, `81981`, `81983`, `81984`, `81987`, `81988`, `81990`, `81992`, `81995`, `81997`, `81999`, `82002`, `82004`, `82005`, `82007`, `82009`, `82011`, `82012`, `82014`, `82015`, `82016`, `82018`, `82023`, `82024`, `82025`, `82027`, `82029`, `82031`, `82033`, `82035`, `82038`, `82040`, `82042`, `82044`, `82046`, `82048`, `82049`, `82050`, `82051`, `82052`, `82054`, `82056`, `82057`, `82059`, `82060`, `82061`, `82062`, `82063`, `82064`, `82066`, `82068`, `82069`, `82071`, `82072`, `82073`, `82075`, `82077`, `82079`, `82081`, `82082`, `82084`, `82086`, `82087`, `82089`, `82092`, `82094`, `82096`, `82098`, `82100`, `82103`, `82105`, `82107`, `82108`, `82110`, `82113`, `82114`, `82116`, `82117`, `82119`, `82120`, `82122`, `82123`, `82124`, `82125`, `82127`, `82129`, `82130`, `82131`, `82133`, `82138`, `82140`, `82141`, `82144`, `82146`, `82147`, `82149`, `82153`, `82155`, `82157`, `82158`, `82159`, `82160`, `82162`, `82164`, `82165`, `82167`, `82169`, `82170`, `82172`, `82175`, `82176`, `82178`, `82179`, `82181`, `82182`, `82185`, `82187`, `82188`, `82190`, `82192`, `82194`, `82195`, `82197`, `82199`, `82201`, `82203`, `82205`, `82207`, `82208`, `82210`, `82212`, `82214`, `82219`, `82220`, `82221`, `82223`, `82224`, `82225`, `82227`, `82228`, `82229`, `82230`, `82232`, `82233`, `82234`, `82235`, `82237`, `82238`, `82240`, `82242`, `82244`, `82246`, `82248`, `82250`, `82252`, `82254`, `82255`, `82257`, `82259`, `82261`, `82263`, `82264`, `82266`, `82267`, `82268`, `47405`, `82270`, `82272`, `82276`, `82277`, `82280`, `82281`, `82284`, `82285`, `82287`, `82288`, `82290`, `82292`, `82294`, `82296`, `82298`, `82299`, `82300`, `82302`, `82303`, `82304`, `82306`, `82307`, `82308`, `82310`, `82312`, `82313`, `82315`, `82316`, `82317`, `82319`, `82321`, `82323`, `82325`, `82327`, `82328`, `82330`, `82332`, `82333`, `82335`, `82336`, `82338`, `82339`, `82341`, `82342`, `82344`, `82346`, `82347`, `82349`, `82351`, `82353`, `82355`, `82356`, `82358`, `82359`, `82360`, `82362`, `82363`, `82364`, `82365`, `82367`, `82368`, `82370`, `82372`, `82373`, `82375`, `82377`, `82379`, `82381`, `82383`, `82384`, `82386`, `82387`, `82389`, `82391`, `82392`, `82394`, `82396`, `82397`, `82400`, `82402`, `82403`, `82405`, `82407`, `82409`, `82410`, `82412`, `82414`, `82417`, `82419`, `82420`, `82422`, `82424`, `82426`, `82427`, `82430`, `82433`, `82434`, `82435`, `82437`, `82439`, `82440`, `82442`, `82444`, `82445`, `82446`, `82448`, `82452`, `82453`, `82454`, `82456`, `82458`, `82461`, `82463`, `82464`, `82465`, `82467`, `82469`, `82471`, `82473`, `82475`, `82476`, `82478`, `82479`, `82483`, `82485`, `82486`, `82487`, `251`, `82489`, `82491`, `82492`, `82494`, `82495`, `82497`, `82499`, `82501`, `82503`, `82505`, `82507`, `82509`, `82510`, `82511`, `82512`, `82514`, `82515`, `82517`, `82519`, `82521`, `82523`, `82526`, `82528`, `82529`, `82530`, `82532`, `82536`, `82540`, `82542`, `82543`, `82546`, `82548`, `82550`, `82552`, `82554`, `82556`, `82558`, `82560`, `82561`, `82563`, `82564`, `82566`, `82568`, `82570`, `82572`, `82573`, `82575`, `82577`, `82579`, `82580`, `82582`, `82584`, `82586`, `82589`, `82592`, `82593`, `82595`, `82598`, `82600`, `82602`, `82603`, `82604`, `82606`, `82607`, `82609`, `82611`, `82612`, `82614`, `82615`, `82617`, `82618`, `82619`, `82621`, `82623`, `82624`, `82626`, `82628`, `82630`, `82632`, `82634`, `82636`, `82637`, `82639`, `82641`, `82642`, `82644`, `82646`, `82650`, `82654`, `82656`, `82657`, `82659`, `82661`, `82663`, `82664`, `82665`, `82667`, `82669`, `82671`, `82673`, `82675`, `82676`, `82678`, `82679`, `82681`, `82683`, `82684`, `82685`, `82688`, `82690`, `82692`, `82694`, `82695`, `82697`, `82700`, `82701`, `82703`, `82704`, `82706`, `82708`, `82710`, `82711`, `82712`, `82714`, `82716`, `82718`, `82719`, `82720`, `82722`, `82723`, `82724`, `82725`, `82727`, `82729`, `82731`, `82732`, `82734`, `82736`, `82737`, `82739`, `82741`, `82743`, `82744`, `82745`, `82746`, `82748`, `82751`, `82753`, `82754`, `82756`, `82758`, `82760`, `82762`, `82764`, `82766`, `82768`, `82769`, `82770`, `82772`, `82774`, `82776`, `82778`, `82780`, `82782`, `82783`, `82784`, `82787`, `82789`, `82790`, `82792`, `82793`, `82795`, `82797`, `82798`, `82800`, `82802`, `82804`, `82806`, `82808`, `82810`, `82812`, `82814`, `82816`, `82817`, `82818`, `82820`, `82821`, `82823`, `82824`, `82827`, `851`, `82828`, `82829`, `82830`, `82832`, `82834`, `82837`, `82838`, `82840`, `82843`, `82844`, `82845`, `82847`, `82848`, `82850`, `82852`, `82854`, `82855`, `82856`, `82858`, `82860`, `82862`, `82864`, `82865`, `82867`, `82870`, `82871`, `82877`, `82879`, `82880`, `82882`, `82885`, `82887`, `82891`, `82893`, `82896`, `82898`, `82901`, `82903`, `82906`, `82908`, `82910`, `82912`, `82914`, `82915`, `82916`, `82917`, `82918`, `82919`, `82921`, `82923`, `82925`, `82927`, `82929`, `82931`, `82933`, `82934`, `82936`, `82937`, `82938`, `82940`, `82941`, `82942`, `82944`, `82948`, `82949`, `82952`, `82953`, `82955`, `82956`, `82957`, `82959`, `82961`, `82963`, `82964`, `82965`, `82966`, `82968`, `82969`, `82970`, `82971`, `82972`, `82974`, `82975`, `82976`, `82977`, `82980`, `82982`, `82983`, `82985`, `82987`, `82989`, `82990`, `82991`, `82992`, `82994`, `82995`, `82996`, `82997`, `82999`, `83003`, `83004`, `83006`, `83008`, `83009`, `83010`, `83012`, `83013`, `83015`, `83016`, `83019`, `83022`, `83023`, `83025`, `83027`, `83029`, `83031`, `83033`, `83034`, `83036`, `83038`, `83040`, `83042`, `83046`, `83048`, `83050`, `83052`, `83054`, `83057`, `83058`, `83061`, `83062`, `83064`, `83065`, `83066`, `83067`, `83069`, `83070`, `83072`, `83073`, `83075`, `83077`, `83078`, `83080`, `83082`, `83084`, `83085`, `83086`, `83088`, `83089`, `83091`, `83092`, `83093`, `83094`, `83095`, `83097`, `83098`, `83100`, `83102`, `83103`, `83104`, `83107`, `83109`, `83110`, `83111`, `83112`, `83113`, `83115`, `83117`, `83119`, `83121`, `83122`, `83124`, `83126`, `83128`, `83130`, `83131`, `83133`, `83134`, `83137`, `83138`, `83139`, `83141`, `83142`, `83144`, `83148`, `83150`, `83152`, `83153`, `83155`, `83157`, `83159`, `83162`, `83163`, `83165`, `83167`, `83168`, `83170`, `83171`, `83173`, `83174`, `83175`, `83176`, `83178`, `83180`, `83183`, `83185`, `83188`, `83190`, `83192`, `83193`, `83195`, `83196`, `83198`, `83200`, `83201`, `83203`, `83204`, `83207`, `83208`, `83209`, `83211`, `83213`, `83215`, `83216`, `83218`, `83220`, `83221`, `83223`, `83225`, `83226`, `83228`, `83229`, `83230`, `83232`, `83233`, `83234`, `83235`, `83237`, `83238`, `83239`, `83241`, `83242`, `83244`, `83245`, `83247`, `83249`, `83251`, `83253`, `83255`, `83257`, `83258`, `83260`, `83262`, `83263`, `83265`, `83267`, `83269`, `83270`, `83272`, `83274`, `83276`, `83278`, `83280`, `83281`, `83283`, `83285`, `83287`, `83288`, `83292`, `83293`, `83296`, `83298`, `83300`, `83303`, `83304`, `83306`, `83307`, `83308`, `83310`, `83311`, `83312`, `83314`, `83316`, `83317`, `83318`, `83319`, `83321`, `83324`, `83326`, `83327`, `83328`, `83329`, `83331`, `83333`, `83335`, `83336`, `83338`, `83342`, `83344`, `83346`, `83348`, `83350`, `83352`, `83354`, `83355`, `83358`, `83361`, `83362`, `83363`, `83364`, `83367`, `83369`, `83371`, `83373`, `83378`, `83380`, `83382`, `83383`, `83384`, `83387`, `83389`, `83391`, `83394`, `83396`, `83399`, `83400`, `83401`, `83403`, `83405`, `83407`, `83409`, `83411`, `83413`, `83415`, `83417`, `83418`, `83420`, `83422`, `83424`, `83426`, `83428`, `83430`, `83431`, `83434`, `83436`, `83438`, `83439`, `83441`, `83443`, `83445`, `83446`, `83448`, `83449`, `83451`, `83453`, `83454`, `83458`, `83462`, `83464`, `83465`, `83466`, `83467`, `83469`, `83471`, `83472`, `83473`, `83475`, `83477`, `83479`, `83480`, `83482`, `83483`, `83485`, `83487`, `83489`, `83491`, `83492`, `83495`, `83497`, `83499`, `83501`, `83502`, `83504`, `83506`, `83508`, `83510`, `83512`, `83514`, `83516`, `83517`, `83519`, `83520`, `83521`, `83523`, `83525`, `83527`, `83529`, `83531`, `83533`, `83534`, `83535`, `83537`, `83540`, `83541`, `83543`, `83544`, `83547`, `83548`, `83549`, `83551`, `83554`, `83557`, `83559`, `83560`, `83561`, `83563`, `83565`, `83567`, `83569`, `83571`, `83572`, `83574`, `83576`, `83577`, `83579`, `83581`, `83583`, `83586`, `83588`, `83589`, `83591`, `83593`, `83595`, `83597`, `83598`, `83600`, `83602`, `83604`, `83605`, `83606`, `83609`, `83611`, `83612`, `83613`, `83615`, `83617`, `83618`, `83620`, `83622`, `83624`, `83626`, `83629`, `83631`, `83633`, `83635`, `83638`, `83640`, `83642`, `83643`, `83644`, `83647`, `83649`, `83650`, `83651`, `83653`, `83655`, `83657`, `83658`, `83660`, `83661`, `83663`, `83664`, `83665`, `83666`, `83667`, `83669`, `83670`, `83672`, `83674`, `83676`, `83677`, `83679`, `83682`, `83684`, `83686`, `83688`, `83689`, `83691`, `83693`, `83694`, `83696`, `83697`, `83699`, `83700`, `83702`, `83704`, `83706`, `83709`, `83710`, `83712`, `83714`, `83715`, `83719`, `83721`, `83722`, `83723`, `83726`, `83727`, `83729`, `83731`, `83735`, `83737`, `83738`, `83740`, `83744`, `83746`, `83748`, `83750`, `83752`, `83753`, `83755`, `83757`, `83759`, `83760`, `83762`, `83764`, `83766`, `83768`, `83770`, `83771`, `83775`, `83776`, `83778`, `83780`, `83782`, `83783`, `83784`, `83785`, `83786`, `83788`, `83790`, `83792`, `83793`, `83795`, `83797`, `83800`, `83802`, `83803`, `83804`, `83805`, `83807`, `83809`, `83811`, `83813`, `83814`, `83817`, `83819`, `83822`, `83823`, `83825`, `83827`, `83829`, `83831`, `83833`, `83834`, `83837`, `83839`, `83840`, `83841`, `83844`, `83845`, `83847`, `83848`, `83850`, `83851`, `83853`, `83855`, `83857`, `83859`, `83860`, `83863`, `83867`, `83868`, `83869`, `83870`, `83871`, `83873`, `83875`, `83877`, `83879`, `83881`, `83882`, `83884`, `83885`, `83887`, `83889`, `83891`, `83893`, `83895`, `83897`, `83899`, `83901`, `83903`, `83904`, `83905`, `83907`, `83909`, `83911`, `83912`, `83914`, `83916`, `83918`, `83919`, `83922`, `83924`, `83926`, `83928`, `83930`, `83932`, `83934`, `83936`, `83940`, `83943`, `83945`, `83946`, `83949`, `83951`, `83953`, `83954`, `83956`, `83961`, `83963`, `83965`, `83966`, `83970`, `83972`, `83974`, `83977`, `83979`, `83981`, `83982`, `83984`, `83985`, `83986`, `83987`, `83990`, `83992`, `83996`, `83997`, `83998`, `84000`, `84002`, `84007`, `84008`, `84010`, `84012`, `84013`, `84015`, `84020`, `84024`, `84026`, `84027`, `84028`, `84030`, `84032`, `84034`, `84035`, `84037`, `84040`, `84042`, `84043`, `84045`, `84047`, `84049`, `84050`, `84052`, `84054`, `84055`, `84057`, `84058`, `84063`, `84065`, `84067`, `84068`, `84070`, `84071`, `84072`, `84074`, `84076`, `84077`, `84078`, `84080`, `84082`, `84083`, `84085`, `84086`, `84087`, `84088`, `84090`, `84091`, `84092`, `84093`, `84095`, `84097`, `84098`, `84100`, `84103`, `84105`, `84107`, `84108`, `84110`, `84112`, `84114`, `84116`, `84118`, `84119`, `84120`, `84121`, `84122`, `84124`, `84126`, `84128`, `84129`, `84131`, `84132`, `84134`, `84135`, `84137`, `84138`, `84139`, `84140`, `84141`, `84142`, `84144`, `84146`, `84150`, `84153`, `84154`, `84156`, `84158`, `84160`, `84161`, `84164`, `84166`, `84167`, `84170`, `84172`, `84173`, `84175`, `84177`, `84179`, `84181`, `84183`, `84185`, `84187`, `84189`, `84191`, `84192`, `84194`, `84196`, `84198`, `84200`, `84202`, `84203`, `84205`, `84207`, `84208`, `84210`, `84212`, `84213`, `84214`, `84215`, `84217`, `84218`, `84220`, `84222`, `84223`, `84225`, `84227`, `84229`, `84231`, `84232`, `84234`, `84236`, `84237`, `84238`, `84240`, `84242`, `84244`, `84246`, `84249`, `84251`, `84252`, `84254`, `84256`, `84258`, `84260`, `84262`, `84263`, `84265`, `84267`, `84269`, `84271`, `84272`, `84274`, `84275`, `84276`, `84277`, `84279`, `84280`, `84282`, `84284`, `84286`, `84287`, `84291`, `84294`, `84296`, `84298`, `84300`, `84302`, `84304`, `84306`, `84310`, `84311`, `84313`, `84315`, `84317`, `84318`, `84319`, `84321`, `84322`, `84323`, `84325`, `84327`, `84329`, `84331`, `84332`, `84334`, `84336`, `84339`, `84341`, `84343`, `84344`, `84346`, `84347`, `84349`, `84351`, `84353`, `84355`, `84356`, `84357`, `84359`, `84361`, `84362`, `84364`, `84365`, `84368`, `84370`, `84372`, `84374`, `84375`, `84377`, `84378`, `84380`, `84381`, `84382`, `84383`, `84384`, `84386`, `84387`, `84388`, `84390`, `84392`, `84394`, `84395`, `84397`, `84399`, `84401`, `84403`, `84405`, `84407`, `84409`, `84411`, `84412`, `84414`, `84416`, `84418`, `84420`, `84422`, `84425`, `84427`, `84429`, `84430`, `84432`, `84435`, `84437`, `84439`, `84441`, `84445`, `84447`, `84449`, `84452`, `84453`, `84455`, `84457`, `84459`, `84461`, `84464`, `84466`, `84468`, `84470`, `84472`, `84474`, `84475`, `84476`, `84478`, `84479`, `84480`, `84481`, `84483`, `84486`, `84487`, `84489`, `84490`, `84491`, `84492`, `84494`, `84498`, `84499`, `84500`, `84502`, `84504`, `84508`, `84509`, `84510`, `84511`, `84512`, `84514`, `84516`, `84518`, `84520`, `84522`, `84524`, `84526`, `84528`, `84533`, `84535`, `84536`, `84538`, `84539`, `84542`, `84543`, `84545`, `84547`, `84548`, `84549`, `84551`, `84552`, `84554`, `84556`, `84558`, `84560`, `84562`, `84564`, `84566`, `84567`, `84569`, `84571`, `84573`, `84575`, `84577`, `84578`, `84581`, `84583`, `84585`, `84587`, `84589`, `84590`, `84592`, `84595`, `84596`, `84598`, `84600`, `84602`, `84604`, `84605`, `84606`, `84607`, `84609`, `84611`, `84612`, `84613`, `84615`, `84617`, `84618`, `84619`, `84621`, `84622`, `84623`, `84624`, `84625`, `84627`, `84628`, `84631`, `84633`, `84635`, `84636`, `84638`, `84640`, `84641`, `84643`, `84645`, `84646`, `84648`, `84649`, `84651`, `84652`, `84653`, `84655`, `84657`, `84659`, `84660`, `84661`, `84663`, `84665`, `84666`, `84667`, `84669`, `84671`, `84673`, `84674`, `84676`, `84678`, `84679`, `84680`, `84682`, `84685`, `84687`, `84688`, `84689`, `84690`, `84691`, `84692`, `84693`, `84695`, `84697`, `84699`, `84701`, `84703`, `84704`, `84706`, `84707`, `84709`, `84711`, `84714`, `84715`, `84716`, `84717`, `84719`, `84721`, `84723`, `84724`, `84726`, `84728`, `84730`, `84731`, `84733`, `84734`, `84735`, `84737`, `84739`, `84740`, `84741`, `84743`, `84744`, `84746`, `84747`, `84748`, `84750`, `84752`, `84754`, `84755`, `84757`, `84759`, `84761`, `84763`, `84765`, `84767`, `84770`, `84772`, `84773`, `84774`, `84775`, `84777`, `84781`, `84783`, `84785`, `84787`, `84789`, `84791`, `84792`, `84797`, `84799`, `84801`, `84803`, `84804`, `84806`, `84807`, `84809`, `84811`, `84813`, `84815`, `84818`, `84820`, `84823`, `84825`, `84827`, `84829`, `84832`, `84833`, `84834`, `84837`, `84838`, `84839`, `84841`, `84843`, `84845`, `84847`, `84849`, `84851`, `84853`, `84856`, `84857`, `84858`, `84859`, `84861`, `84863`, `84867`, `84868`, `84869`, `84870`, `84872`, `84873`, `84875`, `84877`, `84878`, `84879`, `84881`, `84883`, `84885`, `84887`, `84889`, `84892`, `84893`, `84895`, `84897`, `84899`, `84901`, `84903`, `84905`, `84907`, `84908`, `84910`, `84911`, `84913`, `84914`, `84916`, `84917`, `84919`, `84921`, `84922`, `84923`, `84925`, `84927`, `84928`, `84929`, `84930`, `84933`, `84935`, `84937`, `84939`, `84940`, `84941`, `84943`, `84945`, `84946`, `84948`, `84949`, `84950`, `84952`, `84953`, `84955`, `84958`, `84959`, `84961`, `84962`, `84964`, `84966`, `84967`, `84968`, `84970`, `84972`, `84973`, `84975`, `84976`, `84977`, `84979`, `84981`, `84983`, `84984`, `84986`, `84988`, `84990`, `84992`, `84995`, `84997`, `84998`, `84999`, `85001`, `85003`, `85005`, `85007`, `85008`, `85010`, `85012`, `85014`, `85016`, `85018`, `85020`, `85021`, `85022`, `85024`, `85026`, `85028`, `85030`, `85031`, `85033`, `85035`, `85037`, `85039`, `85041`, `85043`, `85045`, `85046`, `85050`, `85052`, `85054`, `85056`, `85059`, `85061`, `85064`, `85065`, `85067`, `85068`, `85070`, `85072`, `85073`, `85075`, `85076`, `85077`, `85079`, `85080`, `85082`, `85085`, `85086`, `85088`, `85090`, `85092`, `85094`, `85096`, `85097`, `85099`, `85101`, `85103`, `85104`, `85106`, `85107`, `85110`, `85113`, `85114`, `85116`, `85118`, `85120`, `85122`, `85123`, `85124`, `85125`, `85126`, `85127`, `85128`, `85130`, `85133`, `85134`, `85135`, `85137`, `85138`, `85140`, `85142`, `85145`, `85147`, `85149`, `85151`, `85153`, `85155`, `85157`, `85158`, `85160`, `85161`, `85163`, `85165`, `85166`, `85168`, `85170`, `85172`, `85174`, `85175`, `85176`, `85178`, `85180`, `85182`, `85183`, `85185`, `85187`, `85189`, `85191`, `85194`, `85196`, `85198`, `85199`, `85201`, `85203`, `85205`, `85207`, `85208`, `85210`, `85212`, `85215`, `85216`, `85218`, `85220`, `85222`, `85223`, `85224`, `85226`, `85228`, `85230`, `85232`, `85236`, `85238`, `85240`, `85242`, `85244`, `85245`, `85247`, `85248`, `85250`, `85252`, `85254`, `85256`, `85257`, `85259`, `85261`, `85263`, `85265`, `85266`, `85268`, `85269`, `85271`, `85273`, `85274`, `85276`, `85278`, `85279`, `85281`, `85283`, `85284`, `85286`, `85288`, `85290`, `85291`, `85292`, `85294`, `85296`, `85297`, `85298`, `85300`, `85305`, `85307`, `85309`, `85310`, `85311`, `85313`, `85317`, `85318`, `85319`, `85321`, `85322`, `85326`, `85328`, `85330`, `85331`, `85333`, `85334`, `85336`, `85338`, `85340`, `85341`, `85342`, `85344`, `85346`, `85347`, `85349`, `85351`, `85353`, `85355`, `85357`, `85359`, `85360`, `85362`, `85363`, `85365`, `85367`, `85369`, `85370`, `85371`, `85373`, `85375`, `85377`, `85379`, `85383`, `85384`, `85386`, `85388`, `85394`, `85395`, `85397`, `85399`, `85400`, `85401`, `85403`, `85405`, `85406`, `85407`, `85408`, `85409`, `85410`, `85411`, `85413`, `85414`, `85416`, `85418`, `85421`, `85423`, `85425`, `85427`, `85429`, `85430`, `85431`, `85433`, `85434`, `85436`, `85438`, `85440`, `85441`, `85444`, `85446`, `85447`, `85449`, `85451`, `85453`, `85455`, `85456`, `85458`, `85460`, `85462`, `85465`, `85468`, `85469`, `85470`, `85472`, `85474`, `85476`, `85478`, `85480`, `85481`, `85483`, `85486`, `85487`, `85488`, `85490`, `85491`, `85493`, `85495`, `85497`, `85499`, `85501`, `85503`, `85506`, `85509`, `85510`, `85513`, `85514`, `85515`, `85517`, `85519`, `85521`, `85523`, `85525`, `85527`, `85529`, `85530`, `85533`, `85534`, `85536`, `85539`, `85540`, `85542`, `85543`, `85545`, `85546`, `85548`, `85550`, `85551`, `85553`, `85555`, `85556`, `85558`, `85559`, `85561`, `85562`, `85563`, `85565`, `85568`, `85569`, `85571`, `85573`, `85574`, `85576`, `85577`, `85578`, `85579`, `85582`, `85583`, `85585`, `85589`, `85591`, `85593`, `85596`, `85597`, `85600`, `85601`, `85603`, `85605`, `85606`, `85609`, `85610`, `85613`, `85614`, `85616`, `85617`, `85619`, `85621`, `85624`, `85626`, `85628`, `85630`, `85631`, `85632`, `85634`, `85636`, `85637`, `85639`, `85641`, `85642`, `85643`, `85645`, `85647`, `85649`, `85650`, `85651`, `85653`, `85654`, `85655`, `85657`, `85659`, `85661`, `85662`, `85664`, `85666`, `85668`, `85670`, `85671`, `85678`, `85680`, `85681`, `85683`, `85685`, `85687`, `85689`, `85691`, `85692`, `85694`, `85696`, `85698`, `85699`, `85700`, `85701`, `85702`, `85703`, `85704`, `85706`, `85707`, `85709`, `85711`, `85713`, `85714`, `85716`, `85718`, `85720`, `85722`, `85724`, `85726`, `85728`, `85729`, `85730`, `85731`, `85733`, `85735`, `85737`, `85740`, `85741`, `85742`, `85748`, `85750`, `85752`, `85754`, `85756`, `85757`, `85759`, `85761`, `85764`, `85767`, `85769`, `85770`, `85771`, `85773`, `85776`, `85777`, `85779`, `85781`, `85783`, `85784`, `85785`, `85787`, `85789`, `85790`, `85792`, `85794`, `85796`, `85798`, `85800`, `85802`, `85804`, `85805`, `85807`, `85810`, `85812`, `85814`, `85816`, `85818`, `85819`, `85821`, `85822`, `85824`, `85828`, `85829`, `85830`, `85831`, `85833`, `85835`, `85838`, `85840`, `85843`, `85845`, `85849`, `85851`, `85852`, `85854`, `85855`, `85857`, `85860`, `85861`, `85863`, `85864`, `85866`, `85867`, `85869`, `85870`, `85872`, `85874`, `85876`, `85877`, `85879`, `85881`, `85882`, `85883`, `85884`, `85885`, `85886`, `85888`, `85889`, `85891`, `85892`, `85893`, `85894`, `85895`, `85896`, `85898`, `85900`, `85902`, `85904`, `85906`, `85908`, `85909`, `85912`, `85913`, `85914`, `85915`, `85916`, `85918`, `85920`, `85922`, `85924`, `85926`, `85927`, `85929`, `85931`, `85933`, `85934`, `85935`, `85937`, `85938`, `85940`, `85941`, `85946`, `85948`, `85949`, `85950`, `85952`, `85955`, `85956`, `85958`, `85959`, `85960`, `85962`, `85963`, `85966`, `85971`, `85973`, `85975`, `52292`, `85976`, `85980`, `85982`, `85983`, `85985`, `85987`, `85989`, `85990`, `85992`, `85994`, `85996`, `85998`, `86000`, `86001`, `86003`, `86004`, `86005`, `86006`, `86008`, `86010`, `86012`, `86014`, `86015`, `86016`, `86017`, `86019`, `86020`, `86024`, `86026`, `86028`, `86030`, `86031`, `86032`, `86033`, `86035`, `86037`, `86038`, `86042`, `86043`, `86045`, `86046`, `86048`, `86050`, `86053`, `86055`, `86057`, `86060`, `86062`, `86064`, `86066`, `86068`, `86069`, `86070`, `86072`, `86074`, `86076`, `86078`, `86079`, `86081`, `86083`, `86084`, `86085`, `86086`, `86087`, `86089`, `86091`, `86093`, `86094`, `86096`, `86098`, `86100`, `86102`, `86104`, `86106`, `86107`, `86109`, `86111`, `86113`, `86115`, `86116`, `86117`, `86119`, `86122`, `86124`, `86126`, `86127`, `86131`, `86132`, `86134`, `86135`, `86137`, `86139`, `86141`, `86142`, `86143`, `86144`, `86146`, `86148`, `86149`, `86151`, `86153`, `86157`, `86158`, `86159`, `86160`, `86162`, `86164`, `86165`, `86167`, `86169`, `86170`, `86172`, `86174`, `86176`, `86177`, `86179`, `86180`, `86182`, `86184`, `86186`, `86187`, `86188`, `86189`, `86191`, `86193`, `86195`, `86196`, `86198`, `86200`, `86201`, `86203`, `86205`, `86208`, `86209`, `86210`, `86212`, `86214`, `86215`, `86216`, `86218`, `86219`, `86220`, `86221`, `86222`, `86223`, `86224`, `86225`, `86227`, `86229`, `86230`, `86232`, `86233`, `86238`, `86240`, `86241`, `86243`, `86244`, `86246`, `86247`, `86248`, `86249`, `86251`, `86253`, `86255`, `86256`, `86258`, `86259`, `86260`, `86262`, `86263`, `86265`, `86267`, `86269`, `86271`, `86272`, `86274`, `86276`, `86278`, `86280`, `86282`, `86284`, `86285`, `86286`, `86288`, `86289`, `86290`, `86292`, `86294`, `86295`, `86297`, `86299`, `86302`, `86303`, `86305`, `86307`, `86308`, `86311`, `86313`, `86315`, `86317`, `86319`, `86321`, `86322`, `86324`, `86326`, `86327`, `86329`, `86331`, `86333`, `86335`, `86336`, `86339`, `86341`, `86342`, `86343`, `86344`, `86345`, `86347`, `86349`, `86351`, `86353`, `86354`, `86358`, `86360`, `86361`, `86363`, `86365`, `86367`, `86368`, `86369`, `86371`, `86373`, `86375`, `86377`, `86379`, `86381`, `86383`, `86385`, `86387`, `86389`, `86390`, `86392`, `86394`, `86396`, `86397`, `86398`, `86400`, `86402`, `86404`, `86405`, `86406`, `86410`, `86411`, `86413`, `86414`, `86416`, `86418`, `86419`, `86421`, `86424`, `86426`, `86427`, `86431`, `86432`, `86434`, `86436`, `86438`, `86440`, `86441`, `86442`, `86444`, `86446`, `86448`, `86450`, `86452`, `86454`, `86457`, `86459`, `86462`, `86464`, `86465`, `86467`, `86469`, `86471`, `86472`, `86474`, `86476`, `86477`, `86479`, `86481`, `86483`, `86485`, `86487`, `86489`, `86491`, `86493`, `86495`, `86496`, `86498`, `86500`, `86502`, `86504`, `86505`, `86507`, `86508`, `86510`, `86512`, `86513`, `86514`, `86516`, `86518`, `86520`, `86522`, `86527`, `86529`, `86531`, `86532`, `86533`, `86536`, `86537`, `86538`, `86542`, `86544`, `86546`, `86548`, `86549`, `86550`, `86552`, `86554`, `86556`, `86558`, `86560`, `86561`, `86562`, `86564`, `86566`, `86568`, `86569`, `86570`, `86572`, `86573`, `86574`, `86576`, `86577`, `86579`, `86580`, `86581`, `86583`, `86586`, `86588`, `86591`, `86593`, `86595`, `86597`, `86599`, `86600`, `86602`, `86604`, `86605`, `86607`, `86609`, `86610`, `86612`, `86614`, `86615`, `86617`, `86618`, `86619`, `86622`, `86624`, `86626`, `86627`, `86628`, `86629`, `86630`, `86631`, `86633`, `86634`, `86636`, `86638`, `86640`, `86642`, `86644`, `86645`, `86647`, `86649`, `86650`, `86651`, `86652`, `86653`, `86655`, `86656`, `86658`, `86660`, `86662`, `86665`, `86667`, `86669`, `86671`, `86672`, `86674`, `86675`, `86677`, `86678`, `86680`, `86681`, `86682`, `86684`, `86685`, `86687`, `86689`, `86691`, `86693`, `86694`, `86695`, `86697`, `86698`, `86699`, `86700`, `86703`, `86705`, `86707`, `86709`, `86714`, `86716`, `86717`, `86720`, `86721`, `86723`, `86725`, `86727`, `86729`, `86731`, `86733`, `86735`, `86737`, `86739`, `86740`, `86741`, `86743`, `86744`, `86745`, `86747`, `86749`, `86751`, `86753`, `86754`, `86755`, `86756`, `86757`, `86759`, `86760`, `86761`, `86762`, `86764`, `86766`, `86767`, `86770`, `86772`, `86774`, `86775`, `86776`, `86781`, `86782`, `86783`, `86785`, `86787`, `86789`, `86791`, `86792`, `86794`, `86796`, `86797`, `86799`, `86802`, `86804`, `86807`, `86809`, `86811`, `86813`, `86814`, `86816`, `86818`, `86820`, `86821`, `86822`, `86825`, `86827`, `86828`, `86831`, `86833`, `86835`, `86836`, `86838`, `86840`, `86842`, `86844`, `86845`, `86846`, `86848`, `86850`, `86852`, `86853`, `86854`, `86855`, `86857`, `86858`, `86859`, `86860`, `86861`, `86863`, `86865`, `86866`, `86867`, `86869`, `86870`, `86872`, `86874`, `86875`, `86877`, `86878`, `86880`, `86881`, `86883`, `86885`, `86886`, `86888`, `86889`, `86890`, `86892`, `86893`, `86895`, `86896`, `86898`, `86900`, `86902`, `86904`, `86905`, `86907`, `86908`, `86909`, `86911`, `86912`, `86914`, `86916`, `86917`, `86919`, `86920`, `86922`, `86924`, `86925`, `86927`, `86929`, `86931`, `86933`, `86935`, `86936`, `86939`, `86942`, `86944`, `86946`, `86948`, `86950`, `86952`, `86954`, `86958`, `86959`, `86961`, `86963`, `86965`, `86966`, `86967`, `86968`, `86969`, `86970`, `86972`, `86973`, `86974`, `86976`, `86977`, `86978`, `86980`, `86981`, `86982`, `86986`, `86987`, `86988`, `86990`, `86992`, `86993`, `86995`, `86997`, `86998`, `87001`, `87002`, `87004`, `87006`, `87009`, `87011`, `87013`, `87014`, `87016`, `87017`, `87019`, `87021`, `87023`, `87024`, `87026`, `87028`, `87030`, `87032`, `87034`, `87035`, `87036`, `87037`, `87039`, `87044`, `87045`, `87047`, `87049`, `87050`, `87052`, `87054`, `87056`, `87057`, `87059`, `87061`, `87062`, `87064`, `87066`, `87068`, `87070`, `87072`, `87074`, `87076`, `87078`, `87080`, `87082`, `87083`, `87084`, `87085`, `87087`, `87089`, `87091`, `87093`, `87095`, `87097`, `87099`, `87100`, `87102`, `87104`, `87106`, `87107`, `87109`, `87111`, `87112`, `87114`, `87116`, `87118`, `87119`, `87121`, `87125`, `87126`, `87128`, `87129`, `87130`, `87132`, `87134`, `87136`, `87138`, `87140`, `87142`, `87144`, `87146`, `87149`, `87151`, `87153`, `87155`, `87156`, `87158`, `87160`, `87162`, `87163`, `87165`, `87166`, `87168`, `87172`, `87173`, `87174`, `87175`, `87177`, `87179`, `87180`, `87182`, `87184`, `87185`, `87187`, `87188`, `87190`, `87191`, `87193`, `87195`, `87197`, `87199`, `87201`, `87202`, `87203`, `87207`, `87209`, `87211`, `87215`, `87220`, `87222`, `87224`, `87226`, `87228`, `87230`, `87232`, `87233`, `87235`, `87237`, `87239`, `87241`, `87243`, `87245`, `87246`, `87249`, `87250`, `87252`, `87254`, `87255`, `87257`, `87259`, `87260`, `87261`, `87263`, `87265`, `87266`, `87271`, `87273`, `87275`, `87277`, `87279`, `87280`, `87284`, `87286`, `87287`, `87289`, `87290`, `87292`, `87294`, `87296`, `87298`, `87299`, `87300`, `87303`, `87305`, `87307`, `87310`, `87312`, `87313`, `87318`, `87320`, `87321`, `87325`, `87326`, `87328`, `87332`, `87334`, `87336`, `87337`, `87338`, `87340`, `87341`, `87344`, `87346`, `87348`, `87349`, `87353`, `87355`, `87357`, `87358`, `87360`, `87362`, `87364`, `87366`, `87368`, `87370`, `87372`, `87373`, `87374`, `87375`, `87376`, `87378`, `87380`, `87381`, `87382`, `87384`, `87386`, `87388`, `87390`, `87392`, `87393`, `87395`, `87398`, `87399`, `87402`, `87404`, `87405`, `87410`, `87412`, `87414`, `87415`, `87417`, `87419`, `87420`, `87422`, `87424`, `87425`, `87427`, `87429`, `87431`, `87433`, `87435`, `87437`, `87438`, `87439`, `87441`, `87445`, `87446`, `87447`, `87449`, `87450`, `87452`, `87454`, `87456`, `87457`, `87459`, `87461`, `87463`, `87465`, `87467`, `87469`, `87471`, `87473`, `87474`, `87476`, `87477`, `87479`, `87481`, `87483`, `87485`, `87487`, `87489`, `87491`, `87492`, `87494`, `87496`, `87499`, `87500`, `87501`, `87502`, `87504`, `87505`, `87507`, `87508`, `87510`, `87512`, `87513`, `87515`, `87517`, `87518`, `87520`, `87522`, `87524`, `87526`, `87528`, `87529`, `87530`, `87531`, `87534`, `87536`, `87539`, `87541`, `87542`, `87543`, `87544`, `87545`, `87546`, `87548`, `87550`, `87551`, `87553`, `87554`, `87557`, `87559`, `87561`, `87563`, `87566`, `87568`, `87569`, `87570`, `87572`, `87574`, `87576`, `87578`, `87580`, `87582`, `87583`, `87585`, `87587`, `87591`, `87592`, `87594`, `87596`, `87597`, `87599`, `87600`, `87601`, `87602`, `87604`, `87605`, `87607`, `87609`, `87611`, `87612`, `87614`, `87616`, `87618`, `87621`, `87623`, `87625`, `87626`, `87628`, `87629`, `87631`, `87633`, `87635`, `87637`, `87638`, `87639`, `87641`, `87643`, `87645`, `87648`, `87649`, `87650`, `87652`, `87654`, `87656`, `87658`, `87659`, `87661`, `87662`, `87664`, `87665`, `87667`, `87669`, `87671`, `87673`, `87675`, `87676`, `87677`, `87679`, `87680`, `87682`, `87685`, `87686`, `87688`, `87689`, `87691`, `87693`, `87697`, `87698`, `87700`, `87702`, `87703`, `87705`, `87706`, `87707`, `87708`, `87709`, `87712`, `87714`, `87716`, `87719`, `87721`, `87723`, `87725`, `87726`, `87728`, `87729`, `87731`, `87733`, `87735`, `87738`, `87740`, `87742`, `87744`, `87745`, `87747`, `87749`, `87751`, `87752`, `87754`, `87756`, `87758`, `87760`, `87762`, `87763`, `87765`, `87766`, `87768`, `87769`, `87771`, `87773`, `87775`, `87776`, `87779`, `87781`, `87783`, `87784`, `87786`, `87788`, `87793`, `87795`, `87797`, `87799`, `87800`, `87802`, `87804`, `87806`, `87808`, `87809`, `87811`, `87813`, `87815`, `87817`, `87818`, `87820`, `87824`, `87826`, `87828`, `87830`, `87833`, `87836`, `87838`, `87840`, `87842`, `87843`, `87845`, `87847`, `87848`, `87849`, `87853`, `87855`, `87856`, `87858`, `87860`, `87862`, `87864`, `87866`, `87867`, `87868`, `87869`, `87871`, `87873`, `87874`, `87876`, `87877`, `87881`, `87883`, `87885`, `87887`, `87889`, `87891`, `87893`, `87895`, `87896`, `87898`, `87900`, `87902`, `87904`, `87906`, `87909`, `87910`, `87911`, `87912`, `87914`, `87915`, `87919`, `87921`, `87923`, `87924`, `87925`, `87927`, `87929`, `87930`, `87931`, `87932`, `87933`, `87935`, `87936`, `87937`, `87939`, `87942`, `87944`, `87946`, `87948`, `87950`, `87952`, `87953`, `87954`, `87955`, `87958`, `87960`, `87961`, `87963`, `87965`, `87967`, `87968`, `87969`, `87971`, `87973`, `87974`, `87975`, `87976`, `87978`, `87980`, `87982`, `87984`, `87986`, `87987`, `87988`, `87990`, `87991`, `87993`, `87995`, `87996`, `87997`, `87998`, `87999`, `88001`, `88003`, `88005`, `88006`, `88008`, `88010`, `88011`, `88012`, `88013`, `88014`, `88016`, `88018`, `88020`, `88022`, `88024`, `88028`, `88029`, `88030`, `88032`, `88035`, `88036`, `88039`, `88041`, `88043`, `88045`, `88047`, `88049`, `88051`, `88054`, `88056`, `88057`, `88060`, `88062`, `88064`, `88066`, `88067`, `88068`, `88070`, `88072`, `88074`, `88076`, `88079`, `88081`, `88086`, `88088`, `88090`, `88092`, `88094`, `88096`, `88098`, `88100`, `88102`, `88104`, `88106`, `88108`, `88110`, `88111`, `88112`, `88113`, `88115`, `88119`, `88120`, `88123`, `88125`, `88126`, `88131`, `88132`, `88134`, `88136`, `88137`, `88138`, `88140`, `88141`, `88143`, `88144`, `88146`, `88148`, `88150`, `88152`, `88153`, `88157`, `88158`, `88159`, `88160`, `88162`, `88164`, `88165`, `88167`, `88169`, `88171`, `88173`, `88175`, `88177`, `88179`, `88181`, `88183`, `88184`, `88186`, `88187`, `88189`, `88190`, `88192`, `88194`, `88195`, `88196`, `88198`, `88200`, `88204`, `88206`, `88208`, `88210`, `88213`, `88215`, `88216`, `88218`, `88219`, `88220`, `88221`, `88222`, `88223`, `88226`, `88227`, `88229`, `88230`, `88231`, `88233`, `88235`, `88237`, `88238`, `88239`, `88240`, `88242`, `88243`, `88246`, `88247`, `88249`, `88250`, `88252`, `88254`, `88256`, `88259`, `88261`, `88263`, `88265`, `88267`, `88268`, `88269`, `88271`, `88272`, `88274`, `88275`, `88277`, `88279`, `88281`, `88283`, `88285`, `88286`, `88289`, `88291`, `88292`, `88294`, `88295`, `88297`, `88299`, `88301`, `88305`, `88307`, `88308`, `88309`, `88311`, `88312`, `88314`, `88316`, `88320`, `88321`, `88322`, `88324`, `88325`, `88328`, `88329`, `88330`, `88332`, `88335`, `88337`, `88339`, `88340`, `88341`, `88343`, `88345`, `88347`, `88350`, `88352`, `88353`, `88355`, `88357`, `88358`, `88360`, `88362`, `88364`, `88367`, `88368`, `88369`, `88371`, `88373`, `88375`, `88377`, `88378`, `88379`, `88381`, `88382`, `88384`, `88386`, `88389`, `88390`, `88392`, `88396`, `88399`, `88400`, `88402`, `88405`, `88406`, `88408`, `88410`, `88411`, `88413`, `88414`, `88416`, `88418`, `88419`, `88421`, `88423`, `88426`, `88428`, `88430`, `88432`, `88434`, `88435`, `88436`, `88438`, `88439`, `88441`, `88443`, `88445`, `88447`, `88449`, `88451`, `88452`, `88454`, `88456`, `88458`, `88460`, `88463`, `88464`, `88466`, `88468`, `88471`, `88475`, `88477`, `88478`, `88480`, `88482`, `88484`, `88486`, `88487`, `88488`, `88490`, `88492`, `88494`, `88496`, `88498`, `88500`, `88502`, `88503`, `88504`, `88506`, `88508`, `88510`, `88513`, `88515`, `88517`, `88519`, `88521`, `88524`, `88525`, `88526`, `88528`, `88530`, `88532`, `88534`, `88536`, `88538`, `88539`, `88541`, `88543`, `88545`, `88546`, `88547`, `88548`, `88550`, `88551`, `88553`, `88554`, `88556`, `88558`, `88560`, `88562`, `88564`, `88566`, `88568`, `88570`, `88574`, `88576`, `88577`, `88579`, `88582`, `88584`, `88586`, `88587`, `88589`, `88590`, `88593`, `88595`, `88599`, `88601`, `88603`, `88605`, `88606`, `88607`, `88609`, `88611`, `88614`, `88616`, `88622`, `88624`, `88625`, `88626`, `88627`, `88628`, `88629`, `88630`, `88632`, `88633`, `88634`, `88636`, `88638`, `88639`, `88641`, `88643`, `88645`, `88647`, `88649`, `88651`, `88653`, `88654`, `88656`, `88658`, `88659`, `88661`, `88663`, `88664`, `88666`, `88668`, `88670`, `88671`, `88672`, `88673`, `88674`, `88675`, `88677`, `88679`, `88681`, `88683`, `88685`, `88686`, `88688`, `88691`, `88692`, `88694`, `88696`, `88697`, `88698`, `88700`, `88701`, `88703`, `88705`, `88707`, `88709`, `88711`, `88713`, `88715`, `88717`, `88718`, `88719`, `88721`, `88723`, `88724`, `88726`, `88728`, `88730`, `88733`, `88735`, `88736`, `88738`, `88739`, `88740`, `88741`, `88743`, `88745`, `88746`, `88747`, `88749`, `88751`, `88752`, `88753`, `88754`, `88755`, `88756`, `88758`, `88759`, `88762`, `88764`, `88765`, `88766`, `88768`, `88769`, `88771`, `88772`, `88774`, `88775`, `88777`, `88778`, `88779`, `88781`, `88784`, `88787`, `88789`, `88791`, `88794`, `88795`, `88796`, `88797`, `88798`, `88800`, `88802`, `88804`, `88805`, `88806`, `88808`, `88810`, `88812`, `88813`, `88814`, `88816`, `88818`, `88823`, `88825`, `88827`, `88829`, `88830`, `88833`, `88835`, `88836`, `88838`, `88841`, `88844`, `88845`, `88848`, `88851`, `88854`, `88857`, `88861`, `88862`, `88863`, `88865`, `88866`, `88867`, `88869`, `88871`, `88873`, `88875`, `88877`, `88878`, `88880`, `88883`, `88884`, `88885`, `88886`, `88887`, `88889`, `88890`, `88891`, `88892`, `88894`, `88895`, `88896`, `88897`, `88899`, `88901`, `88903`, `88905`, `88907`, `88909`, `88910`, `88912`, `88914`, `88915`, `88917`, `88919`, `88924`, `88925`, `88927`, `88929`, `88931`, `88933`, `88935`, `88937`, `88938`, `88942`, `88943`, `88944`, `88945`, `88947`, `88949`, `88952`, `88954`, `88958`, `88960`, `88961`, `88962`, `88964`, `88965`, `88967`, `88968`, `88969`, `88971`, `88973`, `88975`, `88976`, `88977`, `88979`, `88981`, `88982`, `88984`, `88985`, `88986`, `88988`, `88992`, `88993`, `88995`, `88996`, `88997`, `88999`, `89001`, `89002`, `89004`, `89006`, `89009`, `89011`, `89013`, `89015`, `89017`, `89019`, `89021`, `89022`, `89024`, `89028`, `89030`, `89031`, `89032`, `89034`, `89036`, `89037`, `89039`, `89041`, `89043`, `89045`, `89046`, `89048`, `89052`, `89054`, `89056`, `89058`, `89059`, `89061`, `89062`, `89065`, `89066`, `89068`, `89070`, `89072`, `89074`, `89076`, `89077`, `89078`, `89080`, `89082`, `89084`, `89085`, `89087`, `89089`, `89091`, `89093`, `89095`, `89098`, `89100`, `89101`, `89102`, `89103`, `89105`, `89107`, `89109`, `89110`, `89112`, `89114`, `89115`, `89117`, `89119`, `89120`, `89122`, `89124`, `89126`, `89128`, `89131`, `89133`, `89135`, `89137`, `89140`, `89141`, `89143`, `89145`, `89147`, `89149`, `89151`, `89154`, `89155`, `89157`, `89161`, `89163`, `89165`, `89167`, `89170`, `89173`, `89174`, `89176`, `89177`, `89178`, `89180`, `89182`, `89184`, `89186`, `89188`, `89189`, `89191`, `89192`, `89194`, `89196`, `89198`, `89200`, `89202`, `89203`, `89205`, `89207`, `89209`, `89211`, `89212`, `89213`, `89214`, `89216`, `89217`, `89219`, `89221`, `89223`, `89224`, `89225`, `89226`, `89228`, `89229`, `89230`, `89231`, `89232`, `89234`, `89236`, `89237`, `89240`, `89242`, `89244`, `89245`, `89247`, `89249`, `89250`, `89251`, `89257`, `89259`, `89261`, `89263`, `89264`, `89269`, `89272`, `89274`, `89275`, `89277`, `89279`, `89280`, `89282`, `89284`, `89285`, `89286`, `89288`, `89290`, `89291`, `89293`, `89294`, `89296`, `89298`, `89300`, `89301`, `89303`, `89305`, `89307`, `89309`, `89311`, `89314`, `89316`, `89318`, `89319`, `89321`, `89323`, `89325`, `89326`, `89328`, `89329`, `89331`, `89333`, `89334`, `89336`, `89338`, `89340`, `89342`, `89344`, `89345`, `89346`, `89348`, `89350`, `89352`, `89354`, `89356`, `89358`, `89360`, `89363`, `89365`, `89367`, `89369`, `89371`, `89372`, `89374`, `89376`, `89378`, `89379`, `89383`, `89385`, `89387`, `89391`, `89392`, `89394`, `89396`, `89398`, `89399`, `89401`, `89402`, `89404`, `89406`, `89408`, `89409`, `89411`, `89413`, `89414`, `89416`, `89417`, `89419`, `89421`, `89422`, `89424`, `89426`, `89428`, `89431`, `89432`, `89434`, `89437`, `89438`, `89439`, `89441`, `89444`, `89445`, `89446`, `89447`, `89448`, `89450`, `89452`, `89454`, `89456`, `89458`, `89459`, `89463`, `89465`, `89466`, `89470`, `89472`, `89473`, `89475`, `89479`, `89480`, `89482`, `89484`, `89487`, `89488`, `89490`, `89492`, `89494`, `89496`, `89498`, `89500`, `89502`, `89504`, `89508`, `89510`, `89511`, `89513`, `89515`, `89516`, `89518`, `89522`, `89524`, `89525`, `89527`, `89529`, `89531`, `89532`, `89534`, `89535`, `89537`, `89539`, `89540`, `89542`, `89544`, `89546`, `89550`, `89551`, `89553`, `89555`, `89556`, `89559`, `89561`, `89563`, `89566`, `89567`, `89570`, `89572`, `89574`, `89575`, `89580`, `89582`, `89583`, `89584`, `89585`, `89586`, `89587`, `89589`, `89593`, `89594`, `89595`, `89597`, `89601`, `89603`, `89606`, `89608`, `89610`, `89612`, `89614`, `89616`, `89618`, `89620`, `89622`, `89624`, `89625`, `89627`, `89629`, `89630`, `89632`, `89633`, `89635`, `89639`, `89640`, `89641`, `89643`, `89644`, `89646`, `89647`, `89649`, `89650`, `89652`, `89654`, `89656`, `89659`, `89660`, `89661`, `89663`, `89665`, `89667`, `89668`, `89670`, `89671`, `89672`, `89675`, `89678`, `89680`, `89681`, `89683`, `89685`, `89686`, `89687`, `89688`, `89690`, `89692`, `89693`, `89695`, `89697`, `89699`, `89701`, `89703`, `89705`, `89707`, `89709`, `89710`, `89713`, `89715`, `89716`, `89717`, `89721`, `89722`, `89724`, `89726`, `89727`, `89728`, `89729`, `89731`, `89733`, `89734`, `89736`, `89737`, `89739`, `89741`, `89742`, `89743`, `89744`, `89745`, `89747`, `89749`, `89751`, `89752`, `89754`, `89756`, `89757`, `89760`, `89762`, `89763`, `89765`, `89767`, `89769`, `89770`, `89771`, `89773`, `89775`, `89777`, `89779`, `89781`, `89783`, `89785`, `89786`, `89788`, `89790`, `89792`, `89793`, `89795`, `89797`, `89799`, `89801`, `89803`, `89805`, `89806`, `89807`, `89809`, `89810`, `89812`, `89813`, `89814`, `89817`, `89818`, `89820`, `89821`, `89823`, `89825`, `89827`, `89831`, `89833`, `89835`, `89836`, `89840`, `89842`, `89844`, `89846`, `89847`, `89848`, `89849`, `89851`, `89853`, `89855`, `89857`, `89861`, `89863`, `89864`, `89866`, `89868`, `89869`, `89871`, `89872`, `89874`, `89876`, `89877`, `89881`, `89883`, `89884`, `89886`, `89888`, `89889`, `89891`, `89893`, `89895`, `89896`, `89898`, `89899`, `89902`, `89904`, `89906`, `89907`, `89909`, `89910`, `89911`, `89914`, `89917`, `89919`, `89920`, `89921`, `89923`, `89925`, `89926`, `89928`, `89929`, `89931`, `89933`, `89935`, `89937`, `89938`, `89940`, `89942`, `89944`, `89945`, `89947`, `89949`, `89950`, `89952`, `89958`, `89960`, `89961`, `89963`, `89964`, `89966`, `89968`, `89971`, `89972`, `89976`, `89979`, `89980`, `89983`, `89985`, `89988`, `89990`, `89991`, `89993`, `89996`, `89998`, `89999`, `90001`, `90003`, `90005`, `90007`, `90010`, `90011`, `90013`, `90014`, `90018`, `90019`, `90021`, `90024`, `90026`, `90028`, `90030`, `90031`, `90032`, `90034`, `90036`, `90038`, `90040`, `90041`, `90042`, `90044`, `90047`, `90049`, `90051`, `90054`, `90056`, `90057`, `90059`, `90060`, `90062`, `90064`, `90065`, `90067`, `90071`, `90072`, `90075`, `90076`, `90078`, `90080`, `90082`, `90084`, `90086`, `90090`, `90092`, `90094`, `90095`, `90097`, `90098`, `90099`, `90101`, `90103`, `90105`, `90106`, `90108`, `90109`, `90111`, `90113`, `90114`, `90115`, `90117`, `90118`, `90120`, `90122`, `90123`, `90126`, `90128`, `90129`, `90131`, `90132`, `90134`, `90136`, `90137`, `90139`, `90141`, `90142`, `90144`, `90146`, `90148`, `90150`, `90152`, `90154`, `90156`, `90158`, `90159`, `90160`, `90162`, `90164`, `90165`, `90167`, `90170`, `90171`, `90174`, `90176`, `90178`, `90179`, `90181`, `90183`, `90184`, `90186`, `90188`, `90190`, `90192`, `90193`, `90195`, `90197`, `90200`, `90201`, `90203`, `90206`, `90207`, `90208`, `90209`, `90210`, `90211`, `90212`, `90214`, `90216`, `90218`, `90220`, `90222`, `90223`, `90225`, `90226`, `90228`, `90229`, `90231`, `90233`, `90234`, `90235`, `90237`, `90238`, `90239`, `90241`, `90243`, `90245`, `90246`, `90248`, `90250`, `90251`, `90252`, `90254`, `90257`, `90261`, `90262`, `90264`, `90266`, `90267`, `90268`, `90270`, `90272`, `90273`, `90275`, `90278`, `90280`, `90282`, `90284`, `90286`, `90288`, `90289`, `90290`, `90292`, `90296`, `90298`, `90300`, `90302`, `90303`, `90307`, `90309`, `90311`, `90313`, `90315`, `90316`, `90317`, `90319`, `90321`, `90323`, `90325`, `90327`, `90328`, `90330`, `90332`, `90333`, `90338`, `90339`, `90341`, `90344`, `90346`, `90349`, `90351`, `90353`, `90355`, `90356`, `90357`, `90358`, `90360`, `90361`, `90363`, `90364`, `90367`, `90369`, `90371`, `90372`, `90374`, `90375`, `90377`, `90379`, `90380`, `90381`, `90383`, `90384`, `90386`, `90388`, `90390`, `90392`, `90394`, `90395`, `90397`, `90399`, `90400`, `90401`, `90403`, `90405`, `90406`, `90407`, `90408`, `90411`, `90412`, `90414`, `90415`, `90417`, `90418`, `90420`, `90422`, `90424`, `90426`, `90428`, `90429`, `90430`, `90431`, `90432`, `90434`, `90436`, `90438`, `90440`, `90441`, `90443`, `90445`, `90447`, `90449`, `90450`, `90451`, `90453`, `90455`, `90457`, `90459`, `90460`, `90462`, `90464`, `90466`, `90468`, `90469`, `90471`, `90473`, `90475`, `90477`, `90478`, `90480`, `90482`, `90484`, `90486`, `90488`, `90490`, `90492`, `90493`, `90494`, `90497`, `90499`, `90500`, `90501`, `90502`, `90504`, `90505`, `90507`, `90508`, `90510`, `90512`, `90514`, `90515`, `90517`, `90519`, `90520`, `90521`, `90522`, `90523`, `90525`, `90529`, `90530`, `90532`, `90535`, `90537`, `90539`, `90541`, `90543`, `90545`, `90547`, `90548`, `90549`, `90550`, `90552`, `90553`, `90555`, `90556`, `90557`, `90558`, `90559`, `90560`, `90561`, `90563`, `90564`, `90566`, `90570`, `90572`, `90574`, `90577`, `90579`, `90580`, `90582`, `90584`, `90586`, `90588`, `90590`, `90591`, `90593`, `90595`, `90596`, `90598`, `90599`, `90601`, `90602`, `90603`, `90607`, `90608`, `90610`, `90612`, `90613`, `90615`, `90617`, `90619`, `90621`, `90623`, `90625`, `90626`, `90628`, `90630`, `90632`, `90633`, `90634`, `90636`, `90637`, `90639`, `90640`, `90642`, `90644`, `90645`, `90647`, `90648`, `90649`, `90651`, `90653`, `90655`, `90656`, `90657`, `90660`, `90662`, `90663`, `90665`, `90666`, `90668`, `90670`, `90672`, `90674`, `90676`, `90678`, `90680`, `90682`, `90684`, `90688`, `90689`, `90691`, `90692`, `90694`, `90695`, `90696`, `90697`, `90698`, `90700`, `90702`, `90703`, `90705`, `90707`, `90711`, `90713`, `90715`, `90716`, `90717`, `90719`, `90720`, `90722`, `90724`, `90726`, `90728`, `90730`, `90731`, `90733`, `90735`, `90736`, `90738`, `90740`, `90741`, `90743`, `90745`, `90747`, `90748`, `90749`, `90751`, `90753`, `90755`, `90757`, `90758`, `90759`, `90760`, `90764`, `90766`, `90768`, `90770`, `90772`, `90774`, `90775`, `90776`, `90777`, `90778`, `90779`, `90781`, `90783`, `90785`, `90787`, `90789`, `90793`, `90795`, `90796`, `90798`, `90800`, `90802`, `90805`, `90806`, `90808`, `90810`, `90812`, `90814`, `90818`, `90820`, `90821`, `90823`, `90825`, `90827`, `90828`, `90831`, `90833`, `90837`, `90838`, `90839`, `90841`, `90843`, `90844`, `90845`, `90847`, `90848`, `90850`, `90851`, `90852`, `90853`, `90855`, `90857`, `90859`, `90861`, `90863`, `90865`, `90866`, `90867`, `90869`, `90871`, `90873`, `90874`, `90876`, `90877`, `90879`, `90880`, `90881`, `90883`, `90885`, `90886`, `90888`, `90890`, `90892`, `90893`, `90894`, `90896`, `90898`, `90899`, `90902`, `90904`, `90905`, `90908`, `90909`, `90911`, `90913`, `90914`, `90916`, `90918`, `90919`, `90921`, `90923`, `90925`, `90926`, `90927`, `90931`, `90932`, `90933`, `90937`, `90939`, `90940`, `90942`, `90943`, `90945`, `90947`, `90949`, `90951`, `90953`, `90955`, `90956`, `90957`, `90958`, `90960`, `90962`, `90964`, `90966`, `90968`, `90970`, `90972`, `90973`, `90975`, `90976`, `90978`, `90979`, `90980`, `90982`, `90984`, `90986`, `90987`, `90989`, `90990`, `90992`, `90995`, `90997`, `90999`, `91000`, `91002`, `91004`, `91005`, `91006`, `91008`, `91010`, `91012`, `91015`, `91016`, `91017`, `91018`, `91020`, `91023`, `91025`, `91027`, `91032`, `91034`, `91036`, `91038`, `91041`, `91042`, `91044`, `91045`, `91047`, `91049`, `91053`, `91054`, `91056`, `91057`, `772`, `91059`, `91060`, `91061`, `91065`, `91066`, `91068`, `91070`, `91072`, `91073`, `91075`, `91077`, `91078`, `91080`, `91082`, `91084`, `91085`, `91087`, `91090`, `91094`, `91096`, `91098`, `91100`, `91102`, `91103`, `91105`, `91106`, `91108`, `91109`, `91111`, `91113`, `91115`, `91116`, `91118`, `91120`, `91122`, `91124`, `91126`, `91127`, `91129`, `91130`, `91132`, `91133`, `91135`, `91139`, `91140`, `91141`, `91142`, `91144`, `91146`, `91148`, `91150`, `91151`, `91153`, `91154`, `91157`, `91159`, `91161`, `91162`, `91164`, `91166`, `91167`, `91170`, `91173`, `91174`, `91176`, `91178`, `91181`, `91182`, `91184`, `91186`, `91188`, `91191`, `91192`, `91194`, `91196`, `91198`, `91200`, `91201`, `91203`, `91205`, `91207`, `91209`, `91212`, `91215`, `91219`, `91221`, `91223`, `91226`, `91227`, `91229`, `91231`, `91233`, `91235`, `91236`, `91237`, `91238`, `91240`, `91242`, `91243`, `91244`, `91246`, `91248`, `91250`, `91252`, `91254`, `91255`, `91257`, `91259`, `91260`, `91262`, `91264`, `91265`, `91269`, `91271`, `91273`, `91275`, `91277`, `91279`, `91282`, `91284`, `91286`, `91288`, `91290`, `91292`, `91293`, `91295`, `91296`, `91297`, `91303`, `91305`, `91307`, `91308`, `91310`, `91312`, `91314`, `91316`, `91318`, `91319`, `91321`, `91322`, `91324`, `91325`, `91327`, `91329`, `91331`, `91333`, `91335`, `91337`, `91339`, `91341`, `91342`, `91344`, `91346`, `91347`, `91348`, `91350`, `91352`, `91354`, `91355`, `91357`, `91358`, `91360`, `91362`, `91364`, `91366`, `91368`, `91369`, `91370`, `91372`, `91373`, `91375`, `91376`, `91377`, `91379`, `91380`, `91382`, `91384`, `91386`, `91387`, `91389`, `91390`, `91392`, `91394`, `91397`, `91399`, `91401`, `91403`, `91405`, `91406`, `91409`, `91410`, `91416`, `91417`, `91420`, `91422`, `91423`, `91425`, `91427`, `91429`, `91431`, `91433`, `91436`, `91438`, `91440`, `91442`, `91443`, `91445`, `91446`, `91448`, `91450`, `91451`, `91453`, `91455`, `91457`, `91459`, `91460`, `91461`, `91462`, `91464`, `91465`, `91467`, `91469`, `91470`, `91471`, `91473`, `91476`, `91478`, `91480`, `91482`, `91483`, `91485`, `91487`, `91489`, `91492`, `91494`, `91495`, `91500`, `91502`, `91503`, `91504`, `91507`, `91508`, `91509`, `91510`, `91511`, `91513`, `91515`, `91516`, `91519`, `91521`, `91523`, `91525`, `91527`, `91528`, `91529`, `91531`, `91534`, `91535`, `91536`, `91538`, `91539`, `91541`, `91543`, `91544`, `91546`, `91548`, `91549`, `91551`, `91553`, `91555`, `91556`, `91558`, `91560`, `91562`, `91563`, `91564`, `91565`, `91566`, `91568`, `91569`, `91570`, `91572`, `91573`, `91575`, `91576`, `91578`, `91579`, `91581`, `91582`, `91584`, `91585`, `91587`, `91589`, `91591`, `91593`, `91596`, `91599`, `91601`, `91603`, `91604`, `91606`, `91607`, `91611`, `91613`, `91615`, `91617`, `91621`, `91622`, `91623`, `91624`, `91626`, `91627`, `91628`, `91629`, `91630`, `91631`, `91633`, `91635`, `91638`, `91641`, `91643`, `91644`, `91646`, `91648`, `91649`, `91651`, `91653`, `91656`, `91657`, `91659`, `91661`, `91663`, `91665`, `91666`, `91670`, `91671`, `91672`, `91674`, `91675`, `91676`, `91678`, `91679`, `91681`, `91683`, `91684`, `91686`, `91688`, `91690`, `91692`, `91694`, `91695`, `91697`, `91698`, `91700`, `91702`, `91703`, `91705`, `91708`, `91711`, `91715`, `91717`, `91719`, `91724`, `91726`, `91729`, `91731`, `91733`, `91735`, `91737`, `91739`, `91741`, `91743`, `91745`, `91746`, `91747`, `91748`, `91750`, `91751`, `91752`, `91754`, `91755`, `91757`, `91759`, `91762`, `91764`, `91766`, `91768`, `91770`, `91771`, `91773`, `91774`, `91775`, `91777`, `91779`, `91781`, `91783`, `91786`, `91788`, `91789`, `91791`, `91792`, `91793`, `91794`, `91796`, `91798`, `91800`, `91801`, `91803`, `91804`, `91806`, `91807`, `91809`, `91811`, `91812`, `91813`, `91815`, `91817`, `91819`, `91821`, `91823`, `91825`, `91827`, `91829`, `91830`, `91831`, `91833`, `91835`, `91837`, `91838`, `91840`, `91842`, `91843`, `91844`, `91845`, `91847`, `91849`, `91851`, `91853`, `91856`, `91858`, `91860`, `91861`, `91863`, `91866`, `91867`, `91869`, `91871`, `91873`, `91875`, `91876`, `91877`, `91879`, `91880`, `91882`, `91883`, `91884`, `91886`, `91888`, `91889`, `91890`, `91891`, `91893`, `91895`, `91897`, `91899`, `91900`, `91902`, `91904`, `91905`, `91907`, `91909`, `91913`, `91914`, `91916`, `91917`, `91920`, `91922`, `91923`, `91924`, `91926`, `91927`, `91929`, `91931`, `91933`, `91934`, `91937`, `91939`, `91941`, `91943`, `91945`, `91946`, `91947`, `91949`, `91951`, `91952`, `91953`, `91955`, `91957`, `91959`, `91961`, `91962`, `91964`, `91965`, `91966`, `91968`, `91970`, `91973`, `91978`, `91980`, `91982`, `91985`, `91987`, `91988`, `91989`, `91990`, `91991`, `91992`, `91994`, `91996`, `91998`, `92000`, `92001`, `92004`, `92006`, `92008`, `92011`, `92013`, `92014`, `92016`, `92017`, `92018`, `92019`, `92021`, `92022`, `92024`, `92026`, `92028`, `92030`, `92031`, `92034`, `92036`, `92038`, `92039`, `92041`, `92042`, `92043`, `92044`, `92046`, `92048`, `92051`, `92053`, `92055`, `92058`, `92061`, `92063`, `92065`, `92067`, `92068`, `92070`, `92072`, `92074`, `92076`, `92078`, `92080`, `92082`, `92084`, `92085`, `92087`, `92089`, `92091`, `92094`, `92096`, `92097`, `92099`, `92102`, `92104`, `92106`, `92109`, `92112`, `92113`, `92116`, `92118`, `92120`, `92123`, `92124`, `92127`, `92128`, `92131`, `92136`, `92137`, `92139`, `92141`, `92143`, `92145`, `92147`, `92148`, `92149`, `92151`, `92153`, `92155`, `92157`, `92159`, `92161`, `92163`, `92166`, `92167`, `92169`, `92171`, `92173`, `92174`, `92176`, `92178`, `92179`, `92180`, `92182`, `92183`, `92185`, `92186`, `92187`, `92189`, `92191`, `92192`, `92194`, `92195`, `92197`, `92198`, `92199`, `92200`, `92201`, `92203`, `92204`, `92205`, `92207`, `92208`, `92209`, `92210`, `92211`, `92212`, `92214`, `92216`, `92218`, `92219`, `92221`, `92222`, `92223`, `92225`, `92227`, `92229`, `92231`, `92233`, `92235`, `92236`, `92237`, `92239`, `92241`, `92243`, `92245`, `92247`, `92249`, `92251`, `92252`, `92253`, `92255`, `92257`, `92259`, `92261`, `92262`, `92264`, `92266`, `92269`, `92270`, `92272`, `92274`, `92275`, `92277`, `92279`, `92281`, `92283`, `92285`, `92287`, `92288`, `92290`, `92292`, `92293`, `92295`, `92296`, `92298`, `92299`, `92301`, `92304`, `92305`, `92307`, `92310`, `92312`, `92314`, `92315`, `92317`, `92318`, `92320`, `92323`, `92325`, `92327`, `92329`, `92331`, `92333`, `92335`, `92337`, `92339`, `92340`, `92342`, `92344`, `92347`, `92348`, `92350`, `92352`, `92354`, `92356`, `92358`, `92360`, `92362`, `92364`, `92366`, `92368`, `92369`, `92370`, `92371`, `92372`, `92374`, `92375`, `92378`, `92380`, `92382`, `92384`, `92386`, `92387`, `92389`, `92391`, `92392`, `92395`, `92396`, `92398`, `92400`, `92401`, `92403`, `92404`, `92406`, `92409`, `92411`, `92413`, `92415`, `92417`, `92418`, `92422`, `92424`, `92425`, `92427`, `92429`, `92431`, `92432`, `92434`, `92437`, `92438`, `92440`, `92443`, `92446`, `92448`, `92450`, `92451`, `92452`, `92454`, `92456`, `92458`, `92460`, `92462`, `92464`, `92466`, `92467`, `92469`, `92471`, `92472`, `92473`, `92477`, `92479`, `92480`, `92481`, `92483`, `92485`, `92486`, `92488`, `92492`, `92494`, `92496`, `92498`, `92500`, `92501`, `92503`, `92504`, `92505`, `92506`, `92508`, `92510`, `92512`, `92514`, `92515`, `92518`, `92519`, `92520`, `92522`, `92524`, `92525`, `92529`, `92531`, `92533`, `92535`, `92537`, `92538`, `92540`, `92542`, `92544`, `92546`, `92548`, `92550`, `92555`, `92557`, `92559`, `92561`, `92564`, `92566`, `92568`, `92569`, `92571`, `92573`, `92575`, `92577`, `92579`, `92580`, `92582`, `92583`, `92585`, `92586`, `92588`, `92590`, `92592`, `92594`, `92598`, `92600`, `92602`, `92605`, `92607`, `92608`, `92609`, `92611`, `92613`, `92615`, `92617`, `92619`, `92621`, `92627`, `92629`, `92631`, `92633`, `92635`, `92637`, `92640`, `92641`, `92643`, `92646`, `92648`, `92650`, `92652`, `92653`, `92654`, `92658`, `92660`, `92662`, `92664`, `92666`, `92668`, `92669`, `92672`, `92675`, `92677`, `92680`, `92682`, `92684`, `92685`, `92687`, `92689`, `92691`, `92693`, `92696`, `92698`, `92700`, `92702`, `92703`, `92705`, `92707`, `92709`, `92710`, `92712`, `92713`, `92714`, `92715`, `92716`, `92718`, `92721`, `92722`, `92724`, `92725`, `92727`, `92728`, `92729`, `92732`, `92734`, `92735`, `92737`, `92739`, `92741`, `92743`, `92744`, `92747`, `92749`, `92751`, `92752`, `92753`, `92755`, `92757`, `92759`, `92760`, `92762`, `92763`, `92765`, `92766`, `92768`, `92770`, `92771`, `92773`, `92774`, `92776`, `92778`, `92779`, `92780`, `92783`, `92784`, `92786`, `92788`, `92790`, `92792`, `92794`, `92798`, `92800`, `92802`, `92804`, `92806`, `92808`, `92810`, `92812`, `92814`, `92815`, `92818`, `92820`, `92821`, `92823`, `92825`, `92827`, `92829`, `92830`, `92831`, `92833`, `92835`, `92837`, `92839`, `92841`, `92843`, `92845`, `92847`, `92849`, `92851`, `92853`, `92856`, `92858`, `92859`, `92861`, `92863`, `92864`, `92865`, `92867`, `92868`, `92870`, `92871`, `92872`, `92873`, `92875`, `92877`, `92878`, `92880`, `92882`, `92884`, `92885`, `92888`, `92890`, `92892`, `92894`, `92896`, `92898`, `92899`, `92901`, `92903`, `92906`, `92908`, `92910`, `92912`, `92914`, `92916`, `92918`, `92919`, `92920`, `92922`, `92924`, `92926`, `92928`, `92930`, `92931`, `92933`, `92935`, `92937`, `92939`, `92941`, `92943`, `92944`, `92946`, `92948`, `92950`, `92956`, `92958`, `92960`, `92961`, `92964`, `92965`, `92967`, `92969`, `92971`, `92973`, `92974`, `92975`, `92977`, `92978`, `92980`, `92981`, `92983`, `92985`, `92987`, `92989`, `92990`, `92991`, `92993`, `92994`, `92996`, `92998`, `92999`, `93000`, `93001`, `93003`, `93004`, `93005`, `93006`, `93008`, `93011`, `93013`, `93015`, `93016`, `93018`, `93020`, `93022`, `93023`, `93025`, `93027`, `93029`, `93031`, `93033`, `93035`, `93037`, `93039`, `93041`, `93043`, `93045`, `93047`, `93049`, `93050`, `93052`, `93054`, `93056`, `93058`, `93059`, `93060`, `93061`, `93063`, `93064`, `93066`, `93068`, `93069`, `93071`, `93072`, `93073`, `93075`, `93076`, `93077`, `93078`, `93080`, `93081`, `93083`, `93084`, `93085`, `93087`, `93088`, `93089`, `93090`, `93091`, `93093`, `93095`, `93096`, `93098`, `93099`, `93100`, `93102`, `93104`, `93105`, `93106`, `93108`, `93110`, `93113`, `93114`, `93116`, `93118`, `93120`, `93122`, `93124`, `93126`, `93130`, `93131`, `93133`, `93136`, `93138`, `93140`, `93142`, `93144`, `93146`, `93148`, `93150`, `93152`, `93154`, `93155`, `93157`, `93158`, `93160`, `93161`, `93163`, `93164`, `93165`, `93167`, `93168`, `93169`, `93173`, `93175`, `93177`, `93179`, `93180`, `93182`, `93184`, `93185`, `93186`, `93188`, `93189`, `93191`, `93193`, `93195`, `93197`, `93199`, `93200`, `93201`, `93203`, `93204`, `93206`, `93208`, `93209`, `93214`, `93216`, `93218`, `93220`, `93221`, `93223`, `93227`, `93229`, `93231`, `93232`, `93233`, `93235`, `93237`, `93239`, `93241`, `93242`, `93245`, `93247`, `93248`, `93249`, `93250`, `93252`, `93254`, `93256`, `93259`, `93260`, `93262`, `93264`, `93265`, `93266`, `93268`, `93270`, `93271`, `93273`, `93274`, `93276`, `93278`, `93279`, `93281`, `93284`, `93285`, `93287`, `93288`, `93290`, `93291`, `93292`, `93293`, `93295`, `93297`, `93298`, `93299`, `93301`, `93302`, `93304`, `93306`, `93307`, `93309`, `93315`, `93317`, `93319`, `93321`, `93322`, `93323`, `93329`, `93330`, `93331`, `93334`, `93336`, `93338`, `93340`, `93342`, `93343`, `93344`, `93345`, `93346`, `93348`, `93350`, `93351`, `93353`, `93356`, `93358`, `93360`, `93364`, `93365`, `93367`, `93369`, `93370`, `93372`, `93374`, `93376`, `93379`, `93381`, `93383`, `93384`, `93386`, `93387`, `93389`, `93390`, `93392`, `93393`, `93395`, `93396`, `93398`, `93399`, `93400`, `93401`, `93403`, `93404`, `93405`, `93407`, `93408`, `93410`, `93411`, `93413`, `93414`, `93415`, `93416`, `93417`, `93419`, `93421`, `93423`, `93424`, `93426`, `93427`, `93429`, `93430`, `93431`, `93433`, `93435`, `93437`, `93439`, `93441`, `93443`, `93445`, `93446`, `93448`, `93449`, `93450`, `93452`, `93454`, `93456`, `93458`, `93460`, `93462`, `93463`, `93465`, `93467`, `93468`, `93470`, `93472`, `93473`, `93475`, `93477`, `93478`, `93480`, `93482`, `93484`, `93486`, `93488`, `93490`, `93493`, `93494`, `93495`, `93497`, `93499`, `93500`, `93501`, `93503`, `93505`, `93507`, `93508`, `93510`, `93512`, `93513`, `93514`, `93517`, `93518`, `93519`, `93521`, `93522`, `93523`, `93524`, `93526`, `93528`, `93530`, `93532`, `93534`, `93535`, `93536`, `93538`, `93540`, `93541`, `93543`, `93545`, `93546`, `93547`, `93548`, `93549`, `93551`, `93553`, `93555`, `93557`, `93558`, `93560`, `93562`, `93564`, `93565`, `93567`, `93569`, `93571`, `93574`, `93576`, `93578`, `93580`, `93581`, `93582`, `93585`, `93587`, `93588`, `93590`, `93592`, `93593`, `93594`, `93595`, `93597`, `93599`, `93600`, `93601`, `93602`, `93604`, `93606`, `93609`, `93611`, `93613`, `93614`, `93616`, `93618`, `93619`, `93620`, `93622`, `93624`, `93625`, `93627`, `93629`, `93631`, `93633`, `93635`, `93637`, `93639`, `93641`, `93642`, `93644`, `93646`, `93647`, `93649`, `93651`, `93652`, `93654`, `93656`, `93658`, `93659`, `93661`, `93662`, `93664`, `93665`, `93668`, `93670`, `93674`, `93676`, `93679`, `93682`, `93683`, `93686`, `93688`, `93690`, `93692`, `93693`, `93695`, `93697`, `93699`, `93701`, `93703`, `93704`, `93705`, `93707`, `93710`, `93711`, `93713`, `93714`, `93716`, `93718`, `93720`, `93721`, `93723`, `93724`, `93726`, `93727`, `93731`, `93733`, `93735`, `93736`, `93738`, `93739`, `93741`, `93743`, `93745`, `93746`, `93748`, `93750`, `93752`, `93754`, `93756`, `93757`, `93758`, `93761`, `93762`, `93765`, `93766`, `93767`, `93772`, `93774`, `93776`, `93777`, `93779`, `93781`, `93782`, `93784`, `93786`, `93788`, `93790`, `93792`, `93794`, `93796`, `93798`, `93800`, `93802`, `93804`, `93806`, `93808`, `93809`, `93812`, `93814`, `93816`, `93819`, `93821`, `93823`, `93827`, `93828`, `93830`, `93832`, `93833`, `93835`, `93837`, `93839`, `93841`, `93843`, `93845`, `93847`, `93848`, `93850`, `93852`, `93854`, `93856`, `93858`, `93860`, `93862`, `93864`, `93865`, `93867`, `93869`, `93873`, `93875`, `93877`, `93878`, `93880`, `93882`, `93883`, `93884`, `93886`, `93888`, `93890`, `93892`, `93893`, `93894`, `93896`, `93898`, `93900`, `93901`, `93903`, `93904`, `93905`, `93907`, `93909`, `93911`, `93914`, `93915`, `93917`, `93920`, `93921`, `93923`, `93924`, `93926`, `93927`, `93929`, `93930`, `93932`, `93934`, `93936`, `93938`, `93942`, `93944`, `93946`, `93947`, `93948`, `93950`, `93952`, `93954`, `93955`, `93956`, `93958`, `93960`, `93962`, `93964`, `93966`, `93968`, `93970`, `93972`, `93974`, `93976`, `93978`, `93980`, `93981`, `93983`, `93984`, `93986`, `93988`, `93990`, `93992`, `93994`, `93995`, `93996`, `93997`, `93999`, `94001`, `94003`, `94005`, `94006`, `94008`, `94010`, `94012`, `94016`, `94017`, `94018`, `94019`, `94021`, `94023`, `94024`, `94027`, `94029`, `94030`, `94031`, `94033`, `94037`, `94039`, `94040`, `94042`, `94044`, `94046`, `94048`, `94050`, `94051`, `94053`, `94055`, `94056`, `94058`, `94060`, `94062`, `94064`, `94066`, `94068`, `94070`, `94072`, `94074`, `94075`, `94076`, `94078`, `94079`, `94080`, `94082`, `94083`, `94085`, `94086`, `94088`, `94091`, `94092`, `94093`, `94095`, `94096`, `94097`, `94098`, `94100`, `94102`, `94103`, `94105`, `94107`, `94109`, `94110`, `94112`, `94114`, `94116`, `94117`, `94121`, `94125`, `94126`, `94128`, `94132`, `94136`, `94137`, `94139`, `94141`, `94142`, `94144`, `94145`, `94147`, `94149`, `94153`, `94155`, `94156`, `94158`, `94159`, `94161`, `94164`, `94166`, `94167`, `94169`, `94170`, `94173`, `94176`, `94177`, `94179`, `94181`, `94182`, `94183`, `94185`, `94187`, `94189`, `94191`, `94192`, `94193`, `94194`, `94196`, `94198`, `94200`, `94203`, `94205`, `94207`, `94209`, `94211`, `94212`, `94214`, `94216`, `94218`, `94219`, `94221`, `94225`, `94227`, `94228`, `94231`, `94233`, `94234`, `94236`, `94239`, `94241`, `94243`, `94245`, `94247`, `94248`, `94249`, `94251`, `94252`, `94254`, `94256`, `94258`, `94260`, `94263`, `94264`, `94266`, `94267`, `94270`, `94271`, `94273`, `94275`, `94276`, `94278`, `94280`, `94282`, `94284`, `94286`, `94287`, `94288`, `94289`, `94290`, `94292`, `94293`, `94295`, `94296`, `94297`, `94299`, `94300`, `94302`, `94304`, `94305`, `94307`, `94310`, `94311`, `94312`, `94314`, `94316`, `94317`, `94318`, `94319`, `94320`, `94321`, `94322`, `94323`, `94325`, `94326`, `94327`, `94329`, `94331`, `94332`, `94333`, `94334`, `94336`, `94337`, `94339`, `94341`, `94342`, `94344`, `94345`, `94348`, `94349`, `94350`, `94351`, `94352`, `94353`, `94355`, `94356`, `94357`, `94359`, `94362`, `94364`, `94366`, `94367`, `94369`, `94370`, `94371`, `94373`, `94374`, `94376`, `94379`, `94380`, `94381`, `94383`, `94385`, `94386`, `94387`, `94389`, `94391`, `94392`, `94393`, `94395`, `94397`, `94399`, `94400`, `94401`, `94403`, `94404`, `94405`, `94407`, `94408`, `94410`, `94412`, `94414`, `94417`, `94418`, `94420`, `94422`, `94424`, `94425`, `94427`, `94429`, `94430`, `94431`, `94433`, `94435`, `94437`, `94438`, `94440`, `94442`, `94444`, `94446`, `94448`, `94449`, `94451`, `94453`, `94455`, `94457`, `94458`, `94461`, `94463`, `94465`, `94467`, `94469`, `94471`, `94473`, `94474`, `94475`, `94477`, `94478`, `94480`, `94483`, `94485`, `94487`, `94488`, `94489`, `94491`, `94492`, `94494`, `94496`, `94498`, `94500`, `94502`, `94504`, `94506`, `94508`, `94509`, `94511`, `94512`, `94514`, `94515`, `94517`, `94519`, `94521`, `94522`, `94524`, `94526`, `94528`, `94530`, `94533`, `94534`, `94535`, `94536`, `94537`, `94538`, `94539`, `94541`, `94542`, `94544`, `94545`, `94547`, `94548`, `94550`, `94552`, `94554`, `94556`, `94557`, `94558`, `94560`, `94562`, `94564`, `94566`, `94568`, `94570`, `94572`, `94574`, `94576`, `94578`, `94579`, `94581`, `94583`, `94585`, `94587`, `94589`, `94592`, `94593`, `94595`, `94596`, `94598`, `94601`, `94602`, `94604`, `94606`, `94609`, `94611`, `94612`, `94614`, `94616`, `94618`, `94620`, `94622`, `94624`, `94625`, `94627`, `94629`, `94631`, `94633`, `94635`, `94637`, `94639`, `94641`, `94643`, `94644`, `94646`, `94649`, `94653`, `94654`, `94655`, `94657`, `94661`, `94662`, `94663`, `94666`, `94667`, `94668`, `94670`, `94673`, `94674`, `94678`, `94679`, `94681`, `94684`, `94685`, `94688`, `94691`, `94693`, `94695`, `94697`, `94699`, `94703`, `94705`, `94707`, `94709`, `94710`, `94711`, `94712`, `94713`, `94718`, `94720`, `94723`, `94725`, `94727`, `94729`, `94731`, `94733`, `94735`, `94736`, `94738`, `94739`, `94741`, `94743`, `94744`, `94746`, `94748`, `94750`, `94751`, `94754`, `94756`, `94758`, `94760`, `94762`, `94764`, `94766`, `94768`, `94769`, `94771`, `94774`, `94775`, `94776`, `94778`, `94779`, `94781`, `94783`, `94784`, `94785`, `94786`, `94787`, `94788`, `94789`, `94791`, `94792`, `94793`, `94795`, `94796`, `94798`, `94800`, `94802`, `94804`, `94805`, `94807`, `94808`, `94810`, `94811`, `94813`, `94815`, `94816`, `94818`, `94820`, `94823`, `94825`, `94827`, `94829`, `94831`, `94834`, `94836`, `94838`, `94839`, `94841`, `94842`, `94844`, `94847`, `94849`, `94851`, `94853`, `94855`, `94856`, `94860`, `94861`, `94863`, `94864`, `94866`, `94868`, `94870`, `94872`, `94873`, `94875`, `94877`, `94878`, `94879`, `94880`, `94881`, `94883`, `94884`, `94886`, `94887`, `94888`, `94890`, `94891`, `94893`, `94896`, `94898`, `94900`, `94902`, `94903`, `94905`, `94909`, `94911`, `94913`, `94915`, `94917`, `94918`, `94919`, `94922`, `94924`, `94925`, `94927`, `94928`, `94930`, `94931`, `94933`, `94935`, `94936`, `94938`, `94940`, `94941`, `94943`, `94945`, `94947`, `94949`, `94951`, `94957`, `94958`, `94959`, `94960`, `94961`, `94962`, `94964`, `94965`, `94967`, `94969`, `94970`, `94972`, `94974`, `94976`, `94977`, `94979`, `94980`, `94982`, `94985`, `94987`, `94988`, `94990`, `94992`, `94994`, `94996`, `94998`, `95000`, `95002`, `95003`, `95005`, `95007`, `95009`, `95010`, `95013`, `95015`, `95016`, `95019`, `95021`, `95023`, `95025`, `95026`, `95028`, `95029`, `95031`, `95033`, `95034`, `95035`, `95041`, `95044`, `95046`, `95048`, `95050`, `95053`, `95055`, `95057`, `95059`, `95060`, `95062`, `95064`, `95066`, `95068`, `95070`, `95072`, `95073`, `95075`, `95076`, `95078`, `95080`, `95082`, `95083`, `95085`, `95088`, `95090`, `95092`, `95098`, `95099`, `95101`, `95102`, `95104`, `95106`, `95110`, `95111`, `95113`, `95114`, `95115`, `95117`, `95119`, `95120`, `95123`, `95125`, `95126`, `95127`, `95128`, `95131`, `95132`, `95134`, `95135`, `95137`, `95139`, `95140`, `95141`, `95143`, `95145`, `95147`, `95149`, `95151`, `95153`, `95154`, `95156`, `95158`, `95159`, `95161`, `95162`, `95164`, `95166`, `95167`, `95168`, `95170`, `95171`, `95172`, `95173`, `95175`, `95177`, `95180`, `95183`, `95184`, `95186`, `95190`, `95191`, `95193`, `95194`, `95195`, `95197`, `95199`, `95201`, `95202`, `95204`, `95206`, `95208`, `95212`, `95216`, `95221`, `95222`, `95223`, `95225`, `95226`, `95230`, `95232`, `95233`, `95234`, `95235`, `95236`, `95237`, `95239`, `95241`, `95243`, `95245`, `95247`, `95251`, `95253`, `95254`, `95255`, `95257`, `95258`, `95260`, `95264`, `95265`, `95267`, `95268`, `95269`, `95271`, `95273`, `95275`, `95277`, `95279`, `95281`, `95282`, `95284`, `95286`, `95288`, `95290`, `95291`, `95292`, `95294`, `95295`, `95296`, `95298`, `95299`, `95301`, `95302`, `95303`, `95305`, `95306`, `95307`, `95309`, `95311`, `95313`, `95314`, `95315`, `95319`, `95321`, `95323`, `95324`, `95325`, `95326`, `95330`, `95332`, `95334`, `95335`, `95337`, `95338`, `95339`, `95341`, `95343`, `95344`, `95346`, `95347`, `95349`, `95350`, `95353`, `95355`, `95356`, `95358`, `95360`, `95362`, `95364`, `95366`, `95368`, `95370`, `95371`, `95373`, `95375`, `95376`, `95377`, `95379`, `95381`, `95383`, `95384`, `95386`, `95388`, `95390`, `95392`, `95394`, `95396`, `95400`, `95402`, `95405`, `95406`, `95407`, `95408`, `95409`, `95412`, `95414`, `95416`, `95417`, `95421`, `95423`, `95424`, `95426`, `95428`, `95429`, `95431`, `95433`, `95436`, `95437`, `95441`, `95443`, `95445`, `95447`, `95450`, `95452`, `95454`, `95456`, `95457`, `95459`, `95461`, `95463`, `95465`, `95466`, `95468`, `95470`, `95472`, `95474`, `95477`, `95478`, `95480`, `95481`, `95483`, `95485`, `95487`, `95489`, `95490`, `95493`, `95494`, `95499`, `95501`, `95503`, `95506`, `95507`, `95509`, `95510`, `95513`, `95515`, `95517`, `95519`, `95520`, `95522`, `95524`, `95525`, `95527`, `95530`, `95532`, `95533`, `95535`, `95537`, `95540`, `95542`, `95544`, `95546`, `95548`, `95550`, `95551`, `95553`, `95555`, `95557`, `95559`, `95561`, `95563`, `95565`, `95567`, `95568`, `95570`, `95571`, `95573`, `95574`, `95576`, `95578`, `95579`, `95581`, `95584`, `95586`, `95588`, `95590`, `95592`, `95594`, `95595`, `95596`, `95598`, `95601`, `95602`, `95606`, `95608`, `95610`, `95611`, `95614`, `95615`, `95617`, `95619`, `95621`, `95622`, `95624`, `95626`, `95628`, `95630`, `95632`, `95634`, `95635`, `95636`, `95638`, `95639`, `95641`, `95643`, `95645`, `95647`, `95649`, `95651`, `95652`, `95656`, `95658`, `95660`, `95661`, `95662`, `95666`, `95668`, `95669`, `95670`, `95671`, `95672`, `95674`, `95679`, `95680`, `95682`, `95683`, `95684`, `95685`, `95686`, `95688`, `95689`, `95690`, `95692`, `95694`, `95696`, `95697`, `95699`, `95701`, `95704`, `95706`, `95708`, `95710`, `95711`, `95713`, `95714`, `95715`, `95720`, `95721`, `95723`, `95724`, `95725`, `95727`, `95729`, `95731`, `95733`, `95735`, `95736`, `95738`, `95740`, `95742`, `95744`, `95746`, `95747`, `95749`, `95751`, `95753`, `95754`, `95757`, `95758`, `95760`, `95761`, `95763`, `95764`, `95766`, `95768`, `95770`, `95772`, `95773`, `95775`, `95777`, `95779`, `95781`, `95785`, `95787`, `95788`, `95789`, `95791`, `95793`, `95795`, `95797`, `95801`, `95802`, `95803`, `95806`, `95807`, `95809`, `95811`, `95812`, `95813`, `95815`, `95817`, `95819`, `95821`, `95823`, `95824`, `95826`, `95828`, `95830`, `95832`, `95833`, `95835`, `95837`, `95839`, `95841`, `95843`, `95845`, `95847`, `95849`, `95851`, `95853`, `95854`, `95856`, `95858`, `95860`, `95862`, `95865`, `95867`, `95868`, `95870`, `95872`, `95874`, `95876`, `95878`, `95879`, `95882`, `95884`, `95886`, `95888`, `95890`, `95892`, `95893`, `95894`, `95896`, `95898`, `95900`, `95901`, `95903`, `95904`, `95905`, `95907`, `95909`, `95910`, `95911`, `95913`, `95915`, `95916`, `95918`, `95920`, `95922`, `95924`, `95927`, `95928`, `95930`, `95932`, `95934`, `95936`, `95938`, `95940`, `95941`, `95943`, `95944`, `95946`, `95948`, `95950`, `95951`, `95954`, `95956`, `95957`, `95958`, `95960`, `95961`, `95963`, `95964`, `95966`, `95968`, `95969`, `95971`, `95973`, `95975`, `95976`, `95978`, `95980`, `95982`, `95984`, `95985`, `95987`, `95988`, `95990`, `95992`, `95994`, `95995`, `95997`, `96000`, `96001`, `96003`, `96005`, `96007`, `96009`, `96011`, `96012`, `96014`, `96015`, `96016`, `96018`, `96020`, `96021`, `96023`, `96024`, `96026`, `96030`, `96032`, `96033`, `96035`, `96036`, `96037`, `96039`, `96040`, `96044`, `96046`, `96048`, `96050`, `96052`, `96054`, `96056`, `96057`, `96060`, `96061`, `96063`, `96065`, `96067`, `96068`, `96070`, `96072`, `96073`, `96075`, `96077`, `96079`, `96080`, `96083`, `96085`, `96086`, `96088`, `96089`, `96091`, `96093`, `96094`, `96095`, `96097`, `96100`, `96101`, `96103`, `96104`, `96106`, `96108`, `96110`, `96111`, `96112`, `96114`, `96116`, `96118`, `96120`, `96122`, `96124`, `96126`, `96127`, `96129`, `96132`, `96134`, `96136`, `96137`, `96139`, `96141`, `96142`, `96144`, `96145`, `96146`, `96147`, `96149`, `96151`, `96153`, `96155`, `96157`, `96159`, `96161`, `96163`, `96165`, `96166`, `96167`, `96170`, `96172`, `96174`, `96176`, `96179`, `96180`, `96182`, `96183`, `96185`, `96187`, `96189`, `96192`, `96193`, `96195`, `96196`, `96199`, `96201`, `96202`, `96204`, `96206`, `96207`, `96208`, `96209`, `96211`, `96213`, `96214`, `96216`, `96218`, `96223`, `96224`, `96225`, `96226`, `96227`, `96230`, `96232`, `96233`, `96234`, `96235`, `96237`, `96238`, `96240`, `96242`, `96245`, `96247`, `96249`, `96250`, `96252`, `96253`, `96255`, `96257`, `96258`, `96259`, `96261`, `96263`, `96265`, `96267`, `96269`, `96271`, `96273`, `96276`, `96278`, `96279`, `96281`, `96283`, `96285`, `96287`, `96289`, `96290`, `96292`, `96293`, `96296`, `96298`, `96300`, `96301`, `96303`, `96305`, `96306`, `96308`, `96310`, `96312`, `96314`, `96315`, `96317`, `96319`, `96320`, `96322`, `96324`, `96325`, `96327`, `96329`, `96331`, `96333`, `96335`, `96337`, `96339`, `96341`, `96342`, `96344`, `96346`, `96348`, `96349`, `96350`, `96351`, `96352`, `96353`, `96355`, `96359`, `96361`, `96363`, `96364`, `96366`, `96368`, `96369`, `96370`, `96372`, `96374`, `96376`, `96378`, `96379`, `96381`, `96383`, `96386`, `96388`, `96390`, `96393`, `96395`, `96397`, `96399`, `96401`, `96403`, `96405`, `96407`, `96408`, `96410`, `96412`, `96413`, `96416`, `96418`, `96419`, `96421`, `96425`, `96427`, `96429`, `96430`, `96433`, `96435`, `96436`, `96438`, `96440`, `96442`, `96443`, `96444`, `96448`, `96450`, `96451`, `96453`, `96454`, `96455`, `96457`, `96458`, `96460`, `96462`, `96463`, `96465`, `96468`, `96470`, `96471`, `96473`, `96475`, `96476`, `96478`, `96480`, `96483`, `96485`, `96487`, `96488`, `96490`, `96492`, `96494`, `96496`, `96498`, `96500`, `96502`, `96504`, `96506`, `96508`, `96510`, `96512`, `96515`, `96517`, `96519`, `96521`, `96522`, `96523`, `96524`, `96525`, `96526`, `96527`, `96528`, `96529`, `96531`, `96532`, `96535`, `96536`, `96539`, `96541`, `96545`, `96546`, `96547`, `96549`, `96550`, `96551`, `96553`, `96555`, `96557`, `96558`, `96559`, `96561`, `96563`, `96565`, `96567`, `96569`, `96571`, `96573`, `96574`, `96576`, `96578`, `96579`, `96581`, `96583`, `96585`, `96587`, `96589`, `96590`, `96592`, `96593`, `96595`, `96596`, `96598`, `96600`, `96602`, `96603`, `96605`, `96607`, `96609`, `96610`, `96611`, `96613`, `96614`, `96616`, `96618`, `96620`, `96621`, `96623`, `96625`, `96626`, `96627`, `96628`, `96630`, `96632`, `96634`, `96635`, `96636`, `96639`, `96641`, `96644`, `96646`, `96647`, `96648`, `96650`, `96651`, `96653`, `96655`, `96657`, `96658`, `96660`, `96662`, `96664`, `96666`, `96668`, `96670`, `96672`, `96675`, `96679`, `96681`, `96683`, `96685`, `96686`, `96687`, `96688`, `96690`, `96692`, `96694`, `96695`, `96698`, `96699`, `96702`, `96704`, `96706`, `96708`, `96710`, `96711`, `96715`, `96717`, `96719`, `96721`, `96723`, `96724`, `96725`, `96727`, `96729`, `96730`, `96732`, `96734`, `96735`, `96736`, `96738`, `96739`, `96741`, `96743`, `96744`, `96746`, `96749`, `96751`, `96752`, `96753`, `96754`, `96756`, `96757`, `96759`, `96760`, `96762`, `96763`, `96766`, `96767`, `96769`, `96771`, `96772`, `96773`, `96775`, `96776`, `96777`, `96778`, `96779`, `96781`, `96782`, `96783`, `96785`, `96788`, `96790`, `96792`, `96793`, `96795`, `96797`, `96799`, `96801`, `96802`, `96803`, `96804`, `96806`, `96808`, `96809`, `96810`, `96811`, `96813`, `96815`, `96816`, `96818`, `96820`, `96822`, `96823`, `96825`, `96828`, `96830`, `96832`, `96835`, `96836`, `96838`, `96840`, `96843`, `96845`, `96847`, `96849`, `96851`, `96853`, `96855`, `96856`, `96858`, `96860`, `96861`, `96862`, `96863`, `96865`, `96866`, `96868`, `96870`, `96871`, `96872`, `96873`, `96874`, `96875`, `96877`, `96879`, `96881`, `96883`, `96885`, `96886`, `96888`, `96890`, `96892`, `96893`, `96895`, `96897`, `96899`, `96901`, `96903`, `96904`, `96907`, `96908`, `96910`, `96911`, `96913`, `96915`, `96916`, `96918`, `96919`, `96920`, `96923`, `96925`, `96927`, `96929`, `96931`, `96933`, `96934`, `96936`, `96941`, `96942`, `96945`, `96946`, `96948`, `96949`, `96951`, `96953`, `96955`, `96957`, `96958`, `96960`, `96962`, `96963`, `96965`, `96967`, `96968`, `96970`, `96971`, `96974`, `96976`, `96977`, `96979`, `96981`, `1225`, `96983`, `96985`, `96987`, `96989`, `96990`, `96992`, `96993`, `96995`, `96996`, `96998`, `96999`, `97000`, `97001`, `97003`, `97005`, `97006`, `97008`, `97010`, `97011`, `97012`, `97014`, `97016`, `97018`, `97020`, `97021`, `97023`, `97024`, `97026`, `97028`, `97030`, `97032`, `97034`, `97036`, `97037`, `97039`, `97041`, `97043`, `97044`, `97047`, `97048`, `97049`, `97050`, `97051`, `97052`, `97054`, `97057`, `97058`, `97059`, `97061`, `97062`, `97064`, `97065`, `97066`, `97068`, `97070`, `97072`, `97073`, `97075`, `97077`, `97078`, `97080`, `97082`, `97083`, `97084`, `97086`, `97088`, `97090`, `97092`, `97095`, `97096`, `97098`, `97101`, `97102`, `97105`, `97107`, `97109`, `97111`, `97113`, `97114`, `97116`, `97118`, `97119`, `97121`, `97122`, `97124`, `97126`, `97128`, `97130`, `97131`, `16791`, `97133`, `97134`, `97138`, `97140`, `97142`, `97144`, `97146`, `97147`, `97149`, `97150`, `97152`, `97154`, `97156`, `97158`, `97159`, `97160`, `97162`, `97165`, `97167`, `97168`, `97169`, `97171`, `97174`, `97176`, `97178`, `97180`, `97182`, `97183`, `97184`, `97185`, `97187`, `97188`, `97190`, `97192`, `97194`, `97195`, `97197`, `97199`, `97201`, `97203`, `97205`, `97206`, `97207`, `97209`, `97211`, `97212`, `97213`, `97214`, `97216`, `97217`, `97218`, `97220`, `97223`, `97224`, `97227`, `97229`, `97234`, `97237`, `97238`, `97240`, `97242`, `97244`, `97246`, `97248`, `97250`, `97252`, `97254`, `97255`, `97257`, `97259`, `97260`, `97262`, `97264`, `97265`, `97267`, `97270`, `97272`, `97274`, `97276`, `97278`, `97282`, `97284`, `97287`, `97288`, `97290`, `97292`, `97294`, `97295`, `97297`, `97299`, `97301`, `97303`, `97304`, `97306`, `97308`, `97310`, `97311`, `97313`, `97315`, `97317`, `97319`, `97320`, `97322`, `97324`, `97325`, `97326`, `97328`, `97330`, `97331`, `97332`, `97333`, `97335`, `97337`, `97339`, `97341`, `97343`, `97345`, `97347`, `97349`, `97350`, `97352`, `97356`, `97358`, `97360`, `97361`, `97363`, `97364`, `97366`, `97367`, `97369`, `97372`, `97373`, `97375`, `97377`, `97379`, `97380`, `97382`, `97385`, `97386`, `97387`, `97389`, `97392`, `97394`, `97396`, `97397`, `97399`, `97400`, `97401`, `97405`, `97408`, `97410`, `97412`, `97414`, `97416`, `97417`, `97419`, `97420`, `97421`, `97425`, `97426`, `97429`, `97431`, `97432`, `97434`, `97436`, `97438`, `97439`, `97441`, `97442`, `97443`, `97445`, `97446`, `97450`, `97452`, `97454`, `97456`, `97458`, `97461`, `97463`, `97465`, `97466`, `97468`, `97470`, `97472`, `97473`, `97474`, `97475`, `97476`, `97477`, `97478`, `97480`, `97481`, `97483`, `97485`, `97486`, `97488`, `97489`, `97491`, `97493`, `97495`, `97496`, `97497`, `97499`, `97501`, `97503`, `97504`, `97505`, `97507`, `97509`, `97511`, `97513`, `97514`, `97516`, `97518`, `97520`, `97522`, `97523`, `97525`, `97527`, `97529`, `97531`, `97532`, `97533`, `97534`, `97535`, `97537`, `97539`, `97541`, `97543`, `97544`, `97545`, `97546`, `97547`, `97548`, `97549`, `97551`, `97553`, `97555`, `97556`, `97557`, `97559`, `97560`, `97562`, `97564`, `97566`, `97568`, `97569`, `97571`, `97574`, `97576`, `97577`, `97578`, `97580`, `97582`, `97583`, `97584`, `97586`, `97587`, `97588`, `97589`, `97591`, `97592`, `97594`, `97596`, `97598`, `97600`, `97601`, `97603`, `97604`, `97606`, `97608`, `97610`, `97611`, `97615`, `97616`, `97618`, `97619`, `97620`, `97623`, `97624`, `97626`, `97628`, `97630`, `97632`, `97634`, `97635`, `97637`, `97639`, `97640`, `97641`, `97643`, `97645`, `97647`, `97649`, `97651`, `97652`, `97653`, `97655`, `97657`, `97659`, `97660`, `97663`, `97665`, `97667`, `97669`, `97671`, `97673`, `97674`, `97675`, `97676`, `97678`, `97680`, `97682`, `97685`, `97688`, `97690`, `97691`, `97693`, `97695`, `97697`, `97699`, `97700`, `97701`, `97704`, `97705`, `97706`, `97708`, `97710`, `97711`, `97713`, `97715`, `97717`, `97719`, `97720`, `97722`, `97723`, `97724`, `97725`, `97726`, `97727`, `97728`, `97730`, `97732`, `97733`, `97734`, `97736`, `97738`, `97740`, `97742`, `97744`, `97746`, `97747`, `97748`, `97750`, `97752`, `97754`, `97755`, `97756`, `97757`, `97759`, `97760`, `97762`, `97763`, `97764`, `97766`, `97767`, `97769`, `97771`, `97772`, `97773`, `97775`, `97776`, `97780`, `97782`, `97784`, `97785`, `97786`, `97787`, `97789`, `97790`, `97792`, `97795`, `97798`, `97802`, `97804`, `97806`, `97807`, `97808`, `97811`, `97812`, `97814`, `97815`, `97816`, `97817`, `97819`, `97821`, `97825`, `97827`, `97829`, `97830`, `97833`, `97835`, `97837`, `97839`, `97840`, `97842`, `97843`, `97844`, `97845`, `97847`, `97848`, `97850`, `97852`, `97854`, `97855`, `97857`, `97862`, `97863`, `97864`, `97865`, `97867`, `97869`, `97871`, `97873`, `97875`, `97877`, `97879`, `97880`, `97883`, `97885`, `97886`, `97888`, `97889`, `97890`, `97892`, `97893`, `97894`, `97898`, `97900`, `97901`, `97902`, `97904`, `97906`, `97908`, `97910`, `97913`, `97915`, `97916`, `97917`, `97918`, `97920`, `97921`, `97922`, `97924`, `97926`, `97928`, `97929`, `97930`, `97932`, `97934`, `97935`, `97937`, `97938`, `97940`, `97941`, `97943`, `97944`, `97946`, `97948`, `97949`, `97950`, `97952`, `97954`, `97956`, `97958`, `97959`, `97961`, `97963`, `97965`, `97967`, `97969`, `97970`, `97976`, `97978`, `97979`, `97981`, `97982`, `97984`, `97985`, `97987`, `97988`, `97989`, `97991`, `97993`, `97994`, `97996`, `97998`, `97999`, `98001`, `98002`, `98005`, `98006`, `98007`, `98009`, `98010`, `98013`, `98015`, `98016`, `98018`, `98020`, `98022`, `98023`, `98026`, `98028`, `98030`, `98031`, `98033`, `98035`, `98037`, `98038`, `98040`, `98042`, `98043`, `98045`, `98047`, `98049`, `98050`, `98052`, `98057`, `98059`, `98060`, `98061`, `98063`, `98065`, `98067`, `98069`, `98071`, `98073`, `98075`, `98076`, `98077`, `98078`, `98080`, `98081`, `98082`, `98084`, `98086`, `98088`, `98090`, `98092`, `98093`, `98094`, `98095`, `98098`, `98100`, `98102`, `98104`, `98106`, `98107`, `98109`, `98111`, `98113`, `98114`, `98116`, `98118`, `98120`, `98122`, `98123`, `98124`, `98126`, `98129`, `98131`, `98133`, `98134`, `98136`, `98137`, `98139`, `98140`, `98141`, `98142`, `98144`, `98146`, `98148`, `98150`, `98151`, `98153`, `98155`, `98156`, `98158`, `98160`, `98162`, `98164`, `98166`, `98170`, `98172`, `98174`, `98175`, `98177`, `98178`, `98180`, `98182`, `98184`, `98185`, `98186`, `98187`, `98189`, `98191`, `98192`, `98194`, `98196`, `98199`, `98200`, `98203`, `98205`, `98207`, `98210`, `98212`, `98214`, `98216`, `98218`, `98220`, `98223`, `98224`, `98226`, `98228`, `98229`, `98231`, `98233`, `98235`, `98237`, `98240`, `98243`, `98245`, `98247`, `98249`, `98252`, `98253`, `98255`, `98257`, `98258`, `98260`, `98262`, `98263`, `98265`, `98267`, `98269`, `98270`, `98271`, `98272`, `98274`, `98275`, `98278`, `98279`, `98281`, `98283`, `98285`, `98287`, `98288`, `98289`, `98290`, `98294`, `98298`, `98299`, `98300`, `98301`, `98302`, `98303`, `98305`, `98306`, `98308`, `98310`, `98312`, `98313`, `98314`, `98317`, `98319`, `98322`, `98323`, `98324`, `98326`, `98328`, `98330`, `98331`, `98333`, `98335`, `98336`, `98338`, `98340`, `98342`, `98344`, `98346`, `98347`, `98349`, `98351`, `98353`, `98355`, `98357`, `98358`, `98360`, `98362`, `98364`, `98365`, `98367`, `98368`, `98369`, `98371`, `98372`, `98374`, `98376`, `98377`, `98379`, `98383`, `98385`, `98387`, `98389`, `98391`, `98393`, `98394`, `98396`, `98398`, `98402`, `98404`, `98406`, `98408`, `98410`, `98412`, `98414`, `98415`, `98416`, `98418`, `98420`, `98421`, `98423`, `98424`, `98426`, `98428`, `98429`, `98431`, `98433`, `98435`, `98436`, `98437`, `98439`, `98441`, `98443`, `98445`, `98447`, `98449`, `98451`, `98453`, `98455`, `98457`, `98459`, `98461`, `98463`, `98465`, `98468`, `98470`, `98472`, `98474`, `98476`, `98478`, `98479`, `98481`, `98483`, `98485`, `98487`, `98489`, `98491`, `98493`, `98495`, `98496`, `98500`, `98502`, `98504`, `98506`, `98508`, `98509`, `98510`, `98512`, `98516`, `98518`, `98519`, `98521`, `98523`, `98525`, `98526`, `98527`, `98529`, `98531`, `98532`, `98536`, `98540`, `98541`, `98543`, `98544`, `98546`, `98548`, `98550`, `98552`, `98553`, `98554`, `98556`, `98558`, `98560`, `98562`, `98563`, `98565`, `98567`, `98569`, `98571`, `98573`, `98575`, `98576`, `98578`, `98580`, `98581`, `98583`, `98585`, `98586`, `98588`, `98590`, `98591`, `98593`, `98596`, `98598`, `98599`, `98601`, `98603`, `98605`, `98607`, `98609`, `98611`, `98613`, `98616`, `98618`, `98620`, `98621`, `98623`, `98625`, `98626`, `98629`, `98630`, `98631`, `98633`, `98635`, `98637`, `98638`, `98640`, `98642`, `98644`, `98646`, `98648`, `98651`, `98652`, `98654`, `98655`, `98657`, `98659`, `98662`, `98663`, `98665`, `98667`, `98669`, `98671`, `98672`, `98674`, `98676`, `98678`, `98680`, `98681`, `98682`, `98683`, `98684`, `98687`, `98689`, `98691`, `98693`, `98694`, `98695`, `98697`, `98699`, `98701`, `98703`, `98705`, `98706`, `98708`, `98710`, `98711`, `98713`, `98715`, `98717`, `98719`, `98720`, `98722`, `98724`, `98726`, `98728`, `98730`, `98732`, `98733`, `98735`, `98737`, `98738`, `98739`, `98741`, `98743`, `98745`, `98747`, `98749`, `98750`, `98751`, `98753`, `98755`, `98759`, `98760`, `98762`, `98763`, `98766`, `98767`, `98769`, `98770`, `98772`, `98774`, `98776`, `98778`, `98780`, `98782`, `98783`, `98785`, `98786`, `98788`, `98790`, `98792`, `98793`, `98794`, `98795`, `98797`, `98799`, `98801`, `98803`, `98804`, `98806`, `98808`, `98809`, `98811`, `98813`, `98815`, `98817`, `98819`, `98821`, `98823`, `98825`, `98826`, `98828`, `98830`, `98832`, `98834`, `98835`, `98837`, `98839`, `98841`, `98843`, `98844`, `98845`, `98847`, `98850`, `98851`, `98853`, `98854`, `98856`, `98859`, `98860`, `98861`, `98863`, `98864`, `98866`, `98867`, `98868`, `98870`, `98871`, `98874`, `98876`, `98878`, `98879`, `98883`, `98885`, `98887`, `98889`, `98894`, `98896`, `98898`, `98899`, `98901`, `98903`, `98904`, `98905`, `98907`, `98909`, `98912`, `98914`, `98915`, `98917`, `98918`, `98920`, `98922`, `98924`, `98926`, `98928`, `98929`, `98932`, `98934`, `98937`, `98939`, `98941`, `98943`, `98944`, `98946`, `98948`, `98950`, `98951`, `98952`, `98954`, `98956`, `98958`, `98959`, `98961`, `98963`, `98967`, `98968`, `98970`, `98973`, `98975`, `98976`, `98978`, `98979`, `98982`, `98983`, `98984`, `98986`, `98987`, `98988`, `98990`, `98991`, `98993`, `98996`, `98998`, `99000`, `99001`, `99003`, `99004`, `99005`, `99007`, `99009`, `99011`, `99013`, `99014`, `99016`, `99019`, `99020`, `99022`, `99024`, `99026`, `99028`, `99033`, `99034`, `99035`, `99037`, `99038`, `99040`, `99042`, `99044`, `99045`, `99047`, `99049`, `99051`, `99052`, `99054`, `99055`, `99058`, `99059`, `99061`, `99062`, `99064`, `99066`, `99067`, `99069`, `99071`, `99074`, `99075`, `99077`, `99079`, `99081`, `99083`, `99086`, `99088`, `99089`, `99091`, `99092`, `99094`, `99097`, `99099`, `99101`, `99103`, `99105`, `99107`, `99108`, `99109`, `99110`, `99111`, `99113`, `99114`, `99116`, `99118`, `99120`, `99122`, `99124`, `99126`, `99127`, `99129`, `99131`, `99132`, `99134`, `99136`, `99138`, `99140`, `99141`, `99143`, `99145`, `99148`, `99150`, `99152`, `99155`, `99157`, `99159`, `99161`, `99162`, `99164`, `99166`, `99167`, `99168`, `99170`, `99171`, `99173`, `99175`, `99177`, `99179`, `99181`, `99183`, `99184`, `99186`, `99188`, `99189`, `99192`, `99193`, `99195`, `99196`, `99197`, `99199`, `99201`, `99202`, `99204`, `99206`, `99209`, `99210`, `99212`, `99214`, `99216`, `99217`, `99219`, `99221`, `99223`, `99224`, `99226`, `99228`, `99229`, `99230`, `99232`, `99233`, `99235`, `99236`, `99237`, `99239`, `99240`, `99241`, `99243`, `99248`, `99249`, `99251`, `99254`, `99255`, `99256`, `99258`, `99259`, `99260`, `99262`, `99264`, `99265`, `99267`, `99269`, `99271`, `99274`, `99276`, `99277`, `99280`, `99281`, `99283`, `99285`, `99287`, `99289`, `99291`, `99293`, `99295`, `99297`, `99298`, `99300`, `99301`, `99303`, `99305`, `99306`, `99307`, `99308`, `99309`, `99311`, `99313`, `99314`, `99316`, `99317`, `99318`, `99320`, `99322`, `99324`, `99326`, `99328`, `99330`, `99332`, `99334`, `99337`, `99339`, `99341`, `99343`, `99345`, `99347`, `99351`, `99352`, `99354`, `99357`, `99359`, `99361`, `99363`, `99365`, `99368`, `99370`, `99372`, `99374`, `99376`, `99378`, `99380`, `99382`, `99383`, `99385`, `99386`, `99388`, `99390`, `99392`, `99394`, `99396`, `99398`, `99399`, `99401`, `99402`, `99403`, `99404`, `99407`, `99409`, `99411`, `99412`, `99414`, `99416`, `99418`, `99419`, `99422`, `99424`, `99425`, `99427`, `99428`, `99430`, `99431`, `99432`, `99434`, `99436`, `99437`, `99439`, `99443`, `99447`, `99449`, `99450`, `99451`, `99453`, `99455`, `99456`, `99457`, `99459`, `99460`, `99462`, `99463`, `99465`, `99467`, `99468`, `99470`, `99471`, `99473`, `99475`, `99477`, `99479`, `99481`, `99483`, `99485`, `99487`, `99489`, `99491`, `99493`, `99495`, `99496`, `99498`, `99499`, `99501`, `99503`, `99504`, `99506`, `99507`, `99509`, `99511`, `99513`, `99516`, `99517`, `99518`, `99522`, `99523`, `99524`, `99527`, `99529`, `99530`, `99532`, `99535`, `99537`, `99539`, `99540`, `99542`, `99544`, `99546`, `99548`, `99549`, `99551`, `99552`, `99554`, `99556`, `99557`, `99559`, `99561`, `99563`, `99564`, `99566`, `99567`, `99568`, `99570`, `99572`, `99574`, `99576`, `99577`, `99578`, `99579`, `99580`, `99582`, `99584`, `99586`, `99588`, `99590`, `99592`, `99594`, `99597`, `99598`, `99600`, `99602`, `99604`, `99607`, `99609`, `99611`, `99614`, `99615`, `99617`, `99620`, `99621`, `99624`, `99626`, `99628`, `99630`, `99632`, `99634`, `99636`, `99638`, `99639`, `99640`, `99642`, `99643`, `99644`, `99646`, `99652`, `99654`, `99656`, `99659`, `99661`, `99663`, `99665`, `99667`, `99670`, `99673`, `99675`, `99676`, `99678`, `99680`, `99682`, `99683`, `99686`, `99688`, `99689`, `99691`, `99692`, `99694`, `99695`, `99697`, `99698`, `99700`, `99702`, `99704`, `99706`, `99708`, `99709`, `99710`, `99713`, `99714`, `99715`, `99717`, `99720`, `99721`, `99722`, `99723`, `99725`, `99727`, `99728`, `99729`, `99731`, `99733`, `99736`, `99738`, `99740`, `99742`, `99743`, `99745`, `99746`, `99748`, `99749`, `99750`, `99752`, `99754`, `99756`, `99758`, `99760`, `99761`, `99762`, `99765`, `99766`, `99768`, `99769`, `99770`, `99772`, `99774`, `99780`, `99781`, `99783`, `99785`, `99786`, `99788`, `99790`, `99792`, `99794`, `99796`, `99798`, `99800`, `99803`, `99804`, `99805`, `99806`, `99808`, `99810`, `99812`, `99813`, `99815`, `99817`, `99819`, `99822`, `99824`, `99825`, `99826`, `99828`, `99831`, `99833`, `99835`, `99837`, `99839`, `99841`, `99842`, `99843`, `99844`, `99846`, `99848`, `99849`, `99851`, `99852`, `99855`, `99857`, `99859`, `99861`, `99863`, `99865`, `99866`, `99867`, `99868`, `99870`, `99874`, `99876`, `99879`, `99880`, `99882`, `99884`, `99885`, `99887`, `99888`, `99889`, `99891`, `99894`, `99896`, `99898`, `99901`, `99903`, `99906`, `99907`, `99910`, `99912`, `99914`, `99915`, `99917`, `99919`, `99922`, `99924`, `99925`, `99927`, `99929`, `99931`, `99933`, `99934`, `99936`, `99938`, `99940`, `99942`, `99944`, `99946`, `99948`, `99950`, `99951`, `99953`, `99956`, `99958`, `99960`, `99962`, `99964`, `99965`, `99967`, `99970`, `99972`, `99974`, `99976`, `99978`, `99980`, `99982`, `99983`, `99985`, `99986`, `99987`, `99989`, `99991`, `99993`, `99995`, `99997`, `99999`, `100000`, `100001`, `100003`, `100005`, `100007`, `100009`, `100010`, `100011`, `100013`, `100014`, `100016`, `100018`, `100019`, `100021`, `100023`, `100025`, `100026`, `100028`, `100029`, `100030`, `100033`, `100034`, `100036`, `100038`, `100039`, `100041`, `100043`, `100045`, `100046`, `100047`, `100050`, `100052`, `100054`, `100056`, `100059`, `100060`, `100061`, `100063`, `100065`, `100066`, `100068`, `100070`, `100072`, `100074`, `100075`, `100077`, `100078`, `100080`, `100084`, `100085`, `100086`, `100087`, `100089`, `100091`, `100093`, `100094`, `100096`, `100097`, `100098`, `100100`, `100101`, `100102`, `100104`, `100105`, `100107`, `100109`, `100110`, `100111`, `100113`, `100114`, `100115`, `100116`, `100117`, `100120`, `100122`, `100123`, `100124`, `100126`, `100128`, `100130`, `100134`, `100135`, `100137`, `100141`, `100144`, `100147`, `100149`, `100151`, `100153`, `100155`, `100156`, `100157`, `100159`, `100160`, `100162`, `100164`, `100166`, `100167`, `100168`, `100169`, `100171`, `100173`, `100175`, `100177`, `100178`, `100180`, `100182`, `100184`, `100186`, `100188`, `100189`, `100191`, `100195`, `100196`, `100197`, `100199`, `100201`, `100203`, `100206`, `100210`, `100213`, `100215`, `100218`, `100220`, `100221`, `100222`, `100223`, `100224`, `100226`, `100228`, `100230`, `100232`, `100233`, `100235`, `100237`, `100238`, `100239`, `100241`, `100242`, `100243`, `100245`, `100247`, `100249`, `100251`, `100254`, `100256`, `100257`, `100259`, `100261`, `100262`, `100264`, `100266`, `100267`, `100269`, `100270`, `100272`, `100273`, `100276`, `100277`, `100278`, `100280`, `100281`, `100283`, `100284`, `100285`, `100287`, `100289`, `100290`, `100291`, `100293`, `100295`, `100297`, `100299`, `100301`, `100303`, `100305`, `100307`, `100308`, `100309`, `100311`, `100312`, `100315`, `100317`, `100319`, `100321`, `100323`, `100325`, `100327`, `100329`, `100331`, `100332`, `100333`, `100334`, `100336`, `100338`, `100339`, `100341`, `100343`, `100344`, `100346`, `100347`, `100348`, `100349`, `100350`, `100351`, `100353`, `100355`, `100359`, `100360`, `100362`, `100364`, `100366`, `100367`, `100369`, `100370`, `100371`, `100373`, `100374`, `100378`, `100379`, `100380`, `100382`, `100384`, `100386`, `100388`, `100390`, `100392`, `100394`, `100396`, `100397`, `100399`, `100401`, `100402`, `100403`, `100405`, `100409`, `100410`, `100412`, `100413`, `100414`, `100416`, `100418`, `100419`, `100421`, `100423`, `100424`, `100426`, `100427`, `100428`, `100429`, `100430`, `100431`, `100432`, `100433`, `100434`, `100435`, `100436`, `100438`, `100439`, `100441`, `100443`, `100445`, `100447`, `100449`, `100451`, `100452`, `100455`, `100456`, `100457`, `100459`, `100460`, `100462`, `100465`, `100468`, `100470`, `100472`, `100474`, `100476`, `100477`, `100481`, `100483`, `100484`, `100486`, `100488`, `100489`, `100491`, `100492`, `100493`, `100495`, `100497`, `100499`, `100501`, `100502`, `100505`, `100507`, `100509`, `100512`, `100515`, `100517`, `100520`, `100521`, `100523`, `100525`, `100526`, `100528`, `100530`, `100531`, `100535`, `100536`, `100538`, `100539`, `100541`, `100542`, `100545`, `100547`, `100549`, `100551`, `100553`, `100555`, `100557`, `100559`, `100560`, `100561`, `100562`, `100563`, `100565`, `100567`, `100568`, `100570`, `100572`, `100573`, `100574`, `100576`, `100578`, `100579`, `100580`, `100581`, `100583`, `100585`, `100586`, `100588`, `100590`, `100591`, `100592`, `100593`, `100594`, `100596`, `100598`, `100600`, `100602`, `100604`, `100605`, `100607`, `100609`, `100610`, `100612`, `100614`, `100615`, `100617`, `100618`, `100619`, `100621`, `100622`, `100623`, `100624`, `100625`, `100627`, `100630`, `100632`, `100634`, `100636`, `100637`, `100638`, `100639`, `100641`, `100643`, `100645`, `100647`, `100648`, `100650`, `100651`, `100652`, `100654`, `100656`, `100657`, `100658`, `100660`, `100661`, `100663`, `100664`, `100667`, `100668`, `100670`, `100671`, `100673`, `100677`, `100679`, `100681`, `100683`, `100684`, `100686`, `100688`, `100690`, `100692`, `100694`, `100695`, `100697`, `100698`, `100700`, `100701`, `100703`, `100705`, `100706`, `100708`, `100710`, `100711`, `100713`, `100714`, `100719`, `100721`, `100723`, `100724`, `100727`, `100728`, `100730`, `100732`, `100733`, `100735`, `100737`, `100739`, `100743`, `100745`, `100747`, `100749`, `100752`, `100754`, `100755`, `100756`, `100758`, `100759`, `100761`, `100762`, `100764`, `100766`, `100767`, `100768`, `100769`, `100770`, `100771`, `100774`, `100775`, `100777`, `100779`, `100781`, `100783`, `100784`, `100786`, `100788`, `100789`, `100791`, `100793`, `100795`, `100798`, `100799`, `100801`, `100802`, `100803`, `100804`, `100805`, `100807`, `100809`, `100811`, `100813`, `100815`, `100817`, `100818`, `100820`, `100821`, `100822`, `100824`, `100825`, `100827`, `100828`, `100830`, `100832`, `100833`, `100834`, `100837`, `100842`, `100843`, `100844`, `100845`, `100846`, `100848`, `100850`, `100852`, `100854`, `100856`, `100857`, `100859`, `100861`, `100862`, `100864`, `100866`, `100868`, `100869`, `100870`, `100872`, `100874`, `100876`, `100877`, `100879`, `100880`, `100881`, `100883`, `100884`, `100886`, `100888`, `100890`, `100892`, `100894`, `100897`, `100899`, `100901`, `100902`, `100904`, `100905`, `100907`, `100908`, `100910`, `100911`, `100914`, `100917`, `100918`, `100920`, `100921`, `100923`, `100927`, `100929`, `100930`, `100931`, `100933`, `100935`, `100936`, `100937`, `100939`, `100941`, `100943`, `100946`, `100948`, `100949`, `100951`, `100953`, `100955`, `100957`, `100959`, `100960`, `100962`, `100963`, `100964`, `100965`, `100967`, `100969`, `100970`, `100971`, `100973`, `100975`, `100977`, `100979`, `100980`, `100981`, `100982`, `100983`, `100984`, `100986`, `100989`, `100991`, `100992`, `100994`, `100995`, `100997`, `100999`, `101000`, `101001`, `101003`, `101005`, `101007`, `101009`, `101011`, `101012`, `101014`, `101015`, `101017`, `101018`, `101019`, `101020`, `101021`, `101022`, `101023`, `101027`, `101029`, `101030`, `101032`, `101033`, `101035`, `101036`, `101037`, `101042`, `101043`, `101046`, `101048`, `101049`, `101051`, `101053`, `101054`, `101056`, `101058`, `101059`, `101060`, `101062`, `101064`, `101065`, `101067`, `101069`, `101071`, `101073`, `101075`, `101077`, `101078`, `101080`, `101081`, `101082`, `101083`, `101084`, `101087`, `101088`, `101089`, `101090`, `101092`, `101094`, `101096`, `101098`, `101100`, `101102`, `101104`, `101106`, `101107`, `101109`, `101110`, `101112`, `101114`, `101115`, `101117`, `101119`, `101121`, `101123`, `101125`, `101127`, `101128`, `101130`, `101131`, `101133`, `101135`, `101136`, `101137`, `101140`, `101142`, `101144`, `101145`, `101146`, `101148`, `101150`, `101151`, `101152`, `101154`, `101156`, `101158`, `101160`, `101162`, `101164`, `101166`, `101167`, `101169`, `101170`, `101172`, `101174`, `101176`, `101178`, `101179`, `101181`, `101183`, `101184`, `101185`, `101186`, `101188`, `101189`, `101192`, `101194`, `101196`, `101197`, `101199`, `101200`, `101201`, `101202`, `101204`, `101206`, `101208`, `101209`, `101210`, `101211`, `101212`, `101214`, `101215`, `101217`, `101218`, `101220`, `101222`, `101224`, `101227`, `101229`, `101230`, `101232`, `101234`, `101236`, `101238`, `101239`, `101241`, `101244`, `101245`, `101249`, `101250`, `101252`, `101254`, `101256`, `101258`, `101260`, `101261`, `101263`, `101264`, `101265`, `101267`, `101268`, `101270`, `101271`, `101273`, `101275`, `101277`, `101278`, `101280`, `101282`, `101284`, `101286`, `101288`, `101290`, `101292`, `101293`, `101295`, `101296`, `101297`, `101298`, `101299`, `101302`, `101304`, `101305`, `101307`, `101308`, `101310`, `101312`, `101314`, `101316`, `101317`, `101319`, `101320`, `101322`, `101323`, `101324`, `101325`, `101326`, `101327`, `101329`, `101331`, `101333`, `101335`, `101337`, `101338`, `101339`, `101340`, `101342`, `101343`, `101345`, `101347`, `101349`, `101353`, `101354`, `101355`, `101357`, `101359`, `101361`, `101363`, `101368`, `101370`, `101371`, `101373`, `101376`, `101377`, `101379`, `101380`, `101382`, `101384`, `101386`, `101388`, `101390`, `101392`, `101393`, `101394`, `101397`, `101399`, `101401`, `101403`, `101404`, `101405`, `101407`, `101409`, `101411`, `101412`, `101413`, `101414`, `101417`, `101418`, `101419`, `101421`, `101423`, `101425`, `101426`, `101428`, `101430`, `101432`, `101434`, `101435`, `101436`, `101437`, `101438`, `101439`, `101441`, `101443`, `101445`, `101446`, `101447`, `101450`, `101452`, `101453`, `101455`, `101457`, `101460`, `101462`, `101464`, `101466`, `101468`, `101469`, `101471`, `101473`, `101475`, `101476`, `101477`, `101478`, `101481`, `101483`, `101484`, `101486`, `101488`, `101489`, `101490`, `101491`, `101492`, `101493`, `101495`, `101497`, `101498`, `101499`, `101501`, `101503`, `101505`, `101507`, `101509`, `101511`, `101512`, `101514`, `101516`, `101519`, `101520`, `101521`, `101523`, `101524`, `101526`, `101527`, `101528`, `101529`, `101531`, `101533`, `101535`, `101537`, `101538`, `101539`, `101541`, `101543`, `101544`, `101546`, `101548`, `101550`, `101552`, `101554`, `101555`, `101556`, `101557`, `101558`, `101559`, `101564`, `101566`, `101568`, `101569`, `101570`, `101571`, `101572`, `101574`, `101575`, `101579`, `101581`, `101583`, `101585`, `101586`, `101587`, `101589`, `101591`, `101593`, `101594`, `101596`, `101599`, `101601`, `101602`, `101605`, `101609`, `101611`, `101612`, `101614`, `101616`, `101619`, `101621`, `101624`, `101625`, `101627`, `101629`, `101631`, `101633`, `101635`, `101638`, `101640`, `101642`, `101643`, `101645`, `101646`, `101648`, `101649`, `101650`, `101651`, `101653`, `101654`, `101656`, `101658`, `101660`, `101661`, `101663`, `101664`, `101666`, `101667`, `101668`, `101670`, `101672`, `101676`, `101678`, `101680`, `101682`, `101683`, `101688`, `101689`, `101691`, `101695`, `101697`, `101698`, `101699`, `101701`, `101702`, `101703`, `101705`, `101707`, `101709`, `101710`, `101712`, `101714`, `101716`, `101718`, `101720`, `101722`, `101723`, `101725`, `101726`, `101728`, `101729`, `101730`, `101732`, `101733`, `101735`, `101737`, `101738`, `101739`, `101741`, `101742`, `101743`, `101745`, `101747`, `101749`, `101751`, `101752`, `101754`, `101756`, `101758`, `101760`, `101762`, `101764`, `101766`, `101768`, `101769`, `101771`, `101772`, `101774`, `101776`, `101777`, `101779`, `101781`, `101782`, `101784`, `101786`, `101788`, `101790`, `101791`, `101792`, `101793`, `101795`, `101797`, `101798`, `101799`, `101800`, `101802`, `101805`, `101807`, `101809`, `101810`, `101811`, `101812`, `101814`, `101815`, `101816`, `101818`, `101820`, `101821`, `101823`, `101825`, `101827`, `101829`, `101831`, `101833`, `101835`, `101837`, `101839`, `101841`, `101842`, `101844`, `101846`, `101847`, `101848`, `101849`, `101851`, `101853`, `101854`, `101856`, `101858`, `101859`, `101861`, `101863`, `101864`, `101866`, `101868`, `101870`, `101872`, `101874`, `101875`, `101877`, `101878`, `101879`, `101880`, `101881`, `101882`, `101884`, `101886`, `101888`, `101889`, `101891`, `101893`, `101894`, `101895`, `101897`, `101900`, `101903`, `101905`, `101906`, `101907`, `101908`, `101909`, `101911`, `101913`, `101915`, `101916`, `101918`, `101921`, `101922`, `101923`, `101924`, `101926`, `101928`, `101930`, `101931`, `101933`, `101935`, `101937`, `101939`, `101941`, `101943`, `101945`, `101947`, `101948`, `101950`, `101952`, `101955`, `101956`, `101958`, `101960`, `101962`, `101964`, `101965`, `101967`, `101968`, `101970`, `101972`, `101974`, `101976`, `101978`, `101980`, `101982`, `101984`, `101985`, `101987`, `101989`, `101990`, `101991`, `101994`, `101995`, `101998`, `102000`, `102001`, `102003`, `102005`, `102006`, `102007`, `102009`, `102011`, `102013`, `102014`, `102016`, `102018`, `102020`, `102023`, `102024`, `102026`, `102027`, `102029`, `102031`, `102032`, `102034`, `102035`, `102037`, `102038`, `102040`, `102042`, `102044`, `102047`, `102049`, `102051`, `102053`, `102055`, `102057`, `102058`, `102059`, `102061`, `102063`, `102064`, `102066`, `102067`, `102069`, `102071`, `102072`, `102075`, `102077`, `102078`, `102080`, `102082`, `102084`, `102086`, `102088`, `102091`, `102093`, `102094`, `102096`, `102097`, `102099`, `102101`, `102103`, `102106`, `102108`, `102110`, `102112`, `102115`, `102116`, `102118`, `102120`, `102122`, `102124`, `102126`, `102128`, `102129`, `102130`, `102132`, `102133`, `102135`, `102137`, `102139`, `102141`, `102142`, `102146`, `102147`, `102148`, `102150`, `102154`, `102155`, `102157`, `102158`, `102160`, `102162`, `102165`, `102167`, `102170`, `102171`, `102173`, `102174`, `102177`, `102182`, `102183`, `102185`, `102187`, `102190`, `102191`, `102192`, `102193`, `102194`, `102196`, `102198`, `102200`, `102202`, `102205`, `102207`, `102210`, `102212`, `102214`, `102216`, `102218`, `102220`, `102222`, `102224`, `102227`, `102228`, `102230`, `102232`, `102233`, `102235`, `102237`, `102242`, `102244`, `102246`, `102248`, `102250`, `102252`, `102254`, `102255`, `102256`, `102258`, `102260`, `102262`, `102263`, `102265`, `102267`, `102269`, `102270`, `102271`, `102276`, `102278`, `102280`, `102281`, `102283`, `102285`, `102287`, `102289`, `102291`, `102293`, `102294`, `102296`, `102297`, `102298`, `102299`, `102301`, `102302`, `102303`, `102304`, `102307`, `102308`, `102310`, `102311`, `102313`, `102315`, `102316`, `102318`, `102319`, `102321`, `102324`, `102325`, `102327`, `102329`, `102331`, `102332`, `102335`, `102337`, `102339`, `102341`, `102343`, `102345`, `102347`, `102349`, `102350`, `102351`, `102352`, `102353`, `102355`, `102357`, `102359`, `102361`, `102363`, `102365`, `102367`, `102369`, `102370`, `102372`, `102374`, `102375`, `102377`, `102379`, `102380`, `102382`, `102384`, `102386`, `102388`, `102389`, `102390`, `102391`, `102393`, `102394`, `102395`, `102397`, `102399`, `102400`, `102401`, `102402`, `102404`, `102406`, `102407`, `102409`, `102411`, `102412`, `102414`, `102416`, `102418`, `102419`, `102421`, `102423`, `102425`, `102426`, `102428`, `102430`, `102432`, `102434`, `102436`, `102438`, `102440`, `102442`, `102444`, `102446`, `102447`, `102449`, `102452`, `102454`, `102456`, `102458`, `102460`, `102463`, `102464`, `102466`, `102468`, `102470`, `102472`, `102474`, `102476`, `102477`, `102478`, `102479`, `102480`, `102482`, `102484`, `102485`, `102487`, `102488`, `102489`, `102490`, `102494`, `102495`, `102500`, `102505`, `102507`, `102509`, `102511`, `102513`, `102515`, `102516`, `102518`, `102520`, `102522`, `102524`, `102527`, `102529`, `102531`, `102532`, `102535`, `102536`, `102537`, `102539`, `102540`, `102542`, `102545`, `102546`, `102548`, `102550`, `102551`, `102552`, `102553`, `102554`, `102556`, `102558`, `102560`, `102562`, `102563`, `102564`, `102566`, `102568`, `102570`, `102572`, `102574`, `102576`, `102577`, `102579`, `102580`, `102581`, `102583`, `102585`, `102587`, `102588`, `102589`, `102591`, `102593`, `102595`, `102597`, `102599`, `102600`, `102602`, `102603`, `102605`, `102607`, `102609`, `102611`, `102612`, `102614`, `102615`, `102617`, `102618`, `102620`, `102622`, `102624`, `102626`, `102627`, `102628`, `102630`, `102631`, `102633`, `102634`, `102635`, `102636`, `102639`, `102641`, `102643`, `102645`, `102647`, `102649`, `102651`, `102653`, `102654`, `102656`, `102658`, `102660`, `102662`, `102664`, `102665`, `102666`, `102668`, `102670`, `102672`, `102674`, `102676`, `102677`, `102679`, `102680`, `102682`, `102683`, `102687`, `102688`, `102690`, `102693`, `102696`, `102698`, `102699`, `102701`, `102702`, `102704`, `102706`, `102707`, `102709`, `102710`, `102712`, `102713`, `102715`, `102718`, `102719`, `102721`, `102723`, `102725`, `102726`, `102727`, `102728`, `102729`, `102731`, `102733`, `102735`, `102737`, `102739`, `102741`, `102742`, `102744`, `102746`, `102748`, `102751`, `102753`, `102755`, `102757`, `102758`, `102760`, `102761`, `102762`, `102764`, `102765`, `102767`, `102769`, `102771`, `102772`, `102776`, `102778`, `102779`, `102780`, `102782`, `102783`, `102784`, `102785`, `102788`, `102789`, `102792`, `102794`, `102796`, `102797`, `102798`, `102799`, `102801`, `102803`, `102805`, `102806`, `102808`, `102810`, `102812`, `102814`, `102815`, `102817`, `102818`, `102819`, `102820`, `102822`, `102824`, `102825`, `102828`, `102830`, `102831`, `102832`, `102834`, `102836`, `102838`, `102839`, `102840`, `102842`, `102844`, `102846`, `102848`, `102849`, `102851`, `102852`, `102856`, `102858`, `102860`, `102864`, `102866`, `102868`, `102869`, `102871`, `102873`, `102875`, `102876`, `102877`, `102878`, `102880`, `102882`, `102883`, `102884`, `102886`, `102888`, `102889`, `102891`, `102893`, `102895`, `102897`, `102899`, `102901`, `102902`, `102904`, `102905`, `102909`, `102910`, `102912`, `102914`, `102916`, `102917`, `102919`, `102920`, `102922`, `102923`, `102925`, `102927`, `102929`, `102932`, `102934`, `102936`, `102938`, `102942`, `102944`, `102946`, `102948`, `102950`, `102952`, `102954`, `102955`, `102957`, `102959`, `102961`, `102963`, `102964`, `102969`, `102972`, `102973`, `102974`, `102975`, `102977`, `102978`, `102980`, `102982`, `102984`, `102985`, `102987`, `102989`, `102990`, `102992`, `102994`, `102996`, `102998`, `103000`, `103002`, `103003`, `103005`, `103007`, `103008`, `103009`, `103011`, `103016`, `103018`, `103019`, `103020`, `103022`, `103023`, `103026`, `103028`, `103030`, `103033`, `103035`, `103037`, `103038`, `103040`, `103041`, `103043`, `103045`, `103047`, `103049`, `103051`, `103052`, `103053`, `103054`, `103055`, `103057`, `103058`, `103059`, `103061`, `103063`, `103065`, `103066`, `103068`, `103070`, `103072`, `103074`, `103076`, `103077`, `103079`, `103081`, `103082`, `103083`, `103085`, `103087`, `103090`, `103091`, `103093`, `103095`, `103097`, `103099`, `103103`, `103104`, `103106`, `103108`, `103109`, `103111`, `103113`, `103115`, `103117`, `103119`, `103122`, `103124`, `103126`, `103127`, `103128`, `103131`, `103132`, `103134`, `103135`, `103137`, `103139`, `103140`, `103144`, `103145`, `103147`, `103148`, `103149`, `103150`, `103152`, `103153`, `103156`, `103158`, `103160`, `103162`, `103164`, `103166`, `103167`, `103168`, `103170`, `103171`, `103172`, `103174`, `103176`, `103179`, `103180`, `103182`, `103183`, `103185`, `103186`, `103188`, `103190`, `103191`, `103194`, `103197`, `103199`, `103200`, `103202`, `103204`, `103206`, `103207`, `103209`, `103211`, `103212`, `103213`, `103215`, `103217`, `103218`, `103219`, `103221`, `103223`, `103224`, `103226`, `103227`, `103230`, `103231`, `103233`, `103234`, `103236`, `103237`, `103238`, `103239`, `103241`, `103243`, `103247`, `103249`, `103251`, `103252`, `103257`, `103258`, `103259`, `103261`, `103263`, `103264`, `103265`, `103267`, `103269`, `103273`, `103275`, `103277`, `103278`, `103279`, `103282`, `103284`, `103286`, `103288`, `103290`, `103292`, `103293`, `103295`, `103297`, `103299`, `103301`, `103304`, `103306`, `103309`, `103310`, `103312`, `103315`, `103316`, `103318`, `103320`, `103322`, `103323`, `103324`, `103326`, `103328`, `103329`, `103331`, `103332`, `103334`, `103336`, `103338`, `103340`, `103343`, `103345`, `103346`, `103347`, `103349`, `103351`, `103352`, `103353`, `103354`, `103356`, `103357`, `103359`, `103361`, `103362`, `103364`, `103366`, `103368`, `103370`, `103372`, `103374`, `103376`, `103378`, `103380`, `103382`, `103383`, `103384`, `103385`, `103388`, `103389`, `103391`, `103392`, `103393`, `103394`, `103396`, `103398`, `103400`, `103402`, `103404`, `103405`, `103407`, `103409`, `103411`, `103413`, `103416`, `103418`, `103421`, `103422`, `103425`, `103426`, `103427`, `103428`, `103429`, `103430`, `103432`, `103434`, `103436`, `103438`, `103439`, `103441`, `103442`, `103443`, `103445`, `103449`, `103450`, `103451`, `103453`, `103455`, `103457`, `103459`, `103461`, `103463`, `103464`, `103469`, `103470`, `103472`, `103474`, `103476`, `103477`, `103479`, `103481`, `103482`, `103483`, `103486`, `103487`, `103489`, `103491`, `103493`, `103495`, `103496`, `103499`, `103500`, `103501`, `103503`, `103504`, `103505`, `103507`, `103509`, `103510`, `103513`, `103514`, `103517`, `103519`, `103522`, `103524`, `103526`, `103528`, `103529`, `103531`, `103534`, `103535`, `103537`, `103538`, `103539`, `103541`, `103542`, `103543`, `103545`, `103547`, `103549`, `103551`, `103552`, `103555`, `103557`, `103559`, `103561`, `103562`, `103563`, `103565`, `103567`, `103569`, `103570`, `103571`, `103572`, `103574`, `103575`, `103577`, `103579`, `103581`, `103582`, `103584`, `103589`, `103591`, `103593`, `103595`, `103597`, `103598`, `103600`, `103602`, `103603`, `103604`, `103606`, `103608`, `103609`, `103610`, `103611`, `103613`, `103615`, `103617`, `103618`, `103620`, `103621`, `103623`, `103625`, `103627`, `103629`, `103631`, `103633`, `103635`, `103637`, `103639`, `103640`, `103641`, `103643`, `103645`, `103647`, `103649`, `103651`, `103653`, `103654`, `103655`, `103657`, `103659`, `103661`, `103663`, `103664`, `103665`, `103667`, `103669`, `103671`, `103673`, `103675`, `103677`, `103680`, `103682`, `103683`, `103685`, `103687`, `103689`, `103691`, `103693`, `103695`, `103697`, `103699`, `103701`, `103702`, `103703`, `103705`, `103707`, `103708`, `103709`, `103713`, `103714`, `103716`, `103718`, `103720`, `103721`, `103723`, `103726`, `103728`, `103729`, `103731`, `103733`, `103735`, `103737`, `103739`, `103741`, `103743`, `103745`, `103746`, `103747`, `103749`, `103751`, `103752`, `103754`, `103755`, `103757`, `103758`, `103760`, `103762`, `103764`, `103765`, `103766`, `103768`, `103769`, `103771`, `103772`, `103773`, `103775`, `103777`, `103779`, `103781`, `103782`, `103784`, `103785`, `103787`, `103789`, `103790`, `103792`, `103793`, `103795`, `103797`, `103799`, `103800`, `103802`, `103804`, `103805`, `103808`, `103810`, `103811`, `103812`, `103814`, `103816`, `103819`, `103820`, `103823`, `103824`, `103826`, `103827`, `103829`, `103830`, `103832`, `103834`, `103836`, `103838`, `103839`, `103842`, `103844`, `103846`, `103848`, `103852`, `103853`, `103856`, `103857`, `103858`, `103860`, `103862`, `103863`, `103865`, `103866`, `103867`, `103868`, `103869`, `103872`, `103874`, `103876`, `103878`, `103881`, `103883`, `103885`, `103886`, `103887`, `103889`, `103890`, `103892`, `103894`, `103896`, `103898`, `103900`, `103902`, `103904`, `103907`, `103909`, `103911`, `103913`, `103915`, `103917`, `103918`, `103920`, `103922`, `103924`, `103926`, `103928`, `103930`, `103932`, `103933`, `103936`, `103937`, `103939`, `103940`, `103943`, `103945`, `103947`, `103949`, `103951`, `103952`, `103955`, `103957`, `103958`, `103960`, `103962`, `103963`, `103965`, `103966`, `103968`, `103970`, `103973`, `103974`, `103975`, `103977`, `103979`, `103981`, `103983`, `103984`, `103986`, `103987`, `103988`, `103990`, `103992`, `103994`, `103995`, `103997`, `103999`, `104001`, `104002`, `104003`, `104005`, `104007`, `104008`, `104010`, `104015`, `104017`, `104019`, `104020`, `104022`, `104024`, `104026`, `104028`, `104030`, `104032`, `104033`, `104035`, `104037`, `104038`, `104041`, `104042`, `104043`, `104044`, `104045`, `104046`, `104048`, `104050`, `104052`, `104053`, `104055`, `104057`, `104059`, `104062`, `104064`, `104066`, `104070`, `104072`, `104074`, `104076`, `104078`, `104080`, `104082`, `104085`, `104087`, `104088`, `104091`, `104092`, `104094`, `104095`, `104096`, `104097`, `104101`, `104103`, `104104`, `104106`, `104107`, `104110`, `104111`, `104113`, `104115`, `104118`, `104120`, `104121`, `104123`, `104125`, `104127`, `104128`, `104130`, `104133`, `104134`, `104136`, `104137`, `104138`, `104140`, `104142`, `104143`, `104145`, `104148`, `104150`, `104152`, `104155`, `104156`, `104158`, `104160`, `104162`, `104164`, `104167`, `104169`, `104170`, `104171`, `104172`, `104173`, `104175`, `104177`, `104178`, `104179`, `104180`, `104181`, `104183`, `104184`, `104186`, `104188`, `104189`, `104190`, `104191`, `104192`, `104193`, `104194`, `104197`, `104198`, `104200`, `104201`, `104202`, `104204`, `104205`, `104207`, `104209`, `104211`, `104212`, `104213`, `104217`, `104221`, `104223`, `104225`, `104227`, `104228`, `104229`, `104231`, `104233`, `104235`, `104238`, `104240`, `104242`, `104243`, `104244`, `104245`, `104247`, `104249`, `104251`, `104253`, `104255`, `104256`, `104257`, `104260`, `104261`, `104263`, `104265`, `104266`, `104267`, `104268`, `104269`, `104273`, `104274`, `104275`, `104277`, `104279`, `104281`, `104282`, `104284`, `104285`, `104287`, `104289`, `104290`, `104292`, `104294`, `104295`, `104296`, `104298`, `104301`, `104303`, `104305`, `104307`, `104308`, `104309`, `104311`, `104314`, `104316`, `104318`, `104321`, `104323`, `104324`, `104326`, `104327`, `104329`, `104331`, `104334`, `104336`, `104338`, `104339`, `104341`, `104342`, `104347`, `104349`, `104353`, `104355`, `104357`, `104359`, `104360`, `104362`, `104363`, `104364`, `104366`, `104368`, `104369`, `104372`, `104374`, `104376`, `104377`, `104379`, `104381`, `104382`, `104384`, `104386`, `104387`, `104389`, `104391`, `104392`, `104393`, `104394`, `104395`, `104397`, `104398`, `104399`, `104401`, `104403`, `104405`, `104407`, `104409`, `104410`, `104412`, `104413`, `104416`, `104418`, `104420`, `104422`, `104424`, `104425`, `104426`, `104427`, `104428`, `104429`, `104430`, `104431`, `104433`, `104435`, `104437`, `104440`, `104441`, `104442`, `104443`, `104447`, `104450`, `104452`, `104453`, `104456`, `104457`, `104458`, `104460`, `104462`, `104463`, `104466`, `104467`, `104468`, `104469`, `104471`, `104472`, `104473`, `104474`, `104476`, `104477`, `104479`, `104481`, `104483`, `104485`, `104486`, `104488`, `104490`, `104491`, `104492`, `104494`, `104496`, `104498`, `104500`, `104502`, `104504`, `104505`, `104507`, `104509`, `104511`, `104512`, `104514`, `104516`, `104517`, `104518`, `104520`, `104523`, `104524`, `104525`, `104527`, `104529`, `104533`, `104534`, `104536`, `104538`, `104539`, `104541`, `104543`, `104545`, `104546`, `104547`, `104548`, `104549`, `104551`, `104552`, `104554`, `104555`, `104557`, `104559`, `104561`, `104563`, `104564`, `104565`, `104567`, `104569`, `104571`, `104573`, `104575`, `104577`, `104579`, `104580`, `104582`, `104585`, `104586`, `104588`, `104590`, `104592`, `104593`, `104595`, `104597`, `104598`, `104599`, `104601`, `104603`, `104605`, `104606`, `104607`, `104609`, `104611`, `104613`, `104615`, `104617`, `104619`, `104620`, `104622`, `104624`, `104626`, `104628`, `104629`, `104630`, `104632`, `104633`, `104634`, `104636`, `104639`, `104642`, `104644`, `104646`, `104647`, `104648`, `104649`, `104651`, `104653`, `104655`, `104656`, `104658`, `104660`, `104661`, `104663`, `104664`, `104665`, `104667`, `104669`, `104671`, `104673`, `104674`, `104675`, `104677`, `104679`, `104681`, `104683`, `104684`, `104686`, `104688`, `104690`, `104692`, `104694`, `104696`, `104698`, `104699`, `104700`, `104702`, `104704`, `104706`, `104707`, `104708`, `104710`, `104711`, `104713`, `104714`, `104716`, `104718`, `104719`, `104720`, `104722`, `104723`, `104725`, `104726`, `104728`, `104730`, `104731`, `104732`, `104734`, `104736`, `104737`, `104738`, `104740`, `104742`, `104743`, `104744`, `104746`, `104747`, `104749`, `104751`, `104753`, `104754`, `104756`, `104758`, `104760`, `104763`, `104764`, `104766`, `104767`, `104769`, `104771`, `104773`, `104775`, `104778`, `104780`, `104782`, `104784`, `104786`, `104790`, `104792`, `104794`, `104796`, `104797`, `104798`, `104800`, `104801`, `104803`, `104805`, `104806`, `104807`, `104809`, `104811`, `104813`, `104815`, `104817`, `104818`, `104820`, `104821`, `104823`, `104825`, `104827`, `104828`, `104830`, `104831`, `104833`, `104835`, `104836`, `104841`, `104842`, `104844`, `104845`, `104847`, `104848`, `104850`, `104853`, `104855`, `104857`, `104858`, `104860`, `104861`, `104862`, `104864`, `104866`, `104867`, `104869`, `104871`, `104873`, `104874`, `104875`, `104876`, `104878`, `104880`, `104881`, `104883`, `104885`, `104887`, `104888`, `104889`, `104891`, `104893`, `104896`, `104897`, `104899`, `104901`, `104902`, `104903`, `104904`, `104906`, `104907`, `104909`, `104910`, `104911`, `104913`, `104915`, `104917`, `104919`, `104921`, `104923`, `104926`, `104928`, `104930`, `104932`, `104934`, `104936`, `104938`, `104940`, `104941`, `104942`, `104943`, `104945`, `104946`, `104948`, `104950`, `104951`, `104953`, `104954`, `104956`, `104957`, `104959`, `104960`, `104961`, `104963`, `104965`, `104967`, `104969`, `104970`, `104971`, `104973`, `104974`, `104975`, `104977`, `104979`, `104981`, `104982`, `104983`, `104985`, `104987`, `104990`, `104993`, `104995`, `104997`, `104998`, `104999`, `105002`, `105003`, `105004`, `105005`, `105007`, `105009`, `105011`, `105012`, `105014`, `105016`, `105018`, `105020`, `105022`, `105023`, `105025`, `105027`, `105029`, `105030`, `105032`, `105033`, `105035`, `105039`, `105041`, `105043`, `105045`, `105047`, `105049`, `105052`, `105054`, `105056`, `105060`, `105062`, `105064`, `105066`, `105068`, `105069`, `105071`, `105072`, `105074`, `105075`, `105077`, `105079`, `105081`, `105083`, `105085`, `105087`, `105089`, `105091`, `105093`, `105094`, `105095`, `105096`, `105098`, `105100`, `105102`, `105104`, `105106`, `105107`, `105109`, `105111`, `105112`, `105113`, `105115`, `105117`, `105120`, `105122`, `105123`, `105124`, `105126`, `105127`, `105128`, `105130`, `105131`, `105133`, `105135`, `105137`, `105139`, `105141`, `105142`, `105143`, `105145`, `105146`, `105148`, `105149`, `105150`, `105151`, `105153`, `105155`, `105156`, `105157`, `105159`, `105163`, `105165`, `105166`, `105169`, `105171`, `105173`, `105175`, `105176`, `105178`, `105180`, `105182`, `105184`, `105186`, `105187`, `105189`, `105191`, `105193`, `105197`, `105199`, `105203`, `105205`, `105207`, `105209`, `105211`, `105213`, `105215`, `105218`, `105220`, `105221`, `105223`, `105225`, `105227`, `105229`, `105230`, `105233`, `105234`, `105235`, `105237`, `105239`, `105241`, `105242`, `105244`, `105246`, `105247`, `105249`, `105250`, `105252`, `105253`, `105255`, `105257`, `105259`, `105260`, `105262`, `105264`, `105266`, `105267`, `105269`, `105271`, `105273`, `105275`, `105277`, `105279`, `105281`, `105283`, `105285`, `105287`, `105288`, `105289`, `105291`, `105293`, `105295`, `105297`, `105299`, `105303`, `105304`, `105307`, `105308`, `105310`, `105311`, `105313`, `105315`, `105317`, `105319`, `105321`, `105323`, `105325`, `105328`, `105330`, `105332`, `105333`, `105334`, `105336`, `105338`, `105340`, `105342`, `105344`, `105346`, `105348`, `105349`, `105350`, `105352`, `105354`, `105356`, `105358`, `105360`, `105362`, `105364`, `105365`, `105367`, `105368`, `105369`, `105371`, `105372`, `105374`, `105375`, `105376`, `105378`, `105379`, `105381`, `105383`, `105384`, `105386`, `105388`, `105390`, `105392`, `105394`, `105396`, `105398`, `105400`, `105403`, `105404`, `105406`, `105408`, `105410`, `105412`, `105414`, `105415`, `105416`, `105417`, `105419`, `105422`, `105424`, `105426`, `105428`, `105430`, `105431`, `105433`, `105435`, `105437`, `105440`, `105443`, `105444`, `105445`, `105447`, `105449`, `105450`, `105452`, `105454`, `105455`, `105457`, `105458`, `105460`, `105462`, `105465`, `105467`, `105468`, `105470`, `105472`, `105474`, `105476`, `105478`, `105479`, `105481`, `105483`, `105486`, `105487`, `105489`, `105491`, `105493`, `105495`, `105497`, `105498`, `105499`, `105501`, `105503`, `105505`, `105506`, `105507`, `105508`, `105509`, `105511`, `105513`, `105515`, `105516`, `105518`, `105519`, `105521`, `105522`, `105524`, `105526`, `105529`, `105530`, `105531`, `105533`, `105534`, `105535`, `105537`, `105542`, `105543`, `105545`, `105547`, `105549`, `105551`, `105552`, `105554`, `105556`, `105558`, `105560`, `105562`, `105564`, `105566`, `105567`, `105569`, `105570`, `105572`, `105574`, `105576`, `105578`, `105580`, `105582`, `105584`, `105586`, `105587`, `105588`, `105590`, `105593`, `105595`, `105596`, `105597`, `105598`, `105600`, `105602`, `105604`, `105606`, `105607`, `105608`, `105610`, `105612`, `105614`, `105615`, `105617`, `105619`, `105621`, `105623`, `105624`, `105626`, `105628`, `105629`, `105630`, `105631`, `105633`, `105635`, `105637`, `105638`, `105640`, `105641`, `105643`, `105645`, `105647`, `105649`, `105651`, `105652`, `105653`, `105654`, `105656`, `105658`, `105660`, `105662`, `105663`, `105665`, `105666`, `105668`, `105670`, `105672`, `105674`, `105676`, `105678`, `105679`, `105680`, `105682`, `105684`, `105685`, `105687`, `105689`, `105690`, `105692`, `105693`, `105694`, `105695`, `105696`, `105698`, `105699`, `105703`, `105705`, `105706`, `105708`, `105710`, `105711`, `105713`, `105715`, `105717`, `105719`, `105721`, `105723`, `105725`, `105727`, `105729`, `105731`, `105733`, `105734`, `105736`, `105737`, `105739`, `105741`, `105742`, `105743`, `105745`, `105748`, `105752`, `105754`, `105755`, `105756`, `105758`, `105759`, `105760`, `105762`, `105764`, `105765`, `105767`, `105769`, `105770`, `105771`, `105773`, `105775`, `105777`, `105779`, `105781`, `105783`, `105785`, `105787`, `105790`, `105792`, `105795`, `105797`, `105798`, `105800`, `105802`, `105804`, `105805`, `105807`, `105810`, `105814`, `105816`, `105818`, `105819`, `105821`, `105823`, `105825`, `105827`, `105829`, `105831`, `105833`, `105835`, `105837`, `105839`, `105841`, `105843`, `105844`, `105846`, `105849`, `105851`, `105853`, `105855`, `105857`, `105859`, `105862`, `105863`, `105864`, `105866`, `105868`, `105870`, `105873`, `105875`, `105877`, `105879`, `105880`, `105882`, `105884`, `105885`, `105887`, `105888`, `105889`, `105891`, `105893`, `105894`, `105896`, `105897`, `105899`, `105901`, `105903`, `105905`, `105906`, `105908`, `105910`, `105911`, `105913`, `105915`, `105916`, `105917`, `105919`, `105921`, `105925`, `105926`, `105928`, `105929`, `105931`, `105933`, `105935`, `105937`, `105939`, `105940`, `105942`, `105944`, `105946`, `105948`, `105950`, `105951`, `105952`, `105955`, `105957`, `105959`, `105961`, `105963`, `105965`, `105966`, `105968`, `105969`, `105971`, `105972`, `105973`, `105975`, `105976`, `105977`, `105979`, `105981`, `105986`, `105988`, `105990`, `105992`, `105993`, `105995`, `105996`, `105998`, `106000`, `106002`, `106004`, `106006`, `106008`, `106010`, `106012`, `106014`, `106015`, `106017`, `106019`, `106022`, `106023`, `106025`, `106027`, `106029`, `106031`, `106034`, `106036`, `106037`, `106038`, `106040`, `106047`, `106049`, `106051`, `106052`, `106054`, `106055`, `106056`, `106057`, `106058`, `106060`, `106062`, `106064`, `106066`, `106068`, `106069`, `106071`, `106073`, `106077`, `106079`, `106082`, `106083`, `106084`, `106085`, `106087`, `106091`, `106093`, `106094`, `106096`, `106098`, `106101`, `106103`, `106106`, `106107`, `106108`, `106110`, `106111`, `106113`, `106115`, `106117`, `106119`, `106120`, `106122`, `106124`, `106125`, `106126`, `106128`, `106129`, `106131`, `106133`, `106135`, `106137`, `106138`, `106140`, `106142`, `106144`, `106145`, `106146`, `106147`, `106148`, `106150`, `106151`, `106153`, `106154`, `106155`, `106156`, `106157`, `106159`, `106161`, `106163`, `106165`, `106167`, `106169`, `106171`, `106173`, `106176`, `106178`, `106180`, `106182`, `106184`, `106186`, `106188`, `106189`, `106190`, `106192`, `106193`, `106195`, `106196`, `106199`, `106201`, `106203`, `106205`, `106206`, `106208`, `106209`, `106210`, `106211`, `106212`, `106215`, `106217`, `106219`, `106221`, `106223`, `106225`, `106227`, `106229`, `106231`, `106233`, `106235`, `106237`, `106238`, `106240`, `106242`, `106244`, `106246`, `106248`, `106250`, `106251`, `106253`, `106255`, `106257`, `106260`, `106262`, `106264`, `106265`, `106267`, `106269`, `106272`, `106274`, `106276`, `106278`, `106280`, `106281`, `106284`, `106285`, `106287`, `106289`, `106291`, `106293`, `106294`, `106296`, `106298`, `106299`, `106300`, `106302`, `106303`, `106305`, `106306`, `106307`, `106309`, `106310`, `106311`, `106313`, `106314`, `106316`, `106318`, `106320`, `106322`, `106324`, `106326`, `106328`, `106330`, `106331`, `106333`, `106334`, `106336`, `106338`, `106340`, `106342`, `106344`, `106346`, `106348`, `106350`, `106352`, `106354`, `106356`, `106358`, `106360`, `106362`, `106363`, `106364`, `106366`, `106367`, `106369`, `106370`, `106372`, `106374`, `106376`, `106379`, `106381`, `106383`, `106387`, `106389`, `106392`, `106393`, `106395`, `106396`, `106397`, `106398`, `106400`, `106402`, `106404`, `106405`, `106407`, `106408`, `106409`, `106411`, `106413`, `106414`, `106416`, `106418`, `106419`, `106420`, `106422`, `106423`, `106426`, `106428`, `106430`, `106431`, `106434`, `106436`, `106437`, `106439`, `106441`, `106442`, `106443`, `106445`, `106447`, `106449`, `106451`, `106453`, `106455`, `106457`, `106458`, `106460`, `106462`, `106463`, `106464`, `106467`, `106468`, `106470`, `106471`, `106473`, `106474`, `106475`, `106476`, `106477`, `106479`, `106481`, `106482`, `106484`, `106486`, `106487`, `106489`, `106490`, `106492`, `106493`, `106495`, `106497`, `106499`, `106501`, `106503`, `106505`, `106506`, `106508`, `106509`, `106510`, `106511`, `106513`, `106516`, `106518`, `106520`, `106522`, `106524`, `106526`, `106528`, `106529`, `106531`, `106533`, `106534`, `106535`, `106538`, `106539`, `106541`, `106542`, `106544`, `106546`, `106548`, `106550`, `106552`, `106554`, `106556`, `106558`, `106560`, `106563`, `106564`, `106565`, `106566`, `106567`, `106569`, `106571`, `106574`, `106576`, `106577`, `106579`, `106581`, `106582`, `106583`, `106585`, `106587`, `106589`, `106591`, `106593`, `106594`, `106595`, `106596`, `106599`, `106600`, `106602`, `106603`, `106605`, `106607`, `106609`, `106610`, `106612`, `106613`, `106614`, `106615`, `106618`, `106620`, `106621`, `106623`, `106625`, `106627`, `106629`, `106631`, `106632`, `106634`, `106636`, `106638`, `106639`, `106640`, `106642`, `106643`, `106644`, `106645`, `106646`, `106647`, `106649`, `106651`, `106652`, `106654`, `106656`, `106658`, `106660`, `106662`, `106664`, `106666`, `106667`, `106669`, `106671`, `106673`, `106676`, `106678`, `106680`, `106681`, `106683`, `106685`, `106687`, `106688`, `106689`, `106691`, `106692`, `106694`, `106695`, `106697`, `106699`, `106701`, `106703`, `106705`, `106706`, `106707`, `106708`, `106709`, `106711`, `106713`, `106718`, `106719`, `106721`, `106723`, `106724`, `106725`, `106727`, `106729`, `106730`, `106732`, `106734`, `106736`, `106738`, `106740`, `106741`, `106742`, `106743`, `106745`, `106747`, `106749`, `106751`, `106753`, `106755`, `106757`, `106758`, `106760`, `106761`, `106762`, `106764`, `106765`, `106767`, `106769`, `106770`, `106772`, `106774`, `106777`, `106779`, `106781`, `106782`, `106784`, `106785`, `106786`, `106788`, `106790`, `106791`, `106793`, `106796`, `106797`, `106799`, `106801`, `106803`, `106804`, `106805`, `106807`, `106808`, `106809`, `106812`, `106814`, `106815`, `106817`, `106818`, `106819`, `106820`, `106822`, `106823`, `106826`, `106827`, `106829`, `106831`, `106833`, `106835`, `106837`, `106838`, `106839`, `106840`, `106841`, `106843`, `106845`, `106846`, `106848`, `106849`, `106850`, `106852`, `106854`, `106856`, `106858`, `106859`, `106861`, `106862`, `106864`, `106866`, `106868`, `106871`, `106873`, `106875`, `106877`, `106879`, `106880`, `106882`, `106883`, `106885`, `106887`, `106889`, `106891`, `106893`, `106895`, `106896`, `106898`, `106899`, `106901`, `106903`, `106905`, `106907`, `106909`, `106911`, `106913`, `106915`, `106917`, `106919`, `106921`, `106922`, `106923`, `106924`, `106928`, `106930`, `106932`, `106934`, `106935`, `106936`, `106938`, `106940`, `106941`, `106943`, `106945`, `106946`, `106949`, `106950`, `106952`, `106954`, `106956`, `106957`, `106959`, `106960`, `106962`, `106963`, `106964`, `106965`, `106968`, `106970`, `106972`, `106973`, `106974`, `106975`, `106976`, `106978`, `106980`, `106982`, `106984`, `106986`, `106988`, `106989`, `106991`, `106994`, `106996`, `106999`, `107001`, `107003`, `107005`, `107006`, `107008`, `107010`, `107012`, `107015`, `107017`, `107019`, `107021`, `107025`, `107027`, `107029`, `107031`, `107033`, `107035`, `107037`, `107038`, `107039`, `107041`, `107042`, `107044`, `107046`, `107048`, `107050`, `107051`, `107053`, `107056`, `107058`, `107060`, `107062`, `107063`, `107067`, `107069`, `107070`, `107071`, `107072`, `107074`, `107076`, `107077`, `107079`, `107081`, `107083`, `107085`, `107087`, `107088`, `107090`, `107091`, `107093`, `107094`, `107096`, `107098`, `107101`, `107102`, `107104`, `107105`, `107106`, `107107`, `107108`, `107109`, `107110`, `107112`, `107114`, `107116`, `107118`, `107119`, `107120`, `107121`, `107123`, `107125`, `107127`, `107128`, `107132`, `107134`, `107136`, `107138`, `107143`, `107145`, `107146`, `107147`, `107148`, `107149`, `107151`, `107153`, `107155`, `107157`, `107158`, `107159`, `107161`, `107164`, `107166`, `107168`, `107172`, `107173`, `107175`, `107177`, `107179`, `107181`, `107183`, `107185`, `107186`, `107188`, `107190`, `107192`, `107193`, `107195`, `107197`, `107199`, `107200`, `107201`, `107203`, `107204`, `107206`, `107208`, `107210`, `107213`, `107215`, `107216`, `107218`, `107220`, `107221`, `107223`, `107224`, `107227`, `107229`, `107231`, `107233`, `107235`, `107237`, `107238`, `107239`, `107241`, `107243`, `107244`, `107245`, `107247`, `107249`, `107250`, `107256`, `107257`, `107259`, `107260`, `107261`, `107263`, `107265`, `107266`, `107268`, `107269`, `107271`, `107273`, `107275`, `107277`, `107279`, `107281`, `107283`, `107285`, `107287`, `107288`, `107289`, `107291`, `107293`, `107295`, `107296`, `107298`, `107299`, `107300`, `107301`, `107302`, `107304`, `107306`, `107308`, `107310`, `107312`, `107314`, `107316`, `107318`, `107320`, `107321`, `107323`, `107325`, `107327`, `107328`, `107329`, `107331`, `107332`, `107334`, `107336`, `107338`, `107340`, `107342`, `107344`, `107346`, `107348`, `107349`, `107351`, `107355`, `107356`, `107357`, `107358`, `107360`, `107362`, `107364`, `107366`, `107368`, `107370`, `107372`, `107374`, `107376`, `107378`, `107379`, `107381`, `107383`, `107384`, `107386`, `107387`, `107389`, `107391`, `107393`, `107395`, `107397`, `107399`, `107401`, `107402`, `107404`, `107405`, `107407`, `107409`, `107412`, `107414`, `107415`, `107417`, `107418`, `107421`, `107422`, `107424`, `107426`, `107428`, `107430`, `107432`, `107433`, `107434`, `107435`, `107437`, `107438`, `107440`, `107442`, `107444`, `107446`, `107449`, `107450`, `107451`, `107452`, `107454`, `107456`, `107458`, `107459`, `107461`, `107463`, `107464`, `107465`, `107466`, `107468`, `107469`, `107471`, `107472`, `107473`, `107475`, `107477`, `107480`, `107482`, `107487`, `107489`, `107491`, `107493`, `107495`, `107497`, `107499`, `107501`, `107503`, `107504`, `107505`, `107506`, `107509`, `107511`, `107513`, `107514`, `107515`, `107517`, `107519`, `107521`, `107523`, `107524`, `107526`, `107528`, `107529`, `107531`, `107533`, `107535`, `107537`, `107539`, `107541`, `107542`, `107543`, `107544`, `107547`, `107549`, `107551`, `107554`, `107556`, `107558`, `107560`, `107562`, `107564`, `107565`, `107567`, `107570`, `107572`, `107574`, `107576`, `107578`, `107580`, `107582`, `107584`, `107587`, `107589`, `107591`, `107593`, `107594`, `107596`, `107598`, `107599`, `107600`, `107601`, `107603`, `107605`, `107606`, `107608`, `107610`, `107612`, `107614`, `107616`, `107617`, `107618`, `107620`, `107621`, `107622`, `107623`, `107624`, `107626`, `107628`, `107630`, `107631`, `107633`, `107634`, `107636`, `107638`, `107640`, `107641`, `107643`, `107645`, `107647`, `107649`, `107651`, `107653`, `107655`, `107656`, `107658`, `107660`, `107662`, `107664`, `107666`, `107668`, `107670`, `107673`, `107677`, `107678`, `107680`, `107682`, `107684`, `107685`, `107687`, `107689`, `107690`, `107691`, `107693`, `107695`, `107697`, `107699`, `107700`, `107701`, `107702`, `107703`, `107704`, `107705`, `107707`, `107709`, `107711`, `107713`, `107715`, `107717`, `107721`, `107723`, `107724`, `107725`, `107727`, `107729`, `107730`, `107731`, `107733`, `107735`, `107739`, `107740`, `107741`, `107743`, `107744`, `107746`, `107747`, `107748`, `107750`, `107752`, `107753`, `107755`, `107760`, `107761`, `107762`, `107764`, `107766`, `107767`, `107768`, `107771`, `107773`, `107775`, `107778`, `107780`, `107781`, `107782`, `107783`, `107785`, `107786`, `107787`, `107789`, `107790`, `107792`, `107796`, `107798`, `107801`, `107803`, `107805`, `107807`, `107808`, `107810`, `107811`, `107813`, `107815`, `107817`, `107819`, `107821`, `107822`, `107823`, `107824`, `107826`, `107828`, `107829`, `107830`, `107831`, `107832`, `107834`, `107836`, `107838`, `107839`, `107841`, `107843`, `107845`, `107847`, `107849`, `107851`, `107852`, `107854`, `107856`, `107857`, `107859`, `107862`, `107866`, `107868`, `107870`, `107871`, `107873`, `107875`, `107876`, `107877`, `107879`, `107881`, `107883`, `107885`, `107886`, `107888`, `107889`, `107892`, `107893`, `107895`, `107896`, `107898`, `107900`, `107902`, `107904`, `107906`, `107908`, `107910`, `107912`, `107914`, `107915`, `107917`, `107918`, `107919`, `107920`, `107922`, `107924`, `107925`, `107927`, `107929`, `107930`, `107931`, `107932`, `107933`, `107934`, `107936`, `107938`, `107939`, `107940`, `107941`, `107943`, `107944`, `107945`, `107946`, `107948`, `107950`, `107952`, `107954`, `107956`, `107957`, `107959`, `107960`, `107962`, `107964`, `107966`, `107971`, `107972`, `107974`, `107975`, `107977`, `107979`, `107980`, `107982`, `107983`, `107986`, `107987`, `107990`, `107992`, `107994`, `107996`, `107997`, `107999`, `108002`, `108003`, `108006`, `108007`, `108009`, `108011`, `108014`, `108015`, `108017`, `108019`, `108020`, `108022`, `108024`, `108026`, `108027`, `108031`, `108033`, `108035`, `108037`, `108039`, `108041`, `108043`, `108044`, `108046`, `108048`, `108050`, `108051`, `108053`, `108055`, `108057`, `108060`, `108062`, `108064`, `108069`, `108070`, `108072`, `108074`, `108075`, `108077`, `108078`, `108080`, `108082`, `108084`, `108086`, `108088`, `108090`, `108092`, `108094`, `108096`, `108097`, `108098`, `108100`, `108102`, `108104`, `108109`, `108111`, `108112`, `108115`, `108116`, `108118`, `108120`, `108122`, `108124`, `108127`, `108129`, `108132`, `108135`, `108136`, `108138`, `108139`, `108141`, `108142`, `108144`, `108146`, `108148`, `108150`, `108152`, `108154`, `108156`, `108157`, `108158`, `108160`, `108163`, `108165`, `108167`, `108169`, `108170`, `108172`, `108174`, `108176`, `108179`, `108181`, `108183`, `108185`, `108187`, `108188`, `108190`, `108192`, `108193`, `108195`, `108197`, `108199`, `108201`, `108202`, `108204`, `108207`, `108209`, `108211`, `108213`, `108215`, `108216`, `108218`, `108220`, `108222`, `108224`, `108225`, `108227`, `108229`, `108231`, `108233`, `108236`, `108238`, `108239`, `108241`, `108243`, `108245`, `108246`, `108247`, `108249`, `108250`, `108252`, `108253`, `108254`, `108255`, `108256`, `108257`, `108259`, `108261`, `108263`, `108265`, `108266`, `108268`, `108269`, `108271`, `108272`, `108273`, `108275`, `108277`, `108278`, `108280`, `108282`, `108284`, `108286`, `108288`, `108290`, `108291`, `108293`, `108295`, `108297`, `108299`, `108301`, `108302`, `108304`, `108305`, `108306`, `108308`, `108311`, `108313`, `108315`, `108317`, `108319`, `108320`, `108322`, `108324`, `108326`, `108327`, `108329`, `108331`, `108333`, `108335`, `108336`, `108338`, `108339`, `108340`, `108342`, `108344`, `108346`, `108348`, `108349`, `108350`, `108352`, `108354`, `108357`, `108359`, `108360`, `108362`, `108363`, `108364`, `108366`, `108368`, `108370`, `108372`, `108375`, `108377`, `108379`, `108381`, `108383`, `108385`, `108387`, `108389`, `108391`, `108394`, `108395`, `108396`, `108398`, `108399`, `108401`, `108403`, `108405`, `108406`, `108407`, `108408`, `108410`, `108412`, `108413`, `108415`, `108417`, `108418`, `108420`, `108421`, `108422`, `108423`, `108425`, `108426`, `108427`, `108429`, `108433`, `108435`, `108436`, `108438`, `108440`, `108442`, `108444`, `108445`, `108447`, `108449`, `108451`, `108453`, `108455`, `108457`, `108458`, `108459`, `108460`, `108462`, `108464`, `108466`, `108467`, `108469`, `108472`, `108473`, `108475`, `108477`, `108478`, `108480`, `108482`, `108485`, `108487`, `108489`, `108491`, `108492`, `108494`, `108495`, `108496`, `108498`, `108500`, `108501`, `108503`, `108505`, `108507`, `108509`, `108511`, `108513`, `108514`, `108515`, `108517`, `108519`, `108521`, `108523`, `108525`, `108527`, `108530`, `108531`, `108532`, `108534`, `108535`, `108537`, `108539`, `108541`, `108542`, `108544`, `108546`, `108548`, `108549`, `108551`, `108553`, `108555`, `108556`, `108558`, `108560`, `108561`, `108563`, `108565`, `108567`, `108569`, `108571`, `108572`, `108574`, `108576`, `108577`, `108578`, `108580`, `108581`, `108583`, `108585`, `108587`, `108589`, `108591`, `108593`, `108596`, `108598`, `108600`, `108602`, `108604`, `108606`, `108608`, `108609`, `108611`, `108612`, `108614`, `108616`, `108618`, `108620`, `108622`, `108624`, `108625`, `108627`, `108630`, `108633`, `108634`, `108636`, `108637`, `108639`, `108641`, `108643`, `108645`, `108647`, `108648`, `108651`, `108652`, `108654`, `108656`, `108658`, `108660`, `108662`, `108664`, `108666`, `108667`, `108669`, `108671`, `108673`, `108675`, `108677`, `108679`, `108680`, `108682`, `108685`, `108687`, `108689`, `108690`, `108693`, `108695`, `108697`, `108699`, `108700`, `108702`, `108707`, `108709`, `108711`, `108712`, `108715`, `108717`, `108719`, `108720`, `108722`, `108724`, `108726`, `108727`, `108729`, `108731`, `108732`, `108734`, `108736`, `108738`, `108740`, `108742`, `108743`, `108745`, `108750`, `108751`, `108752`, `108754`, `108756`, `108758`, `108760`, `108762`, `108766`, `108767`, `108769`, `108771`, `108774`, `108776`, `108779`, `108780`, `108782`, `108784`, `108786`, `108787`, `108789`, `108791`, `108792`, `108793`, `108795`, `108797`, `108798`, `108799`, `108801`, `108803`, `108805`, `108807`, `108809`, `108812`, `108813`, `108814`, `108815`, `108817`, `108818`, `108820`, `108821`, `108823`, `108825`, `108826`, `108829`, `108831`, `108833`, `108835`, `108836`, `108837`, `108839`, `108841`, `108843`, `108845`, `108847`, `108849`, `108851`, `108853`, `108854`, `108856`, `108858`, `108860`, `108861`, `108864`, `108866`, `108867`, `108868`, `108870`, `108872`, `108873`, `108874`, `108876`, `108877`, `108879`, `108881`, `108882`, `108883`, `108886`, `108888`, `108889`, `108891`, `108893`, `108895`, `108897`, `108899`, `108901`, `108903`, `108904`, `108905`, `108908`, `108910`, `108912`, `108914`, `108916`, `108917`, `108918`, `108920`, `108922`, `108923`, `108925`, `108927`, `108929`, `108931`, `108933`, `108935`, `108937`, `108939`, `108940`, `108941`, `108943`, `108944`, `108946`, `108947`, `108952`, `108954`, `108956`, `108958`, `108959`, `108960`, `108962`, `108964`, `108966`, `108968`, `108969`, `108971`, `108973`, `108974`, `108975`, `108976`, `108977`, `108979`, `108980`, `108982`, `108984`, `108986`, `108987`, `108989`, `108991`, `108993`, `108994`, `108996`, `108997`, `108999`, `109001`, `109002`, `109004`, `109006`, `109008`, `109009`, `109010`, `109012`, `109014`, `109015`, `109017`, `109019`, `109020`, `109024`, `109026`, `109028`, `109029`, `109031`, `109032`, `109034`, `109035`, `109037`, `109039`, `109041`, `109042`, `109043`, `109044`, `109046`, `109048`, `109050`, `109052`, `109054`, `109056`, `109058`, `109060`, `109061`, `109063`, `109064`, `109065`, `109066`, `109068`, `109070`, `109072`, `109074`, `109076`, `109078`, `109080`, `109082`, `109083`, `109084`, `109086`, `109087`, `109089`, `109091`, `109093`, `109095`, `109096`, `109097`, `109099`, `109102`, `109104`, `109105`, `109107`, `109109`, `109111`, `109113`, `109115`, `109117`, `109118`, `109119`, `109121`, `109123`, `109125`, `109126`, `109127`, `109128`, `109131`, `109132`, `109134`, `109136`, `109138`, `109140`, `109141`, `109142`, `109143`, `109144`, `109146`, `109147`, `109148`, `109150`, `109151`, `109154`, `109155`, `109157`, `109159`, `109162`, `109164`, `109165`, `109167`, `109168`, `109169`, `109171`, `109172`, `109174`, `109176`, `109178`, `109180`, `109181`, `109183`, `109185`, `109186`, `109189`, `109191`, `109192`, `109193`, `109194`, `109196`, `109197`, `109199`, `109201`, `109203`, `109204`, `109207`, `109209`, `109212`, `109214`, `109216`, `109218`, `109219`, `109221`, `109222`, `109223`, `109225`, `109226`, `109227`, `109229`, `109231`, `109233`, `109235`, `109236`, `109238`, `109239`, `109241`, `109243`, `109245`, `109247`, `109249`, `109251`, `109252`, `109254`, `109256`, `109257`, `109259`, `109260`, `109262`, `109263`, `109264`, `109266`, `109268`, `109270`, `109272`, `109274`, `109277`, `109278`, `109280`, `109281`, `109282`, `109284`, `109285`, `109287`, `109289`, `109291`, `109294`, `109296`, `109298`, `109300`, `109301`, `109303`, `109305`, `109307`, `109309`, `109310`, `109311`, `109312`, `109314`, `109316`, `109318`, `109320`, `109321`, `109322`, `109324`, `109326`, `109328`, `109330`, `109332`, `109333`, `109335`, `109337`, `109339`, `109341`, `109343`, `109345`, `109348`, `109350`, `109352`, `109354`, `109356`, `109357`, `109359`, `109360`, `109362`, `109363`, `109365`, `109366`, `109368`, `109369`, `109371`, `109372`, `109373`, `109374`, `109377`, `109379`, `109383`, `109385`, `109387`, `109388`, `109389`, `109390`, `109392`, `109394`, `109395`, `109397`, `109399`, `109400`, `109402`, `109405`, `109407`, `109409`, `109413`, `109414`, `109415`, `109416`, `109418`, `109419`, `109421`, `109422`, `109425`, `109428`, `109430`, `109434`, `109436`, `109437`, `109438`, `109442`, `109444`, `109446`, `109449`, `109451`, `109452`, `109454`, `109456`, `109457`, `109459`, `109460`, `109463`, `109465`, `109467`, `109470`, `109472`, `109474`, `109476`, `109478`, `109480`, `109482`, `109484`, `109486`, `109488`, `109489`, `109491`, `109492`, `109495`, `109496`, `109498`, `109500`, `109502`, `109503`, `109505`, `109506`, `109509`, `109510`, `109511`, `109512`, `109514`, `109515`, `109516`, `109518`, `109519`, `109521`, `109523`, `109526`, `109528`, `109529`, `109531`, `109533`, `109535`, `109536`, `109537`, `109539`, `109540`, `109542`, `109544`, `109546`, `109548`, `109550`, `109551`, `109553`, `109554`, `109556`, `109558`, `109561`, `109563`, `109565`, `109566`, `109568`, `109570`, `109571`, `109573`, `109575`, `109577`, `109578`, `109580`, `109582`, `109584`, `109586`, `109588`, `109589`, `109594`, `109595`, `109596`, `109598`, `109599`, `109601`, `109602`, `109603`, `109605`, `109607`, `109609`, `109611`, `109613`, `109615`, `109617`, `109619`, `109621`, `109623`, `109625`, `109627`, `109628`, `109629`, `109631`, `109632`, `109634`, `109636`, `109638`, `109640`, `109641`, `109643`, `109645`, `109646`, `109647`, `109648`, `109649`, `109650`, `109652`, `109654`, `109655`, `109656`, `109658`, `109660`, `109662`, `109663`, `109665`, `109666`, `109667`, `109669`, `109671`, `109673`, `109674`, `109678`, `109680`, `109682`, `109685`, `109687`, `109690`, `109691`, `109694`, `109696`, `109698`, `109700`, `109703`, `109705`, `109708`, `109710`, `109712`, `109714`, `109715`, `109717`, `109719`, `109721`, `109723`, `109725`, `109727`, `109728`, `109729`, `109730`, `109732`, `109734`, `109735`, `109736`, `109738`, `109740`, `109742`, `109744`, `109745`, `109746`, `109747`, `109749`, `109751`, `109754`, `109756`, `109758`, `109759`, `109761`, `109764`, `109765`, `109767`, `109768`, `109770`, `109771`, `109773`, `109775`, `109776`, `109778`, `109780`, `109782`, `109785`, `109786`, `109788`, `109790`, `109791`, `109793`, `109797`, `109799`, `109800`, `109802`, `109803`, `109805`, `109809`, `109811`, `109813`, `109814`, `109817`, `109820`, `109822`, `109824`, `109829`, `109830`, `109831`, `109832`, `109834`, `109836`, `109839`, `109840`, `109842`, `109844`, `109846`, `109848`, `109850`, `109852`, `109855`, `109856`, `109858`, `109859`, `109861`, `109862`, `109864`, `109866`, `109868`, `109870`, `109871`, `109873`, `109874`, `109875`, `109877`, `109879`, `109881`, `109883`, `109885`, `109886`, `109887`, `109889`, `109891`, `109893`, `109895`, `109897`, `109898`, `109900`, `109904`, `109906`, `109908`, `109910`, `109912`, `109914`, `109917`, `109921`, `109922`, `109924`, `109925`, `109926`, `109927`, `109929`, `109931`, `109932`, `109936`, `109938`, `109940`, `109941`, `109942`, `109944`, `109945`, `109947`, `109949`, `109951`, `109952`, `109954`, `109956`, `109958`, `109960`, `109962`, `109965`, `109966`, `109968`, `109970`, `109971`, `109973`, `109975`, `109977`, `109978`, `109980`, `109983`, `109985`, `109987`, `109989`, `109991`, `109993`, `109995`, `109997`, `109999`, `110001`, `110003`, `110005`, `110007`, `110008`, `110009`, `110011`, `110012`, `110014`, `110015`, `110017`, `110019`, `110021`, `110023`, `110024`, `110026`, `110028`, `110030`, `110032`, `110034`, `110035`, `110037`, `110040`, `110042`, `110044`, `110046`, `110048`, `110051`, `110052`, `110053`, `110055`, `110057`, `110059`, `110061`, `110063`, `110066`, `110067`, `110068`, `110069`, `110072`, `110074`, `110076`, `110080`, `110082`, `110084`, `110085`, `110087`, `110088`, `110090`, `110091`, `110092`, `110093`, `110095`, `110096`, `110098`, `110100`, `110102`, `110104`, `110105`, `110108`, `110110`, `110112`, `110114`, `110115`, `110116`, `110118`, `110119`, `110121`, `110122`, `110124`, `110125`, `110127`, `110130`, `110132`, `110134`, `110136`, `110137`, `110138`, `110139`, `110141`, `110143`, `110145`, `110147`, `110148`, `110150`, `110152`, `110154`, `110156`, `110158`, `110160`, `110162`, `110164`, `110165`, `110167`, `110169`, `110171`, `110173`, `110177`, `110179`, `110181`, `110183`, `110185`, `110187`, `110189`, `110190`, `110192`, `110194`, `110196`, `110199`, `110202`, `110204`, `110206`, `110208`, `110209`, `110211`, `110215`, `110217`, `110219`, `110221`, `110223`, `110225`, `110226`, `110230`, `110232`, `110234`, `110235`, `110237`, `110238`, `110240`, `110242`, `110244`, `110245`, `110247`, `110248`, `110249`, `110251`, `110252`, `110253`, `110254`, `110256`, `110257`, `110259`, `110261`, `110262`, `110263`, `110265`, `110267`, `110269`, `110271`, `110273`, `110274`, `110278`, `110280`, `110282`, `110283`, `110284`, `110285`, `110287`, `110289`, `110290`, `110292`, `110293`, `110294`, `110295`, `110297`, `110298`, `110300`, `110302`, `110304`, `110305`, `110307`, `110308`, `110310`, `110311`, `110314`, `110316`, `110318`, `110320`, `110322`, `110324`, `110326`, `110327`, `110329`, `110331`, `110333`, `110335`, `110337`, `110339`, `110340`, `110342`, `110344`, `110346`, `110347`, `110349`, `110351`, `110352`, `110354`, `110356`, `110357`, `110359`, `110360`, `110361`, `110363`, `110364`, `110366`, `110368`, `110370`, `110372`, `110375`, `110376`, `110378`, `110379`, `110381`, `110383`, `110384`, `110386`, `110387`, `110389`, `110391`, `110394`, `110396`, `110397`, `110399`, `110401`, `110402`, `110403`, `110405`, `110406`, `110407`, `110409`, `110411`, `110414`, `110415`, `110417`, `110418`, `110420`, `110422`, `110423`, `110424`, `110426`, `110427`, `110428`, `110430`, `110432`, `110433`, `110435`, `110438`, `110440`, `110441`, `110442`, `110444`, `110446`, `110448`, `110449`, `110452`, `110454`, `110456`, `110458`, `110460`, `110462`, `110464`, `110465`, `110466`, `110468`, `110470`, `110472`, `110473`, `110475`, `110477`, `110479`, `110481`, `110482`, `110483`, `110485`, `110486`, `110488`, `110490`, `110492`, `110493`, `110494`, `110496`, `110497`, `110499`, `110501`, `110503`, `110505`, `110508`, `110510`, `110512`, `110514`, `110516`, `110517`, `110519`, `110521`, `110524`, `110526`, `110528`, `110530`, `110531`, `110532`, `110534`, `110536`, `110538`, `110541`, `110543`, `110544`, `110546`, `110548`, `110549`, `110550`, `110552`, `110553`, `110555`, `110557`, `110558`, `110560`, `110562`, `110563`, `110564`, `110566`, `110568`, `110570`, `110571`, `110572`, `110575`, `110578`, `110580`, `110583`, `110584`, `110585`, `110587`, `110589`, `110592`, `110594`, `110597`, `110599`, `110601`, `110603`, `110605`, `110606`, `110607`, `110609`, `110611`, `110613`, `110614`, `110615`, `110616`, `110618`, `110619`, `110621`, `110622`, `110624`, `110625`, `110627`, `110628`, `110629`, `110631`, `110633`, `110634`, `110636`, `110638`, `110640`, `110641`, `110642`, `110644`, `110646`, `110651`, `110656`, `110657`, `110659`, `110662`, `110664`, `110666`, `110668`, `110670`, `110671`, `110672`, `110673`, `110675`, `110676`, `110678`, `110679`, `110681`, `110683`, `110685`, `110687`, `110689`, `110691`, `110692`, `110693`, `110694`, `110696`, `110697`, `110698`, `110700`, `110702`, `110704`, `110705`, `110707`, `110709`, `110710`, `110712`, `110715`, `110716`, `110719`, `110721`, `110723`, `110724`, `110726`, `110727`, `110729`, `110731`, `110734`, `110736`, `110738`, `110741`, `110743`, `110745`, `110747`, `110749`, `110750`, `110752`, `110754`, `110756`, `110758`, `110760`, `110761`, `110763`, `110764`, `110766`, `110768`, `110769`, `110770`, `110771`, `110773`, `110774`, `110776`, `110778`, `110779`, `110780`, `110782`, `110786`, `110788`, `110791`, `110793`, `110795`, `110797`, `110799`, `110801`, `110802`, `110803`, `110804`, `110805`, `110807`, `110809`, `110810`, `110812`, `110813`, `110815`, `110816`, `110818`, `110820`, `110821`, `110823`, `110825`, `110827`, `110829`, `110830`, `110832`, `110834`, `110835`, `110837`, `110839`, `110842`, `110844`, `110845`, `110846`, `110848`, `110849`, `110851`, `110853`, `110855`, `110856`, `110858`, `110860`, `110862`, `110863`, `110865`, `110866`, `110868`, `110869`, `110871`, `110873`, `110875`, `110877`, `110879`, `110881`, `110883`, `110885`, `110886`, `110888`, `110890`, `110891`, `110893`, `110895`, `110897`, `110898`, `110900`, `110902`, `110904`, `110905`, `110906`, `110907`, `110909`, `110911`, `110913`, `110914`, `110916`, `110917`, `110918`, `110920`, `110922`, `110923`, `110925`, `110927`, `110928`, `110930`, `110931`, `110932`, `110933`, `110935`, `110937`, `110939`, `110941`, `110943`, `110946`, `110947`, `110949`, `110950`, `110951`, `110953`, `110954`, `110956`, `110957`, `110958`, `110959`, `110961`, `110963`, `110965`, `110966`, `110968`, `110969`, `110971`, `110975`, `110978`, `110980`, `110981`, `110982`, `110983`, `110984`, `110986`, `110988`, `110990`, `110991`, `110992`, `110994`, `110996`, `110998`, `111000`, `111002`, `111004`, `111005`, `111007`, `111009`, `111010`, `111012`, `111014`, `111016`, `111017`, `111018`, `111019`, `111022`, `111024`, `111026`, `111027`, `111028`, `111030`, `111032`, `111033`, `111034`, `111035`, `111037`, `111039`, `111041`, `111043`, `111044`, `111045`, `111046`, `111049`, `111050`, `111052`, `111054`, `111056`, `111058`, `111060`, `111062`, `111063`, `111064`, `111066`, `111068`, `111070`, `111073`, `111075`, `111077`, `111079`, `111080`, `111082`, `111085`, `111087`, `111088`, `111090`, `111091`, `111092`, `111094`, `111095`, `111096`, `111097`, `111099`, `111101`, `111103`, `111104`, `111106`, `111108`, `111109`, `111111`, `111112`, `111115`, `111117`, `111119`, `111121`, `111122`, `111123`, `111124`, `111126`, `111128`, `111131`, `111133`, `111134`, `111136`, `111138`, `111139`, `111140`, `111142`, `111144`, `111148`, `111149`, `111151`, `111153`, `111155`, `111156`, `111158`, `111160`, `111162`, `111164`, `111165`, `111166`, `111168`, `111170`, `111172`, `111173`, `111177`, `111179`, `111180`, `111181`, `111183`, `111185`, `111187`, `111188`, `111190`, `111191`, `111192`, `111194`, `111198`, `111200`, `111202`, `111205`, `111207`, `111208`, `111209`, `111210`, `111211`, `111212`, `111214`, `111215`, `111216`, `111218`, `111220`, `111222`, `111224`, `111226`, `111228`, `111229`, `111231`, `111233`, `111235`, `111239`, `111241`, `111243`, `111245`, `111247`, `111249`, `111251`, `111253`, `111254`, `111257`, `111259`, `111260`, `111262`, `111263`, `111264`, `111267`, `111269`, `111272`, `111274`, `111276`, `111278`, `111280`, `111281`, `111282`, `111283`, `111284`, `111286`, `111288`, `111290`, `111291`, `111293`, `111294`, `111295`, `111296`, `111297`, `111298`, `111300`, `111304`, `111306`, `111308`, `111310`, `111311`, `111313`, `111315`, `111317`, `111318`, `111320`, `111322`, `111324`, `111325`, `111327`, `111328`, `111330`, `111332`, `111334`, `111337`, `111339`, `111341`, `111343`, `111344`, `111346`, `111348`, `111350`, `111352`, `111354`, `111356`, `111358`, `111362`, `111363`, `111365`, `111367`, `111369`, `111371`, `111373`, `111375`, `111377`, `111379`, `111381`, `111382`, `111384`, `111386`, `111388`, `111390`, `111392`, `111394`, `111396`, `111398`, `111400`, `111402`, `111403`, `111404`, `111405`, `111407`, `111409`, `111410`, `111412`, `111413`, `111415`, `111417`, `111419`, `111421`, `111422`, `111424`, `111426`, `111428`, `111430`, `111432`, `111434`, `111436`, `111438`, `111441`, `111443`, `111444`, `111445`, `111446`, `111449`, `111450`, `111452`, `111454`, `111456`, `111457`, `111459`, `111460`, `111462`, `111464`, `111466`, `111468`, `111470`, `111471`, `111473`, `111476`, `111478`, `111480`, `111482`, `111483`, `111484`, `111486`, `111488`, `111490`, `111492`, `111494`, `111496`, `111498`, `111500`, `111501`, `111503`, `111505`, `111507`, `111509`, `111510`, `111511`, `111513`, `111515`, `111517`, `111519`, `111520`, `111523`, `111524`, `111527`, `111529`, `111531`, `111533`, `111534`, `111536`, `111538`, `111539`, `111541`, `111542`, `111544`, `111546`, `111549`, `111551`, `111552`, `111554`, `111556`, `111558`, `111560`, `111562`, `111564`, `111566`, `111568`, `111570`, `111573`, `111574`, `111578`, `111581`, `111582`, `111584`, `111585`, `111586`, `111588`, `111590`, `111592`, `111593`, `111595`, `111597`, `111598`, `111600`, `111601`, `111603`, `111605`, `111607`, `111609`, `111610`, `111611`, `111612`, `111614`, `111616`, `111618`, `111620`, `111622`, `111624`, `111625`, `111626`, `111627`, `111628`, `111632`, `111633`, `111635`, `111637`, `111639`, `111641`, `111643`, `111645`, `111646`, `111648`, `111650`, `111652`, `111654`, `111656`, `111659`, `111661`, `111663`, `111664`, `111666`, `111668`, `111670`, `111671`, `111674`, `111676`, `111679`, `111680`, `111682`, `111683`, `111684`, `111686`, `111688`, `111689`, `111691`, `111693`, `111695`, `111699`, `111700`, `111701`, `111702`, `111703`, `111705`, `111706`, `111709`, `111712`, `111714`, `111715`, `111717`, `111719`, `111720`, `111723`, `111724`, `111726`, `111727`, `111728`, `111731`, `111732`, `111733`, `111734`, `111735`, `111736`, `111738`, `111739`, `111740`, `111741`, `111744`, `111745`, `111746`, `111749`, `111751`, `111752`, `111753`, `111754`, `111756`, `111758`, `111759`, `111761`, `111762`, `111763`, `111764`, `111767`, `111769`, `111771`, `111773`, `111775`, `111779`, `111780`, `111781`, `111783`, `111785`, `111787`, `111788`, `111789`, `111791`, `111793`, `111795`, `111797`, `111798`, `111800`, `111802`, `111804`, `111805`, `111807`, `111808`, `111809`, `111810`, `111811`, `111813`, `111815`, `111817`, `111819`, `111822`, `111823`, `111825`, `111827`, `111828`, `111829`, `111831`, `111835`, `111837`, `111839`, `111841`, `111843`, `111845`, `111847`, `111848`, `111849`, `111851`, `111853`, `111854`, `111855`, `111859`, `111860`, `111862`, `111864`, `111865`, `111866`, `111868`, `111870`, `111872`, `111874`, `111876`, `111878`, `111880`, `111881`, `111883`, `111885`, `111887`, `111889`, `111890`, `111891`, `111892`, `111894`, `111896`, `111898`, `111899`, `111901`, `111902`, `111904`, `111905`, `111907`, `111908`, `111909`, `111911`, `111912`, `111914`, `111915`, `111917`, `111920`, `111921`, `111923`, `111929`, `111931`, `111933`, `111934`, `111935`, `111937`, `111938`, `111939`, `111941`, `111944`, `111946`, `111947`, `111949`, `111951`, `111952`, `111954`, `111955`, `111957`, `111959`, `111961`, `111963`, `111965`, `111969`, `111971`, `111974`, `111975`, `111977`, `111978`, `111980`, `111982`, `111984`, `111985`, `111987`, `111989`, `111990`, `111991`, `111993`, `111994`, `111995`, `111996`, `111997`, `111999`, `112001`, `112003`, `112006`, `112007`, `112010`, `112012`, `112014`, `112015`, `112017`, `112019`, `112021`, `112023`, `112026`, `112027`, `112029`, `112031`, `112032`, `112033`, `112034`, `112036`, `112037`, `112039`, `112041`, `112042`, `112044`, `112046`, `112049`, `112050`, `112051`, `112054`, `112056`, `112058`, `112059`, `112060`, `112062`, `112063`, `112065`, `112067`, `112068`, `112069`, `112070`, `112071`, `112072`, `112074`, `112075`, `112076`, `112078`, `112080`, `112081`, `112082`, `112084`, `112088`, `112091`, `112093`, `112094`, `112095`, `112097`, `112101`, `112102`, `112104`, `112106`, `112107`, `112108`, `112110`, `112112`, `112115`, `112117`, `112118`, `112120`, `112122`, `112124`, `112126`, `112128`, `112129`, `112130`, `112131`, `112133`, `112135`, `112137`, `112138`, `112140`, `112142`, `112144`, `112146`, `112148`, `112149`, `112151`, `112153`, `112155`, `112157`, `112159`, `112161`, `112163`, `112165`, `112167`, `112169`, `112174`, `112175`, `112177`, `112178`, `112180`, `112182`, `112184`, `112186`, `112187`, `112191`, `112193`, `112196`, `112197`, `112199`, `112200`, `112204`, `112208`, `112210`, `112211`, `112213`, `112214`, `112216`, `112217`, `112218`, `112220`, `112223`, `112224`, `112226`, `112228`, `112230`, `112232`, `112233`, `112235`, `112237`, `112238`, `112240`, `112241`, `112242`, `112244`, `112246`, `112248`, `112250`, `112252`, `112253`, `112255`, `112256`, `112258`, `112259`, `112260`, `112262`, `112263`, `112265`, `112266`, `112268`, `112270`, `112271`, `112272`, `112273`, `112275`, `112277`, `112278`, `112280`, `112282`, `112283`, `112285`, `112287`, `112288`, `112290`, `112292`, `112295`, `112297`, `112298`, `112300`, `112302`, `112304`, `112305`, `112306`, `112307`, `112308`, `112310`, `112312`, `112313`, `112315`, `112316`, `112321`, `112323`, `112325`, `112327`, `112329`, `112330`, `112331`, `112332`, `112333`, `112334`, `112336`, `112338`, `112340`, `112342`, `112344`, `112345`, `112347`, `112349`, `112351`, `112353`, `112354`, `112356`, `112358`, `112360`, `112362`, `112363`, `112364`, `112365`, `112367`, `112368`, `112369`, `112371`, `112372`, `112373`, `112374`, `112375`, `112376`, `112377`, `112378`, `112380`, `112382`, `112384`, `112385`, `112386`, `112388`, `112389`, `112390`, `112392`, `112393`, `112395`, `112397`, `112399`, `112400`, `112402`, `112403`, `112404`, `112406`, `112409`, `112410`, `112412`, `112414`, `112416`, `112417`, `112419`, `112421`, `112422`, `112424`, `112426`, `112428`, `112429`, `112431`, `112432`, `112434`, `112436`, `97692`, `112438`, `112439`, `112440`, `112442`, `112444`, `112446`, `112447`, `112448`, `112450`, `112451`, `112454`, `112457`, `112459`, `112460`, `112462`, `112464`, `112466`, `112468`, `112469`, `112471`, `112475`, `112478`, `112480`, `112482`, `112483`, `112485`, `112487` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 99.75 |
| `SENTS_P` | 99.74 |
| `SENTS_R` | 99.76 |
| `TAG_ACC` | 97.84 |
| `POS_ACC` | 97.82 |
| `MORPH_ACC` | 78.11 |
| `DEP_UAS` | 97.28 |
| `DEP_LAS` | 95.88 |
| `LEMMA_ACC` | 92.04 | | d0c98d305581ae211f1adb30ae12cb24 |
frgfm/resnet18 | frgfm | null | 5 | 6 | transformers | 0 | image-classification | true | false | false | apache-2.0 | null | ['frgfm/imagenette'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['image-classification', 'pytorch', 'onnx'] | false | true | true | 2,771 | false |
# ResNet-18 model
Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf).
## Model description
The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.
## Installation
### Prerequisites
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
### Latest stable release
You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
```shell
pip install pylocron
```
or using [conda](https://anaconda.org/frgfm/pylocron):
```shell
conda install -c frgfm pylocron
```
### Developer mode
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
```shell
git clone https://github.com/frgfm/Holocron.git
pip install -e Holocron/.
```
## Usage instructions
```python
from PIL import Image
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
from torchvision.transforms.functional import InterpolationMode
from holocron.models import model_from_hf_hub
model = model_from_hf_hub("frgfm/resnet18").eval()
img = Image.open(path_to_an_image).convert("RGB")
# Preprocessing
config = model.default_cfg
transform = Compose([
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
PILToTensor(),
ConvertImageDtype(torch.float32),
Normalize(config['mean'], config['std'])
])
input_tensor = transform(img).unsqueeze(0)
# Inference
with torch.inference_mode():
output = model(input_tensor)
probs = output.squeeze(0).softmax(dim=0)
```
## Citation
Original paper
```bibtex
@article{DBLP:journals/corr/HeZRS15,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {CoRR},
volume = {abs/1512.03385},
year = {2015},
url = {http://arxiv.org/abs/1512.03385},
eprinttype = {arXiv},
eprint = {1512.03385},
timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Source of this implementation
```bibtex
@software{Fernandez_Holocron_2020,
author = {Fernandez, François-Guillaume},
month = {5},
title = {{Holocron}},
url = {https://github.com/frgfm/Holocron},
year = {2020}
}
```
| 7e4410f0dc2025ea66303aa8771819d5 |
Andranik/blinding1 | Andranik | bert | 13 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,376 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# blinding
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7158
- Accuracy: 0.6842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9949 | 2.0 | 20 | 0.9573 | 0.4737 |
| 0.5907 | 4.0 | 40 | 0.9047 | 0.5789 |
| 0.2675 | 6.0 | 60 | 0.7158 | 0.6842 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| 1f25cd0d415930a9d50353e050f3623a |
matthh/gpt2-poetry-model | matthh | gpt2 | 11 | 3 | transformers | 0 | text-generation | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 864 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-poetry-model
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1
- Datasets 2.5.1
- Tokenizers 0.10.3
| d7f19035e03e97b8ab4f657e72e40a7b |
rycont/emoji-diffusion | rycont | null | 7 | 0 | diffusers | 0 | null | false | false | false | apache-2.0 | ['en'] | ['microsoft/fluentui-emoji'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,206 | false |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# emoji-diffusion
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `microsoft/fluentui-emoji` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: False
### Training results
📈 [TensorBoard logs](https://huggingface.co/rycont/emoji-diffusion/tensorboard?#scalars)
| 7434bb6f78f35e77c4e48f035615162b |
MBMMurad/wav2vec2_murad_with_some_new_data | MBMMurad | wav2vec2 | 17 | 1 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | ['cvbn'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,221 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_murad_with_some_new_data
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the cvbn dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2971
- eval_wer: 0.2084
- eval_runtime: 511.5492
- eval_samples_per_second: 9.774
- eval_steps_per_second: 0.612
- epoch: 26.88
- step: 33600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.21.1
- Pytorch 1.11.0+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1
| eeca045623bd9d5bee14e118e5634262 |
jiobiala24/wav2vec2-base-checkpoint-12 | jiobiala24 | wav2vec2 | 13 | 7 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | ['common_voice'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,362 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-checkpoint-12
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-11.1](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-11.1) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0795
- Wer: 0.3452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2793 | 1.64 | 1000 | 0.5692 | 0.3518 |
| 0.2206 | 3.28 | 2000 | 0.6127 | 0.3460 |
| 0.1733 | 4.93 | 3000 | 0.6622 | 0.3580 |
| 0.1391 | 6.57 | 4000 | 0.6768 | 0.3519 |
| 0.1193 | 8.21 | 5000 | 0.7559 | 0.3540 |
| 0.1053 | 9.85 | 6000 | 0.7873 | 0.3562 |
| 0.093 | 11.49 | 7000 | 0.8170 | 0.3612 |
| 0.0833 | 13.14 | 8000 | 0.8682 | 0.3579 |
| 0.0753 | 14.78 | 9000 | 0.8317 | 0.3573 |
| 0.0698 | 16.42 | 10000 | 0.9213 | 0.3525 |
| 0.0623 | 18.06 | 11000 | 0.9746 | 0.3531 |
| 0.0594 | 19.7 | 12000 | 1.0027 | 0.3502 |
| 0.0538 | 21.35 | 13000 | 1.0045 | 0.3545 |
| 0.0504 | 22.99 | 14000 | 0.9821 | 0.3523 |
| 0.0461 | 24.63 | 15000 | 1.0818 | 0.3462 |
| 0.0439 | 26.27 | 16000 | 1.0995 | 0.3495 |
| 0.0421 | 27.91 | 17000 | 1.0533 | 0.3430 |
| 0.0415 | 29.56 | 18000 | 1.0795 | 0.3452 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
| 6c56fb12474a265924d879f8f2b7f773 |
jvkape/WikiHowSDModel | jvkape | null | 6 | 0 | null | 8 | null | false | false | false | openrail | null | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,523 | false | This model card is a copy-paste from https://www.reddit.com/r/StableDiffusion/comments/ybavif/wikihow_db_model_entirely_free_model_trained_with/
The template is not 100% accurate and sometimes creates erroneous images, but it is incomparable to the natural quality of SD.
The images used for training were all CC from Wikihow. Template available on Hugging Face.
The trigger word for traditional Embeddings is the filename.
The Traditional Embeddings were split into two rar files: One with 0.005 training and the other with 0.00005 training. All with 20 images and 2000 Steps. The two rar files, plus the Embedding file still have the images for you to evaluate which one you want to use.
There is the Winrar file Embedding Aesthestics which is what the name says.
To activate the Dreambooth you must write in the PROMPT: '' in WKHW1 Beautiful Art Style''.
Test which combination works for you. Model + Aesthestics. Model without aesthestics. Model with Embedding. Model without Embedding.:
All my templates are 100% free. All my models are 100% free. You can check in my profile my Coloring Book model posted 12 hours ago.
You can contribute on Patreon and Buymeacoffe. ALL money raised will go towards buying GPU/Rent hours and paying Colab to bring in better models.
I plan to bring Dreambooth, TI, and Hypernetworks models. However, my Hypernetworks is still defective and I am trying to fix it.
If you want any specific models you can contact me here and send me pictures and where I can find the datasets. | e5bbfa0346938d29f138804b6a0f0ab1 |
jonatasgrosman/exp_w2v2r_es_xls-r_gender_male-2_female-8_s772 | jonatasgrosman | wav2vec2 | 10 | 3 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['es'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'es'] | false | true | true | 476 | false | # exp_w2v2r_es_xls-r_gender_male-2_female-8_s772
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| f1fbfe95cd65f1bb60b50d6ceea758f3 |
Tune-A-Video-library/redshift-man-skiing | Tune-A-Video-library | null | 17 | 0 | diffusers | 2 | null | false | false | false | creativeml-openrail-m | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['tune-a-video', 'text-to-video', 'diffusers'] | false | true | true | 1,575 | false |
# Tune-A-Video - Redshift
## Model Description
- Base model: [nitrosocke/redshift-diffusion](https://huggingface.co/nitrosocke/redshift-diffusion)
- Training prompt: a man is skiing.
![sample-train](samples/train.gif)
## Samples
![sample-500](samples/sample-500.gif)
Test prompt: (redshift style) [spider man/black widow/batman/hulk] is skiing.
## Usage
Clone the [github repo](https://github.com/showlab/Tune-A-Video)
```bash
git clone https://github.com/showlab/Tune-A-Video.git
```
Run inference code
```python
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "nitrosocke/redshift-diffusion"
unet_model_path = "Tune-A-Video-library/redshift-man-skiing"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
prompt = "(redshift style) spider man is skiing"
video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos
save_videos_grid(video, f"./{prompt}.gif")
```
## Related Papers:
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
| 21eb22879334f07d09f7a8e87916ef5f |
infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 | infinitejoy | wav2vec2 | 13 | 7 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['br'] | ['mozilla-foundation/common_voice_8_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'br', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard'] | true | true | true | 2,271 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Breton
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset.
It achieves the following results on the evaluation set:
- Loss: NA
- Wer: NA
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
### Training results
NA
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset mozilla-foundation/common_voice_8_0 --config br --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset speech-recognition-community-v2/dev_data --config br --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "br", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```
### Eval results on Common Voice 7 "test" (WER):
NA
| e213b5597dbcc2dd6e875fce53a06e0f |
utsavnandi/fashion-mnist-ddpm-32px-5000_steps | utsavnandi | null | 3 | 0 | null | 0 | unconditional-image-generation | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['unconditional-image-generation'] | false | true | true | 487 | false | Fashion MNIST unconditional Unet Model trained using DDPM
Model Hyperparams:
- Model size: 51,834,625 params
- 3 stages: 128, 256, 512 channels
- Linear Attention in 2nd and 3rd stages, Self Attention in Middle Stage
- Optimizer: Adam
- LR: 3e-4
- Batch Size: 64
- Grad Accumulation: 8 steps
- Effectibe Batch Size: 512
- Total steps: 5,000
- Linear Beta Schedule: 1000 Steps
![output.png](https://s3.amazonaws.com/moonup/production/uploads/1672153152960-6262d89f63f73be3d2f6b7c1.png) | fe49b47cd35280ba30fc8f3f9a78511f |
fathyshalab/all-roberta-large-v1-banking-1000-16-5-oos | fathyshalab | roberta | 11 | 4 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,519 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# all-roberta-large-v1-banking-1000-16-5-oos
This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1313
- Accuracy: 0.3451
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.0616 | 1.0 | 1 | 4.7687 | 0.2035 |
| 4.4657 | 2.0 | 2 | 4.5386 | 0.2920 |
| 4.0496 | 3.0 | 3 | 4.3450 | 0.3097 |
| 3.6317 | 4.0 | 4 | 4.2044 | 0.3363 |
| 3.3941 | 5.0 | 5 | 4.1313 | 0.3451 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
| 5cea3565c5a9ccc67ced3ed0dd1b6f13 |
a1noack/bart-large-gigaword | a1noack | bart | 6 | 115 | transformers | 0 | summarization | true | false | false | mit | null | ['gigaword'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['summarization'] | false | true | true | 1,234 | false | # BART for Gigaword
- This model was created by fine-tuning the `facebook/bart-large-cnn` weights (also on HuggingFace) for the Gigaword dataset. The model was fine-tuned on the Gigaword training set for 3 epochs, and the model with the highest ROUGE-1 score on the training set batches was kept.
- The BART Tokenizer for CNN-Dailymail was used in the fine-tuning process and that is the tokenizer that will be loaded automatically when doing:
```
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("a1noack/bart-large-gigaword")
```
# Summary generation
- This model achieves ROUGE-1 / ROUGE-2 / ROUGE-L of 37.28 / 18.58 / 34.53 on the Gigaword test set; this is pretty good when compared to PEGASUS, `google/pegasus-gigaword`, which achieves 39.12 / 19.86 / 36.24.
- To achieve these results, generate text using the code below. `text_list` is a list of input text string.
```
input_ids_list = tokenizer(text_list, truncation=True, max_length=128,
return_tensors='pt', padding=True)['input_ids']
output_ids_list = model.generate(input_ids_list, min_length=0)
outputs_list = tokenizer.batch_decode(output_ids_list, skip_special_tokens=True,
clean_up_tokenization_spaces=False)
``` | 7bc82302bc5f9e9bd8ccc20d98f05e11 |
sd-concepts-library/liminalspaces | sd-concepts-library | null | 11 | 0 | null | 3 | null | false | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,286 | false | ### Liminalspaces on Stable Diffusion
This is the `<liminal image>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:
![<liminal image> 0](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/1.jpeg)
![<liminal image> 1](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/4.jpeg)
![<liminal image> 2](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/2.jpeg)
![<liminal image> 3](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/0.jpeg)
![<liminal image> 4](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/3.jpeg)
![<liminal image> 5](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/5.jpeg)
| 4b47449245e502dbc42065b3b16d5ce5 |
jonatasgrosman/exp_w2v2t_pt_unispeech-ml_s610 | jonatasgrosman | unispeech | 10 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['pt'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'pt'] | false | true | true | 500 | false | # exp_w2v2t_pt_unispeech-ml_s610
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| cc854b4b4b2721b5c73842a575abad18 |
olgaduchovny/t5-base-ner-mit-movie | olgaduchovny | t5 | 8 | 1 | transformers | 0 | text2text-generation | true | false | false | mit | ['en'] | ['conll2003'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['pytorch', 'ner', 'text generation', 'seq2seq'] | false | true | true | 1,174 | false | # t5-base-qa-ner-conll
Unofficial implementation of [InstructionNER](https://arxiv.org/pdf/2203.03903v1.pdf).
t5-base model tuned on conll2003 dataset.
https://github.com/ovbystrova/InstructionNER
## Inference
```shell
git clone https://github.com/ovbystrova/InstructionNER
cd InstructionNER
```
```python
from instruction_ner.model import Model
model = Model(
model_path_or_name="olgaduchovny/t5-base-ner-mit-movie",
tokenizer_path_or_name="olgaduchovny/t5-base-ner-mit-movie"
)
options = [
"ACTOR",
"AWARD",
"CHARACTER",
"DIRECTOR",
"GENRE",
"OPINION",
"ORIGIN",
"PLOT",
"QUOTE",
"RELATIONSHIP",
"SOUNDTRACK",
"YEAR"
]
instruction = "please extract entities and their types from the input sentence, " \
"all entity types are in options"
text = "are there any good romantic comedies out right now"
generation_kwargs = {
"num_beams": 2,
"max_length": 128
}
pred_spans = model.predict(
text=text,
generation_kwargs=generation_kwargs,
instruction=instruction,
options=options
)
>>> [(19, 36, 'GENRE'), (41, 50, 'YEAR')]
``` | e076b3955885d24a9b530b32e46cfec8 |