prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# coding=utf-8 # <NAME> # <EMAIL> # 2022-03-15 # 100 Days of Code: The Complete Python Pro Bootcamp for 2022 # Day 31 - Flash Card App # Constants BACKGROUND_COLOR = "#B1DDC6" LANGUAGE_A = "English" LANGUAGE_B = "French" FONT_SMALL = ("Arial", 40, "italic") FONT_LARGE = ("Arial", 60, "bold") DATAFILE = "data/french_words.csv" DATAFILE_TRAINED = "data/words_to_learn.csv" SLEEP_TIMER = 3 from tkinter import * import pandas import random import time # Import data try: df = pandas.read_csv(DATAFILE_TRAINED) # Load initial file if no trained file is found or if all words have been learned except (FileNotFoundError, pandas.errors.EmptyDataError) as e: df =
pandas.read_csv(DATAFILE)
pandas.read_csv
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df)
tm.reset_display_options()
pandas._testing.reset_display_options
"""Collect commit data from the user's diffs.""" # pyright: reportMissingImports=false # pylint: disable=E0401 import pandas as pd from reporover import get_commit_data def short_stat(decoded_diff): """Get the commit data from git shortstat.""" added = None deleted = None changes = decoded_diff.split(",") for i in changes: if "+" in i: added = [int(s) for s in i.split() if s.isdigit()][0] if "-" in i: deleted = [int(s) for s in i.split() if s.isdigit()][0] if not added: added = 0 if not deleted: deleted = 0 return (added, deleted) def staged_stats(stats, file_names, commit_subject): """Convert data that will be used for predicting the label.""" decoded_diff = stats.decode("utf-8") added, deleted = short_stat(decoded_diff) decoded_files = file_names.decode("utf-8") files_list = decoded_files.split("\n") file_extensions = get_commit_data.get_file_extensions(files_list) test_files_count = get_commit_data.test_files(files_list) staged_changes_stats = { "commit_subject": commit_subject, "num_files": len(files_list), "test_files": test_files_count, "test_files_ratio": get_commit_data.get_ratio( test_files_count, len(files_list) ), "unique_file_extensions": file_extensions, "num_unique_file_extensions": len(file_extensions), "num_lines_added": added, "num_lines_removed": deleted, "num_lines_total": added + deleted, } return
pd.DataFrame([staged_changes_stats])
pandas.DataFrame
''' This script contains examples of functions that can be used from the Pandas module. ''' # Series --------------------------------------------------------------------- import pandas as pd import numpy as np # Creating series pd.Series(data=[1,2,3,4]) # list pd.Series(data=[1,2,3,4], index=['a','b','c','d']) # custom index pd.Series(data={'a':1, 'b':2, 'c':3, 'd':4}) # dictionary # Indexing series ser_1 = pd.Series(data=[1,2,3,4], index=['a','b','c','d']); ser_1 ser_1['b'] ser_1[2] # Joining Series ser_1 = pd.Series(data=[1,2,3,4], index=['a','b','c','d']); ser_1 ser_2 = pd.Series(data=[1,2,5,4], index=['a','b','e','d']); ser_2 ser_1 + ser_2 # NOTE: Pandas joins series by INDEX. This is why there are 2 NaN values. # DataFrames - Basics -------------------------------------------------------- import pandas as pd import numpy as np df_a = pd.DataFrame({'A': list(range(43))[-6:], 'B': [pd.Timestamp('20180725')] * 5 + [None], 'C': ['cat', 'dog', 'fish', None, 'bird', 'snail'], 'D': [2/3, 1/2, None, 8/3, 1/9, 6/2]}) df_b = pd.DataFrame(data=np.random.randn(6, 4), index=pd.date_range(start = '20180621', periods = 6), columns=['col{}'.format(num) for num in list('1234')]) df_a df_b # Column types df_a.dtypes df_b.dtypes df_a.head() df_a.tail() df_a.index df_b.index df_b.reset_index() df_a.columns df_b.columns df_a.values df_b.values df_b.shift(periods = 1) df_b.sub(100) df_b.add(100) df_a.info() df_a.describe() # Summary Metrics df_a.T # Transpose df_a.transpose() # Same thing as T df_b.sort_index(axis = 1, ascending = False) # Sort column or row order df_b.sort_values(by = 'col2', ascending = True) # Sort rows # DataFrames - Selecting ----------------------------------------------------- import pandas as pd import numpy as np # Select Columns df_b.col1 # NOTE: Don't use this way b/c it will be confused with methods. df_b['col1'] df_b[['col1', 'col3']] # Select Rows df_b[:3] df_b['20180623':'20180625'] # .loc - Select by INDEX (Label) df_a df_b df_a.loc[2] # row @ index 2 df_b.loc['20180623'] # row @ index '20180623' df_b.loc[:, ['col1', 'col3']] df_b.loc['20180623':'20180625', ['col1', 'col3']] df_a.loc[3, 'C'] df_a.at[3, 'C'] # .at is faster than .loc for single values df_a.loc[df_a['D'].idxmax()] df_a.loc[df_a['D'].idxmin()] # .iloc - Select by POSITION df_a.iloc[3] # Slice of 3rd row df_a.iloc[3:5, :2] df_a.iloc[[1, 4], [0, 2]] df_a.iloc[1:3, :] df_a.iloc[2, 2] df_a.iat[2, 2] # .iat is faster than .iloc for single values # Boolean Indexing & Filtering df_b df_b[df_b>0] df_b[df_b['col1']<0] df_b[(df_b['col1']>0) & (df_b['col2']<0)] # Filtering by 2 columns (and) df_b[(df_b['col1']>0) | (df_b['col2']<0)] # Filtering by 2 columns (or) df_a[df_a['C'].isin(['fish', 'bird'])] # String Functions series_a = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) series_a.str.lower() series_a.str.upper() # DataFrames - Sorting ------------------------------------------------------- import pandas as pd import numpy as np df_a df_a.sort_values(by='C') df_a.sort_values(by=['B','D'], axis=0, ascending=[True,False]) # DataFrames - Creating & Modifying Columns & Rows --------------------------- # Creating Columns df_a['E'] = df_a['A']; df_a # Rename Columns df_a.rename(columns = {'A':'col_a', 'B':'col_b', 'C':'col_c', 'D':'col_d'}) # Reset & Set Index df_c = df_b.copy(); df_c df_c.reset_index() df_c # Reset did not set in place. Use 'inplace=True' for that. df_c.reset_index(inplace=True); df_c df_c.loc[:, 'States'] = pd.Series('CA NY WY OR CO TX'.split()); df_c df_c.set_index('States') # Dropping Columns df_a['E'] = df_a['A']; df_a df_a.drop(labels='E', axis=1) # Doesn't affect original table df_a df_a.drop(labels='E', axis=1, inplace=True); df_a # Affects original table # Dropping Rows df_a.drop(labels=2, axis=0) # Doesn't affect original table df_a df_a.drop(labels=2, axis=0, inplace=True); df_a # Affects original table # Replace column values df_a['C'].replace(['cat', 'dog', 'fish'], ['kittie', 'doggie', 'fishie']) # DataFrames - Missing Values ------------------------------------------------ import pandas as pd import numpy as np # Create dataframe with missing values (NaN) df_miss = pd.DataFrame({'A':[1,2,np.nan], 'B':[5,np.nan,np.nan], 'C':[1,2,3]}); df_miss # Find missing values df_miss.isna() df_miss.isnull() # same as .isna() # Drop missing values df_miss.dropna(axis=0) df_miss.dropna(axis=1) df_miss.dropna(axis=0, thresh=2) df_miss.dropna(axis=0, how = 'any') df_miss.dropna(axis=0, how = 'all') # Fill missing values df_miss.fillna(value='FILLED') df_miss['A'].fillna(value=df_miss['A'].mean()) # Fill w/ mean to avoid skewing data # DataFrames - Multi-Level Indexes ------------------------------------------- import pandas as pd import numpy as np # Create multi-level index multi_index = list(zip(((['G1']*3) + (['G2']*3)), [1,2,3,1,2,3])); multi_index multi_index = pd.MultiIndex.from_tuples(multi_index); multi_index # Create multi-level dataframe df_multi = pd.DataFrame(data=np.random.rand(6,2), index = multi_index, columns=['A','B']); df_multi # Select data from multi-level dataframe df_multi.loc['G1'] df_multi.loc['G1'].loc[:, ['A']] df_multi.loc['G2'].loc[1,'B'] # Get & Set index names df_multi.index.names df_multi.index.names = ['lvl1','lvl2']; df_multi # Get cross sections of multi-level index df_multi.xs(key='G1', level='lvl1') df_multi.xs(key=1, level='lvl2') # can select data from any level, which is better than loc for multi-level DFs. # DataFrames - Math, Statistics, & Operations -------------------------------- import pandas as pd import numpy as np # Stats df_b['col1'].count() # Row count df_b.mean() # Mean on y-axis df_b.mean(axis=1) # Mean on x-axis df_b.shift(periods=1) df_b # Unique Values df_c = pd.DataFrame(data=np.random.randint(low=11, high=14, size=(20,4)), columns=list('abcd')); df_c df_c['b'].unique() # unique values df_c['b'].nunique() # # of unique values df_c['b'].value_counts() # count of unique values # Apply df_apply = pd.DataFrame({'A':[1,2,3,4,5,6], 'B':[2,4,6,8,10,12], 'C':np.random.rand(6)}); df_apply df_apply.apply(np.sqrt) # apply built-in function across all elements df_apply.apply(lambda x: x**x) # apply custom function across elements df_apply.apply(lambda x: x.max() - x.min(), axis=0) # apply aggregate function across index df_apply.apply(lambda x: x.max() - x.min(), axis=1) # apply aggregate function across columns df_apply['NewCol'] = df_apply['B'].apply(lambda x: 'I yam '+str(x)+' years old.') # Map df_map = pd.DataFrame({'DayNum':np.random.randint(0,7,20)}); df_map dict_numToDay = {0:'Mon', 1:'Tue', 2:'Wed', 3:'Thu', 4:'Fri', 5:'Sat', 6:'Sun'} df_map['Day'] = df_map['DayNum'].map(dict_numToDay); df_map # Cumulative Sum df_apply[['A','B','C']].cumsum() # Correlation between variables df_apply[['A','C']].corr() # DataFrames - Group Functions ----------------------------------------------- import pandas as pd import numpy as np # Grouping df_c = pd.DataFrame({'col1': list('AAAAAABBBBBBCCCCCC'), 'col2': list('IIJJKKIIJJKKIIJJKK'), 'col3': np.random.randn(18), 'col4': np.random.randn(18)}) df_c # Groupby Functions df_c.groupby('col2').std() df_c.groupby('col1').sum() df_c.groupby('col1').max() df_c.groupby('col1').min() df_c.groupby('col1', as_index=False).sum() df_c.groupby('col2', as_index=False).mean() df_c.groupby(['col1','col2'], as_index=False).sum() df_c.groupby(['col1','col2'], as_index=False)['col4'].sum() df_c['col5'] = df_c.groupby(['col1','col2'], as_index=False)['col4'].transform('sum') # NOTE: Transform doesn't 'squish' rows by group. # Summary statistict df_c.groupby('col1').describe() df_c.groupby('col1').describe().transpose() # DataFrames - Merging ------------------------------------------------------- import pandas as pd import numpy as np # Make example dataframes df_a = pd.DataFrame({'A':[1,2,3,4,5,6], 'B':'G1 G1 G1 G2 G2 G2'.split(), 'C':list(np.random.randint(low=10, size=6)), 'D':list(np.random.randint(low=10, size=6))}); df_a df_b = pd.DataFrame({'A':[0,2,4,6,8,10], 'B':'G1 G1 G1 G2 G2 G2'.split(), 'E':list(np.random.randint(low=10, size=6)), 'F':list(np.random.randint(low=10, size=6))}); df_b # Merging Vertically pd.concat([df_a, df_b]) df_a.append(other=df_b) # NOTE: There are no major differences between pd.concat() vs df.append() # Merge Horizontally with Merge df_a df_b pd.merge(left=df_a, right=df_b, how='outer', on='A') pd.merge(left=df_a, right=df_b, how='left', on='A') pd.merge(left=df_a, right=df_b, how='right', on='A') pd.merge(left=df_a, right=df_b, how='inner', on='A') pd.merge(left=df_a, right=df_b, how='outer', left_on=['A','B'], right_on=['A','B']) # Merge Horizontally with Join df_a.join(other=df_b.loc[:,['E','F']]) # Joins on index # DataFrames - Pivoting ------------------------------------------------------ import pandas as pd import numpy as np # Pivot Table df_a = pd.DataFrame({'A':['foo','foo','foo','bar','bar','bar'],'B':['one','one','two','two','one','one'],'C':list('xyxyxy'),'D':list(range(6))}); df_a df_a.pivot_table(values='D', index=['A','B'], columns='C') # Unstack index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ('two', 'a'), ('two', 'b')]) df_b = pd.Series(np.arange(1.0, 5.0), index=index); df_b df_b.unstack(level=-1) df_b.unstack(level=0) df_b.unstack(level=0).unstack() # Reverts it # T df_c = pd.DataFrame({'A':list(range(5)), 'B':np.random.randn(5), 'C':list('abcde')}); df_c df_c.T df_c.transpose() # Same thing # DataFrames - Reading & Writing Files --------------------------------------- import pandas as pd import numpy as np str_inDir = 'C:/Users/robbi/Dropbox/Work & Learning/Language - Python/Udemy - Python for Data Science and Machine Learning/Refactored_Py_DS_ML_Bootcamp-master/03-Python-for-Data-Analysis-Pandas/' # CSV df_csv =
pd.read_csv(str_inDir+'example')
pandas.read_csv
import numpy as np import pandas as pd import random as random import pickle def formatRank_german(df): tmp = pd.DataFrame() tmp['y']=df.sort_values('y_pred',ascending=False).index tmp['y_pred']=tmp.index tmp['g']=df.sort_values('y_pred',ascending=False).reset_index()['g'] return tmp def formatRank_compas(df): tmp = pd.DataFrame() tmp['y']=df.sort_values('y_pred').index tmp['y_pred']=tmp.index tmp['g']=df.sort_values('y_pred')['g'] return tmp def readFA_IRData(inpath, filename, funct): return funct(pd.read_pickle(inpath+filename)) def getAllFA_IRData(inpath, funct): d ={} d['cb'] = readFA_IRData(inpath, 'ColorblindRanking.pickle', funct) d['base'] = d['cb'].copy() d['base']['y_pred']=d['base']['y'] d['feld'] = readFA_IRData(inpath, 'FeldmanRanking.pickle', funct) d['feld']['y'] = d['cb']['y'] d['fair1'] = readFA_IRData(inpath, 'FairRanking01PercentProtected.pickle', funct) d['fair2'] = readFA_IRData(inpath, 'FairRanking02PercentProtected.pickle', funct) d['fair3'] = readFA_IRData(inpath, 'FairRanking03PercentProtected.pickle', funct) d['fair4'] = readFA_IRData(inpath, 'FairRanking04PercentProtected.pickle', funct) d['fair5'] = readFA_IRData(inpath, 'FairRanking05PercentProtected.pickle', funct) d['fair6'] = readFA_IRData(inpath, 'FairRanking06PercentProtected.pickle', funct) d['fair7'] = readFA_IRData(inpath, 'FairRanking07PercentProtected.pickle', funct) d['fair8'] = readFA_IRData(inpath, 'FairRanking08PercentProtected.pickle', funct) d['fair9'] = readFA_IRData(inpath, 'FairRanking09PercentProtected.pickle', funct) return d def plainFA_IRData(inpath): d ={} d['cb'] = pd.read_pickle(inpath+'ColorblindRanking.pickle') d['base'] = d['cb'].copy() d['base']['y_pred']=d['base']['y'] d['feld'] = pd.read_pickle(inpath+'FeldmanRanking.pickle') d['feld']['y'] = d['cb']['y'] d['fair1'] = pd.read_pickle(inpath+'FairRanking01PercentProtected.pickle') d['fair2'] = pd.read_pickle(inpath+'FairRanking02PercentProtected.pickle') d['fair3'] = pd.read_pickle(inpath+'FairRanking03PercentProtected.pickle') d['fair4'] =
pd.read_pickle(inpath+'FairRanking04PercentProtected.pickle')
pandas.read_pickle
import pandas as pd #import sys import requests import numpy as np import utils from sodapy import Socrata import re ''' MIT License Copyright (c) 2021 <NAME> - dLab - Fundación Ciencia y Vida Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' class hospitalData: def __init__(self): client = Socrata("healthdata.gov", None) self.results = client.get("anag-cw7u", limit=7000) def retrieveLastFileData(self): print('reading file...') df = pd.DataFrame.from_records(self.results) print('file read') self.cnt_data = pd.read_csv('../input/utilities/population_NY_2019_versionJH.csv') self.hosp_list = pd.read_csv('../input/utilities/list_hospital_NY.csv') df2 = utils.hospitalData(df) temp_ny = df2.loc[df['state'] == 'NY'].copy() temp_ny.sort_values('fips', inplace=True) temp_ny['county'] = temp_ny['fips'].copy() temp_ny['fips'] = temp_ny['fips'].astype(np.int64) temp_ny['hospital_pk'] = temp_ny['hospital_pk'].astype(np.int64) temp_ny['date'] = pd.to_datetime(temp_ny['date'], infer_datetime_format=True) temp_ny['date'] = pd.to_datetime(temp_ny['date']).dt.strftime('%Y-%m-%d') temp_ny.reset_index(drop = True, inplace = True) i = 0 for row in self.cnt_data['fips']: idx = temp_ny['fips'].loc[temp_ny['fips'] == row].index temp_ny.loc[idx, 'county'] = self.cnt_data.loc[i, 'county'] i += 1 ny_h = temp_ny.sort_values(by=['date', 'fips']) for row in self.hosp_list['fips']: idx = temp_ny.loc[temp_ny['fips'] == row].index if len(idx) == 0: print('There is a new Hospital in the state. Please complte the file ../input/utilities/list_hospital_NY.csv') ny_h['fips'] = ny_h['fips'].astype(int) ny_h.reset_index(drop=True,inplace=True) temp = list(ny_h.columns) cols = temp[0:2] + [temp[-1]] + temp[2:-1] ny_h = ny_h[cols] file1 = pd.read_csv('../output/Hospital-Data/raw_hospitalData_Hospital_NY.csv') temp_hosp = pd.concat([file1,ny_h], axis=0) temp_hosp.sort_values(by=['date','fips','hospital_pk'], inplace=True) identifiers = ['date', 'fips', 'county', 'hospital_pk'] variables = [x for x in temp_hosp.columns if x not in identifiers] self.ny_hosp = temp_hosp.copy() self.ny_hosp[variables] = temp_hosp[variables].astype(float) self.ny_hosp.drop_duplicates(subset=['date','hospital_pk'], inplace=True) self.ny_hosp.sort_values(by=['date','fips','hospital_pk'], inplace=True) def groupCounty(self): ny_hospital = utils.dataDrop(self.ny_hosp) identifiers = ['date', 'fips', 'county', 'hospital_pk'] variables = [x for x in ny_hospital.columns if x not in identifiers] self.listDates = ny_hospital['date'].unique() self.lim = [1.0, 4.0] for n in range(2): self.ny_hosp2 = ny_hospital.replace(to_replace='-999999.0', value=self.lim[n], inplace=False, method=None) hosp_county_sum = pd.DataFrame() i = 0 for row in self.listDates: aux1 = self.ny_hosp2.loc[self.ny_hosp2['date'] == row].copy() for code in self.cnt_data['fips']: temp = aux1[variables].loc[aux1['fips'] == code].copy() idx1 = temp.astype(float).sum(axis=0) idx1 = idx1.round(2) idx3 = aux1[identifiers].loc[aux1['fips'] == code].copy() if idx3.size == 0: aux6 = self.cnt_data['county'].loc[self.cnt_data['fips'] == code].copy() cnt = aux6.item() date = self.ny_hosp2['date'].loc[self.ny_hosp2['date'] == row].copy() day = date.unique().item() lista = pd.DataFrame([day, code, cnt, 'NA']).T idx3[identifiers] = lista idx3['boundary'] = self.lim[n] idx3.reset_index(drop=True,inplace=True) if idx1.size > 0: idx1_t = idx1.to_frame().T idaux = idx3.loc[0:0,:] aux2 =
pd.concat([idaux, idx1_t], axis=1)
pandas.concat
import pandas as pd import requests from bs4 import BeautifulSoup, Comment import json import re from datetime import datetime import numpy as np comm = re.compile("<!--|-->") class Team: #change team player object def __init__(self, team, year, player=None): self.year = year self.team = team self.team_stat = requests.get( "https://www.basketball-reference.com/teams/{}/{}.html".format(self.team, self.year)).text self.soup = BeautifulSoup(re.sub("<!--|-->","",self.team_stat),"html.parser") def team_sum(self, four_factor = False): summary_container = self.soup.find("table",id="team_misc") summary_table = summary_container.find("tbody") team_sum_row = summary_table.find_all("tr") dict_league_rank = {row['data-stat']:row.get_text() for row in team_sum_row[1]} dict_team_sum = {row['data-stat']:row.get_text() for row in team_sum_row[0]} del dict_team_sum['player'], dict_league_rank['player'] df_team = pd.DataFrame(data = [dict_team_sum, dict_league_rank],index = ['TEAM','LEAGUE']).T for column in df_team.columns: try: df_team[column] = pd.to_numeric(df_team[column]) except: pass if four_factor: off_stats = df_team.loc[['tov_pct', 'pace', 'orb_pct', 'efg_pct', 'ft_rate']] off_stats.columns = ['Team','OFF'] # off_stats['Team'] = off_stats['Team'].apply(lambda x: float(x)) def_stats = df_team.loc[['opp_tov_pct', 'pace', 'drb_pct', 'opp_efg_pct', 'opp_ft_rate']] def_stats.columns = ['Team','DEF'] # def_stats['Team'] = def_stats['Team'].apply(lambda x: float(x)) return off_stats, def_stats return df_team def roster(self, player = None): roster_containter = self.soup.find("tbody") roster_vals = roster_containter.find_all('tr') data_list = [] for row in range(len(roster_vals)): table_data = roster_vals[row].find_all("td") data_list.append({table_data[data_row]['data-stat'] :table_data[data_row].get_text() for data_row in range(len(table_data))}) df_roster = pd.DataFrame(data=data_list) if player: return df_roster[df_roster['player'].str.contains(player)].T return df_roster def injury_report(self,roster_update=False): injury_table = self.soup.find("table",id="injury") inj_body = injury_table.find("tbody") inj_data = inj_body.find_all("tr") df_injury = pd.DataFrame({ "player": [inj_data[data].find("th").get_text() for data in range(len(inj_data))], "team": [inj_data[data].find_all("td")[0].get_text() for data in range(len(inj_data))], "date": [inj_data[data].find_all("td")[1].get_text() for data in range(len(inj_data))], "description": [inj_data[data].find_all("td")[2].get_text() for data in range(len(inj_data))] }) if roster_update == True: updated = df_injury['description'].apply(lambda x: 0 if 'OUT' in x.upper().split(' ') else 1) df_injury.description = updated return df_injury return df_injury def per_game(self,player = None): per_game_table = self.soup.find("table", id="per_game") table_body = per_game_table.find("tbody") table_row = table_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat'] :table_data[data_row].get_text() for data_row in range(len(table_data))}) df_per_game = pd.DataFrame(data=data_row) for column in df_per_game.columns: try: df_per_game[column] = pd.to_numeric(df_per_game[column]) except: pass if player: return df_per_game[df_per_game['player'].str.contains(player)].T return df_per_game def totals(self, player = None): totals_table = self.soup.find("table", id="totals") totals_body = totals_table.find("tbody") table_row = totals_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_totals = pd.DataFrame(data=data_row) for column in df_totals.columns: try: df_totals[column] = pd.to_numeric(df_totals[column]) except: pass if player: return df_totals[df_totals['player'].str.contains(player)].T return df_totals def per_minute(self, player = None): six_table = self.soup.find("table", id="per_minute") six_body = six_table.find("tbody") table_row = six_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_minutes = pd.DataFrame(data=data_row) for column in df_minutes.columns: try: df_minutes[column] = pd.to_numeric(df_minutes[column]) except: pass if player: return df_minutes[df_minutes['player'].str.contains(player)].T return df_minutes def per_poss(self, player = None): poss_table = self.soup.find("table", id="per_poss") poss_body = poss_table.find("tbody") table_row = poss_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_poss = pd.DataFrame(data=data_row) for column in df_poss.columns: try: df_poss[column] = pd.to_numeric(df_poss[column]) except: pass if player: return df_poss[df_poss['player'].str.contains(player)].T return df_poss def advanced(self, player = None): poss_table = self.soup.find("table", id="advanced") poss_body = poss_table.find("tbody") table_row = poss_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_poss = pd.DataFrame(data=data_row) for column in df_poss.columns: try: df_poss[column] = pd.to_numeric(df_poss[column]) except: pass if player: return df_poss[df_poss['player'].str.contains(player)].T return df_poss def shooting(self, player = None): shooting_table = self.soup.find("table", id="shooting") shooting_body = shooting_table.find("tbody") table_row = shooting_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_shooting = pd.DataFrame(data=data_row) for column in df_shooting.columns: try: df_shooting[column] = pd.to_numeric(df_shooting[column]) except: pass if player: return df_shooting[df_shooting['player'].str.contains(player)].T return df_shooting def pbp(self, player = None): pbp_table = self.soup.find("table", id="pbp") pbp_body = pbp_table.find("tbody") table_row = pbp_body.find_all("tr") data_row = [] for row in range(len(table_row)): table_data = table_row[row].find_all("td") data_row.append({table_data[data_row]['data-stat']: table_data[data_row].get_text() for data_row in range(len(table_data))}) df_pbp = pd.DataFrame(data=data_row) for column in df_pbp.columns: try: df_pbp[column] = pd.to_numeric(df_pbp[column]) except: pass if player: return df_pbp[df_pbp['player'].str.contains(player)].T return df_pbp def salaries(self, plater = None): salaries_table = self.soup.find("table", id="salaries2") salaries_body = salaries_table.find_all("tr") sal_dict = {salaries_body[row].find("td",class_='left').get_text():salaries_body[row].find("td",class_='right').get_text() for row in range(1,len(salaries_body))} df_sal = pd.DataFrame(sal_dict, index=[0]).T for column in df_sal.columns: try: df_sal[column] =
pd.to_numeric(df_sal[column])
pandas.to_numeric
#!/usr/bin/env python from pandas.io.formats.format import SeriesFormatter from Bio.SeqUtils import seq1 from Bio import SeqIO import pandas as pd import argparse from pathlib import Path import numpy as np from summarise_snpeff import parse_vcf, write_vcf import csv import re from functools import reduce from bindingcalculator import BindingCalculator from itertools import takewhile def get_contextual_bindingcalc_values(residues_list,binding_calculator, option, bindingcalc_data = None): if option == "res_ret_esc": residues_df = residues_list.copy() res_ret_esc_df = binding_calculator.escape_per_site(residues_df.loc[(residues_df["Gene_Name"] == "S") & (residues_df["respos"] >= 331) & (residues_df["respos"] <= 531) & (residues_df["respos"].isin(bindingcalc_data["site"].unique())), "respos"]) res_ret_esc_df["Gene_Name"] = "S" res_ret_esc_df.rename(columns = {"retained_escape" : "BEC_RES"}, inplace = True) residues_df = residues_df.merge(res_ret_esc_df[["site", "BEC_RES", "Gene_Name"]], left_on = ["Gene_Name", "respos"], right_on = ["Gene_Name", "site"],how = "left") residues_df.drop(axis = 1 , columns = ["site"], inplace = True) return(residues_df) else: ab_escape_fraction = 1 - binding_calculator.binding_retained(residues_list) return(ab_escape_fraction) def summarise_score(summary_df, metric): #assumes grouping by sample_id and summarising for each sample summary_df_info = summary_df.groupby("sample_id").agg({metric: ['sum', 'min', 'max']}) summary_df_info.columns = summary_df_info.columns.droplevel(0) summary_df_info = summary_df_info.reset_index() summary_df_info = summary_df_info.rename_axis(None, axis=1) summary_df_mins = pd.merge(left = summary_df, right = summary_df_info[["sample_id", "min"]], left_on = ["sample_id", metric], right_on = ["sample_id", "min"]) summary_df_mins[metric + "_min"] = summary_df_mins["residues"] + ":" + summary_df_mins[metric].fillna("").astype(str) summary_df_mins = summary_df_mins[["sample_id",metric + "_min"]].groupby("sample_id").agg({metric + "_min" : lambda x : list(x)}) summary_df_mins[metric + "_min"] = summary_df_mins[metric + "_min"].str.join(",") summary_df_max = pd.merge(left = summary_df, right = summary_df_info[["sample_id", "max"]], left_on = ["sample_id", metric], right_on = ["sample_id", "max"]) summary_df_max[metric + "_max"] = summary_df_max["residues"] + ":" + summary_df_max[metric].fillna("").astype(str) summary_df_max = summary_df_max[["sample_id",metric + "_max"]].groupby("sample_id").agg({metric + "_max" : lambda x : list(x)}) summary_df_max[metric + "_max"] = summary_df_max[metric + "_max"].str.join(",") summary_df_sum = summary_df.groupby("sample_id").agg({metric: sum}) summary_df_sum.columns = [metric + "_sum"] summary_df_final = summary_df_sum.merge(summary_df_max,on='sample_id').merge(summary_df_mins,on='sample_id') return(summary_df_final) def sample_header_format(item,sample,vcf,filtered,vcf_loc): if vcf == True: if item.startswith("##bcftools_mergeCommand=merge"): if filtered: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: if item.startswith("##reference="): item = re.sub(r'(?<=muscle\/)[a-zA-Z0-9_\.\/]+(?=\.fasta)', f'{sample}', item) if item.startswith("##source="): item = re.sub(r'(?<=muscle\/)[a-zA-Z0-9_\.]+(?=\.fasta)', f'{sample}', item) item = re.sub(r'(?<=fatovcf\/)[a-zA-Z0-9_\.]+(?=\.vcf)', f'{sample}', item) if item.startswith("##bcftools_mergeCommand=merge"): if filtered: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) return(item) def main(): parser = argparse.ArgumentParser(description='') parser.add_argument('input_vcf', metavar='anno_concat.tsv', type=str, help='Concatenated SPEAR anno file') parser.add_argument('output_dir', metavar='spear_vcfs/', type=str, help='Destination dir for summary tsv files') parser.add_argument('data_dir', metavar='data/', type=str, help='Data dir for binding calculator data files') parser.add_argument('input_header', metavar='merged.vcf', type=str, help='Merged VCF file for header retrieval') parser.add_argument('sample_list', metavar='', nargs="+", help='list of inputs to detect no variant samples ') parser.add_argument('--is_vcf_input', default="False", type=str, help = "Set input file type to VCF") parser.add_argument('--is_filtered', default="False", type=str, help = "Specify files come from filtered directory") args = parser.parse_args() Path(f'{args.output_dir}/per_sample_annotation').mkdir(parents=True, exist_ok=True) if args.is_vcf_input == True: if args.is_filtered: infiles = f'{args.output_dir}/intermediate_output/masked/*.masked.vcf' else: infiles = f'{args.output_dir}/intermediate_output/indels/*.indels.vcf' else: infiles = f'{args.output_dir}/intermediate_output/indels/*.indels.vcf' with open(args.input_header, 'r') as fobj: headiter = takewhile(lambda s: s.startswith('#'), fobj) merged_header = pd.Series(headiter) merged_header = merged_header.str.replace('\n','') merged_header = merged_header.str.replace('"','') cols = ["#CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "sample"] merged_header = merged_header[~merged_header.str.startswith('#CHROM')] input_file = pd.read_csv(args.input_vcf, sep = "\t", names = ["sample_id", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "end"]) if len(input_file) > 0: input_file[["AN", "AC", "problem_exc", "problem_filter", "ANN", "SUM", "SPEAR"]] = input_file["INFO"].str.split(';',expand=True) original_cols = input_file.columns.tolist() input_file[["AN", "AC", "problem_exc", "problem_filter", "ANN", "SUM", "SPEAR"]] = input_file[["AN", "AC", "problem_exc", "problem_filter", "ANN", "SUM", "SPEAR"]].replace("^[A-Z]+=", "", regex = True) input_file = input_file.loc[input_file["ANN"] != "no_annotation"] input_file["SUM"] = input_file["SUM"].str.split(",", expand = False) input_file = input_file.explode("SUM") #explode on this list of SUM values input_file[["Gene_Name", "HGVS.c", "Annotation", "variant", "product", "protein_id", "residues"]] = input_file["SUM"].str.split("|", expand = True) total_variants = input_file.loc[input_file["Annotation"].isin(["intergenic", "non-synonymous"]) == False, ["sample_id", "POS"]].groupby("sample_id").nunique().reset_index() total_variants.columns = ["sample_id", "total_variants"] total_variants["total_variants"] = total_variants["total_variants"].astype("int") consequence_type_counts = input_file[["sample_id", "Annotation"]].groupby(["sample_id", "Annotation"], as_index = False)["Annotation"].value_counts() consequence_type_counts["consequence_count"] = consequence_type_counts["Annotation"] + ":" + consequence_type_counts["count"].astype(str) type_string = consequence_type_counts[["sample_id" ,"consequence_count"]].groupby("sample_id").agg({"consequence_count" : lambda x : list(x)}) type_string["consequence_count"] = type_string["consequence_count"].str.join(",") type_string.columns = ["consequence_type_variants"] type_string.reset_index(drop = False) input_file["SPEAR"] = input_file["SPEAR"].str.split(",", expand = False) input_file = input_file.explode("SPEAR") input_file[["spear-product", "residues","region", "domain", "feature", "contact_type", "NAb", "barns_class", "bloom_ACE2", "VDS", "serum_escape", "mAb_escape_all_classes", "cm_mAb_escape_all_classes","mAb_escape_class_1","mAb_escape_class_2","mAb_escape_class_3","mAb_escape_class_4", "BEC_RES", "BEC_EF"]] = input_file["SPEAR"].str.split("|", expand = True) input_file = input_file.loc[input_file["product"] == input_file["spear-product"]] pattern = re.compile(r"[a-zA-Z\*]+([0-9]+)") #matches any point mutations or deletions , not insertions. input_file["respos"] = input_file["residues"].str.extract(pattern).fillna(-1).astype("int") input_file["refres"] = input_file["residues"].str.extract(r"([a-zA-Z\*]+)[0-9]+[a-zA-Z\?\*]+") input_file["altres"] = input_file["residues"].str.extract(r"[a-zA-Z\*]+[0-9]+([a-zA-Z\?\*]+)") input_file.loc[input_file["Gene_Name"].str.contains('-'), "Gene_Name"] = "Intergenic_" + input_file.loc[input_file["Gene_Name"].str.contains('-'), "Gene_Name"] input_file.loc[input_file["Annotation"] == "synonymous_variant", "variant"] = input_file.loc[input_file["Annotation"] == "synonymous_variant", "HGVS.c"] bindingcalc = BindingCalculator(csv_or_url = f'{args.data_dir}/escape_calculator_data.csv') bindingcalc_data =
pd.read_csv(f'{args.data_dir}/escape_calculator_data.csv')
pandas.read_csv
""" Prepares PUMS Data-Dict CVS for use as panda data frames. todo: review function comments for accuracy """ # %% import pandas as pd import json from _constants import recent_years # dict.column.value zero_prefix_rules = { 'DetailedAncestryRecode1': 3, 'DetailedAncestryRecode2': 3, 'DetailedHispanicOriginRecode': 2, 'DetailedRaceRecode2': 2, 'DetailedRaceRecode3': 3, 'EducationalAttainment': 2, 'GradeLevelAttending': 2, 'HouseholdType': 2, 'IndustryRecode': 4, 'MigrationPUMA': 5, 'MigrationStateOrCountryRecode': 4, 'OccupationRecode': 4, 'PlaceOfBirthRecode': 3, 'PlaceOfWorkPUMA': 5, 'PlaceOfWorkStateOrForeignRecode': 3, 'Relationship': 2, 'State': 2, 'TimeOfArrivalAtWork': 3, 'TimeOfDepartureForWork': 3, 'TransportationToWork': 2, 'UnitsInStructure': 2, 'VeteranPeriodOfService': 2, 'WhenStructureBuilt': 2, 'WorkExperienceOfHouseholderAndSpouse': 2, 'WorkStatusOfHouseholderOrSpouseInFamilyHome': 2, 'YearlyPropertyTaxes': 2 } skip_map_columns = [ 'MigrationPUMA', 'MigrationStateOrCountryRecode', 'PlaceOfWorkPUMA' ] custom_transform_columns = { 'IncomeAdjustmentFactor': lambda x: x[:1]+'.'+x[1:], 'RecordType': lambda x: x } def get_dict_year(year): if year > 2017: return str(year) if year > 2012: return '2013-2017' return None def get_vals_dict_path(year): if year > 2017: return f'./compiled_data/dictionaries/{year}_values.csv' if year > 2012: return f'./compiled_data/dictionaries/2013-2017_values.csv' return None def get_values_dict(year): """ Reads a values csv file, and returns a dict of value mapping """ vals_file = get_vals_dict_path(year) val_dict = {} # Produce values JSON values =
pd.read_csv(vals_file)
pandas.read_csv
# bchhun, {2020-03-22} import csv import natsort import numpy as np import os import xmltodict from xml.parsers.expat import ExpatError import xml.etree.ElementTree as ET import pandas as pd import math import array_analyzer.extract.constants as constants """ functions like "create_<extension>_dict" parse files of <extension> and return: fiduc: list of dict describing fiducial positions spots: list of dict, other spot info repl: list of dict describing 'replicates' AKA antigens params: dict containing hardware and array parameters functions like "populate_array_<type>" take <type> from above (like fiduc, spots, repl, param) and populate np.ndarrays indices correspond to array positions The values of the arrays depend on the function call - populate_array_id : Cell id like "spot-6-2", "spot-5-5-" etc.. - populate_array_spots_type : Type like "Diagnostic", "Positive Control" - populate_array_antigen : Antigen *** NOTE *** populating antigens is more complicated for .xml parsing than for .csv or .xlsx .xml files have keys:"antigen", values: multiple "spot_ID" .csv or .xlsx can map (col, row) directly to "antigen" """ def create_xml_dict(path_): """ receives an .xml file generated by the Scienion sciReader software and returns dictionaries containing info. :param str path_: Full path of xml file :return dict fiduc: Fiducials and control info :return dict spots: Spot info :return dict repl: Replicate info :return dict params: Additional parameters """ try: with open(path_) as fd: doc = xmltodict.parse(fd.read()) except ExpatError: tree = ET.parse(path_) xml_data = tree.getroot() # here you can change the encoding type to be able to set it to the one you need xmlstr = ET.tostring(xml_data, encoding='utf-8', method='xml') doc = xmltodict.parse(xmlstr) try: # layout of array layout = doc['configuration']['well_configurations']['configuration']['array']['layout'] # fiducials fiduc = layout['marker'] # spot IDs spots = doc['configuration']['well_configurations']['configuration']['array']['spots']['spot'] # replicates repl = doc['configuration']['well_configurations']['configuration']['array']['spots']['multiplet'] array_params = dict() array_params['rows'] = int(layout['@rows']) array_params['columns'] = int(layout['@cols']) array_params['v_pitch'] = float(layout['@vspace']) array_params['h_pitch'] = float(layout['@hspace']) array_params['spot_width'] = float(layout['@expected_diameter']) array_params['bg_offset'] = float(layout['@background_offset']) array_params['bg_thickness'] = float(layout['@background_thickness']) array_params['max_diam'] = float(layout['@max_diameter']) array_params['min_diam'] = float(layout['@min_diameter']) except Exception as ex: raise AttributeError(f"exception while parsing .xml : {ex}") return fiduc, spots, repl, array_params def create_csv_dict(path_): """ Looks for three .csv files: "array_parameters.csv" contains array printing parameters as well as hardware parameters "array_format_type.csv" contains fiducial and control names, locations "array_format_antigen.csv" contains specific antigen names for only diagnostic spots Then, parses the .csvs and creates the four dictionaries: :param path_: list of strings to the .csv paths :return: """ # assign names to each of the types == params, spot types, antigens fiduc = list() csv_antigens = list() array_params = dict() for meta_csv in path_: with open(meta_csv, newline='') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: # header row if "Parameter" in str(row[0]) or '' in str(row[0]): continue # parse params elif "array_format_parameters" in meta_csv: array_params[row[0]] = row[1] # parse fiducials elif "array_format_type" in meta_csv: for col, value in enumerate(row[1:]): pos = {'@row': str(row[0]), '@col': str(col - 1), '@spot_type': str(value)} fiduc.append(pos) # parse antigens elif "array_format_antigen" in meta_csv: for col, value in enumerate(row[1:]): pos = {'@row': str(row[0]), '@col': str(col - 1), '@antigen': str(value)} csv_antigens.append(pos) return fiduc, None, csv_antigens, array_params def create_xlsx_dict(xlsx): """ extracts fiducial, antigen, and array parameter metadata from .xlsx sheets then populates dictionaries or lists with appropriate information The output dictionaries and lists conform the .xml-style parsing. This is for consistency :param dict xlsx: Opened xlsx sheets :return list fiduc: Fiducials and control info :return list spots: None. spots IDs not needed for .xlsx :return list repl: Replicate (antigen) :return dict params: Additional parameters about hardware and array """ fiduc = list() xlsx_antigens = list() array_params = dict() # populate array parameters for idx, value in enumerate(xlsx['imaging_and_array_parameters']['Parameter']): array_params[value] = xlsx['imaging_and_array_parameters']['Value'][idx] # Unless specified, run analysis with fiducials only # Otherwise run with all non-negative spots fiducials_only = True if 'fiducials_only' in array_params: if array_params['fiducials_only'] != 1: fiducials_only = False # populate fiduc list for col in xlsx['antigen_type'].keys()[1:]: for row, value in enumerate(xlsx['antigen_type'][col]): if type(value) is float: if math.isnan(value): continue else: if not fiducials_only and "Negative" not in value: pos = {'@row': row, '@col': col, '@spot_type': "Fiducial"} fiduc.append(pos) elif "Fiducial" in value or "xkappa-biotin" in value or "Fiducial, Diagnostic" in value: pos = {'@row': row, '@col': col, '@spot_type': "Fiducial"} fiduc.append(pos) # find and populate antigen list for col in xlsx['antigen_array'].keys()[1:]: for row, value in enumerate(xlsx['antigen_array'][col]): if type(value) is float: if math.isnan(value): continue else: pos = {'@row': row, '@col': col, '@antigen': str(value)} xlsx_antigens.append(pos) return fiduc, xlsx_antigens, array_params def create_xlsx_array(path_): """ (unfinished attempt to convert arrays in xlsx to np.ndarrays directly, using pandas) :param path_: :return: """ array_params = dict() # populate array parameters params = pd.read_excel(path_, sheet_name='imaging_and_array_parameters') for idx, value in enumerate(params['Parameter']): array_params[value] = params['Value'][idx] # populate fiducials array fiduc_df =
pd.read_excel(path_, sheet_name='antigen_type')
pandas.read_excel
# coding: utf-8 __author__ = 'ersh' __email__ = '<EMAIL>' __version__ = '1.1113' #There is a link to group github where you can find library manoelgadi12 and all the files #and instructions #https://github.com/ersh24/manoelgadi12 ################ #L Automated data cleaning #################### import pandas as pd import numpy as np import re #################### #L Automated data cleaning #################### def Faa1(): import pandas as pd import numpy as np import re data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") np.seterr(invalid='ignore') print("Original Data Frame\n", data) #============================================================================== # GOAL: Clean files trying to get numerical columns: # - Usually NaN are 0 as there is no value. # - Whitespaces which can appear when copying data are noisy as they convert # numbers into strings that are not operable. # - Outliers usually are errors which can modify average values. Then it is # better to sustitute them for more reasonable values. #============================================================================== # Replace all NaN with 0 data.fillna(0, inplace=True) # If all the values in the column are float and whitespaces (one or several), # replaces the latter with 0. # Removes whitespaces before or after the numbers. for column in data.columns: if data[column].dtypes in ["object"]: change = True # The column is going to change if all the values (without whitespaces) # match numbers. Numbers need to have int side, though it could be easily # changed to accept numbers like .35 as 0.35 for i in range (0,len(data)): if (re.match(r"[-+]?\d+(\.\d+)?$", str(data[column][i]).strip()) is None): if (not pd.isnull(data[column][i]) and data[column][i].strip() != ''): change = False if change: # If the value is a set of whitespaces, they are replaced by 0, otherwise # whitespaces are deleted and finally the column type is changed to numeric data[column]= data[column].replace(r"^\s+$", '0', regex=True) data[column]= data[column].replace(r"\s+", '', regex=True) data[column] = pd.to_numeric(data[column], errors='coerce') # Replace outliers for the border values # For each column several values which define it, are created # Values out of the upper and lower limits are replaced for the limit values datadict = {} for column in data.columns: if (data[column].dtypes in ["int64", "float64"]): max = np.max(data[column]) p75 = data[column].quantile(0.75) p50 = data[column].quantile(0.5) p25 = data[column].quantile(0.25) min = np.min(data[column]) mean = data[column].mean() iqr = p75 - p25 lower = p25-1.5*iqr upper = p75 + 1.5*iqr valueslist = [lower, min, p25, p50, mean, p75, max, upper] tagslist = ["LOWER", "MIN", "P25", "P50", "Mean", "P75", "MAX", "UPPER"] datadict.update({column : pd.Series([data[column].dtypes]+valueslist, index=["Type"]+tagslist)}) # If it is binary don't detect outliers if (set(data[column]) == {0,1}): continue # Loops the values in a column looking for extreme values # When it finds extreme values sustitutes them, offering several choices for i in range (0,len(data)): if (data[column][i] > upper): data.set_value(i, column, upper) if (data[column][i] < lower): data.set_value(i, column, lower) print ("\nInfo about the columns to transform:\n", pd.DataFrame(datadict),"\n") print("Transformed Data Frame\n", data) data.to_csv("transformed.csv", index=False) #################### #L Human assisted data cleaning #################### # Human assisted data cleaning def HAdatacleaning(): #################### #L Human assisted data cleaning #################### import pandas as pd import numpy as np import re import tkinter as tk from tkinter import ttk from tkinter import filedialog data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") def open_file(): filename = filedialog.askopenfilename( title = "Choose your file", filetypes = (("csv files", "*.csv"), ("all files", "*.*")), defaultextension = '.csv', initialdir = '.') return filename def save_file(): filename = filedialog.asksaveasfilename( title = "Save file", filetypes = (("csv files", "*.csv"), ("all files", "*.*")), defaultextension = '.csv', initialdir = '.', initialfile = 'transformed.csv') if filename != "": data.to_csv(filename, index=False) def start(): global data # fich = open_file() # id_entry.set (fich) # data = pd.read_csv (fich) print("Original Data Frame:\n", data) # Prepare interface to ask about NaN nan = ttk.Label(win_root, text = "Convert 'NaN'?:") nan.grid(row=1, column=0, sticky=tk.E) nanrad1 = tk.Radiobutton(win_root, text="No", variable = nanrad, value=0) nanrad2 = tk.Radiobutton(win_root, text="0", variable = nanrad, value=1) nanrad3 = tk.Radiobutton(win_root, text="Most Freq", variable = nanrad, value=2) nanrad1.grid(row=1, column = 1, sticky=tk.W) nanrad2.grid(row=1, column = 1) nanrad3.grid(row=1, column = 1, sticky=tk.E) nanrad1.deselect() nanrad2.select() nanrad3.deselect() button1.grid(row=1, column=2, sticky=tk.W) state.config(text = "\nHow to proceed with NaN?" ) def cleannan(): global data global c # NaN are not replaced if nanrad.get() == 0: state.config(text = "NaN not converted. Select columns to remove whitespaces." ) # NaN are replaced by 0 if nanrad.get() == 1: data.fillna(0, inplace=True) state.config(text = "'NaN' -> 0. Select columns to remove whitespaces." ) # NaN are replaced by the most frequent vlaue: mode if nanrad.get() == 2: modes = data.mode() for column in data.columns: data[column].fillna(modes[column][0], inplace=True) state.config(text = "NaN to Most Frequent. Select columns to remove whitespaces." ) button1.config(state="disabled") # button0.config(state="disabled") button2.focus() # Prepare intereface to remove whitespaces from columns if all the values can be numeric c=0 first = True for column in data.columns: if data[column].dtypes in ["object"]: change = True for i in range (0,len(data)): if (re.match(r"[-+]?\d+(\.\d+)?$", str(data[column][i]).strip()) is None): if (not pd.isnull(data[column][i]) and data[column][i].strip() != ''): change = False if change: if first: a = tk.Label(win_root, text="Do you want to remove whitespaces from numeric columns?") a.grid(row=4, column=0, sticky=tk.W, columnspan=2) first=False a = tk.Label(win_root, text=column) a.grid(row=5+c, column=0, sticky=tk.E) enval = tk.StringVar() en1 = tk.Radiobutton(win_root, text="Yes", variable = enval, value=column) en2 = tk.Radiobutton(win_root, text="No", variable = enval, value="_NO_") en1.grid(row=5+c, column = 1, sticky=tk.W) en2.grid(row=5+c, column = 1) en1.deselect() en2.select() entriesval.append(enval) c += 1 button2.grid(row=4+c, column=2, sticky=tk.W) def cleanspaces(): global data global c2 button2.config(state="disabled") button3.focus() mess = "Whitespaces removed from: " for entry in entriesval: e = entry.get() if (e != "_NO_"): # If the value is a set of whitespaces, they are replaced by 0, otherwise # whitespaces are deleted and finally the column type is changed to numeric data[e].replace(r"^\s+$", '0', regex=True, inplace=True) data[e].replace(r"\s+", '', regex=True, inplace=True) data[e] = pd.to_numeric(data[e], errors='coerce') mess += str(entry.get() + ", ") mess = mess[:-2] + ". What about outliers?" state.config(text = mess ) # Prepares interface to process outliers. Calculates possible values to sustitute outliers datadict = {} c2=0 first = True for column in data.columns: if data[column].dtypes in ["int64", "float64"]: max = np.max(data[column]) p75 = data[column].quantile(0.75) p50 = data[column].quantile(0.5) p25 = data[column].quantile(0.25) min = np.min(data[column]) mean = data[column].mean() iqr = p75 - p25 valueslist = [p25-1.5*iqr, min, p25, p50, mean, p75, max, p75 + 1.5*iqr] tagslist = ["LOWER", "MIN", "P25", "P50", "Mean", "P75", "MAX", "UPPER"] datadict.update({column : pd.Series([data[column].dtypes]+valueslist, index=["Type"]+tagslist)}) # If it is binary don't detect outliers if (set(data[column]) == {0,1}): continue # Loops the values in a column looking for extreme values # When it finds extreme values prepares the interface to sustitute them, offering several choices for i in range (0,len(data)): if (data[column][i] > (p75 + 1.5*iqr)) or (data[column][i] < (p25 - 1.5*iqr)): if first: a = tk.Label(win_root, text="How do you want to process outliers?") a.grid(row=5+c, column=0, columnspan=2, sticky=tk.W) first=False a = tk.Label(win_root, text=column + ": " + str(data[column][i])) a.grid(row=6+c+c2, column=0, sticky=tk.E) choice = tk.StringVar() chosen = ttk.Combobox(win_root, width=12, textvariable=choice, value=column, state="readonly") # There is a choice "ITSELF" if this outlier is not desired to be changed chosenlist = ["ITSELF: " + str(data[column][i])] for j in range (0,len(tagslist)): chosenlist.append(tagslist[j] + ": " + str(valueslist[j])) chosen['values']= tuple(chosenlist) chosen.grid(row=6+c+c2, column=1) c2 += 1 chosen.current(0) choices.append([column, i, choice]) button3.grid(row=7+c+c2, column=2, sticky=tk.W) def processoutliers(): global data mess = "\nOutliers replaced:\n" # Changes outliers for the selected values for choice in choices: col = choice[0] i = choice[1] ch = choice[2].get().split()[1] data.set_value(i, col, ch) mess += "- " + col + "[" + str(i) + "] -> " +str(ch) + "\n" mess = mess + "New changes can be proposed.\n" mess = mess + "Click 'Save Results' after.\n" mess = mess + "Thank you for using this program!!!" state.config(text = mess ) print("Transformed Data Frame\n", data) # print(data.dtypes) button4=tk.Button(win_root,text="Save Restults",command=lambda: save_file()) button4.grid(row=8+c+c2, column=1, sticky=tk.W) button5=tk.Button(win_root,text="Exit",command=lambda: root.destroy()) button5.grid(row=8+c+c2, column=1, sticky=tk.E) button4.focus() def onFrameConfigure(canvas): '''Reset the scroll region to encompass the inner frame''' canvas.configure(scrollregion=canvas.bbox("all")) # START MAIN np.seterr(invalid='ignore') entriesval = [] choices = [] # data = pd.DataFrame # Creates main window root = tk.Tk() root.title("Data Cleaning") root.geometry("600x800") root.resizable(width=True, height=True) canvas = tk.Canvas(root, borderwidth=0) #, background="#ffffff") win_root = tk.Frame(canvas) #, background="#ffffff") vsb = tk.Scrollbar(root, orient="vertical", command=canvas.yview) vsb.pack(side="right", fill="y") canvas.configure(yscrollcommand=vsb.set) canvas.pack(side="left", fill="both", expand=True) canvas.create_window((4,4), window=win_root, anchor="nw") win_root.bind("<Configure>", lambda event, canvas=canvas: onFrameConfigure(canvas)) label1 = ttk.Label(win_root, text="- Human Assisted Cleaner -\n",font=("Helvetica", 12), foreground="black") label1.grid(row=0,column=1) # # id_entry = tk.StringVar() # id_entered = ttk.Entry(win_root, width = 30, textvariable = id_entry) # id_entered.grid(row = 0, column = 1, sticky = tk.E) # button0 = tk.Button(win_root, text = "Browse computer") # button0.bind ("<Button-1>", start) # button0.grid(row=0, column=2, sticky=tk.W) # button0.focus() button1 = tk.Button(win_root,text = "Go", command=lambda: cleannan()) button2 = tk.Button(win_root,text = "Go", command=lambda: cleanspaces()) button3 = tk.Button(win_root,text = "Go", command=lambda: processoutliers()) nanrad = tk.IntVar() state = ttk.Label(win_root, text="\nPlease, press \"Browse computer\" to select a file to clean.") state.grid(row=1000, column=0, columnspan=3, sticky=tk.W) start() root.mainloop() ######################################## #L H6 Human assisted feature selection ######################################## # data = pd.read_csv("Example.csv") def HAfeatureselection (): import pandas as pd import numpy as np import tkinter as tk from tkinter import ttk from tkinter import filedialog from sklearn import linear_model data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") def open_file(): filename = filedialog.askopenfilename( title = "Choose your file", filetypes = (("csv files", "*.csv"), ("all files", "*.*")), defaultextension = '.csv', initialdir = '.') return filename def save_file(): filename = filedialog.asksaveasfilename( title = "Save file", filetypes = (("csv files", "*.csv"), ("all files", "*.*")), defaultextension = '.csv', initialdir = '.', initialfile = 'transformed.csv') if filename != "": data.to_csv(filename, index=False) def start(): # global data global c # fich = open_file() # id_entry.set (fich) # data = pd.read_csv (fich) # state.config(text = "" ) # a = tk.Label(win_root, text="Select the features you want to include:") # a.grid(row=1, column=0, sticky=tk.W, columnspan=2) c=0 # Usually the target variable is the last column, then it is not offered as a choice for column in data.columns[:-1]: # a = tk.Label(win_root, text=column) # a.grid(row=2+c, column=0, sticky=tk.E) enval = tk.StringVar() en = tk.Checkbutton(win_root, text=column, variable = enval, textvariable = column) en.grid(row=2+c, column = 0, sticky=tk.W) en.deselect() entriesval.append(enval) c += 1 button1.grid(row=2+c, column=0, sticky=tk.W) button1.focus() def checkselected(): global data global c checked_fields = [] count = 0 cols = list(data.columns) for entry in entriesval: e = entry.get() if e=="1": checked_fields.append(cols[count]) count += 1 button5=tk.Button(win_root,text="Exit",command=lambda: root.destroy()) button5.grid(row=2+c, column=1, sticky=tk.W) # button4.focus() x = data[checked_fields] y = data['ob_target'] Fin_model = linear_model.LinearRegression() Fin_model.fit(x, y) sw_fin = Fin_model.score(x,y) a = tk.Label(win_root, text="Using the variables you selected, the model score is "+str(sw_fin)) a.grid(row=4+c, column=0, columnspan = 3, sticky=tk.W) state.config(text = "Select new variables to optimise your model, press Go to re-score" ) def onFrameConfigure(canvas): import pandas as pd '''Reset the scroll region to encompass the inner frame''' canvas.configure(scrollregion=canvas.bbox("all")) # START MAIN np.seterr(invalid='ignore') entriesval = [] # choices = [] data = pd.DataFrame c = 0 # Creates main window root = tk.Tk() root.title("Feature Selection") root.geometry("600x800") root.resizable(width=True, height=True) canvas = tk.Canvas(root, borderwidth=0) #, background="#ffffff") win_root = tk.Frame(canvas) #, background="#ffffff") vsb = tk.Scrollbar(root, orient="vertical", command=canvas.yview) vsb.pack(side="right", fill="y") canvas.configure(yscrollcommand=vsb.set) canvas.pack(side="left", fill="both", expand=True) canvas.create_window((4,4), window=win_root, anchor="nw") win_root.bind("<Configure>", lambda event, canvas=canvas: onFrameConfigure(canvas)) label1 = ttk.Label(win_root, text="Choose features to test:",font=("Helvetica", 12), foreground="black") label1.grid(row=0,column=0) # id_entry = tk.StringVar() # id_entered = ttk.Entry(win_root, width = 30, textvariable = id_entry) # id_entered.grid(row = 0, column = 1, sticky = tk.E) #button0 = tk.Button(win_root, text = "Browse computer", command=lambda: start()) #button0.bind ("<Button-1>") #button0.grid(row=0, column=2, sticky=tk.W) #button0.focus() button1 = tk.Button(win_root,text = "Go", command=lambda: checkselected()) # state = ttk.Label(win_root, text="\nPlease, press \"Browse computer\" to select a file to clean.") state = ttk.Label(win_root, text="") state.grid(row=1000, column=0, columnspan=3, sticky=tk.W) data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") start() #def human_variable_selection(data): root.mainloop() data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") ######################################## #A Genetic algorithm ######################################## def ga(): import pandas as pd import numpy as np import re import deap from deap import creator, base, tools, algorithms import random from sklearn import metrics, linear_model data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") #df = pd.read_csv("dev.csv") #DEV-SAMPLE #dfo = pd.read_csv("oot0.csv")#OUT-OF-TIME SAMPLE #df = pd.read_csv("/home/ab/Documents/MBD/financial_analytics/variable_creation/data/data.csv") #len(df.columns) in_model = [] list_ib = set() #input binary list_icn = set() #input categorical nominal list_ico = set() #input categorical ordinal list_if = set() #input numerical continuos (input float) list_inputs = set() output_var = 'ob_target' for var_name in data.columns: if re.search('^ib_',var_name): list_inputs.add(var_name) list_ib.add(var_name) elif re.search('^icn_',var_name): list_inputs.add(var_name) list_icn.add(var_name) elif re.search('^ico_',var_name): list_inputs.add(var_name) list_ico.add(var_name) elif re.search('^if_',var_name): list_inputs.add(var_name) list_if.add(var_name) elif re.search('^ob_',var_name): output_var = var_name ##### #SETING UP THE GENETIC ALGORITHM and CALCULATING STARTING POOL (STARTING CANDIDATE POPULATION) ##### creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("attr_bool", random.randint, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=len(list_inputs)) toolbox.register("population", tools.initRepeat, list, toolbox.individual) def evalOneMax(individual): return sum(individual), toolbox.register("evaluate", evalOneMax) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) NPOPSIZE = (len(data.columns) -2) #RANDOM STARTING POOL SIZE population = toolbox.population(n=NPOPSIZE) ##### #ASSESSING GINI ON THE STARTING POOL ##### dic_gini={} for i in range(np.shape(population)[0]): # TRASLATING DNA INTO LIST OF VARIABLES (1-81) var_model = [] for j in range(np.shape(population)[0]): if (population[i])[j]==1: var_model.append(list(list_inputs)[j]) # ASSESSING GINI INDEX FOR EACH INVIVIDUAL IN THE INITIAL POOL X_train=data[var_model] Y_train=data[output_var] ###### # CHANGE_HERE - START: YOU ARE VERY LIKELY USING A DIFFERENT TECHNIQUE BY NOW. SO CHANGE TO YOURS. ##### ''' rf = RandomForestClassifier(n_estimators=100, random_state=50) rf1 = rf.fit(X_train, Y_train) Y_predict = rf1.predict_proba(X_train) Y_predict = Y_predict[:,1] ''' Fin_model = linear_model.LinearRegression() Fin_model.fit(X_train, Y_train) Y_predict = Fin_model.predict(X_train) ###### # CHANGE_HERE - END: YOU ARE VERY LIKELY USING A DIFFERENT TECHNIQUE BY NOW. SO CHANGE TO YOURS. ##### ###### # CHANGE_HERE - START: HERE IT USES THE DEVELOPMENT GINI TO SELECT VARIABLES, YOU SHOULD A DIFFERENT GINI. EITHER THE OOT GINI OR THE SQRT(DEV_GINI*OOT_GINI) ##### fpr, tpr, thresholds = metrics.roc_curve(Y_train, Y_predict) auc = metrics.auc(fpr, tpr) gini_power = abs(2*auc-1) ###### # CHANGE_HERE - END: HERE IT USES THE DEVELOPMENT GINI TO SELECT VARIABLES, YOU SHOULD A DIFFERENT GINI. EITHER THE OOT GINI OR THE SQRT(DEV_GINI*OOT_GINI) ##### gini=str(gini_power)+";"+str(population[j]).replace('[','').replace(', ','').replace(']','') dic_gini[gini]=population[j] list_gini=sorted(dic_gini.keys(),reverse=True) ##### #GENETIC ALGORITHM MAIN LOOP - START # - ITERATING MANY TIMES UNTIL NO IMPROVMENT HAPPENS IN ORDER TO FIND THE OPTIMAL SET OF CHARACTERISTICS (VARIABLES) ##### sum_current_gini=0.0 sum_current_gini_1=0.0 sum_current_gini_2=0.0 first=0 OK = 1 a=0 while OK: #REPEAT UNTIL IT DO NOT IMPROVE, AT LEAST A LITLE, THE GINI IN 2 GENERATIONS a=a+1 OK=0 #### # GENERATING OFFSPRING - START #### offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1) #CROSS-X PROBABILITY = 50%, MUTATION PROBABILITY=10% fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population =toolbox.select(offspring, k=len(population)) #### # GENERATING OFFSPRING - END #### sum_current_gini_2=sum_current_gini_1 sum_current_gini_1=sum_current_gini sum_current_gini=0.0 ##### #ASSESSING GINI ON THE OFFSPRING - START ##### for j in range(np.shape(population)[0]): if population[j] not in dic_gini.values(): var_model = [] for i in range(np.shape(population)[0]): if (population[j])[i]==1: var_model.append(list(list_inputs)[i]) X_train=data[var_model] Y_train=data[output_var] ###### # CHANGE_HERE - START: YOU ARE VERY LIKELY USING A DIFFERENT TECHNIQUE BY NOW. SO CHANGE TO YOURS. ##### Fin_model = linear_model.LinearRegression() Fin_model.fit(X_train, Y_train) Y_predict = Fin_model.predict(X_train) ''' rf = RandomForestClassifier(n_estimators=100, random_state=50) rf1 = rf.fit(X_train, Y_train) Y_predict = rf1.predict_proba(X_train) Y_predict = Y_predict[:,1] ''' ###### # CHANGE_HERE - END: YOU ARE VERY LIKELY USING A DIFFERENT TECHNIQUE BY NOW. SO CHANGE TO YOURS. ##### ###### # CHANGE_HERE - START: HERE IT USES THE DEVELOPMENT GINI TO SELECT VARIABLES, YOU SHOULD A DIFFERENT GINI. EITHER THE OOT GINI OR THE SQRT(DEV_GINI*OOT_GINI) ##### fpr, tpr, thresholds = metrics.roc_curve(Y_train, Y_predict) auc = metrics.auc(fpr, tpr) gini_power = abs(2*auc-1) ###### # CHANGE_HERE - END: HERE IT USES THE DEVELOPMENT GINI TO SELECT VARIABLES, YOU SHOULD A DIFFERENT GINI. EITHER THE OOT GINI OR THE SQRT(DEV_GINI*OOT_GINI) ##### gini=str(gini_power)+";"+str(population[j]).replace('[','').replace(', ','').replace(']','') dic_gini[gini]=population[j] ##### #ASSESSING GINI ON THE OFFSPRING - END ##### ##### #SELECTING THE BEST FITTED AMONG ALL EVER CREATED POPULATION AND CURRENT OFFSPRING - START ##### list_gini=sorted(dic_gini.keys(),reverse=True) population=[] for i in list_gini[:NPOPSIZE]: population.append(dic_gini[i]) gini=float(i.split(';')[0]) sum_current_gini+=gini ##### #SELECTING THE BEST FITTED AMONG ALL EVER CREATED POPULATION AND CURRENT OFFSPRING - END ##### #HAS IT IMPROVED AT LEAST A LITLE THE GINI IN THE LAST 2 GENERATIONS #print ('sum_current_gini=', sum_current_gini, 'sum_current_gini_1=', sum_current_gini_1, 'sum_current_gini_2=', sum_current_gini_2) if(sum_current_gini>sum_current_gini_1+0.0001 or sum_current_gini>sum_current_gini_2+0.0001): OK=1 ##### #GENETIC ALGORITHM MAIN LOOP - END ##### gini_max=list_gini[0] gini=float(gini_max.split(';')[0]) features=gini_max.split(';')[1] #### # PRINTING OUT THE LIST OF FEATURES ##### use_these = [] f=0 for i in range(len(features)): if features[i]=='1': f+=1 use_these.append(list(list_inputs)[i]) X = data[use_these] Y = data[output_var] Fin_model = linear_model.LinearRegression() Fin_model.fit(X, Y) Y_predict = Fin_model.predict(X) cv_score = Fin_model.score(X, Y) ''' rf = RandomForestClassifier(n_estimators=100, random_state=50) rf1 = rf.fit(X, Y) Y_predict = rf1.predict_proba(X) Y_predict = Y_predict[:,1] X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=10) rfcv = Fin_model.fit(X_train, y_train) ''' print("Genetic Algorithm Score", cv_score) print("Using", use_these) return(cv_score) # -*- coding: utf-8 -*- def sw(): from sklearn import linear_model,metrics import numpy as np import pandas as pd data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") def xattrSelect(x, idxset): """ Takes X matrix as list of list and returns subset containing columns in idxSet """ xout = [] for row in x: xout.append([row[i] for i in idxset]) return xout #Read the data in: choose the first FA dataset OR the second FA dataset xLists = [] labels = [] names = pd.Series(data.columns) firstline = True for line in data.values: row = list(line) # Populate labels list labels.append(row[-1]) # Remove headers row.pop() # Ensure everything is a float floatrow = [float(s) for s in row] xLists.append(floatrow) #Training and test data sets indices = range(len(xLists)) xListtrain = [xLists[i] for i in indices if i % 3 != 0] xListtest = [xLists[i] for i in indices if i % 3 == 0] labeltest = [labels[i] for i in indices if i % 3 == 0] labeltrain = [labels[i] for i in indices if i % 3 != 0] #Stepwise Regression attributeList = [] index = range(len(xLists[1])) indexSet = set(index) indexSeq = [] oosError = [] for i in index: attSet = set(attributeList) # attributes not currently included attTryset = indexSet - attSet # form into list attTry = [o for o in attTryset] errorList = [] attTemp = [] # experiment with each feature # select features with least oos error for j in attTry: attTemp = [] + attributeList attTemp.append(j) #Form training and testing sub matrixes lists of lists xTraintemp = xattrSelect(xListtrain, attTemp) xTesttemp = xattrSelect(xListtest, attTemp) #Convert into arrays because that is all the scikit learnregression can accept xTrain = np.array(xTraintemp) yTrain = np.array(labeltrain) xTest = np.array(xTesttemp) yTest = np.array(labeltest) # use scikitlearn linear regression Fin_model = linear_model.LinearRegression() Fin_model.fit(xTrain, yTrain) a = Fin_model.predict(xTrain) fpr, tpr, thresholds = metrics.roc_curve(yTrain, a) auc = metrics.auc(fpr, tpr) gini_power = abs(2*auc-1) errorList.append(gini_power) # Use trained model to generate prediction and calculate rmsError '''rmsError = np.linalg.norm((yTest - Fin_model.predict(xTest)), 2) / math.sqrt(len(yTest)) errorList.append(rmsError) attTemp = [] ''' iBest = np.argmin(errorList) attributeList.append(attTry[iBest]) oosError.append(errorList[iBest]) #If you want the sample error #print("Out of sample error versus attribute set size" ) #print(oosError) #If you want the indices of the most useful attributes #print("\n" + "Best attribute indices") #print(attributeList) namesList = [names[i] for i in attributeList] x = data[namesList] y = data['ob_target'] Fin_model = linear_model.LinearRegression() Fin_model.fit(x, y) sw_fin = Fin_model.score(x,y) print("Step Wise Score", sw_fin) print("Using", namesList) return(sw_fin) def compare_stepwise_genetic(): data = pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv") ga() sw() #################### #V dummi creation #################### def dummycreation (): import pandas as pd import numpy as np import re from deap import creator, base, tools, algorithms import random from sklearn import metrics, linear_model data =
pd.read_csv("https://dl.dropboxusercontent.com/u/28535341/dev.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import pandas as pd import numpy as np def main(): df = pd.read_csv('../../data/complete_df_7.csv') if df.columns[0] == 'Unnamed: 0': df.drop('Unnamed: 0', axis=1, inplace=True) if 'stock_open' in df.columns: df['stock_open'] = df['stock_open'].astype(float) #aggregate to the product level across stores aggregate = df.groupby(['sku_key', 'tran_date'])\ .agg({'sales':'sum', 'selling_price':'mean', 'avg_discount': 'mean', 'stock_open': 'mean'}) aggregate.reset_index(inplace=True) #Get the categorical variables for each product categorical = df[['sku_key', 'sku_department', 'sku_subdepartment', 'sku_category', 'sku_subcategory', 'sku_label']] nw_df = pd.DataFrame([], columns=['sku_key','sku_department', 'sku_subdepartment','sku_category', 'sku_subcategory', 'sku_label']) for i in categorical['sku_key'].unique(): nw_df = pd.concat([nw_df,
pd.DataFrame(categorical[categorical['sku_key'] == i].iloc[0])
pandas.DataFrame
from numpy import loadtxt import streamlit as st import numpy as np import pandas as pd import altair as alt n = 25 particle = ['NO2', 'O3', 'NO', 'CO', 'PM1', 'PM2.5', 'PM10'] def actual_vs_predictedpj(): select_model = st.sidebar.radio( "Choose Model ?", ('Xgboost', 'Randomforest', 'KNN', 'Linear Regression', 'Lasso')) select_particle = st.sidebar.radio( "Choose Particle ?", ('NO2', 'O3', 'NO', 'CO', 'PM2.5', 'PM10')) if select_particle == 'NO2': loc = 0 if select_particle == 'O3': loc = 1 if select_particle == 'NO': loc = 2 if select_particle == 'CO': loc = 3 # if select_particle == 'PM1': # loc = 4 if select_particle == 'PM2.5': loc = 4 if select_particle == 'PM10': loc = 5 if select_model == 'Xgboost': get_xgboost(loc) if select_model == 'KNN': get_knn(loc) if select_model == 'Randomforest': get_randomforest(loc) if select_model == 'Linear Regression': get_linear_regression(loc) if select_model == 'Lasso': get_lasso(loc) def get_knn(loc): knn_y_test = loadtxt('ModelsPJ/knn_y_test.csv', delimiter=',') knn_y_test_pred = loadtxt('ModelsPJ/knn_y_test_pred.csv', delimiter=',') l1 = list() l1.append(['Y_Actual']*n) l1.append(np.round(knn_y_test[:n, loc], 9)) l1.append(list(range(1, n+1))) temp1 = np.array(l1).transpose() x1 = list(range(1, n+1)) chart_data1 = pd.DataFrame(temp1, x1, columns=['Data', particle[loc], 'x']) l2 = list() l2.append(['Y_Predicted']*n) l2.append(np.round(knn_y_test_pred[:n, loc], 9)) l2.append(list(range(1, n+1))) temp2 = np.array(l2).transpose() x2 = list(range(n+1, 2*n+1)) chart_data2 = pd.DataFrame(temp2, x2, columns=['Data', particle[loc], 'x']) frames = [chart_data1, chart_data2] results = pd.concat(frames) chart = alt.Chart(results).mark_line().encode( x='x', y=particle[loc], color='Data', strokeDash='Data', ).properties( title='Plot of Actual vs Predicted for KNN model for ' + particle[loc]+' particle' ) st.altair_chart(chart, use_container_width=True) def get_xgboost(loc): xgboost_y_test = loadtxt('ModelsPJ/xgboost_y_test.csv', delimiter=',') xgboost_y_test_pred = loadtxt( 'ModelsPJ/xgboost_y_test_pred.csv', delimiter=',') l1 = list() l1.append(['Y_Actual']*n) l1.append(np.round(xgboost_y_test[:n, loc], 9)) l1.append(list(range(1, n+1))) temp1 = np.array(l1).transpose() x1 = list(range(1, n+1)) chart_data1 =
pd.DataFrame(temp1, x1, columns=['Data', particle[loc], 'X'])
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pandas_datareader as web import datetime as dt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM #loading data company = 'FB' start = dt.datetime(2012,1,1) end = dt.datetime(2021,1,11) data = web.DataReader(company, 'yahoo', start, end) #preparing the data scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1)) prediction_days = 60 x_train = [] y_train = [] for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) #Creating the Neural Network Model model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='harry', loss='mean_squared_error') model.fit(x_train, y_train, epochs=25, batch_size=32) test_start = dt.datetime(2021,1,11) test_end = dt.datetime.now() test_data = web.DataReader(company, 'yahoo', test_start, test_end) actual_prices = test_data['Close'].values total_dataset =
pd.concat((data['Close'], test_data['Close']), axis=0)
pandas.concat
import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "values, dtype", [ ([], "object"), ([1, 2, 3], "int64"), ([1.0, 2.0, 3.0], "float64"), (["a", "b", "c"], "object"), (["a", "b", "c"], "string"), ([1, 2, 3], "datetime64[ns]"), ([1, 2, 3], "datetime64[ns, CET]"), ([1, 2, 3], "timedelta64[ns]"), (["2000", "2001", "2002"], "Period[D]"), ([1, 0, 3], "Sparse"), ([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"), ], ) @pytest.mark.parametrize( "mask", [[True, False, False], [True, True, True], [False, False, False]] ) @pytest.mark.parametrize("indexer_class", [list, pd.array, pd.Index, pd.Series]) @pytest.mark.parametrize("frame", [True, False]) def test_series_mask_boolean(values, dtype, mask, indexer_class, frame): # In case len(values) < 3 index = ["a", "b", "c"][: len(values)] mask = mask[: len(values)] obj = pd.Series(values, dtype=dtype, index=index) if frame: if len(values) == 0: # Otherwise obj is an empty DataFrame with shape (0, 1) obj = pd.DataFrame(dtype=dtype) else: obj = obj.to_frame() if indexer_class is pd.array: mask =
pd.array(mask, dtype="boolean")
pandas.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Run nonparametric ridge estimation. """ import os from optparse import OptionParser import networkx as nx import numpy as np import pandas as pd import time from networkx.algorithms.centrality import betweenness_centrality from plotnine import * from scipy.sparse.csgraph import minimum_spanning_tree from scipy.io import mmwrite from sklearn.decomposition import PCA import quasildr from quasildr import structdr from quasildr.graphdr import * from quasildr.utils import * parser = OptionParser() # main options parser.add_option("--input", dest="input", type="str", help="Input file") parser.add_option("--anno_file", dest="anno_file", type="str", help="Annotation file for plotting") parser.add_option("--anno_column", dest="anno_column", type="str", default="group_id", help="Name of the column to use in annotation file") parser.add_option("--output", dest="output", type="str", help="Output prefix") parser.add_option("--suffix", dest="suffix", type="str", default="", help="Output suffix") parser.add_option("--niter", dest="niter", type="int", default=30, help="Number of iterations. Default is 30.") parser.add_option("--ndim", dest="ndim", type="int", default=15, help="Number of input dimensions to use. Default is 15.") parser.add_option("--bw", dest="bw", type="float", default=0., help="Gaussian KDE kernel bandwidth. " "This is not needed if `automatic_bw` is specified. Default is 0.") parser.add_option("--adaptive_bw", dest="adaptive_bw", type="int", default=10, help="Set data point-specific minimum bandwidth to its distance to " "`adaptive_bw`-th nearest neighbor. Default is 10.") parser.add_option("--automatic_bw", dest="automatic_bw", type="float", default=2.0, help="Use pca to select bw. Default is 2.0.") parser.add_option("--relaxation", dest="relaxation", type="float", default=0, help="Ridge dimensionality relaxation. Default is 0.") parser.add_option("--stepsize", dest="stepsize", type="float", default=0.5, help="Step size relative to standard SCMS. Default is 0.5.") parser.add_option("--method", dest="method", type="str", default="LocInv", help="Method. Default is LocInv") parser.add_option("--batchsize", dest="batchsize", type="int", default=500, help="Decreasing the batch size reduces memory consumption. Default is 500.") parser.add_option("--ridge_dimensionality", dest="ridge_dimensionality", type="float", default=1, help="ridge dim") parser.add_option("--bigdata", action="store_true", dest="bigdata", help="Speed up computation for big datasets with multilevel data represention" " (Experimental feature).") parser.add_option("--n_jobs", dest="n_jobs", type="int", default=1, help="number of jobs") # extract backbones options parser.add_option("--extract_backbone", action="store_true", dest="extract_backbone") parser.add_option("--k", dest="k", type="int", default=50, help="Number of NN to prescreen edges") parser.add_option("--maxangle", dest="maxangle", type="float", default=90., help="Prefilter edges by angles") np.random.seed(0) (opt, args) = parser.parse_args() docstr = "niter" + str(opt.niter) + "_ndim" + str(opt.ndim) + "_bw" + str(opt.bw) + \ "_adaptive_bw" + str(opt.adaptive_bw) + \ "_automatic_bw" + str(opt.automatic_bw) + "_relaxation" + str(opt.relaxation) + \ "_ridge" + str(opt.ridge_dimensionality) + \ "_method" + str(opt.method) + "_stepsize" + str(opt.stepsize) + "_maxangle" + str(opt.maxangle) + "_k" + str( opt.k) + opt.suffix + ("_big" if opt.bigdata else "") outdir = os.path.dirname(opt.output) if not os.path.exists(outdir): os.makedirs(outdir) data = pd.read_csv(opt.input, delimiter='\t') data = np.asarray(data) data = data / data[:, 0].std(axis=0) if opt.ndim > 0: data = data[:, :opt.ndim] if opt.automatic_bw != 0: bw = PCA(np.minimum(20, data.shape[1])).fit_transform(data).std(axis=0)[-1] * np.sqrt(opt.ndim) bw *= opt.automatic_bw else: bw = opt.bw print("bw: "+str(bw)) if opt.anno_file != "": anno = pd.read_csv(opt.anno_file, sep='\t') if opt.bigdata and data.shape[0] > 5000: datas = structdr.multilevel_compression(data) s = structdr.Scms(datas[0], bw=bw, min_radius=opt.adaptive_bw) else: s = structdr.Scms(data, bw=bw, min_radius=opt.adaptive_bw) T, ifilter = s.scms(data, method=opt.method, stepsize=opt.stepsize, n_iterations=opt.niter, threshold=0, ridge_dimensionality=opt.ridge_dimensionality, relaxation=opt.relaxation, n_jobs=opt.n_jobs) np.savetxt(X=T, fname=opt.output + '.' + docstr + '.trajectory') np.savetxt(X=ifilter, fname=opt.output + '.' + docstr + '.trajectory.ifilter') if opt.anno_file != "": df = pd.DataFrame({'x': T[:, 0], 'y': T[:, 1], 'c': anno[opt.anno_column].map(str)}) p = ggplot(df, aes('x', 'y', color='c')) + geom_point(size=0.5) + theme_minimal() else: df = pd.DataFrame({'x': T[:, 0], 'y': T[:, 1]}) p = ggplot(df, aes('x', 'y')) + geom_point(size=0.5) + theme_minimal() p.save(opt.output + '.' + docstr + '.pdf') if opt.extract_backbone: g_simple, g_mst, ridge_dims = extract_structural_backbone(T, data, s, max_angle=opt.maxangle, relaxation=opt.relaxation) mmwrite(opt.output + '.' + docstr + '.g_simple.mm', g_simple) mmwrite(opt.output + '.' + docstr + '.g_mst.mm', g_mst) np.savetxt(opt.output + '.' + docstr + '.ridge_dims', ridge_dims, fmt='%d') df = pd.DataFrame({'x': T[:, 0], 'y': T[:, 1], 'c': anno[opt.anno_column].map(str)}) df_e = pd.DataFrame({'xs': T[g_simple.nonzero()[0], 0], 'xe': T[g_simple.nonzero()[1], 0], 'ys': T[g_simple.nonzero()[0], 1], 'ye': T[g_simple.nonzero()[1], 1]}) p = ggplot(df) + \ geom_segment(mapping=aes(x='xs', xend='xe', y='ys', yend='ye'), data=df_e, size=0.5) + \ geom_point(mapping=aes('x', 'y', color='c'), size=0.5) + theme_minimal() p.save(opt.output + '.' + docstr + '.g_simple.pdf') df_e = pd.DataFrame({'xs': T[g_mst.nonzero()[0], 0], 'xe': T[g_mst.nonzero()[1], 0], 'ys': T[g_mst.nonzero()[0], 1], 'ye': T[g_mst.nonzero()[1], 1]}) p = ggplot(df) + \ geom_segment(mapping=aes(x='xs', xend='xe', y='ys', yend='ye'), data=df_e, size=0.5) + \ geom_point(mapping=aes('x', 'y', color='c'), size=0.5) + theme_minimal() p.save(opt.output + '.' + docstr + '.g_mst.pdf') G_simple = nx.from_scipy_sparse_matrix(g_simple) nodes_bc = betweenness_centrality(G_simple, k=np.minimum(500, g_simple.shape[0]), normalized=False) pd.DataFrame(
pd.Series(nodes_bc)
pandas.Series
import os import numpy as np import pandas as pd import json import lib.galaxy_utilities as gu from astropy.io import fits from tqdm import tqdm aggregated_models = pd.read_pickle('lib/models.pickle')['tuned_aggregate'] def get_n_arms(gal): keys = ( 't11_arms_number_a31_1_debiased', 't11_arms_number_a32_2_debiased', 't11_arms_number_a33_3_debiased', 't11_arms_number_a34_4_debiased', 't11_arms_number_a36_more_than_4_debiased', ) return sum((i + 1) * gal[k] for i, k in enumerate(keys)) def get_winding_score(gal): keys = ( 't10_arms_winding_a28_tight_debiased', 't10_arms_winding_a29_medium_debiased', 't10_arms_winding_a30_loose_debiased', ) return sum((i + 1) * gal[k] for i, k in enumerate(keys)) def get_pitch_angle(gal): m = get_n_arms(gal) w = get_winding_score(gal) return 6.37 * w + 1.3 * m + 4.34 def has_comp(annotation, comp=0): try: drawn_shapes = annotation[comp]['value'][0]['value'] return len(drawn_shapes) > 0 except (IndexError, KeyError): return False if __name__ == '__main__': loc = os.path.abspath(os.path.dirname(__file__)) # open the GZ2 catalogue NSA_GZ = fits.open(os.path.join(loc, '../source_files/NSA_GalaxyZoo.fits')) sid_list_loc = os.path.join(loc, 'lib/subject-id-list.csv') sid_list =
pd.read_csv(sid_list_loc)
pandas.read_csv
import pandas as pd import numpy as np import scipy.stats as stats import copy import sys import os from argotools.config import * import time ''' Auxiliary functions ''' def preds2matrix(preds_dict): # Receives preds in Predictor object format. pred_arrays = [] for model, preds in preds_dict.items(): pred_arrays.append(np.vstack(preds)) return np.hstack(pred_arrays) def convert_index(dataFrame, index_type): 'Function that transforms a PDs dataframe index before data proccessing' if index_type == 'date': dataFrame.index = pd.to_datetime(dataFrame.index) return dataFrame def np2dataframe(index, column_titles, data): ''' Generates a dataframe based off Predictor object's data. Input: index (list or pandas timeseries): the index for each of the data samples (N of index labels == N of rows in data) column_titles (str or list of str) : Same N than N of columns in data data: data to be converted. ''' s = np.shape(data) if isinstance(column_titles,str): column_titles = [column_titles]*np.shape(data)[1] for i, title in enumerate(column_titles): if i > 0: column_titles[i] += '_{0}'.format(i) return pd.DataFrame(data=data, index=index, columns=column_titles) def gen_folder(folder_name, c = 0): if c == 0: if os.path.exists(folder_name): new_folder_name = gen_folder(folder_name, c+1) return new_folder_name else: os.makedirs(folder_name) return folder_name else: if os.path.exists(folder_name+'_{0}'.format(c)): new_folder_name = gen_folder(folder_name, c+1) return new_folder_name else: os.makedirs(folder_name+'_{0}'.format(c)) return folder_name+'_{0}'.format(c) ''' Loading functions for data class A loading function must satisfy the following conditions: Input: fname : path to the file to load. index_type : 'date' / 'other'. index_label : start_period : end_period : Output: target = The gold standard for the experiment features = The input to the prediction algorithms benchmarks = if found, return other models to compare with during analysis phase. If not found in the ordered file, they can be loaded using the load_benchmark() function. Standard structuring of ordered data is as follows: - CSV file - First column : index (e.g. dates for the timeseries in disease forecasting) - Second column : gold standard (e.g. Flunet series, CDC health reports, etc) - Next n columns : Features If the ordered data file contains benchmarks or it doesnt follow the previously mentioned structure, ''' def read_standard_features(path_to_file, start_period, end_period): try: dataFrame =
pd.read_csv(path_to_file, index_col=0)
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils.plots import gcf_clear from mlrun.utils.helpers import create_class from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5 + p.get_width(), p.get_y() + 0.55 * p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters=['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters={'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores=True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df_path = str(df_artifact) context.logger.info(f'input dataset {df_path}') if df_path.endswith('csv'): df = pd.read_csv(df_path) elif df_path.endswith('parquet') or df_path.endswith('pq'): df = pd.read_parquet(df_path) # Set feature vector and labels y = df.pop(label_column) X = df # Create selected statistical estimators stat_functions_list = {stat_name: SelectKBest(create_class(f'sklearn.feature_selection.{stat_name}'), k) for stat_name in stat_filters} requires_abs = ['chi2'] # Run statistic filters selected_features_agg = {} stats_df = pd.DataFrame(index=X.columns) for stat_name, stat_func in stat_functions_list.items(): try: # Compute statistics params = (X, y) if stat_name in requires_abs else (abs(X), y) stat = stat_func.fit(*params) # Collect stat function results stat_df = pd.DataFrame(index=X.columns, columns=[stat_name], data=stat.scores_) plot_stat(context, stat_name, stat_df) stats_df = stats_df.join(stat_df) # Select K Best features selected_features = X.columns[stat_func.get_support()] selected_features_agg[stat_name] = selected_features except Exception as e: context.logger.info(f"Couldn't calculate {stat_name} because of: {e}") # Create models from class name / json file / json params all_sklearn_estimators = dict(all_estimators()) if len(model_filters) > 0 else {} selected_models = {} for model_name, model in model_filters.items(): if '.json' in model: current_model = json.load(open(model, 'r')) ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) elif model in all_sklearn_estimators: selected_models[model_name] = all_sklearn_estimators[model_name]() else: try: current_model = json.loads(model) if isinstance(model, str) else current_model ClassifierClass = create_class(current_model["META"]["class"]) selected_models[model_name] = ClassifierClass(**current_model["CLASS"]) except: context.logger.info(f'unable to load {model}') # Run model filters models_df =
pd.DataFrame(index=X.columns)
pandas.DataFrame
import os import numpy as np import pandas as pd import pygrib from tqdm import tqdm import logging import datetime ######################### ###### Definitions ###### ######################### abs_base_path = os.path.dirname(os.path.abspath(__file__)) '''/home/collin/visibility-China/time_series_analysis/src/data''' permitted_fts = ["{0:0=3d}".format(ft) for ft in range(0, 22, 3)] param_levels = ['Visibility_0', 'Wind speed (gust)_0', 'Temperature_1000', 'Relative humidity_1000', 'U component of wind_1000', 'V component of wind_1000', 'Surface pressure_0', 'Orography_0', 'Temperature_0', '2 metre temperature_2', '2 metre dewpoint temperature_2', '2 metre relative humidity_2', '10 metre U wind component_10', '10 metre V wind component_10', 'Precipitation rate_0', 'Pressure reduced to MSL_0'] fieldnames = ["VIS", "WG_Surf", "T_1000", "RH_1000", "U_1000", "V_1000", "P_Surf", "HGT", "T_Surf", "T_2m", "DT_2m", "RH_2m", "U_10m", "V_10m", "PR", "MSLP"] name_converter_dict = {param_level:fieldnames[pl] for pl, param_level in enumerate(param_levels)} parameterNames = [param_level.split("_")[0] for param_level in param_levels] ######################### ####### Functions ####### ######################### def logger_setup(): ima = datetime.datetime.now() logger_date = ima.strftime("%Y%m%d_%H:%M:%S") # Gets or creates a logger logger = logging.getLogger(__name__) # set log level logger.setLevel(logging.DEBUG) # define file handler and set formatter file_handler = logging.FileHandler(abs_base_path + "/../../data/processed_logs/{}.log".format(logger_date)) formatter = logging.Formatter('%(asctime)s : %(levelname)s : %(name)s : %(message)s') file_handler.setFormatter(formatter) # add file handler to logger logger.addHandler(file_handler) return(logger) ### Set up logger logger = logger_setup() def get_filepaths(directory): file_paths = [] for root, directories, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) file_paths.append(filepath) return(sorted(file_paths)) def find_nearest(a, v): i = (np.abs(a - v)).argmin() return(a[i]) def get_grb_info_GFS(file, stn_latlon_dict): info_dict = {} stn_list = list(stn_latlon_dict.keys()) info_dict["airport"] = stn_list grib_file = pygrib.open(file) try: grbs = grib_file.select(name = parameterNames, level = [0, 2, 10, 1000]) except ValueError: grbs = None if grbs == None: '''info_dict["tag"] = "No Tag" dummy_array = np.arange(81*141).reshape(81, 141) info_dict["values"], info_dict["lats"], info_dict["lons"] = dummy_array, dummy_array, dummy_array''' info_df = pd.DataFrame() else: single_grb = grbs[0] '''for key in single_grb.keys(): print("{0}: {1}".format(key, single_grb[key]))''' ft = "{0:0=3d}".format(single_grb.forecastTime) bt = "{0:0=2d}".format(single_grb.hour) day = "{0:0=2d}".format(single_grb.day) month = "{0:0=2d}".format(single_grb.month) year = "{0:0=2d}".format(single_grb.year) tag = year + month + day + "_" + bt + "_" + ft logger.info("Now processing tag: {}".format(tag)) ### Skip case if forecast too long if ft not in permitted_fts: info_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- import pandas as pd from trading_ig import IGService from trading_ig.config import config from datetime import timedelta import requests_cache import time import os import json counter = -1 ig_service = None list_of_instruments = [] def login(): expire_after = timedelta(hours=1) session = requests_cache.CachedSession( cache_name='cache', backend='sqlite', expire_after=expire_after ) api_key = increment_api_key() global ig_service # no cache ig_service = IGService( config.username, config.password, api_key, config.acc_type ) ig_service.create_session() def main(): login() map_dataframe = ig_service.fetch_top_level_navigation_nodes() # list_of_stringNodes = (map_dataframe["nodes"])["id"].tolist() template_recurse(map_dataframe, ig_service) def template_recurse(map_dataframe, ig_service): node_list = map_dataframe["nodes"]["id"].tolist() # node_list = ["97601","195235"] name_list = map_dataframe["nodes"]["name"].tolist() # name_list = ["Indices","Forex"] set_nodes = set() recurse_overNodes(name_list, node_list, set_nodes, ig_service, []) def recurse_overNodes(name_list, node_list, set_nodes, ig_service, current_name): while len(node_list) != 0 : # needs to be -1 as the last item gets popped node = node_list[-1] if node in set_nodes: node_list.pop() name_list.pop() continue current_name.append(name_list[-1]) set_nodes.add(node) map_dataframe = get_node_to_node_data(ig_service, node) if (map_dataframe["nodes"].size == 0): # save the data try: epic_id = map_dataframe["markets"]["epic"][0] if epic_id == "": raise Exception("No id") # save data map_data = get_details_about_epic(ig_service, epic_id) map_data["instrument"]["location"] = "_".join(current_name) # data_string = json.dumps(map_data) temp = map_data["instrument"].copy() temp.update(map_data["dealingRules"]) temp.update(map_data["snapshot"]) global list_of_instruments list_of_instruments.append(temp) save_to_file(list_of_instruments) except Exception as e: print(e) current_name.pop() else: temp_names = map_dataframe["nodes"]["name"].tolist() temp_id = map_dataframe["nodes"]["id"].tolist() recurse_overNodes(temp_names, temp_id, set_nodes, ig_service , current_name) current_name.pop() def get_node_to_node_data(ig_service,node): while(True): try: map_dataframe = ig_service.fetch_sub_nodes_by_node(node=node) return map_dataframe except Exception as e: print(e) login() def get_details_about_epic(ig_service, epic): while(True): try: map_of_data = ig_service.fetch_market_by_epic(epic) return map_of_data except Exception as e: print(e) login() # time.sleep(2) def save_to_file(data): try: directory = r"D:/Stock_Analysis/ig-markets-api-python-library-master/Data/SpreadBetting/" if not os.path.exists(directory): os.mkdir(directory) file = "instruments_new.csv" filename= directory+file df =
pd.DataFrame(data)
pandas.DataFrame
# Copyright (c) 2018 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from scipy.special import logit from sklearn.linear_model import LogisticRegression from sklearn.isotonic import IsotonicRegression from benchmark_tools.constants import METHOD import benchmark_tools.classification as btc import benchmark_tools.data_splitter as ds LABEL = 'label' class Calibrator(object): def fit(self, y_pred, y_true): raise NotImplementedError def predict(self, y_pred): raise NotImplementedError @staticmethod def validate(y_pred, y_true=None): y_pred = np.asarray(y_pred) assert y_pred.ndim == 1 assert y_pred.dtype.kind == 'f' assert np.all(0 <= y_pred) and np.all(y_pred <= 1) if y_true is not None: y_true = np.asarray(y_true) assert y_true.shape == y_pred.shape assert y_true.dtype.kind == 'b' return y_pred, y_true class Identity(Calibrator): def fit(self, y_pred, y_true): assert y_true is not None Calibrator.validate(y_pred, y_true) def predict(self, y_pred): Calibrator.validate(y_pred) # Could make copy to be consistent with other methods, but prob does # not matter. return y_pred class Linear(Calibrator): def __init__(self): self.clf = LogisticRegression() def fit(self, y_pred, y_true): assert y_true is not None y_pred, y_true = Calibrator.validate(y_pred, y_true) self.clf.fit(y_pred[:, None], y_true) def predict(self, y_pred): y_pred, _ = Calibrator.validate(y_pred) y_calib = self.clf.predict_proba(y_pred[:, None])[:, 1] return y_calib class Isotonic(Calibrator): def __init__(self): self.clf = IsotonicRegression(y_min=0.0, y_max=1.0, out_of_bounds='clip') def fit(self, y_pred, y_true): assert y_true is not None y_pred, y_true = Calibrator.validate(y_pred, y_true) self.clf.fit(y_pred, y_true) def predict(self, y_pred): y_pred, _ = Calibrator.validate(y_pred) y_calib = self.clf.predict(y_pred) return y_calib class Beta1(Calibrator): def __init__(self, epsilon=1e-12): self.epsilon = epsilon self.clf = LogisticRegression() def fit(self, y_pred, y_true): assert y_true is not None y_pred, y_true = Calibrator.validate(y_pred, y_true) y_pred = logit(np.clip(y_pred, self.epsilon, 1.0 - self.epsilon)) self.clf.fit(y_pred[:, None], y_true) def predict(self, y_pred): y_pred, _ = Calibrator.validate(y_pred) y_pred = logit(np.clip(y_pred, self.epsilon, 1.0 - self.epsilon)) y_calib = self.clf.predict_proba(y_pred[:, None])[:, 1] return y_calib class Beta2(Calibrator): def __init__(self, epsilon=1e-12): self.epsilon = epsilon self.clf = LogisticRegression() def fit(self, y_pred, y_true): assert y_true is not None y_pred, y_true = Calibrator.validate(y_pred, y_true) y_pred = np.clip(y_pred.astype(np.float_), self.epsilon, 1.0 - self.epsilon) y_pred = np.stack((np.log(y_pred), np.log(1.0 - y_pred)), axis=1) self.clf.fit(y_pred, y_true) def predict(self, y_pred): y_pred, _ = Calibrator.validate(y_pred) y_pred = np.clip(y_pred.astype(np.float_), self.epsilon, 1.0 - self.epsilon) y_pred = np.stack((np.log(y_pred), np.log(1.0 - y_pred)), axis=1) y_calib = self.clf.predict_proba(y_pred)[:, 1] return y_calib CALIB_DICT = {'raw': Identity, 'iso': Isotonic} def flat(tup, delim='_'): '''Join only invertible if delim not in elements.''' assert not any(delim in x for x in tup) flat_str = delim.join(tup) return flat_str def flat_cols(cols, delim='_', name=None): assert isinstance(cols, pd.MultiIndex) cols = pd.Index([flat(tup, delim=delim) for tup in cols.values], name=name) return cols def combine_class_df(neg_class_df, pos_class_df): ''' neg_class_df : DataFrame, shape (n, n_features) pos_class_df : DataFrame, shape (n, n_features) Must have same keys as `neg_class_df` df : DataFrame, shape (2 * n, n_features) y_true : ndarray, shape (2 * n,) ''' # Adding a new col won't change anything in original neg_class_df = pd.DataFrame(neg_class_df, copy=True) pos_class_df =
pd.DataFrame(pos_class_df, copy=True)
pandas.DataFrame
#!//usr/local/bin/python2 import math import operator from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from plotly.graph_objs import Scatter, Figure, Layout import plotly.plotly as py import plotly.graph_objs as go import pandas as pd import numpy as np Xmin=3 Xmax=9 for Abuse in ("Spam Domains", "Phishing Domains", "Malware Domains", "Botnet Domains"): InitialDataPoint = '2017-may-tlds.csv' DataPoints = ['2017-may-tlds.csv', '2017-june-tlds.csv', '2017-july-tlds.csv', '2017-aug-tlds.csv', '2017-sept-tlds.csv'] # read data files datasets=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd CHORUS_DT_DATA_PATH = "/data/cleaned/data_chorus_dt.csv" class ChorusDtHandler: """" Class for loading chorus DT data and returning """ def __init__(self): self.data_path = CHORUS_DT_DATA_PATH self.prestation_dict = {"A": "Avion", "T": "Train", "TC": "Transport en commun"} self.data = self.load_data() self.preprocess_data() self.prestation_options = self.get_prestation_options() self.year_options = self.get_year_options() def load_data(self): col_types = {"distance": np.float64, "CO2e/trip": np.float64} df =
pd.read_csv(self.data_path, dtype=col_types)
pandas.read_csv
import matplotlib.pyplot as plt import numpy as np import pandas as pd from .plotter import _Plotter __all__ = [ "bar_plot", "time_bar_plot", "line_plot", "time_line_plot" ] def bar_plot(data, y, x=None, hue=None, norm=False, ax=None, figsize=None, orient="v", aggfunc=np.mean, logx=False, logy=False): """ Simple bar plot. Parameters ---------- :param data: DataFrame, required. Input data. :param x: str, optional. x-axis values column name. If there is None, x-axis values are index. :param y: str, required. y-axis values column name. :param hue: str, optional. Grouped column name. :param norm: bool, optional. If true, every bar will be normalized. :param ax: matplotlib.axes.Axes, optional. Axes to plot on, otherwise uses current axes. :param figsize: tuple, optional. Tuple (width, height) in inches. :param orient: str, optional. Orient of plot. Can equal "v" or "h". :param aggfunc: function, list of functions, dict, default numpy.mean, optional. If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If dict is passed, the key is column to aggregate and value is function or list of functions. :param logx: bool, optional. If true, x-axis will be logarithmic. :param logy: bool, optional If true, y-axis will be logarithmic. Returns ---------- :return: matplotlib.axes.Axes, optional. Axes to plot on. """ plotter = _Plotter(data, x, y, figsize) if ax is None: ax = plt.gca() kind = "bar" if orient == "v" else "barh" if hue is None: plotter.plot(kind=kind, ax=ax, aggfunc=aggfunc, logx=logx, logy=logy) else: plotter.grouped_plot(kind=kind, stacked=True, ax=ax, hue=hue, norm=norm, logx=logx, logy=logy) return ax def time_bar_plot(data, y, x=None, hue=None, period=None, norm=False, ax=None, figsize=None, xlabelformat="%d-%m", aggfunc=np.mean, logx=False, logy=False): """ Bar plot with time x-axis. Parameters ---------- :param data: DataFrame, required. Input data. :param x: str, optional. x-axis values column name. If there is None, x-axis values are index. :param y: str, required. y-axis values column name. :param hue: str, optional. Grouped column name. :param period: str or pandas.Offset, required. One of pandas’ offset strings or an Offset object. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. :param norm: bool, optional. If true, every bar will be normalized. :param ax: matplotlib.axes.Axes, optional. Axes to plot on, otherwise uses current axes. :param figsize: tuple, optional. Tuple (width, height) in inches. :param xlabelformat: str, optional. Explicit format string. See https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior. :param aggfunc: function, list of functions, dict, default numpy.mean, optional. If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If dict is passed, the key is column to aggregate and value is function or list of functions. :param logx: bool, optional. If true, x-axis will be logarithmic. :param logy: bool, optional. If true, y-axis will be logarithmic. Returns ---------- :return: matplotlib.axes.Axes, optional. Axes to plot on. """ data = data.copy() if x is None: x = "_index" data[x] = pd.to_datetime(data.index).tz_localize(None) \ .to_period(period) \ .start_time else: data[x] = pd.to_datetime(data[x]).tz_localize(None) \ .to_period(period) \ .start_time plotter = _Plotter(data, x, y, figsize) if ax is None: ax = plt.gca() if hue is None: plotter.plot(kind="bar", ax=ax, aggfunc=aggfunc, logx=logx, logy=logy) else: plotter.grouped_plot(kind="bar", stacked=True, ax=ax, hue=hue, norm=norm, logx=logx, logy=logy) ticks, labels = plotter.calculate_pretty_ticks(plt.xticks(), plt.rcParams.get('figure.figsize')[0]) ax.set_xticks(ticks) ax.set_xticklabels(map(lambda period: pd.Timestamp(period.get_text()).strftime(xlabelformat), labels), rotation=0 if "y" not in xlabelformat.lower() else 45) ax.set_xlabel("time") return ax def line_plot(data, y, x=None, hue=None, norm=False, stacked=False, ax=None, figsize=None, aggfunc=np.mean, logx=False, logy=False): """ Simple line plot. Parameters ---------- :param data: DataFrame, required. Input data. :param x: str, optional. x-axis values column name. If there is None, x-axis values are index. :param y: str, required. y-axis values column name. :param hue: str, optional. Grouped column name. :param norm: bool, optional. If true, every bar will be normalized. :param stacked: bool, optional. If true, create stacked plot. :param ax: matplotlib.axes.Axes, optional. Axes to plot on, otherwise uses current axes. :param figsize: tuple, optional. Tuple (width, height) in inches. :param aggfunc: function, list of functions, dict, default numpy.mean, optional. If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If dict is passed, the key is column to aggregate and value is function or list of functions. :param logx: bool, optional. If true, x-axis will be logarithmic. :param logy: bool, oprional. If true, y-axis will be logarithmic. Returns ---------- :return: matplotlib.axes.Axes, optional. Axes to plot on. """ plotter = _Plotter(data, x, y, figsize) if ax is None: ax = plt.gca() if hue is None: plotter.plot(kind="line", ax=ax, aggfunc=aggfunc, logx=logx, logy=logy) else: plotter.grouped_plot(kind="line", stacked=stacked, ax=ax, hue=hue, norm=norm, logx=logx, logy=logy) return ax def time_line_plot(data, y, x=None, hue=None, period=None, stacked=False, norm=False, ax=None, figsize=None, xlabelformat="%d-%m", aggfunc=np.mean, logx=False, logy=False): """ Line plot with time x-axis. Parameters ---------- :param data: DataFrame, required. Input data. :param x: str, optional. x-axis values column name. If there is None, x-axis values are index. :param y: str, required. y-axis values column name. :param hue: str, optional. Grouped column name. :param period: str or pandas.Offset, required. One of pandas’ offset strings or an Offset object. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. :param stacked: bool, optional. If true, create stacked plot. :param norm: bool, optional. If true, every bar will be normalized. :param ax: matplotlib.axes.Axes, optional. Axes to plot on, otherwise uses current axes. :param figsize: tuple, optional. Tuple (width, height) in inches. :param xlabelformat: str, optional. Explicit format string. See https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior. :param aggfunc: function, list of functions, dict, default numpy.mean, optional. If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If dict is passed, the key is column to aggregate and value is function or list of functions. :param logx: bool, optional. If true, x-axis will be logarithmic. :param logy: bool, optional. If true, y-axis will be logarithmic. Returns ---------- :return: matplotlib.axes.Axes, optional. Axes to plot on. """ data = data.copy() if x is None: x = "_index" data[x] = pd.to_datetime(data.index).tz_localize(None) \ .to_period(period) \ .start_time else: data[x] =
pd.to_datetime(data[x])
pandas.to_datetime
from __future__ import print_function import sklearn #%% import lime import os import numpy as np import pandas as pd pd.set_option('display.max_colwidth', -1) pd.set_option('display.max_columns', None) import sklearn import sklearn.ensemble import sklearn.metrics import seaborn as sns from scipy.special import softmax import matplotlib.pyplot as plt from sklearn.utils import resample from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments from transformers import RobertaTokenizer, RobertaForSequenceClassification from transformers import AlbertTokenizer, AlbertForSequenceClassification import torch import torch.nn as nn import torch #%% import os os.chdir('/home/ubuntu/transformers/Dataset/Restaurant Reviews') # %% # Set Directory as appropiate df_RR = pd.read_csv('Dataset/Restaurant Reviews/original_data/Restaurant_Reviews.tsv',delimiter='\t',nrows = 10000) sns.countplot(df_RR['Liked']) plt.show() #%% zero = df_RR[df_RR.Liked==0] one = df_RR[df_RR.Liked==1] # upsample minority one = resample(one, replace=True, # sample with replacement n_samples=len(zero), # match number with majority class random_state=42) # reproducible results # combine majority and upsampled minority df_RR =
pd.concat([zero,one])
pandas.concat
import json import pandas as pd import os import fiona import geopandas as gpd import numpy as np from copy import deepcopy from pathlib import Path from flatten_dict import flatten from poi_conflation_tool import POIConflationTool # load config file with open(Path(os.path.dirname(os.path.realpath(__file__)), '../config.json')) as f: config = json.load(f) class DataProcessor: """ Perform processing on the HVP dataset by combining verified stop information, data from operational survey and vehicle information. """ def __init__(self): """ Initialises the class object with an empty dataframe to store the combined data for each batch. """ self.combined_trip_data = pd.DataFrame() self.combined_stop_data = gpd.GeoDataFrame() self.conflation_tool = POIConflationTool() print('Loading vehicle type, place type, land use, and activity type mapping data...') vehicletype_mapping = pd.read_excel(os.path.join(os.path.dirname(__file__), config['vehicletype_mapping'])) self.vehicletype_mapping = dict(zip(vehicletype_mapping['OriginalVehicleType'], vehicletype_mapping['MappedVehicleType'])) placetype_mapping = pd.read_excel(os.path.join(os.path.dirname(__file__), config['placetype_mapping'])) self.placetype_mapping = dict(zip(placetype_mapping['OriginalPlaceType'], placetype_mapping['NewPlaceType'])) landusetype_mapping = pd.read_excel(os.path.join(os.path.dirname(__file__), config['landusetype_mapping'])) self.landusetype_mapping = dict(zip(landusetype_mapping['OriginalLandUseType'], landusetype_mapping['MappedLandUseType'])) activitytype_mapping = pd.read_excel(os.path.join(os.path.dirname(__file__), config['activitytype_mapping'])) self.activitytype_mapping = dict(zip(activitytype_mapping['OriginalActivityType'], activitytype_mapping['MappedActivityType'])) print('Loading SLA land use data...') self.landuse_data = self._load_landuse_data() def load_batch_data(self, batch_num): """ Loads the batch stop data from local directory. Return: batch_data: geopandas.GeoDataFrame Contains the processed stop data for a particular batch. """ batch_data = gpd.read_file(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_{}.shp'.format(batch_num)), encoding='utf-8') self.combined_stop_data = pd.concat([self.combined_stop_data, batch_data], ignore_index=True) return batch_data def load_combined_data(self): """ Loads the combined stop data of all batches from local directory. Return: combined_stop_data: geopandas.GeoDataFrame Contains the processed stop data for all batches. """ self.combined_stop_data = gpd.read_file(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'combined_stop_data.shp'), encoding='utf-8') return self.combined_stop_data def _vehicle_type_mapping(self, vehicle_type): """ Performs a vehicle type mapping to merge similar vehicle types together. Parameters: vehicle_type: str Contains the original vehicle type. Return: self.vehicle_mapping[vehicle_type]: str Contains the mapped vehicle type. Returns "Unknown" if vehicle_type is None. """ if (vehicle_type is None) or (vehicle_type == 'Nil') or (vehicle_type == ''): return "Unknown" if vehicle_type in self.vehicletype_mapping: return self.vehicletype_mapping[vehicle_type] else: return "Unknown" def _load_verified_trips(self, batch_num): """ Loads the verified trips data for a particular batch and removes the irrelevant columns. Parameters: batch_num: int Contains the batch number. Return: verified_trips: pandas.DataFrame Contains the verified trips information for a particular batch. """ with open(os.path.join(os.path.dirname(__file__), config['verified_stop_directory'].format(batch_num=batch_num))) as f: verified_trips = json.load(f) verified_trips = pd.json_normalize(verified_trips) # filter important features retained_columns = ['DriverID', 'VehicleType', 'Stops', 'Travels', 'YMD', 'Timeline', 'DayOfWeekStr'] verified_trips = verified_trips[retained_columns] # perform mapping for vehicle type information verified_trips['VehicleType'] = verified_trips['VehicleType'].apply(self._vehicle_type_mapping) return verified_trips def _load_operation_survey(self, batch_num): """ Loads the operation survey for a particular batch and removes the irrelevant columns. Parameters: batch_num: int Contains the batch number. Return: operation_data: pandas.DataFrame Contains the operation survey data for a particular batch. """ # load operational survey with open(os.path.join(os.path.dirname(__file__), config['operation_survey_directory'].format(batch_num=batch_num))) as f: operation_data = json.load(f) operation_data = pd.json_normalize(operation_data) # filter important features important_features = ['Commodity', 'SpecialCargo', 'Company.Type', 'Industry', 'Driver.ID'] retained_columns = [column for column in operation_data.columns for feature in important_features if feature in column] retained_columns.remove('Commodity.OtherStr') operation_data = operation_data[retained_columns] return operation_data def _generate_trip_id(self, verified_trips, batch_num): """ Assigns a unique ID to each trip that contains the batch number as well. Parameters: verified_trips: pandas.DataFrame Contains the trip information for a particular batch. batch_num: int Contains the batch number. Return: verified_trips: pandas.DataFrame Contains the trip information for a particular batch with unique ID for each trip. """ verified_trips = verified_trips.rename_axis('TripID').reset_index() verified_trips['TripID'] = 'B{}_'.format(batch_num) + verified_trips['TripID'].astype(str) return verified_trips def _process_timeline(self, timeline): """ Process the timeline information of a particular trip to extract the stop information. Parameters: timeline: list of dictionaries Contains the stops made during a particular trip. Return: stops_df: pandas.DataFrame Contains the stops made during a particular trip, concatenated and formatted as a single Dataframe. """ timeline_list = [] for i in range(len(timeline)): for j in range(len(timeline.loc[i, 'Timeline'])): stop_dict = flatten(timeline.loc[i, 'Timeline'][j], reducer='dot') stop_dict['TripID'] = timeline.loc[i, 'TripID'] timeline_list.append(stop_dict) # filter out stops and travel timeline_df = pd.DataFrame(timeline_list) stops_df = timeline_df[timeline_df['Type'] == 'Stop'].reset_index(drop=True) # drop redundant columns stops_df.rename(columns={'ID': 'StopID'}, inplace=True) interested_columns = ['Attribute.PlaceType.', 'Attribute.Address', 'Attribute.StopLon', 'Attribute.StopLat', 'Attribute.Activity.', 'StartTime', 'EndTime', 'Duration', 'StopID', 'TripID'] retained_columns = [column for column in stops_df.columns for interested_column in interested_columns if interested_column in column] retained_columns.remove('Attribute.PlaceType.Applicable') retained_columns.remove('Attribute.Activity.OtherStr') stops_df = stops_df[retained_columns] # remove 'Attribute_' from column name stops_df.columns = [col_name.replace('Attribute.', '') for col_name in stops_df.columns] return stops_df def _activity_type_mapping(self, verified_stops): """ Performs an activity type mapping to merge similar activity types together. Parameters: verified_stops: pd.DataFrame Contains the verified stops information with original activity types. Return: verified_stops: pd.DataFrame Contains the verified stops information with the newly mapped activity types. """ activity_types = ['DeliverCargo', 'PickupCargo', 'Other', 'Shift', 'ProvideService', 'OtherWork', 'Meal', 'DropoffTrailer', 'PickupTrailer', 'Fueling', 'Personal', 'Passenger', 'Resting', 'Queuing', 'DropoffContainer', 'PickupContainer', 'Fail', 'Maintenance'] for activity in activity_types: if 'MappedActivity.{}'.format(self.activitytype_mapping[activity]) not in verified_stops.columns: verified_stops['MappedActivity.{}'.format(self.activitytype_mapping[activity])] = deepcopy( verified_stops['Activity.{}'.format(activity)] ) else: verified_stops['MappedActivity.{}'.format(self.activitytype_mapping[activity])] = \ verified_stops['MappedActivity.{}'.format(self.activitytype_mapping[activity])] + \ verified_stops['Activity.{}'.format(activity)] idx = verified_stops[verified_stops['MappedActivity.{}'.format( self.activitytype_mapping[activity])] > 0].index.tolist() verified_stops.loc[idx, 'MappedActivity.{}'.format(self.activitytype_mapping[activity])] = 1 return verified_stops def _extract_verified_stops(self, verified_trips, batch_num): """ Extracts the verified stop information based on the verified trips. Parameters: verified_trips: pandas.DataFrame Contains the verified trip information for a particular batch. batch_num: int Contains the batch number. Return: verified_stops: pandas.DataFrame Contains the verified stop information for a particular batch. """ # extract stop information and frequent places verified_trips = self._generate_trip_id(verified_trips, batch_num) timeline = verified_trips[['Timeline', 'TripID']] other_trip_info = verified_trips.drop(columns=['Timeline']) timeline_info = self._process_timeline(timeline) # merge with other trip information verified_stops = timeline_info.merge(other_trip_info, how='left', on='TripID') # extract stop start time verified_stops['StartHour'] = verified_stops['StartTime'].apply(lambda x: int(x.split(' ')[1].split('-')[0])) # perform mapping of activity types verified_stops = self._activity_type_mapping(verified_stops) return verified_stops def _remove_bus_data(self, trip_data): """ Removes all trip and stop data collected for buses. Parameters: trip_data: pandas.DataFrame Contains the trip data for a particular batch. Return: filtered_trip_data: pandas.DataFrame Contains the filtered trip data for a particular batch without any bus-related trips. """ filtered_trip_data = trip_data[trip_data['VehicleType'] != 'Bus'] return filtered_trip_data def _landuse_type_mapping(self, landuse_type): """ Performs a land use type mapping to merge similar land use types together. Parameters: landuse_type: str Contains the original landuse type from URA. Return: self.landuse_mapping[landuse_type]: str Contains the mapped landuse type. """ if (landuse_type is None) or (landuse_type == 'Nil') or (landuse_type == '') or \ (landuse_type not in self.landusetype_mapping): raise ValueError('Land use type {} is invalid'.format(landuse_type)) else: return self.landusetype_mapping[landuse_type] def _load_landuse_data(self): """" Loads the URA 2019 land use data. Return: landuse_data: pd.DataFrame Contains the land use information from URA. """ fiona.drvsupport.supported_drivers['KML'] = 'rw' landuse_data = gpd.read_file(os.path.join(os.path.dirname(__file__), config['ura_landuse']), driver='KML') landuse_data['LandUseType'] = landuse_data['Description'].apply(lambda x: pd.read_html(x)[0].loc[0, 'Attributes.1']) landuse_data['MappedLandUseType'] = landuse_data['LandUseType'].apply(lambda x: self._landuse_type_mapping(x)) landuse_data.drop(columns=['Name', 'Description'], inplace=True) return landuse_data def _place_type_mapping(self, place_types): """ Performs a place type mapping to merge similar place types together. Parameters: place_types: str Contains the original place types. Return: mapped_placetypes: list Contains the mapped place type information. Returns "Unknown" if there are no place type information or if it is not following Google's taxonomy. """ if (place_types is None) or (place_types == 'Nil') or (place_types == ''): return ["POI.Unknown"] mapped_placetypes = ['POI.{}'.format(self.placetype_mapping[place_type]) for place_type in place_types.split('; ') if place_type in self.placetype_mapping] if mapped_placetypes: return list(set(mapped_placetypes)) else: return ["POI.Unknown"] def _load_poi_data(self, stop_data, batch_num): """ Extracts the nearby POIs and calculates the number of different place types at each stop. Return: poi_data: pd.DataFrame Contains the number of each POI types around each stop. batch_num: int Contains the batch number """ # extract neighbouring POIs using conflation tool poi_data = stop_data['StopID'].to_frame(name='StopID') poi_data['NumPOIs'] = 0 placetype_df =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd from unidecode import unidecode def evaluate_banner(): print('\n**************************************************') print('************Evalulting Reconciliations************') print('**************************************************') def evaluate_and_clean_merge(df, rawpath): df = df.reset_index().drop('index', axis=1) print('\n** Evaluating the merged dataset and' + ' sequentially cleaning it!**') print('** We have ' + str(len(df)) + ' total rows of payments data to begin with.') print('** We have £' + str(round(df['amount'].sum() / 1000000000, 2)) + 'bn worth of data to begin with.') print('** We have ' + str(len(df['supplier'].unique())) + ' unique suppliers to begin with.') df['expensetype'] = df['expensetype'].astype(str) df['expensetype'] = df['expensetype'].str.lower() df['expensetype'] = df['expensetype'].str.strip() df['expensetype'] = df['expensearea'].astype(str) df['expensetype'] = df['expensearea'].str.lower() df['expensetype'] = df['expensearea'].str.strip() df['supplier'] = df['supplier'].astype(str) df['supplier'] = df['supplier'].str.strip() initial = len(df) df['amount'] = pd.to_numeric(df['amount'], errors='coerce') df = df[~pd.isnull(df['amount'])] df = df[df['amount'] >= 25000] print('Dropped ' + str(initial - len(df)) + ' null, non-numeric and payments below £25k in value.') initial = len(df) df = df[~
pd.isnull(df['supplier'])
pandas.isnull
import numpy as np import os import pandas as pd import pickle class Predictor(object): """ Class for predicting. """ def predict(self, data=None, linear=True, model_filename="linear-accelerometer.pcl", features="simple", filtering=None, **kwargs): """ :param data: data on which predict :param linear: linear model will be used or not (if True than do scaling if models are saved) :param model_filename: filename of the model (model have to be saved in the roor in "models" folder) :param filtering: filtering method :param kwargs: arguments for filtering :return: prediction on the data """ if data is not None: with open(os.path.join("models", model_filename), "rb") as file: model = pickle.load(file) if filtering is not None: data = self.preprocess(data, linear=linear, filtering=filtering, **kwargs) if features == "simple": data['acceleration'] = np.sqrt( data['x_accelerometer'] ** 2 + data['y_accelerometer'] ** 2 + data['z_accelerometer'] ** 2) y_pred = model.predict(data).tolist() return y_pred @staticmethod def preprocess_feature(feature=None, path_to_the_scaler=None, filtering=None, **kwargs): """ :param feature: feature vector which have to be preprocessed :param scaler_filename: filename of the stored scaler :param filtering: filtering method :param kwargs: arguments for filtering :return: preprocessed feature """ if feature is not None: feature = filtering(feature, **kwargs) if path_to_the_scaler is not None: with open(path_to_the_scaler, "rb") as file: scaler = pickle.load(file) feature = scaler.transform(feature.reshape(-1, 1)) return feature def preprocess(self, data=None, linear=False, filtering=None, **kwargs): """ :param data: data for preprocessing :param linear: linear model will be used or not (if True than do scaling if scalers are saved) :param filtering: filtering method :param kwargs: arguments for filtering :return: """ if data is not None: data_new =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd from src.commons.process_dataframe import keep_valid_columns, change_col_value_type, insert_new_col_from_two_cols, \ get_sub_df_according2col_value, get_mean, get_std from src.commons.process_number import get_deviation, get_percent_change from src.constants.ms2_uniform_prolific_1_constants import KEEP_COLS from src.preprocess.sub.get_data2analysis import drop_df_rows_according2_one_col if __name__ == '__main__': write_to_excel = False # read data PATH_DATA = "../../data/ms2_uniform_prolific_1_data/raw/" dir_list = os.listdir(PATH_DATA) df_list_all = [pd.read_csv(PATH_DATA + file) for file in dir_list] # preprocess df_list = list() for df in df_list_all: # keep useful clos df = keep_valid_columns(df = df, kept_columns_list = KEEP_COLS) # drop practice trials df = df.dropna(subset = ["trials.thisN"]) # remove spaces if df["responseN"].dtypes == "object": df["responseN"] = df["responseN"].str.strip() # remove non numeric responses df["is_num"] = df["responseN"].str.isnumeric() drop_index = df[df["is_num"] == False].index df.drop(drop_index, inplace = True) # change responseN to float change_col_value_type(df, "responseN", float) df_list.append(df) # drop participants more than 5% of invalid trials # remove pp 12 data: only 311 valid trials out of 330 trials df_list.pop(2) # add deviation score col for df in df_list: insert_new_col_from_two_cols(df, "responseN", "numerosity", "deviation_score", get_deviation) insert_new_col_from_two_cols(df, "deviation_score", "numerosity", "percent_change", get_percent_change) # check subitizing results # take subitizing trials out subitizing_df_list = list() for df in df_list: sub_df = df.loc[df["numerosity"] <= 4] subitizing_df_list.append(sub_df) # 30 subitizing trials (only keep participant has 28, 29 and 30 correct) correct_trial_list = list() for sub_df in subitizing_df_list: correct_trial_list.append((sub_df["deviation_score"] == 0).sum()) # removed index index_list = list() for i, n_correct in enumerate(correct_trial_list): if n_correct < 28: index_list.append(i) # removed participant performance not more than 90% df_list = [df for i, df in enumerate(df_list) if i not in index_list] # remove subitizing trials df_list_t1 = list() for df in df_list: df_list_t1.append(df.loc[df["numerosity"] > 4]) # drop obvious wrong response: min_res = 10 max_res = 128 df_list_prepro = list() for df in df_list_t1: df_list_prepro.append(drop_df_rows_according2_one_col(df, "responseN", min_res, max_res)) # concat all participant df_data =
pd.concat(df_list_prepro)
pandas.concat
import ast import os import glob from io import BytesIO import base64 import json from IPython import display as ipd import numpy as np import pandas as pd from scipy.interpolate import interp1d from scipy.misc import imresize import pretty_midi import librosa import PIL.Image import soundfile as sf from flask import render_template, flash, url_for, request, redirect, session, Markup, current_app from . import refiner from .. import common def get_paths(): return { 'data_AUDIO': os.path.join(current_app.config['dir_mtd'], '03_MTD-medium', 'data_AUDIO'), 'data_ALIGNMENT': os.path.join(current_app.config['dir_mtd'], '03_MTD-medium', 'data_ALIGNMENT'), 'data_EDM-corr_MID': os.path.join(current_app.config['dir_mtd'], '03_MTD-medium', 'data_EDM-corr_MID'), 'data_ALIGNMENT-annotated': os.path.join(common.STATIC_DIR, 'data_ALIGNMENT-annotated'), 'data_AUDIO_IIRT-annotated': os.path.join(common.STATIC_DIR, 'data_AUDIO_IIRT-annotated'), 'data_AUDIO_IIRT': os.path.join(common.STATIC_DIR, 'data_AUDIO_IIRT'), 'data_AUDIO-annotated': os.path.join(common.STATIC_DIR, 'data_AUDIO-annotated'), } def get_mtd_row(mtd_id): df_medium = pd.read_csv(os.path.join(current_app.config['dir_mtd'], '03_MTD-medium.csv'), sep=';') row = df_medium[df_medium['MTDID'] == mtd_id] assert len(row) == 1 return row def get_wcm_for_mtd(mtd_id): row = get_mtd_row(mtd_id) directory = current_app.config['data_AUDIO-WCM'] if not os.path.exists(directory): flash(f'The WCM directory ({directory}) does not exist.') return None wcm_id = str(row['WCMID'].iloc[0]) file = glob.glob(os.path.join(directory, '*WCM' + wcm_id + '.wav')) assert len(file) == 1, (file, os.path.join(directory, '*WCM' + wcm_id + '.wav')) return file[0] def get_mtd_str(s): if '-' in s: part1, part2 = s.split('-') return 'MTD%04d-%s' % (int(part1), part2) else: return 'MTD%04d' % int(s) def check_file_glob(globber, mtd_id_str, entry_type): fn = glob.glob(globber) if len(fn) != 1: flash('There are %d %s-entries for the MTDID "%s".' % (len(fn), entry_type, mtd_id_str)) return None else: return fn[0] def adjust_midi(midi_data, wp): f = interp1d(wp[:, 0], wp[:, 1], fill_value='extrapolate') for cur_instrument in midi_data.instruments: for cur_note in cur_instrument.notes: cur_note.start = max(0, f(cur_note.start)) cur_note.end = max(0, f(cur_note.end)) return midi_data def time_str_to_sec(t): mm, ss = t.split(':') return float(mm) * 60 + float(ss) def get_start_end_time_duration(mtd_id): mtd_row = get_mtd_row(mtd_id) path_dict = get_paths() fn_wcm_wav = get_wcm_for_mtd(mtd_id) with sf.SoundFile(fn_wcm_wav, 'r') as stream: duration = len(stream) / stream.samplerate mtd_id_str = get_mtd_str(mtd_id) fn_json = os.path.join(path_dict['data_AUDIO_IIRT-annotated'], mtd_id_str + '.json') if os.path.exists(fn_json): with open(fn_json, 'r') as stream: data = json.load(stream) return data['start'], data['end'], duration else: start = round(time_str_to_sec(mtd_row.iloc[0]['StartTime']), 1) end = round(time_str_to_sec(mtd_row.iloc[0]['EndTime']), 1) return start, end, duration def write_sync_csv(wp, fn_out, fn_mid, fn_mtd_wav): midi_data = pretty_midi.PrettyMIDI(fn_mid) mid_symbol_end = max(note.end for inst in midi_data.instruments for note in inst.notes) with sf.SoundFile(fn_mtd_wav, 'r') as stream: duration_wav = len(stream) / stream.samplerate duration_wav = duration_wav + 0.05 # half frame for safety wp = np.concatenate((wp, [[mid_symbol_end, duration_wav]])) df = pd.DataFrame(wp, columns=['"MID"', '"WAV"']) df.to_csv(fn_out, sep=';', index=False, float_format='%.5f', quoting=3) @refiner.route('/<mtd_id>.html') def index(mtd_id): mtd_id_str = get_mtd_str(mtd_id) df_medium_row = get_mtd_row(mtd_id) wcm_id = df_medium_row['WCMID'].values[0] path_dict = get_paths() # files from original mtd data set fn_wav = check_file_glob(os.path.join(path_dict['data_AUDIO'], f'{mtd_id_str}_*.wav'), mtd_id_str, 'wav') fn_csv = check_file_glob(os.path.join(path_dict['data_ALIGNMENT'], f'{mtd_id_str}_*.csv'), mtd_id_str, 'sync-csv') fn_mid = check_file_glob(os.path.join(path_dict['data_EDM-corr_MID'], f'{mtd_id_str}_*.mid'), mtd_id_str, 'mid') # files computed for this interface fn_npz = check_file_glob(os.path.join(path_dict['data_AUDIO_IIRT'], f'{mtd_id_str}_*.npz'), mtd_id_str, 'npz') # files generated by the interface fn_csv_new = os.path.join(path_dict['data_ALIGNMENT-annotated'], os.path.basename(fn_csv)) fn_npz_new = os.path.join(path_dict['data_AUDIO_IIRT-annotated'], os.path.basename(fn_npz)) fn_wav_new = os.path.join(path_dict['data_AUDIO-annotated'], os.path.basename(fn_wav)) cur_transpose = df_medium_row.iloc[0]['MidiTransposition'] remove_new_annotations = False if os.path.exists(fn_csv_new): remove_new_annotations = True flash('You are using an already modified warping path.') fn_csv = fn_csv_new if os.path.exists(fn_npz_new) and os.path.exists(fn_wav_new): remove_new_annotations = True flash('You are using an audio excerpt with changed durations.') fn_npz = fn_npz_new fn_wav = fn_wav_new if remove_new_annotations: flash(Markup('<a href="%s">Remove annotations!</a>' % url_for('refiner.remove_annotations', mtd_id=mtd_id))) if get_wcm_for_mtd(mtd_id): wcm_start_time, wcm_end_time, wcm_duration = get_start_end_time_duration(mtd_id) change_duration_url = url_for('refiner.change_duration', mtd_id=mtd_id) else: wcm_start_time, wcm_end_time, wcm_duration = 0.0, 0.0, 0.0 change_duration_url = '#' if 'wp' in session and session['wp_mtd_id'] == mtd_id: wp = np.array(session['wp']) elif fn_csv: df_sync = pd.read_csv(fn_csv, sep=';') wp = df_sync.values else: wp = np.array([]) session.pop('wp', None) session.pop('wp_mtd_id', None) if fn_npz and fn_mid: midi_data = pretty_midi.PrettyMIDI(fn_mid) x_mid = common.midi_data_to_chroma(midi_data, common.FEATURE_RATE) x_mid = np.roll(x_mid, cur_transpose, axis=0) x_wav = np.load(fn_npz)['f_chroma'] x_mid = librosa.util.normalize(x_mid, norm=2, fill=True, axis=0) x_wav = librosa.util.normalize(x_wav, norm=2, fill=True, axis=0) x_mid_img = np.uint8((1 - x_mid) * ((2 ** 8) - 1)) x_wav_img = np.uint8((1 - x_wav) * ((2 ** 8) - 1)) x_mid_img = np.flipud(x_mid_img) x_wav_img = np.flipud(x_wav_img) scale_fac = np.ceil(1170.0 / min(x_mid.shape[1], x_wav.shape[0])) x_mid_img = imresize(x_mid_img, scale_fac, 'nearest') x_wav_img = imresize(x_wav_img, scale_fac, 'nearest') buffered = BytesIO() PIL.Image.fromarray(x_mid_img).save(buffered, 'png') img_src_mid = 'data:image/png;base64,' + base64.b64encode(buffered.getvalue()).decode("utf-8") buffered = BytesIO() PIL.Image.fromarray(x_wav_img).save(buffered, 'png') img_src_wav = 'data:image/png;base64,' + base64.b64encode(buffered.getvalue()).decode("utf-8") else: img_src_mid = '' img_src_wav = '' scale_fac = 1.0 if fn_wav: x_wav, sr = librosa.load(fn_wav, sr=22050, mono=True) audio_wav = ipd.Audio(data=x_wav, rate=sr).src_attr() else: audio_wav = '' if fn_mid and fn_csv: midi_data_align = pretty_midi.PrettyMIDI(fn_mid) for instrument in midi_data_align.instruments: for note in instrument.notes: note.pitch += cur_transpose wp_strict = common.make_warping_path_strictly_monotonic(wp) midi_data_align = adjust_midi(midi_data_align, wp_strict) x_audio, sr = librosa.load(fn_wav, sr=22050, mono=True) x_midi_align = midi_data_align.synthesize(fs=22050) audio_mid_align = ipd.Audio(data=x_midi_align, rate=22050).src_attr() if x_midi_align.shape[0] > x_audio.shape[0]: x_midi_align = x_midi_align[:x_audio.shape[0]:] elif x_audio.shape[0] > x_midi_align.shape[0]: x_midi_align = np.concatenate((x_midi_align, np.zeros(x_audio.shape[0] - x_midi_align.shape[0]))) # normalize x_audio = x_audio / np.max(x_audio) x_midi_align = x_midi_align / np.max(x_midi_align) x = np.stack([x_audio, x_midi_align], axis=0) audio_both = ipd.Audio(data=x, rate=22050).src_attr() midi_data = pretty_midi.PrettyMIDI(fn_mid) for instrument in midi_data.instruments: for note in instrument.notes: note.pitch += cur_transpose x_midi = midi_data.synthesize(fs=22050) audio_mid = ipd.Audio(data=x_midi, rate=22050).src_attr() f = interp1d(wp_strict[:, 0], wp_strict[:, 1], fill_value='extrapolate') wp_display = [] for cur_instrument in midi_data.instruments: for cur_note in cur_instrument.notes: wp_display.append([cur_note.start, f(cur_note.start)]) wp_display = np.array(wp_display) * common.FEATURE_RATE wp_display = wp_display.tolist() else: audio_wav = '' audio_mid = '' audio_both = '' audio_mid = '' wp_display = [] return render_template('refiner.html', mtd_id=str(mtd_id), audio_wav=audio_wav, audio_mid=audio_mid, audio_mid_align=audio_mid_align, audio_both=audio_both, img_src_mid=img_src_mid, img_src_wav=img_src_wav, scale_fac=scale_fac, wp=wp_display, feature_rate=common.FEATURE_RATE, alignment_url=url_for('refiner.process_alignment', mtd_id=mtd_id), save_url=url_for('refiner.save_alignment', mtd_id=mtd_id), duration_url=change_duration_url, linear_url=url_for('refiner.linearize_wp', mtd_id=mtd_id), wcm_start_time=wcm_start_time, wcm_end_time=wcm_end_time, wcm_duration=wcm_duration, wcm_id=wcm_id) @refiner.route('/<mtd_id>/alignment', methods=['POST']) def process_alignment(mtd_id): wp = ast.literal_eval(request.form['alignment']) wp = np.array(wp).astype(float) / common.FEATURE_RATE sort_idx = wp[:, 0].argsort() wp = wp[sort_idx, :] session['wp'] = wp.tolist() session['wp_mtd_id'] = mtd_id return redirect(url_for('refiner.index', mtd_id=mtd_id)) @refiner.route('/<mtd_id>/save', methods=['POST']) def save_alignment(mtd_id): mtd_id_str = get_mtd_str(mtd_id) path_dict = get_paths() fn_wav = check_file_glob(os.path.join(path_dict['data_AUDIO'], f'{mtd_id_str}_*.wav'), mtd_id_str, 'wav') fn_mid = check_file_glob(os.path.join(path_dict['data_EDM-corr_MID'], f'{mtd_id_str}_*.mid'), mtd_id_str, 'mid') fn_wav_new = os.path.join(path_dict['data_AUDIO-annotated'], os.path.basename(fn_wav)) old_csv_dir = path_dict['data_ALIGNMENT'] new_csv_dir = path_dict['data_ALIGNMENT-annotated'] fn_csv = check_file_glob(os.path.join(old_csv_dir, f'{mtd_id_str}_*.csv'), mtd_id_str, 'sync-csv') fn_out = os.path.join(new_csv_dir, os.path.basename(fn_csv)) wp = ast.literal_eval(request.form['alignment']) wp = np.array(wp).astype(float) / common.FEATURE_RATE sort_idx = wp[:, 0].argsort() wp = wp[sort_idx, :] write_sync_csv(wp, fn_out, fn_mid, fn_wav_new if os.path.exists(fn_wav_new) else fn_wav) return redirect(url_for('refiner.index', mtd_id=mtd_id)) @refiner.route('/<mtd_id>/startend', methods=['POST']) def change_duration(mtd_id): mtd_id_str = get_mtd_str(mtd_id) path_dict = get_paths() start_time_old, _, _ = get_start_end_time_duration(mtd_id) fn_mid = check_file_glob(os.path.join(path_dict['data_EDM-corr_MID'], f'{mtd_id_str}_*.mid'), mtd_id_str, 'mid') fn_npz_old = check_file_glob(os.path.join(path_dict['data_AUDIO_IIRT'], f'{mtd_id_str}_*.npz'), mtd_id_str, 'npz') fn_wav_old = check_file_glob(os.path.join(path_dict['data_AUDIO'], f'{mtd_id_str}_*.wav'), mtd_id_str, 'wav') fn_csv_old = check_file_glob(os.path.join(path_dict['data_ALIGNMENT'], f'{mtd_id_str}_*.csv'), mtd_id_str, 'sync-csv') fn_npz_new = os.path.join(path_dict['data_AUDIO_IIRT-annotated'], os.path.basename(fn_npz_old)) fn_wav_new = os.path.join(path_dict['data_AUDIO-annotated'], os.path.basename(fn_wav_old)) fn_json = os.path.join(path_dict['data_AUDIO_IIRT-annotated'], mtd_id_str + '.json') fn_csv_new = os.path.join(path_dict['data_ALIGNMENT-annotated'], os.path.basename(fn_csv_old)) start_time = round(float(request.form['StartTime']), 1) end_time = round(float(request.form['EndTime']), 1) if not (start_time < end_time): flash('Start time (%.1f) must be smaller than end time (%.1f)!' % (start_time, end_time)) return redirect(url_for('refiner.index', mtd_id=mtd_id)) if not os.path.exists(current_app.config['data_AUDIO-WCM']): flash('data_AUDIO-WCM is not reachable: %s' % current_app.config['data_AUDIO-WCM']) return redirect(url_for('refiner.index', mtd_id=mtd_id)) fn_wav = get_wcm_for_mtd(mtd_id) if not os.path.exists(fn_wav): flash('Could not find wav file: %s' % fn_wav) return redirect(url_for('refiner.index', mtd_id=mtd_id)) x, sr = librosa.load(fn_wav, sr=22050, mono=True) x = x[int(round(start_time * sr)):int(round(end_time * sr))] with open(fn_json, 'w') as stream: json.dump({'start': start_time, 'end': end_time, 'mtd_id': mtd_id}, stream, indent=4) f_chroma, times = common.extract_iir_chroma(x, sr) np.savez_compressed(fn_npz_new, f_chroma=f_chroma, f_chroma_ax_time=times, f_chroma_ax_freq=np.arange(12)) sf.write(fn_wav_new, x, sr) # need to adjust wapring path if start has changed! if 'wp' in session and session['wp_mtd_id'] == mtd_id: wp = np.array(session['wp']) session.pop('wp', None) session.pop('wp_mtd_id', None) else: if os.path.exists(fn_csv_new): fn_csv = fn_csv_new else: fn_csv = fn_csv_old wp =
pd.read_csv(fn_csv, sep=';')
pandas.read_csv
from python_speech_features import mfcc import scipy.io.wavfile as wav import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import os import random from tqdm import tqdm from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift, Shift augmenter = Compose([ AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5), TimeStretch(min_rate=0.8, max_rate=1.25, p=0.5), PitchShift(min_semitones=-4, max_semitones=4, p=0.5), Shift(min_fraction=-0.5, max_fraction=0.5, p=0.5), ]) def load_noise(path='/home/CAIL/Speaker_R/data/voice/background_noise/'): noise = [] files = os.listdir(path) for f in files: filename = f if ('wav' not in filename): continue f = os.path.join(path, f) (rate, sig) = wav.read(f) noise.append(sig) return noise def generate_mfcc(sig, rate, sig_len, noise=None, noise_weight=0.1, winlen=0.03125, winstep=0.03125/2, numcep=13, nfilt=26, nfft=512, lowfreq=20, highfreq=4000, winfunc=np.hanning, ceplifter=0, preemph=0.97): if(len(sig) != sig_len): if(len(sig)< sig_len): sig = np.pad(sig, (0, sig_len - len(sig)), 'constant') if(len(sig) >sig_len): sig = sig[0:sig_len] # i dont know, 'tensorflow' normalization sig = sig.astype('float') / 32768 if(noise is not None): noise = noise[random.randint(0, len(noise)-1)] # pick a noise start = random.randint(0, len(noise)-sig_len) # pick a sequence noise = noise[start:start+sig_len] noise = noise.astype('float')/32768 sig = sig * (1-noise_weight) + noise * noise_weight #wav.write('noise_test.wav', rate, sig) mfcc_feat = mfcc(sig, rate, winlen=winlen, winstep=winstep, numcep=numcep, nfilt=nfilt, nfft=nfft, lowfreq=lowfreq, highfreq=highfreq, winfunc=winfunc, ceplifter=ceplifter, preemph=preemph) mfcc_feat = mfcc_feat.astype('float32') return mfcc_feat def merge_mfcc_file(input_path='dat/', mix_noise=True, sig_len=16000, winlen=0.03125, winstep=0.03125/2, numcep=13, nfilt=26, nfft=512, lowfreq=20, highfreq=4000, winfunc=np.hanning, ceplifter=0, preemph=0.97, enroll = False, augmentation =True, augmentation_num = 20): train_data = [] train_lablel = [] if mix_noise: noise = load_noise() else: noise = None files = os.listdir(input_path) for fi in tqdm(files): fi_d = os.path.join(input_path, fi) # # folders of each cmd if os.path.isdir(fi_d): label = fi_d.split('/')[-1] # get the label from the dir # dataset for f in os.listdir(fi_d): f = os.path.join(fi_d, f) (rate, sig) = wav.read(f) if augmentation: sig = sig.astype(np.float32) augmentation_data = [augmenter(samples=sig, sample_rate=rate) for _ in range(augmentation_num)] + [sig] else: augmentation_data = [sig] for sig in augmentation_data: if enroll: data = generate_mfcc(sig, rate, sig_len, noise=noise, winlen=winlen, winstep=winstep, numcep=numcep, nfilt=nfilt, nfft=nfft, lowfreq=lowfreq, highfreq=highfreq, winfunc=winfunc, ceplifter=ceplifter, preemph=preemph) data = np.array(data) train_data.append(data) train_lablel.append(label) else: for i in range(len(sig)//sig_len): data = generate_mfcc(sig[i * sig_len:(i + 1) * sig_len], rate, sig_len, noise=noise, winlen=winlen, winstep=winstep, numcep=numcep, nfilt=nfilt, nfft=nfft, lowfreq=lowfreq, highfreq=highfreq, winfunc=winfunc, ceplifter=ceplifter, preemph=preemph) data = np.array(data) train_data.append(data) train_lablel.append(label) # finalize train_data = np.array(train_data) return train_data, train_lablel if __name__ == "__main__": train_path = "/home/CAIL/Speaker_R/data/voice/train_voice" test_path = "/home/CAIL/Speaker_R/data/voice/test_voice" enroll_path = "/home/CAIL/Speaker_R/data/voice/enroll_voice" x_train, y_train = merge_mfcc_file(input_path=train_path, sig_len=64000, enroll=False, mix_noise=False, augmentation= True, augmentation_num= 3) x_test, y_test = merge_mfcc_file(input_path=test_path, sig_len=64000, enroll=False, mix_noise=False, augmentation= False) x_enroll, y_enroll = merge_mfcc_file(input_path=enroll_path, sig_len=64000, enroll=True, mix_noise=False, augmentation= False) np.save('train_data.npy', x_train) np.save('train_label.npy', y_train) np.save('test_data.npy', x_test) np.save('test_label.npy', y_test) np.save('enroll_data.npy', x_enroll) np.save('enroll_label.npy', y_enroll) print('x_train shape:', x_train.shape, 'max', x_train.max(), 'min', x_train.min()) print('x_test shape:', x_test.shape, 'max', x_test.max(), 'min', x_test.min()) print(x_enroll.shape, np.shape(y_enroll)) import pandas as pd train_pd = pd.DataFrame({'train_speaker':y_train}) print(train_pd.apply(pd.value_counts)) test_pd =
pd.DataFrame({'train_speaker': y_test})
pandas.DataFrame
from pathlib import Path import numpy as np import pandas as pd from sykepic.compute.prediction import prediction_dataframe, threshold_dictionary def parse_evaluations( evaluations, pred_dir, thresholds=None, threshold_search=False, search_precision=0.01, empty="unclassifiable", unsure="unsure", ): """Parses evaluation files into various classification measurements. Parameters ---------- evaluations : str, Path, list of str Path to evaluation files / directory. pred_dir : str, Path Path to prediction-csv directory. thresholds : float, str, Path Single value or file with classification thresholds for each class. threshold_search : bool Evaluate classifications based on various threshold values. search_precision : float Increment threshold search values by this amount. empty : str Name used for unclassifiable images in evaluation files. Returns ------- pandas.DataFrame Has multi-index composed of class name and threhold value when `threshold_search` is set to True. Has combined scores ('all' row) when `threshold_search` is False. """ eval_df, samples = read_evaluations(evaluations) predictions = [] for sample in samples: try: predictions.append(next(Path(pred_dir).rglob(f"{sample}.csv"))) except StopIteration: print(f"[ERROR] Cannot find prediction files for {sample}") raise if threshold_search: # Set initial threshold value thresholds = 0.0 elif not thresholds: raise ValueError("Thresholds not provided") if isinstance(thresholds, (str, Path)): thresholds = threshold_dictionary(thresholds) pred_df = prediction_dataframe(predictions, thresholds) search_range = np.arange(0, 1 + search_precision, search_precision) result_df = results_as_df( eval_df, pred_df, thresholds, threshold_search, search_range, empty, unsure ) if threshold_search: # No specificity without 'all' class result_df.drop("specificity", axis=1, inplace=True) return result_df def read_evaluations(evaluations): if isinstance(evaluations, (str, Path)): evaluations = Path(evaluations) if evaluations.is_dir(): evaluations = list(evaluations.glob("*.select.csv")) if evaluations: print("[INFO] Evaluations are from these files:") print("\t" + "\n\t".join([str(f) for f in evaluations])) else: raise FileNotFoundError("[ERROR] No evaluation files found") else: evaluations = [evaluations] df_list = [] samples = [] for file in evaluations: sample = Path(file).with_suffix("").with_suffix("").name samples.append(sample) df =
pd.read_csv(file, header=None, names=["roi", "actual"])
pandas.read_csv
import numpy as np import pandas as pd from collections import Counter from sklearn.utils import resample from tqdm.notebook import tqdm_notebook import copy from sklearn.base import is_classifier class DSClassifier: """This classifier is designed to handle unbalanced data. The classification is based on an ensemble of sub-sets. Input: base_estimator A base model that the classifier will use to make a prediction on each subset. ratio The ratio of the minority group to the rest of the data. The default is 1. The ratio describes a ratio of 1: ratio. For example: Ratio = 1 Creates a 1: 1 ratio (50% / 50%) between the minority group and the rest of the data. Ratio = 2 Creates a 2: 1 ratio (33% / 66%) between the minority group and the rest of the data. ensemble The method by which the models of each subset will be combined together. The default is mean. For numeric labels you can select max or min to tilt the classifier to a certain side. random_state Seed for the distribution of the majority population in each subset. The default is 42. Attributes: fit(X_train, y_train) predict(X) predict_proba(X) list_of_df List of all created sub-sets. list_models List of all the models that make up the final model. """ def __init__(self, base_estimator, ratio = 1, ensemble = 'mean', random_state = 42): def get_ensemble(ensemble): if ensemble == 'mean': return np.mean if ensemble == 'max': return np.max if ensemble == 'min': return np.min else: raise ValueError("ensemble must be one of these options: 'mean', 'max', 'min' not " + ensemble) if is_classifier(base_estimator): self.base_estimator = base_estimator else: raise ValueError("base_estimator must be a classifier not " + base_estimator) self._estimator_type = 'classifier' self._ratio = ratio self.ensemble = get_ensemble(ensemble) self._random_state = random_state self.classes_ = None self._target = None self.list_of_df = None self.list_models = None def __repr__(self): return self._estimator_type def fit(self, X_train, y_train): def balance(X_train, y_train, ratio, random_state): model_input_data = pd.concat([X_train, y_train], axis=1) counter = Counter(y_train).most_common() minority = counter[-1][0] majority = counter[0][0] row_by_class = {majority: model_input_data[model_input_data[self.target] != minority], \ minority: model_input_data[model_input_data[self.target] == minority],} num_of_samples_minority = int(row_by_class[minority].shape[0]) num_of_samples_majority = int(num_of_samples_minority)*ratio list_of_df = [] while len(row_by_class[majority])>num_of_samples_majority: majority_sample = resample(row_by_class[majority], replace = True, n_samples = num_of_samples_majority, random_state=random_state) row_by_class[majority] = row_by_class[majority].drop(majority_sample.index.values.tolist()) subsets =
pd.concat([row_by_class[minority], majority_sample])
pandas.concat
# -*- coding: utf-8 -*- """data-analysis.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1RKjHEUT1uIYiaDQt2YffetZ0gaRCwlk1 """ from nltk.tokenize import word_tokenize from nltk.tokenize import sent_tokenize import nltk import os import glob import plotly.graph_objects as go # import cufflinks as cf from textblob import TextBlob import re import numpy as np import pandas as pd def get_subreddit_data(subreddit: str): base_path = '../datasets' train_file_template = os.path.join( base_path, '{}_100000_train_part*.npy'.format(subreddit)) val_file_template = os.path.join( base_path, '{}_100000_val_part*.npy'.format(subreddit)) train_files = glob.glob(train_file_template) val_files = glob.glob(val_file_template) train_comments = [] for file_name in train_files: train_comments += np.load(file_name) val_comments = [] for file_name in val_files: val_comments += np.load(file_name) return train_comments, val_comments # cf.go_offline() # cf.set_config_file(offline=False, world_readable=True) # def enable_plotly_in_cell(): # import IPython # from plotly.offline import init_notebook_mode # display(IPython.core.display.HTML( # '''<script src="/static/components/requirejs/require.js"></script>''')) # init_notebook_mode(connected=False) # Ankur # PATH = "/content/drive/My Drive/Google Colab/wstm-project/" # data = np.load(PATH + "5k/soccer.npy") # Tarun #PATH = "/content/drive/My Drive/CS_6240_Scrapping/data_5000/" #data = np.load(PATH + "soccer_5000.npy") subreddit = 'soccer' train_comments, val_comments = get_subreddit_data(subreddit) df =
pd.DataFrame(train_comments, columns=['comments'])
pandas.DataFrame
# pylint: disable=W0102 import nose import numpy as np from pandas import Index, MultiIndex, DataFrame, Series from pandas.compat import OrderedDict, lrange from pandas.sparse.array import SparseArray from pandas.core.internals import * import pandas.core.internals as internals import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, randn) from pandas.compat import zip, u def assert_block_equal(left, right): assert_almost_equal(left.values, right.values) assert(left.dtype == right.dtype) assert_almost_equal(left.mgr_locs, right.mgr_locs) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided( x=arr, shape=shape, strides=(arr.itemsize,) + (0,) * (len(shape) - 1)).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N,) shape = (num_items,) + item_shape mat = get_numeric_mat(shape) if typestr in ('float', 'f8', 'f4', 'f2', 'int', 'i8', 'i4', 'i2', 'i1', 'uint', 'u8', 'u4', 'u2', 'u1'): values = mat.astype(typestr) + num_offset elif typestr in ('complex', 'c16', 'c8'): values = 1.j * (mat.astype(typestr) + num_offset) elif typestr in ('object', 'string', 'O'): values = np.reshape(['A%d' % i for i in mat.ravel() + num_offset], shape) elif typestr in ('bool'): values = np.ones(shape, dtype=np.bool_) elif typestr in ('datetime', 'dt'): values = (mat * 1e9).astype('M8[ns]') elif typestr in ('sparse', 'sparse_na'): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith('_na'): fill_value = np.nan else: fill_value = 0.0 values = SparseArray([fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value) arr = values.sp_values.view() arr += (num_offset - 1) else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows)) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N,) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(';'): d = d.strip() names, blockstr = d.partition(':')[::2] blockstr = blockstr.strip() names = names.strip().split(',') mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items =
Index(mgr_items)
pandas.Index
import pandas as pd from typing import List def check_missing_value(df: pd.DataFrame, cols: List[str]) -> pd.DataFrame: """ Count missing values in specified columns. @param df: dataframe @param cols: columns to be calculated return: summary information """ res =
pd.DataFrame(cols, columns=['Feature'])
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from plotly import express def accept_user_data(): duration = st.text_input("Enter the duration: ") start_station = st.text_input("Enter the start area: ") end_station = st.text_input("Enter the end station: ") return np.array([duration, start_station, end_station]).reshape(1,-1) # =================== ML Models Below ================= @st.cache(suppress_st_warning=True) def decisionTree(X_train, X_test, Y_train, Y_test): # training the model tree = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) tree.fit(X_train, Y_train) Y_pred = tree.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, tree @st.cache(suppress_st_warning=True) def neuralNet(X_train, X_test, Y_train, Y_test): # scaling data scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # start classifier clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5,2), random_state=1) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, clf @st.cache def Knn_Classifier(X_train, X_test, Y_train, Y_test): clf = KNeighborsClassifier(n_neighbors=5) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, clf # =================== ML Models End ================= @st.cache def showMap(): plotData =
pd.read_csv('dataset-2010-latlong.csv')
pandas.read_csv
"""Deconvolution plotter for plotting figures from deconvolution""" import matplotlib import matplotlib.pyplot import numpy as np import torch import pyro import math from matplotlib.pyplot import cm import pandas as pd import seaborn as sns from typing import Optional, Tuple, Dict from ternadecov.time_deconv import TimeRegularizedDeconvolutionModel from ternadecov.plotting_functions import ( generate_posterior_samples, get_iqr_from_posterior_samples, summarize_posterior_samples, ) class DeconvolutionPlotter: """Class for plotting deconvolution results""" def __init__(self, deconvolution: TimeRegularizedDeconvolutionModel): """Initializer for DeconvolutionPlotter :param self: Instance of object :param deconvolution: A TimeRegularizedDeconvolutionModel to plot the results of """ self.deconvolution = deconvolution def plot_loss(self, filenames=()) -> matplotlib.axes.Axes: """Plot of ELBO loss during training from the deconvolution object. :param self: An instance of self. :param filenames: An iterable of filenames to save the plot to. :return: A matplotlib.axes.Axes object. """ fig, ax = matplotlib.pyplot.subplots() ax.plot(self.deconvolution.loss_hist) ax.set_title("Losses") ax.set_xlabel("iteration") ax.set_ylabel("ELBO Loss") for filename in filenames: matplotlib.pyplot.savefig(filename) return ax def plot_phi_g_distribution(self, filenames=()) -> matplotlib.axes.Axes: """Plot the distribution of $phi_g$ values from the param_store. :param self: An instance of self :param filenames: An iterable of filenames to save the plot to :return: A matplotlib.axes.Axes object. """ phi_g = pyro.param("log_phi_posterior_loc_g").clone().detach().exp().cpu() fig, ax = matplotlib.pyplot.subplots() ax.hist(phi_g.numpy(), bins=100) ax.set_xlabel("$\phi_g$") ax.set_ylabel("Counts") for filename in filenames: matplotlib.pyplot.savefig(filename) return ax def plot_beta_g_distribution(self, filenames=()) -> matplotlib.axes.Axes: """Plot distribution of beta_g from the param_store. :param self: An instance of self :param filenames: An iterable of filenames to save the plot to :return: A matplotlib.axes.Axes object. """ beta_g = pyro.param("log_beta_posterior_loc_g").clone().detach().exp().cpu() fig, ax = matplotlib.pyplot.subplots() ax.hist(beta_g.numpy(), bins=100) ax.set_xlabel("$beta_g$") ax.set_ylabel("Counts") for filename in filenames: matplotlib.pyplot.savefig(filename) return ax def plot_sample_compositions_scatter( self, figsize=(16, 9), ignore_hypercluster=False, filenames=() ): """Plot a scatter plot of the sample composition facetted by celltype :param self: An instance of self :param figsize: tuple of size 2 with figure size information :param ignore_hypercluster: ignore hyperclustering and plot individual clusters without summarization :param filenames: An iterable of filenames to save the plot to. """ if self.deconvolution.dataset.is_hyperclustered: if ignore_hypercluster: self.__plot_sample_compositions_scatter_default(figsize=figsize) else: self.__plot_sample_compositions_scatter_hyperclustered(figsize=figsize) else: if ignore_hypercluster: raise ValueError( "ignore_hypercluster is not supported for non-hyperclustered objecets" ) self.__plot_sample_compositions_scatter_default(figsize=figsize) for filename in filenames: matplotlib.pyplot.savefig(filename) def plot_composition_trajectories_via_posterior_sampling( self, show_iqr: bool = True, show_combined: bool = True, iqr_alpha: float = 0.2, t_begin: float = 0.0, t_end: float = 1.0, n_bins: int = 1000, n_samples_per_bin: int = 2000, n_windows: int = 10, savgol_polyorder: int = 1, figsize: Tuple[float, float] = (3.0, 2.0), celltype_summarization: dict = dict(), sharey: bool = True, lw: float = 1.0, cell_type_to_color_dict: Optional[Dict[str, str]] = None, filenames=(), return_data=False, **kwargs, ): """Plot the composition trajectories by sampling from the posterior. :param self: An instance of self :param show_iqr: Plot the Inter-quantile ranges :param show_combined: Show all trajectories on one plot :param iqr_alpha: alpha transparency for the IQR ranges :param t_begin: :param t_end: :param n_bins: number of time bins :param n_samples_per_bin: number of samples per bin :param n_windows: number of windows :param savgol_polyorder: smoothing polynomial order :param figsize: Figure size :param celltype_summarization: celltype summarization dictionary (for plotting only) :param sharey: Share the y axis :param lw: line width :param cell_type_to_color_dict: Cell type to color dictionary :param filenames: Filenames to save the plots to :param \**kwargs: Everything else """ assert ( self.deconvolution.trajectory_model_type == "gp" ), "plot_composition_trajectories_via_posterior_sampling is only possible for GP deconvolution" # obtain posterior samples xi_nq, pi_sampled_scn = generate_posterior_samples( self.deconvolution, t_begin=t_begin, t_end=t_end, n_bins=n_bins, n_samples_per_bin=n_samples_per_bin, ) cell_type_labels = self.deconvolution.dataset.cell_type_str_list # optionally, summarize if len(celltype_summarization) >= 1: pi_sampled_scn = summarize_posterior_samples( self.deconvolution, pi_sampled_scn, celltype_summarization ) cell_type_labels = list(celltype_summarization.keys()) # estimate IQR and smooth iqr_lo_cn, iqr_mid_cn, iqr_hi_cn = get_iqr_from_posterior_samples( pi_sampled_scn, perform_smoothing=True, n_windows=n_windows, savgol_polyorder=savgol_polyorder, ) # plotting # take care of colors if cell_type_to_color_dict is None: cell_type_to_color_dict = self.deconvolution.dataset.cell_type_to_color_dict for cell_type in cell_type_labels: assert ( cell_type in cell_type_to_color_dict ), f"Color for cell type {cell_type} is not specified!" colors = list(map(cell_type_to_color_dict.get, cell_type_labels)) n_cell_types = pi_sampled_scn.shape[1] xi_n = xi_nq.cpu().numpy()[:, 0] if show_combined: fig, ax = matplotlib.pyplot.subplots(figsize=figsize) else: if "ncols" in kwargs.keys(): ncols = kwargs["ncols"] else: ncols = 3 nrows = int(np.ceil(len(cell_type_labels) / ncols)) fig, axs = matplotlib.pyplot.subplots( nrows, ncols, figsize=(figsize[0] * ncols, figsize[1] * nrows), sharey=sharey, ) actual_time_n = ( self.deconvolution.dataset.time_min + self.deconvolution.dataset.time_range * xi_n ) for i_cell_type in range(n_cell_types): color = colors[i_cell_type] if not show_combined: ax = axs.flatten()[i_cell_type] ax.plot( actual_time_n, iqr_mid_cn[i_cell_type], c=color, label=cell_type_labels[i_cell_type], lw=lw, ) if show_iqr and iqr_alpha > 0: ax.fill_between( actual_time_n, iqr_lo_cn[i_cell_type], iqr_hi_cn[i_cell_type], alpha=iqr_alpha, color=color, edgecolor="none", ) ax.set_xlabel("Time") ax.set_ylabel("Proportion") if show_combined: ax.set_title("Predicted cell proportions") ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left", fontsize="small") else: ax.set_title(f"{cell_type_labels[i_cell_type]}") ax.set_xlim((np.min(actual_time_n), np.max(actual_time_n))) # get rid of extra axes if not show_combined: for idx in range(i_cell_type + 1, ncols * nrows): axs.flatten()[idx].axis("off") fig.tight_layout() for filename in filenames: matplotlib.pyplot.savefig(filename) if return_data: return { "actual_time_n": actual_time_n, "iqr_mid_cn": iqr_mid_cn, "cell_type_labels": cell_type_labels, } def plot_gp_composition_trajectories(self, n_samples=500, filenames=()): """" Plot per-celltype (deprecated) :param self: An instance of self :param n_samples: Number of samples to draw from GP :param filenames: Filenames to save to """ assert ( self.deconvolution.trajectory_model_type == "gp" ), "plot_composition_trajectories_via_posterior_sampling is only possible for GP deconvolution" with torch.no_grad(): traj = self.deconvolution.population_proportion_model xi_new_nq = torch.linspace( 0.0, 1.0, n_samples, device=self.deconvolution.device, dtype=self.deconvolution.dtype, )[..., None] f_new_loc_cn, f_new_var_cn = traj.gp.forward(xi_new_nq, full_cov=False) f_new_scale_cn = f_new_var_cn.sqrt() f_new_sampled_scn = torch.distributions.Normal( f_new_loc_cn, f_new_scale_cn ).sample([n_samples]) pi_new_sampled_scn = torch.softmax(f_new_sampled_scn, dim=1) # pi_new_loc_cn = torch.softmax(f_new_loc_cn, dim=0) plotrange_kcn = torch.quantile( pi_new_sampled_scn, torch.Tensor([0.25, 0.5, 0.75]).to(self.deconvolution.device), 0, ).cpu() n_celltypes = plotrange_kcn.shape[1] nrow = math.ceil(math.sqrt(n_celltypes)) ncol = math.ceil(math.sqrt(n_celltypes)) fig, ax = matplotlib.pyplot.subplots(nrow, ncol, figsize=(10, 8)) # TODO: Add colors, add titles for i in range(n_celltypes): ax_x_ind = i // nrow ax_y_ind = i % nrow ax[ax_x_ind, ax_y_ind].fill_between( xi_new_nq.cpu().numpy()[:, 0], plotrange_kcn[0, i, :].numpy().T, plotrange_kcn[2, i].numpy().T, ) ax[ax_x_ind, ax_y_ind].plot( xi_new_nq.cpu().numpy(), plotrange_kcn[1, i].cpu().numpy().T, c="black" ) ax[ax_x_ind, ax_y_ind].set_ylabel('Proportion') ax[ax_x_ind, ax_y_ind].set_xlabel('Time') celltype_name = self.deconvolution.dataset.cell_type_str_list[i] ax[ax_x_ind, ax_y_ind].set_title(celltype_name) fig.tight_layout() for filename in filenames: matplotlib.pyplot.savefig(filename) def plot_sample_compositions_boxplot_confidence( self, n_draws=100, verbose=False, figsize=(20, 15), dpi=80, spacing=1, filenames=(), ): """Plot individual sample compositions as boxplots representing confidence in predictions :param self: An instance of object :param n_draws: Number of draws to perform for CI estimation :param verbose: Verbosity :param figsize: Size of figure to plot :param dpi: DPI of output figure :param spacing: x-axis spacing of groups of samples from different timepoints :param filenames: Filenames to save the files as """ # l -- draw index assert ( self.deconvolution.trajectory_model_type == "gp" ), "Only GP deconvolution is supported!" n_samples = self.deconvolution.dataset.num_samples n_celltypes = self.deconvolution.dataset.num_cell_types cell_pop_lmc = torch.zeros([n_draws, n_samples, n_celltypes]) sort_order = torch.argsort(self.deconvolution.dataset.t_m) fig_nrow = math.ceil(math.sqrt(n_celltypes)) fig_ncol = math.ceil(math.sqrt(n_celltypes)) # Generate draws from posterior for i in range(n_draws): cell_pop_lmc[i, :] = ( self.deconvolution.population_proportion_model.guide(torch.Tensor([])) .clone() .detach() .cpu() )[None, :] # Get quantiles of draw plot_quantiles = torch.quantile(cell_pop_lmc, q=torch.linspace(0, 1, 5), dim=0) # Generate figure and axis fig, ax = matplotlib.pyplot.subplots( fig_nrow, fig_ncol, figsize=figsize, dpi=dpi ) # Get plotting positions z = self.deconvolution.dataset.t_m[sort_order].cpu() extra_spacing = torch.where( torch.diff(z, append=z[None, -1]) > 1e-6, spacing, 0 ) positions = torch.cumsum(torch.ones(extra_spacing.shape) + extra_spacing, 0) for c in range(plot_quantiles.shape[2]): # celltypes if verbose: print(f"Processing {self.deconvolution.dataset.cell_type_str_list[c]}") # Generate data for this panel plot_data = list() for m in range(plot_quantiles.shape[1]): # samples m = sort_order[m] plot_data.append( { "whislo": plot_quantiles[0, m, c].item(), "q1": plot_quantiles[1, m, c].item(), "med": plot_quantiles[2, m, c].item(), "q3": plot_quantiles[3, m, c].item(), "whishi": plot_quantiles[4, m, c].item(), "label": f"{self.deconvolution.dataset.bulk_sample_names[m]}", } ) # Plot panel boxprops = dict(facecolor=cm.tab10(c)) cur_axis = ax[c // fig_nrow, c % fig_nrow] cur_axis.bxp( bxpstats=plot_data, showfliers=False, shownotches=False, showmeans=False, boxprops=boxprops, patch_artist=True, positions=positions, ) cur_axis.set_title(self.deconvolution.dataset.cell_type_str_list[c]) cur_axis.set_xticklabels( list( self.deconvolution.dataset.bulk_sample_names[x.item()] for x in sort_order ), rotation=90, ) cur_axis.set_ylabel('Proportion') cur_axis.set_xlabel('Time') fig.tight_layout() for filename in filenames: matplotlib.pyplot.savefig(filename) def plot_sample_compositions_boxplot(self, figsize=(16, 9), filenames=()): """Plot sample compositions in boxplot form :param self: An instance of self. :param figsize: Figure size :param filenames: Filename to save the plots to """ if self.deconvolution.trajectory_model_type == "polynomial": cell_pop = pyro.param("cell_pop_posterior_loc_mc").clone().detach().cpu() elif self.deconvolution.trajectory_model_type == "gp": cell_pop = ( self.deconvolution.population_proportion_model.guide(torch.Tensor([])) .clone() .detach() .cpu() ) t_m = self.deconvolution.dataset.t_m.clone().detach().cpu() sort_order = torch.argsort(self.deconvolution.dataset.t_m) n_cell_types = cell_pop.shape[1] n_rows = math.ceil(math.sqrt(n_cell_types)) n_cols = math.ceil(n_cell_types / n_rows) fig, ax = matplotlib.pyplot.subplots(n_rows, n_cols, figsize=figsize) for i in range(cell_pop.shape[1]): r_i = int(i // n_rows) c_i = int(i % n_rows) t = ( t_m[sort_order] * self.deconvolution.dataset.time_range + self.deconvolution.dataset.time_min ) prop = cell_pop[sort_order, i].clone().detach().cpu() df1 =
pd.DataFrame({"time": t, "proportion": prop})
pandas.DataFrame
import datetime import numpy as np import pandas as pd import pytest from .utils import ( get_extension, to_json_string, to_days_since_epoch, extend_dict, filter_by_columns, breakdown_by_month, breakdown_by_month_sum_days, to_bin, ) @pytest.fixture def issues(): return pd.DataFrame( [ { "key": "ABC-1", "priority": "high", "start": pd.Timestamp(2018, 1, 1), "end": pd.Timestamp(2018, 3, 20), }, { "key": "ABC-2", "priority": "med", "start": pd.Timestamp(2018, 1, 2), "end": pd.Timestamp(2018, 1, 20), }, { "key": "ABC-3", "priority": "high", "start": pd.Timestamp(2018, 2, 3), "end": pd.Timestamp(2018, 3, 20), }, { "key": "ABC-4", "priority": "med", "start": pd.Timestamp(2018, 1, 4), "end": pd.Timestamp(2018, 3, 20), }, { "key": "ABC-5", "priority": "high", "start": pd.Timestamp(2018, 2, 5), "end": pd.Timestamp(2018, 2, 20), }, { "key": "ABC-6", "priority": "med", "start": pd.Timestamp(2018, 3, 6), "end": pd.Timestamp(2018, 3, 20), }, ], columns=["key", "priority", "start", "end"], ) def test_extend_dict(): assert extend_dict({"one": 1}, {"two": 2}) == {"one": 1, "two": 2} def test_get_extension(): assert get_extension("foo.csv") == ".csv" assert get_extension("/path/to/foo.csv") == ".csv" assert get_extension("\\path\\to\\foo.csv") == ".csv" assert get_extension("foo") == "" assert get_extension("foo.CSV") == ".csv" def test_to_json_string(): assert to_json_string(1) == "1" assert to_json_string("foo") == "foo" assert to_json_string(None) == "" assert to_json_string(np.NaN) == "" assert to_json_string(pd.NaT) == "" assert to_json_string(pd.Timestamp(2018, 2, 1)) == "2018-02-01" def test_to_days_since_epoch(): assert to_days_since_epoch(datetime.date(1970, 1, 1)) == 0 assert to_days_since_epoch(datetime.date(1970, 1, 15)) == 14 def test_filter_by_columns(): df = pd.DataFrame( [ {"high": 1, "med": 2, "low": 0}, {"high": 3, "med": 1, "low": 2}, {"high": 2, "med": 2, "low": 3}, ], columns=["high", "med", "low"], ) # Check without values, original data frame will be returned. result = filter_by_columns(df, None) assert result.equals(df) # Check with values, columns will be filtered and reordered result = filter_by_columns(df, ["med", "high"]) assert list(result.columns) == ["med", "high"] assert result.to_dict("records") == [ {"high": 1, "med": 2}, {"high": 3, "med": 1}, {"high": 2, "med": 2}, ] def test_breakdown_by_month(issues): breakdown = breakdown_by_month(issues, "start", "end", "key", "priority") assert list(breakdown.columns) == ["high", "med"] # alphabetical assert list(breakdown.index) == [ pd.Timestamp(2018, 1, 1), pd.Timestamp(2018, 2, 1),
pd.Timestamp(2018, 3, 1)
pandas.Timestamp
from requests import Session from bs4 import BeautifulSoup import pandas as pd HEADERS = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) '\ 'AppleWebKit/537.36 (KHTML, like Gecko) '\ 'Chrome/75.0.3770.80 Safari/537.36'} def zacks_extract(ratio_name, period='weekly_'): """ Function to extract Ratios from Zacks """ # Create Empty list list_to_append = [] # Read list of stocks and get all symbols stocks = pd.read_csv('../docs/my_stocks.csv') list_of_stocks = stocks['symbol'] # Start loop by creating empty list and calculate lenght, so we can track completion lenght = len(list_of_stocks) # Create Session s = Session() # Add headers s.headers.update(HEADERS) # JSON Key Field json_field = period + ratio_name # For every single stock, do the following for idx, stock in enumerate(list_of_stocks): # Print Progress print((idx+1)/lenght) # Create URL url = f'https://widget3.zacks.com/data/chart/json/{stock}/' + ratio_name + '/www.zacks.com' # Request and transform response in json screener = s.get(url) json = screener.json() # Check for error if len(json) > 1: try: # Append results into list [list_to_append.append([i[0], i[1], stock]) for idx, i in enumerate(json[json_field].items()) if idx < 300] except (KeyError, AttributeError) as e: continue # Create dataframe with results df = pd.DataFrame(list_to_append) df.columns = ['timestamp', ratio_name, 'symbol'] # Export df['timestamp'] = pd.to_datetime(df['timestamp']) filepath = '../docs/' + ratio_name + '.csv' df.to_csv(filepath, index=0) return df def merge_ratio(df, all_prices, ratio_name): """ Function to merge ratio with all prices """ # Metric Dictionary dic = {'pe_ratio': 'eps_ttm', 'price_to_book_value': 'book_value_ttm'} # Field name field_name = dic[ratio_name] # Rename columns, convert column to datetime and keep only records where date > 2017-01-01 df.columns = ['timestamp_merge', ratio_name, 'symbol'] df['timestamp_merge'] = pd.to_datetime(df['timestamp_merge']) df = df[df['timestamp_merge'] > '2014-01-01'] # Convert all prices column to datetime all_prices['just_date_merge'] = pd.to_datetime(all_prices['just_date']) # Merge both dataframes merge_df = pd.merge(all_prices, df, left_on = ['just_date_merge', 'symbol'], right_on = ['timestamp_merge', 'symbol'], how='left') # Calculate EPS TTM based on weekly PE Ratios merge_df[field_name] = merge_df['close_price'] / merge_df[ratio_name] merge_df[field_name] = merge_df[field_name].round(3) # Since we have only Weekly Value we can Forward/Backward Fill the EPS TTM merge_df[field_name] = merge_df.groupby('symbol').ffill()[field_name] merge_df[field_name] = merge_df.groupby('symbol').bfill()[field_name] # Calculate PE Ratio with EPS TTM and round numbers merge_df[ratio_name] = merge_df['close_price'] / merge_df[field_name] merge_df[ratio_name] = merge_df[ratio_name].round(3) # Drop columns merge_df.drop(['just_date_merge', 'timestamp_merge'], inplace=True, axis=1) # Export merge_df.to_csv('../docs/' + field_name + '.csv', index=0) return merge_df def pe_analysis(prices_pe): # Calculate Average Market Cap by Industry/Sector overtime daily_pe_ratio_mean = prices_pe[['just_date', 'industry', 'sector', 'pe_ratio']].groupby(['just_date', 'industry', 'sector']).mean()['pe_ratio'] daily_pe_ratio_std = prices_pe[['just_date', 'industry', 'sector', 'pe_ratio']].groupby(['just_date', 'industry', 'sector']).std()['pe_ratio'] # Convert to Data Frame daily_pe_ratio_mean = daily_pe_ratio_mean.reset_index() daily_pe_ratio_std = daily_pe_ratio_std.reset_index() # Rename Columns daily_pe_ratio_mean.columns = ['just_date', 'industry', 'sector', 'avg_pe_ratio'] daily_pe_ratio_std.columns = ['just_date', 'industry', 'sector', 'std_pe_ratio'] # Merge with main daily_pe_stats = pd.merge(daily_pe_ratio_mean, daily_pe_ratio_std, on=['just_date', 'industry', 'sector']) daily_pe_stats = daily_pe_stats.dropna() # Merge with original prices_pe['just_date'] = pd.to_datetime(prices_pe['just_date']) daily_pe_stats['just_date'] = pd.to_datetime(daily_pe_stats['just_date']) prices_pe = pd.merge(prices_pe, daily_pe_stats, how='left', on=['just_date', 'industry', 'sector']) # See how many STDs a PE Ratio is far from mean prices_pe['pe_ratio_std_diff'] = (prices_pe['avg_pe_ratio'] - prices_pe['pe_ratio']) / prices_pe['std_pe_ratio'] return prices_pe def main_ratio(all_prices, ratio_name, full_refresh=False): # If a full refresh is not necessary if full_refresh == False: # Read existing PE Ratios and merge it with all prices df =
pd.read_csv('../docs/' + ratio_name + '.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 15 11:51:39 2020 This is best run inside Spyder, not as standalone script. Author: @hk_nien on Twitter. """ import re import sys import io import urllib import urllib.request from pathlib import Path import time import locale import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import nl_regions import scipy.signal import scipy.interpolate import scipy.integrate import tools from g_mobility_data import get_g_mobility_data from nlcovidstats_data import ( init_data, DFS, get_municipalities_by_pop, load_cumulative_cases, ) # These delay values are tuned to match the RIVM Rt estimates. # The represent the delay (days) from infection to report date, # referencing the report date. # Extrapolation: constant value. DELAY_INF2REP = [ ('2020-07-01', 7.5), ('2020-09-01', 7), ('2020-09-15', 9), ('2020-10-09', 9), ('2020-11-08', 7), ('2020-12-01', 6.5), ('2021-02-15', 6.5), ('2021-04-05', 4), ('2021-07-06', 4), ('2021-07-15', 5), ('2021-07-23', 4), ('2021-07-30', 4), ('2021-11-04', 4), ('2021-11-11', 4.5), ('2021-11-20', 5), ('2021-11-25', 5), ('2021-12-04', 4.5), # test capacity increased ('2021-12-08', 4), # Speculation... ] _DOW_CORR_CACHE = {} # keys: dayrange tuples. def get_dow_correction_rolling(nweeks=7, taper=0.5): """Return DoW correction factors for all dates. Parameters: - nweeks: number of preceding weeks to use for each date. - taper: which fraction of old data to taper to lower weight. Return: - Series with same timestamp index as cases data. """ df, _ = get_region_data('Nederland', lastday=-1, correct_dow=None) # df = df.iloc[3:-3].copy() # strip edge points without well defined 7d mean. # Correction factor - 1 df['Delta_factor'] = df['Delta']/df['Delta7r'] ntaper = int(nweeks*taper + 0.5) kernel = np.zeros(nweeks*2 + 1) kernel[-nweeks:] = 1 kernel[-nweeks:-nweeks+ntaper] = np.linspace(1/ntaper, 1-1/ntaper, ntaper) kernel /= kernel.sum() df['Dow_factor'] = np.nan for idow in range(7): row_select = df.index[df.index.dayofweek == idow] facs = df.loc[row_select, 'Delta_factor'] n = len(facs) assert len(facs) > nweeks mean_factors = np.convolve(facs, kernel, mode='same') mean_factors[mean_factors == 0] = np.nan df.loc[row_select, 'Dow_factor'] = 1/mean_factors df.loc[df.index[:8], 'Dow_factor'] = np.nan return df['Dow_factor'] def get_dow_correction(dayrange=(-50, -1), verbose=False): """Return array with day-of-week correction factors. - dayrange: days to consider for DoW correction. - verbose: whether to show plots and print diagnostics. Return: - dow_corr_factor: array (7,) with DoW correction (0=Monday). """ dayrange = tuple(dayrange) if dayrange in _DOW_CORR_CACHE and not verbose: return _DOW_CORR_CACHE[dayrange].copy() # timestamp index, columns Delta, Delta7r, and others. df, _ = get_region_data('Nederland', lastday=dayrange[-1], correct_dow=None) df = df.iloc[:-4] # Discard the last rows that have no correct rolling average. df = df.iloc[dayrange[0]-dayrange[1]:] # Correction factor - 1 df['Delta_factor'] = df['Delta']/df['Delta7r'] # Collect by day of week (0=Monday) factor_by_dow = np.zeros(7) for i in range(7): factor_by_dow[i] = 1 / df.loc[df.index.dayofweek == i, 'Delta_factor'].mean() factor_by_dow /= factor_by_dow.mean() df['Delta_est_factor'] = factor_by_dow[df.index.dayofweek] df['Delta_corrected'] = df['Delta'] * df['Delta_est_factor'] rms_dc = (df['Delta_corrected']/df['Delta7r']).std() rms_d = df['Delta_factor'].std() if verbose: print('DoW effect: deviations from 7-day rolling average.\n' f' Original: RMS={rms_d:.3g}; after correction: RMS={rms_dc:.3g}') fig, ax = plt.subplots(tight_layout=True) ax.plot(df['Delta_factor'], label='Delta') ax.plot(df['Delta_corrected'] / df['Delta7r'], label='Delta_corrected') ax.plot(df['Delta_est_factor'], label='Correction factor') tools.set_xaxis_dateformat(ax, 'Date') ax.legend() ax.set_ylabel('Daily cases deviation') title = 'Day-of-week correction on daily cases' ax.set_title(title) fig.canvas.set_window_title(title) fig.show() if rms_dc > 0.8*rms_d: print(f'WARNING: DoW correction for dayrange={dayrange} does not seem to work.\n' ' Abandoning this correction.') factor_by_dow = np.ones(7) _DOW_CORR_CACHE[dayrange] = factor_by_dow.copy() return factor_by_dow def get_region_data(region, lastday=-1, printrows=0, correct_anomalies=True, correct_dow='r7'): """Get case counts and population for one municipality. It uses the global DFS['mun'], DFS['cases'] dataframe. Parameters: - region: region name (see below) - lastday: last day to include. - printrows: print this many of the most recent rows - correct_anomalies: correct known anomalies (hiccups in reporting) by reassigning cases to earlier dates. - correct_dow: None, 'r7' (only for extrapolated rolling-7 average) Special municipalities: - 'Nederland': all - 'HR:Zuid', 'HR:Noord', 'HR:Midden', 'HR:Midden+Zuid', 'HR:Midden+Noord': holiday regions. - 'MS:xx-yy': municipalities with population xx <= pop/1000 < yy' - 'P:xx': province Use data up to lastday. Return: - df: dataframe with added columns: - Delta: daily increase in case count (per capita). - Delta_dowc: daily increase, day-of-week correction applied based on national pattern in most recent 7 weeks. - Delta7r: daily increase as 7-day rolling average (last 3 days are estimated). - DeltaSG: daily increase, smoothed with (15, 2) Savitsky-Golay filter.Region selec - pop: population. """ df1, npop = nl_regions.select_cases_region(DFS['cases'], region) # df1 will have index 'Date_of_report', columns: # 'Total_reported', 'Hospital_admission', 'Deceased' assert correct_dow in [None, 'r7'] if lastday < -1 or lastday > 0: df1 = df1.iloc[:lastday+1] if len(df1) == 0: raise ValueError(f'No data for region={region!r}.') # nc: number of cases nc = df1['Total_reported'].diff() if printrows > 0: print(nc[-printrows:]) nc.iat[0] = 0 df1['Delta'] = nc/npop if correct_anomalies: _correct_delta_anomalies(df1) nc = df1['Delta'] * npop nc7 = nc.rolling(7, center=True).mean() nc7[np.abs(nc7) < 1e-10] = 0.0 # otherwise +/-1e-15 issues. nc7a = nc7.to_numpy() # last 3 elements are NaN, use mean of last 4 raw (dow-corrected) to # get an estimated trend and use exponential growth or decay # for filling the data. if correct_dow == 'r7': # mean number at t=-1.5 days dow_correction = get_dow_correction((lastday-49, lastday)) # (7,) array df1['Delta_dowc'] = df1['Delta'] * dow_correction[df1.index.dayofweek] nc1 = np.mean(nc.iloc[-4:] * dow_correction[nc.index[-4:].dayofweek]) else: nc1 = nc.iloc[-4:].mean() # mean number at t=-1.5 days log_slope = (np.log(nc1) - np.log(nc7a[-4]))/1.5 nc7.iloc[-3:] = nc7a[-4] * np.exp(np.arange(1, 4)*log_slope) # 1st 3 elements are NaN nc7.iloc[:3] = np.linspace(0, nc7.iloc[3], 3, endpoint=False) df1['Delta7r'] = nc7/npop df1['DeltaSG'] = scipy.signal.savgol_filter( nc/npop, 15, 2, mode='interp') return df1, npop def _correct_delta_anomalies(df): """Apply anomaly correction to 'Delta' column. Store original values to 'Delta_orig' column. Pull data from DFS['anomalies'] """ dfa = DFS['anomalies'] df['Delta_orig'] = df['Delta'].copy() dt_tol = pd.Timedelta(12, 'h') # tolerance on date matching match_date = lambda dt: abs(df.index - dt) < dt_tol preserve_n = True for (date, data) in dfa.iterrows(): if date == '2021-02-08': print('@foo') f = data['fraction'] dt = data['days_back'] dn = df.loc[match_date(date), 'Delta_orig'] * f if len(dn) == 0: print(f'Anomaly correction: no match for {date}; skipping.') continue assert len(dn) == 1 dn = dn[0] df.loc[match_date(date + pd.Timedelta(dt, 'd')), 'Delta'] += dn if dt != 0: df.loc[match_date(date), 'Delta'] -= dn else: preserve_n = False if preserve_n: assert np.isclose(df["Delta"].sum(), df["Delta_orig"].sum(), rtol=1e-6, atol=0) else: delta = df["Delta"].sum() - df["Delta_orig"].sum() print(f'Note: case count increased by {delta*17.4e6:.0f} cases due to anomalies.') def construct_Dfunc(delays, plot=False): """Return interpolation functions fD(t) and fdD(t). fD(t) is the delay between infection and reporting at reporting time t. fdD(t) is its derivative. Parameter: - delays: tuples (datetime_report, delay_days). Extrapolation is at constant value. - plot: whether to generate a plot. Return: - fD: interpolation function for D(t) with t in nanoseconds since epoch. - fdD: interpolation function for dD/dt. (taking time in ns but returning dD per day.) - delay_str: delay string e.g. '7' or '7-9' """ ts0 = [float(pd.to_datetime(x[0]).to_datetime64()) for x in delays] Ds0 = [float(x[1]) for x in delays] if len(delays) == 1: # prevent interp1d complaining. ts0 = [ts0[0], ts0[0]+1e9] Ds0 = np.concatenate([Ds0, Ds0]) # delay function as linear interpolation; # nanosecond timestamps as t value. fD0 = scipy.interpolate.interp1d( ts0, Ds0, kind='linear', bounds_error=False, fill_value=(Ds0[0], Ds0[-1]) ) # construct derivative dD/dt, smoothen out day = 1e9*86400 # one day in nanoseconds ts = np.arange(ts0[0]-3*day, ts0[-1]+3.01*day, day) dDs = (fD0(ts+3*day) - fD0(ts-3*day))/6 fdD = scipy.interpolate.interp1d( ts, dDs, 'linear', bounds_error=False, fill_value=(dDs[0], dDs[-1])) # reconstruct D(t) to be consistent with the smoothened derivative. Ds = scipy.integrate.cumtrapz(dDs, ts/day, initial=0) + Ds0[0] fD = scipy.interpolate.interp1d( ts, Ds, 'linear', bounds_error=False, fill_value=(Ds[0], Ds[-1])) Dmin, Dmax = np.min(Ds0), np.max(Ds0) if Dmin == Dmax: delay_str = f'{Dmin:.0f}' else: delay_str = f'{Dmin:.0f}-{Dmax:.0f}' if plot: fig, ax = plt.subplots(1, 1, figsize=(7, 3), tight_layout=True) tsx = np.linspace( ts[0], int(pd.to_datetime('now').to_datetime64()) ) ax.plot(pd.to_datetime(tsx.astype(np.int64)), fD(tsx)) ax.set_ylabel('Vertraging (dagen)') tools.set_xaxis_dateformat(ax, 'Rapportagedatum') title = 'Vertraging = t_rapportage - t_infectie - t_generatie/2' fig.canvas.set_window_title(title) ax.set_title(title) fig.show() return fD, fdD, delay_str def estimate_Rt_df(r, delay=9, Tc=4.0): """Return Rt data, assuming delay infection-reporting. - r: Series with smoothed new reported cases. (e.g. 7-day rolling average or other smoothed data). - delay: assume delay days from infection to positive report. alternatively: list of (timestamp, delay) tuples if the delay varies over time. The timestamps refer to the date of report. - Tc: assume generation interval. Return: - DataFrame with columns 'Rt' and 'delay'. """ if not hasattr(delay, '__getitem__'): # simple delay - attach data to index with proper offset log_r = np.log(r.to_numpy()) # shape (n,) assert len(log_r.shape) == 1 log_slope = (log_r[2:] - log_r[:-2])/2 # (n-2,) Rt = np.exp(Tc*log_slope) # (n-2,) index = r.index[1:-1] - pd.Timedelta(delay, unit='days') Rdf = pd.DataFrame( dict(Rt=pd.Series(index=index, data=Rt, name='Rt')) ) Rdf['delay'] = delay else: # the hard case: delay varies over time. # if ri is the rate of infections, tr the reporting date, and D # the delay, then: # ri(tr-D(tr)) = r(tr) / (1 - dD/dt) fD, fdD, _ = construct_Dfunc(delay) # note: timestamps in nanoseconds since epoch, rates in 'per day' units. day_ns = 86400e9 tr = r.index.astype(int) ti = tr - fD(tr) * day_ns ri = r.to_numpy() / (1 - fdD(tr)) # now get log-derivative the same way as above log_ri = np.log(np.where(ri==0, np.nan, ri)) log_slope = (log_ri[2:] - log_ri[:-2])/2 # (n-2,) Rt = np.exp(Tc*log_slope) # (n-2,) # build series with timestamp index # (Note: int64 must be specified explicitly in Windows, 'int' will be # int32.) Rt_series = pd.Series( data=Rt, name='Rt', index=pd.to_datetime(ti[1:-1].astype(np.int64)) ) Rdf = pd.DataFrame(dict(Rt=Rt_series)) Rdf['delay'] = fD(tr[1:-1]) return Rdf def get_t2_Rt(ncs, delta_t, i0=-3): """Return most recent doubling time and Rt, from case series""" # exponential fit t_gen = 4.0 # generation time (d) t_double = delta_t / np.log2(ncs.iloc[i0]/ncs.iloc[i0-delta_t]) Rt = 2**(t_gen / t_double) return t_double, Rt def add_labels(ax, labels, xpos, mindist_scale=1.0, logscale=True): """Add labels, try to have them avoid bumping. - labels: list of tuples (y, txt) - mindist_scale: set to >1 or <1 to tweak label spacing. """ from scipy.optimize import fmin_cobyla ymin, ymax = ax.get_ylim() if logscale: mindist = np.log10(ymax/ymin)*0.025*mindist_scale else: mindist = (ymax - ymin)*0.025*mindist_scale labels = sorted(labels) # log positions and sorted$ffmpeg -i Rt_%03d.png -c:v libx264 -r 25 -pix_fmt yuv420p out.mp4 if logscale: Ys = np.log10([l[0] for l in labels]) else: Ys = np.array([l[0] for l in labels]) n = len(Ys) # Distance matrix: D @ y = distances between adjacent y values D = np.zeros((n-1, n)) for i in range(n-1): D[i, i] = -1 D[i, i+1] = 1 def cons(Y): ds = D @ Y errs = np.array([ds - mindist, ds]) #print(f'{np.around(errs, 2)}') return errs.reshape(-1) # optimization function def func(Y): return ((Y - Ys)**2).sum() new_Ys = fmin_cobyla(func, Ys, cons, catol=mindist*0.05) for Y, (_, txt) in zip(new_Ys, labels): y = 10**Y if logscale else Y ax.text(xpos, y, txt, verticalalignment='center') def _zero2nan(s): """Return copy of array/series s, negative/zeros replaced by NaN.""" sc = s.copy() sc[s <= 0] = np.nan return sc def _add_event_labels(ax, tmin, tmax, with_ribbons=True, textbox=False, bottom=True, flagmatch='RGraph'): """Add event labels and ribbons to axis (with date on x-axis). - ax: axis object - tmin, tmax: time range to assume for x axis. - textbox: whether to draw text in a semi-transparent box. - bottom: whether to put labels at the bottom rather than top. - flagmatch: which flags to match (regexp). """ ymin, ymax = ax.get_ylim() y_lab = ymin if bottom else ymax ribbon_yspan = (ymax - ymin)*0.35 ribbon_hgt = ribbon_yspan*0.1 # ribbon height ribbon_ystep = ribbon_yspan*0.2 df_events = DFS['events'] ribbon_colors = ['#ff0000', '#cc7700'] * 10 if df_events is not None: i_res = 0 for _, (res_t, res_t_end, res_d, flags) in df_events.reset_index().iterrows(): if not (tmin <= res_t <= tmax): continue if flags and not re.match(flagmatch, flags): continue res_d = res_d.replace('\\n', '\n') # note; with \n in text, alignment gets problematic. txt = ax.text(res_t, y_lab, f' {res_d}', rotation=90, horizontalalignment='center', verticalalignment='bottom' if bottom else 'top', fontsize=8) if textbox: txt.set_bbox(dict(facecolor='white', alpha=0.4, linewidth=0)) if pd.isna(res_t_end): continue if with_ribbons: res_t_end = min(res_t_end, tmax) a, b = (ribbon_ystep * i_res), (ribbon_yspan - ribbon_hgt) rect_y_lo = a % b + y_lab color = ribbon_colors[int(a // b)] rect = matplotlib.patches.Rectangle((res_t, rect_y_lo), res_t_end-res_t, ribbon_hgt, color=color, alpha=0.15, lw=0, zorder=20) ax.add_patch(rect) i_res += 1 def plot_daily_trends(ndays=100, lastday=-1, mun_regexp=None, region_list=None, source='r7', subtitle=None): """Plot daily-case trends (pull data from global DFS dict). - lastday: up to this day. - source: 'r7' (7-day rolling average), 'raw' (no smoothing), 'sg' (Savitsky-Golay smoothed). - mun_regexp: regular expression matching municipalities. - region_list: list of municipalities (including e.g. 'HR:Zuid', 'POP:100-200', 'JSON:{...}'. if mun_regexp and mun_list are both specified, then concatenate. If neither are specified, assume 'Nederland'. JSON is a json-encoded dict with: - 'label': short label string - 'color': for plotting, optional. - 'fmt': format for plotting, e.g. 'o--', optional. - 'muns': list of municipality names - subtitle: second title line (optional) """ df_events = DFS['events'] df_mun = DFS['mun'] fig, ax = plt.subplots(figsize=(12, 6)) fig.subplots_adjust(top=0.945-0.03*(subtitle is not None), bottom=0.1, left=0.09, right=0.83) if region_list is None: region_list = [] if mun_regexp: region_list = [m for m in df_mun.index if re.match(mun_regexp, m)] + region_list if region_list == []: region_list = ['Nederland'] labels = [] # tuples (y, txt)f citystats = [] # tuples (Rt, T2, cp100k, cwk, popk, city_name) for region in region_list: df1, n_inw = get_region_data(region, lastday=lastday) df1 = df1.iloc[-ndays:] fmt = 'o-' if ndays < 70 else '-' psize = 5 if ndays < 30 else 3 dnc_column = dict(r7='Delta7r', raw='Delta', sg='DeltaSG')[source] if region.startswith('JSON:'): reg_dict = json.loads(region[5:]) reg_label = reg_dict['label'] if 'fmt' in reg_dict: fmt = reg_dict['fmt'] color = reg_dict['color'] if 'color' in reg_dict else None else: reg_label = re.sub(r'POP:(.*)-(.*)', r'\1k-\2k inw.', region) reg_label = re.sub(r'^[A-Z]+:', '', reg_label) color = None ax.semilogy(df1[dnc_column]*1e5, fmt, color=color, label=reg_label, markersize=psize) delta_t = 7 i0 = dict(raw=-1, r7=-3, sg=-3)[source] t_double, Rt = get_t2_Rt(df1[dnc_column], delta_t, i0=i0) citystats.append((np.around(Rt, 2), np.around(t_double, 2), np.around(df1['Delta'][-1]*1e5, 2), int(df1['Delta7r'][-4] * n_inw * 7 + 0.5), int(n_inw/1e3 + .5), reg_label)) if abs(t_double) > 60: texp = f'Stabiel' elif t_double > 0: texp = f'×2: {t_double:.3g} d' elif t_double < 0: texp = f'×½: {-t_double:.2g} d' ax.semilogy( df1.index[[i0-delta_t, i0]], df1[dnc_column].iloc[[i0-delta_t, i0]]*1e5, 'k--', zorder=-10) labels.append((df1[dnc_column][-1]*1e5, f' {reg_label} ({texp})')) _add_event_labels( ax, df1.index[0], df1.index[-1], with_ribbons=False, flagmatch='CaseGraph' ) dfc = pd.DataFrame.from_records( sorted(citystats), columns=['Rt', 'T2', 'C/100k', 'C/wk', 'Pop/k', 'Region']) dfc.set_index('Region', inplace=True) print(dfc) lab_x = df1.index[-1] +
pd.Timedelta('1.2 d')
pandas.Timedelta
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Geoip Lookup module using IPStack and Maxmind GeoLite2. Geographic location lookup for IP addresses. This module has two classes for different services: - GeoLiteLookup - Maxmind Geolite (see https://www.maxmind.com) - IPStackLookup - IPStack (see https://ipstack.com) Both services offer a free tier for non-commercial use. However, a paid tier will normally get you more accuracy, more detail and a higher throughput rate. Maxmind geolite uses a downloadable database, while IPStack is an online lookup (API key required). """ import math import os import random import tarfile import warnings from abc import ABCMeta, abstractmethod from collections.abc import Iterable from datetime import datetime, timedelta from json import JSONDecodeError from pathlib import Path from time import sleep from typing import Any, Dict, List, Mapping, Optional, Tuple import geoip2.database # type: ignore import pandas as pd import requests from geoip2.errors import AddressNotFoundError # type: ignore from IPython import get_ipython from IPython.display import HTML, display from requests.exceptions import HTTPError from .._version import VERSION from ..common.exceptions import MsticpyUserConfigError from ..common.provider_settings import ProviderSettings, get_provider_settings from ..common.utility import export from ..datamodel.entities import GeoLocation, IpAddress __version__ = VERSION __author__ = "<NAME>" class GeoIPDatabaseException(Exception): """Exception when GeoIP database cannot be found.""" class GeoIpLookup(metaclass=ABCMeta): """ Abstract base class for GeoIP Lookup classes. See Also -------- IPStackLookup : IPStack GeoIP Implementation GeoLiteLookup : MaxMind GeoIP Implementation """ _LICENSE_TXT: Optional[str] = None _LICENSE_HTML: Optional[str] = None _license_shown: bool = False def __init__(self): """Initialize instance of GeoIpLookup class.""" self._print_license() @abstractmethod def lookup_ip( self, ip_address: str = None, ip_addr_list: Iterable = None, ip_entity: IpAddress = None, ) -> Tuple[List[Any], List[IpAddress]]: """ Lookup IP location abstract method. Parameters ---------- ip_address : str, optional a single address to look up (the default is None) ip_addr_list : Iterable, optional a collection of addresses to lookup (the default is None) ip_entity : IpAddress, optional an IpAddress entity (the default is None) - any existing data in the Location property will be overwritten Returns ------- Tuple[List[Any], List[IpAddress]]: raw geolocation results and same results as IpAddress entities with populated Location property. """ def df_lookup_ip(self, data: pd.DataFrame, column: str) -> pd.DataFrame: """ Lookup Geolocation data from a pandas Dataframe. Parameters ---------- data : pd.DataFrame pandas dataframe containing IpAddress column column : str the name of the dataframe column to use as a source Returns ------- pd.DataFrame Copy of original dataframe with IP Location information columns appended (where a location lookup was successful) """ return data.merge( self.lookup_ips(data, column), how="left", left_on=column, right_on="IpAddress", ) def lookup_ips(self, data: pd.DataFrame, column: str) -> pd.DataFrame: """ Lookup Geolocation data from a pandas Dataframe. Parameters ---------- data : pd.DataFrame pandas dataframe containing IpAddress column column : str the name of the dataframe column to use as a source Returns ------- pd.DataFrame IpLookup results as DataFrame. """ ip_list = list(data[column].values) _, entities = self.lookup_ip(ip_addr_list=ip_list) ip_dicts = [ {**ent.Location.properties, "IpAddress": ent.Address} for ent in entities if ent.Location is not None ] return
pd.DataFrame(data=ip_dicts)
pandas.DataFrame
""" Cause-effect model training """ # Author: <NAME> <<EMAIL>> # # License: Apache, Version 2.0 import sys import numpy as np from .estimator import CauseEffectSystemCombination # import features as f import pandas as pd # from scipy.optimize import fmin # import _pickle as pickle from .util import random_permutation MODEL = CauseEffectSystemCombination MODEL_PARAMS = {'weights': [0.383, 0.370, 0.247], 'njobs': 1} def train(df, tar): set1 = 'train' if len(sys.argv) < 2 else sys.argv[1] # set2 = [] if len(sys.argv) < 3 else sys.argv[2:] train_filter = None # if len(df) % 2: # df.drop(df.tail(1).index, inplace=True) # tar.drop(tar.tail(1).index, inplace=True) model = MODEL(**MODEL_PARAMS) print("Reading in training data " + set1) train = df print("Extracting features") train = model.extract(train) # if save: # print("Saving train features") # write_data(set1, train) # target = data_io.read_target(set1) # Data selection train, target = random_permutation(train, tar) train_filter = None if train_filter is not None: train = train[train_filter] target = target[train_filter] print("Training model with optimal weights") # print(train) # print(tar.values) X =
pd.concat([train])
pandas.concat
from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import period as libperiod import pandas as pd from pandas import DatetimeIndex, Period, PeriodIndex, Series, notna, period_range import pandas._testing as tm class TestGetItem: def test_ellipsis(self): # GH#21282 idx = period_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx[...] assert result.equals(idx) assert result is not idx def test_getitem(self): idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx[0] assert result == pd.Period("2011-01-01", freq="D") result = idx[-1] assert result == pd.Period("2011-01-31", freq="D") result = idx[0:5] expected = pd.period_range("2011-01-01", "2011-01-05", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[0:10:2] expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-07", "2011-01-09"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[-20:-5:3] expected = pd.PeriodIndex( ["2011-01-12", "2011-01-15", "2011-01-18", "2011-01-21", "2011-01-24"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[4::-1] expected = PeriodIndex( ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_getitem_index(self): idx = period_range("2007-01", periods=10, freq="M", name="x") result = idx[[1, 3, 5]] exp = pd.PeriodIndex(["2007-02", "2007-04", "2007-06"], freq="M", name="x") tm.assert_index_equal(result, exp) result = idx[[True, True, False, False, False, True, True, False, False, False]] exp = pd.PeriodIndex( ["2007-01", "2007-02", "2007-06", "2007-07"], freq="M", name="x" ) tm.assert_index_equal(result, exp) def test_getitem_partial(self): rng = period_range("2007-01", periods=50, freq="M") ts = Series(np.random.randn(len(rng)), rng) with pytest.raises(KeyError, match=r"^'2006'$"): ts["2006"] result = ts["2008"] assert (result.index.year == 2008).all() result = ts["2008":"2009"] assert len(result) == 24 result = ts["2008-1":"2009-12"] assert len(result) == 24 result = ts["2008Q1":"2009Q4"] assert len(result) == 24 result = ts[:"2009"] assert len(result) == 36 result = ts["2009":] assert len(result) == 50 - 24 exp = result result = ts[24:] tm.assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) msg = "left slice bound for non-unique label: '2008'" with pytest.raises(KeyError, match=msg): ts[slice("2008", "2009")] def test_getitem_datetime(self): rng = period_range(start="2012-01-01", periods=10, freq="W-MON") ts = Series(range(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] tm.assert_series_equal(rs, ts) def test_getitem_nat(self): idx = pd.PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M") assert idx[0] == pd.Period("2011-01", freq="M") assert idx[1] is pd.NaT s = pd.Series([0, 1, 2], index=idx) assert s[pd.NaT] == 1 s = pd.Series(idx, index=idx) assert s[pd.Period("2011-01", freq="M")] == pd.Period("2011-01", freq="M") assert s[pd.NaT] is pd.NaT def test_getitem_list_periods(self): # GH 7710 rng = period_range(start="2012-01-01", periods=10, freq="D") ts = Series(range(len(rng)), index=rng) exp = ts.iloc[[1]] tm.assert_series_equal(ts[[Period("2012-01-02", freq="D")]], exp) def test_getitem_seconds(self): # GH#6716 didx = pd.date_range(start="2013/01/01 09:00:00", freq="S", periods=4000) pidx = period_range(start="2013/01/01 09:00:00", freq="S", periods=4000) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01/01 10:00"], s[3600:3660]) tm.assert_series_equal(s["2013/01/01 9H"], s[:3600]) for d in ["2013/01/01", "2013/01", "2013"]: tm.assert_series_equal(s[d], s) def test_getitem_day(self): # GH#6716 # Confirm DatetimeIndex and PeriodIndex works identically didx = pd.date_range(start="2013/01/01", freq="D", periods=400) pidx = period_range(start="2013/01/01", freq="D", periods=400) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01"], s[0:31]) tm.assert_series_equal(s["2013/02"], s[31:59]) tm.assert_series_equal(s["2014"], s[365:]) invalid = ["2013/02/01 9H", "2013/02/01 09:00"] for v in invalid: with pytest.raises(KeyError, match=v): s[v] class TestWhere: @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where(self, klass): i = period_range("20130101", periods=5, freq="D") cond = [True] * len(i) expected = i result = i.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * (len(i) - 1) expected = PeriodIndex([pd.NaT] + i[1:].tolist(), freq="D") result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_where_other(self): i = period_range("20130101", periods=5, freq="D") for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(
notna(i2)
pandas.notna
import os, sys, re, json, random, copy, argparse, pickle, importlib import numpy as np import pandas as pd from collections import OrderedDict from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import logomaker as lm from util import * import warnings warnings.filterwarnings('ignore') class Predictor(): def __init__(self, mhc_encode_dict, model_file, model_state_files, encoding_method): # MHC binding domain encoding self.mhc_encode_dict = mhc_encode_dict # device: gpu or cpu if torch.cuda.is_available(): self.device = torch.device('cuda') self.batch_size = 4096 else: self.device = torch.device('cpu') self.batch_size = 64 # model if encoding_method == 'onehot': dim = 21 elif encoding_method == 'blosum': dim = 24 else: print("Wrong encoding method") raise ValueError model_file = '.'.join(model_file.split('.')[0].split('/')) module = importlib.import_module(model_file) self.model = module.CombineModel(module.MHCModel(dim), module.EpitopeModel(dim)) # model states self.models = OrderedDict() for i in range(len(model_state_files)): basename = re.split(r'[\/\.]', model_state_files[i])[-2] model_state_dict = torch.load(model_state_files[i], map_location=self.device) self.models[basename] = copy.deepcopy(self.model) self.models[basename].load_state_dict(model_state_dict['model_state_dict']) self.models[basename].to(self.device) def __call__(self, df, dataset, allele=None): result_df = pd.DataFrame(index=df.index, columns=list(self.models.keys())) result_df['sequence'] = df['sequence'] # general mode if allele: dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=False) preds = self._predict(allele, dataloader) result_df.loc[:, list(self.models.keys())] = preds # specific mode else: result_df['mhc'] = df['mhc'] for allele, sub_df in tqdm(df.groupby('mhc'), desc='alleles', leave=False, position=0): idx = sub_df.index sub_dataset = torch.utils.data.Subset(dataset, idx) sub_dataloader = torch.utils.data.DataLoader(sub_dataset, batch_size=self.batch_size, shuffle=False) preds = self._predict(allele, sub_dataloader) result_df.loc[idx, list(self.models.keys())] = preds return result_df def _predict(self, allele, dataloader): mhc_encode = self.mhc_encode_dict[allele] df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import time def patient(rdb): """ Returns list of patients """ patients = """SELECT "Name" FROM patient ORDER BY index""" try: patients =
pd.read_sql(patients, rdb)
pandas.read_sql
# _*_ coding: utf-8 _*_ """ Prepare level-3 distribution data. Author: <NAME> """ import os import numpy as np import pandas as pd from typing import Union, List from sklearn.preprocessing import LabelEncoder # Own Customized modules from base.base_data_loader import BaseDataLoader from util.data_util import transform_channel, remove_whitespace from util.date_util import get_days_of_month, infer_month from util.feature_util import (prepare_training_set_for_level3, prepare_val_set_for_level3, prepare_testing_set_for_level3, modify_training_set) from global_vars import (DIS_DATA_DIR, DIS_DATA_COLUMN_NAMES, SUPPORTED_CATE_NAMES, CATE_NAME_2_CATE_CODE) class Level3DisDataLoader(BaseDataLoader): """Distribution data loader of Level-3 (per customer per sku).""" def __init__(self, year, month, categories='all', need_unitize=True): self._year, self._month = year, month self._categories = categories self._all_cate_names = self._get_all_cates(self._categories) self._all_cate_codes = set([CATE_NAME_2_CATE_CODE[cate] for cate in self._all_cate_names]) self._version_flag = "%d-%02d" % (self._year, self._month) self._dis = self._get_dis_data(need_unitize) self._dis_cus_sku_month = self._get_month_dis_per_cus_sku() # 得到每个代理商每个SKU每个月分销 self._index = self._dis_cus_sku_month.index self._dis_cus_sku_month_pre15 = self._get_pre15_dis_per_cus_sku() # 得到每个代理商每个SKU前15天的分销 self._customer_info, self._customer_info_encoded = self._get_cus_info() # 得到代理商的信息 self._sku_info, self._sku_info_encoded = self._get_sku_info() # 得到SKU的信息 self._dis_sku_month = self._get_month_dis_per_sku() # 得到每个SKU每个月的分销 self._dis_cate1_month = self._get_month_dis_per_cate1() # 得到每个大类每个月的分销 self._dis_cate2_month = self._get_month_dis_per_cate2() # 得到每个小类每个月的分销 self._dis_cus_cate1_month = self._get_month_dis_per_cus_cate1() # 得到每个代理商每个大类的分销 self._dis_cus_cate2_month = self._get_month_dis_per_cus_cate2() # 得到每个代理商每个小类的分销 self._dis_cus_chan_month = self._get_month_dis_per_cus_chan() # 得到每个代理商每个渠道的分销 self._dis_cus_sales_chan_month = self._get_month_dis_per_cus_sales_chan() # 得到每个代理商每个销售渠道的分销 def _get_all_cates(self, categories): if isinstance(categories, list): all_cates = set([cate for cate in categories if cate in SUPPORTED_CATE_NAMES]) elif categories == 'all': all_cates = set(SUPPORTED_CATE_NAMES) else: raise Exception("[INFO] The input `categories` is illegal!!!") return all_cates def _get_data_path(self): filename = "m111-dis_%s.txt" % self._version_flag return os.path.join(DIS_DATA_DIR, self._version_flag, filename) def _get_dis_data(self, need_unitize=True): print("[INFO] Start loading distribution data...") dis_data_path = self._get_data_path() dis = pd.read_csv( dis_data_path, sep='\u001e', header=None, names=DIS_DATA_COLUMN_NAMES, parse_dates=[0], dtype={5: str, 7: str, 15: str, 22: str, 27: str, 28: str} ) print("[INFO] Loading finished!") print("[INFO] Start preprocessing distribution data...") dis = self._preprocess_dis_data(dis, need_unitize) print("[INFO] Preprocessing finished!") return dis def _preprocess_dis_data(self, dis, need_unitize=True): dis.drop( columns=['bu_code', 'bu_name', 'region_code', 'region_name', 'road'], inplace=True ) dis = dis.loc[dis.first_cate_code.isin(self._all_cate_codes)] dis = dis.loc[dis.customer_code.str.startswith('C')] dis = dis.sort_values(by='order_date').reset_index(drop=True) str_column_names = ['sales_cen_code', 'customer_code', 'item_code'] remove_whitespace(dis, str_column_names) dis['district'] = dis.district.str.replace(r'\\N', '未知') dis['customer_type'] = dis.customer_type.str.replace(r'\\N', '未知') dis['is_usable'] = dis.is_usable.astype(str) dis['is_usable'] = dis.is_usable.str.replace(r'\\N', '未知') dis['channel_name'] = dis.channel_name.apply(lambda x: transform_channel(x)) dis['dis_qty'] = np.round(dis.dis_qty).astype(int) dis['item_price'] = dis.item_price.astype(str).str.replace(r'\\N', '-1.0').astype(float) dis['dis_amount'] = dis.dis_qty * dis.item_price if need_unitize: dis['dis_qty'] = dis.dis_qty / 10000 dis['dis_amount'] = dis.dis_amount / 10000 return dis def _get_month_dis_per_cus_sku(self): """Get monthly distribution data per customer per sku.""" tmp = self._dis.copy() tmp['order_month'] = tmp.order_date.astype(str).apply(lambda x: x[:7]) tmp = tmp.groupby(['customer_code', 'item_code', 'order_month'])[['dis_qty']].sum() tmp['dis_qty'] = tmp.dis_qty.apply(lambda x: x if x > 0 else 0) dis_cus_sku_month = tmp.unstack(level=-1).fillna(0) dis_cus_sku_month.columns = pd.date_range( start='2018-01-30', periods=len(dis_cus_sku_month.columns), freq='M' ) return dis_cus_sku_month def _get_pre15_dis_per_cus_sku(self): """Get half monthly distribution data per customer per sku.""" tmp = self._dis.copy() tmp['day'] = tmp.order_date.dt.day tmp = tmp.loc[tmp.day <= 15] tmp['order_month'] = tmp.order_date.astype(str).apply(lambda x: x[:7]) dis_cus_sku_month_pre15 = tmp.groupby(['customer_code', 'item_code', 'order_month'])[['dis_qty']].sum() dis_cus_sku_month_pre15['dis_qty'] = dis_cus_sku_month_pre15.dis_qty.apply(lambda x: 0 if x < 0 else x) dis_cus_sku_month_pre15 = dis_cus_sku_month_pre15.unstack(level=-1).fillna(0.0) dis_cus_sku_month_pre15.columns = pd.date_range( start='2018-01-30', periods=len(dis_cus_sku_month_pre15.columns), freq='M' ) dis_cus_sku_month_pre15 = dis_cus_sku_month_pre15.reindex(self._index).fillna(0) return dis_cus_sku_month_pre15 def _get_month_dis_per_sku(self): """Get monthly distribution data per sku.""" dis_sku_month = self._dis_cus_sku_month.groupby(['item_code'])[self._dis_cus_sku_month.columns].sum() dis_sku_month = dis_sku_month.reindex(self._index.get_level_values(1)) return dis_sku_month def _get_cus_info(self): """Get information of all customers.""" label_enc = LabelEncoder() customer_info = self._dis.drop_duplicates(['customer_code'], keep='last') customer_info = customer_info[['customer_code', 'customer_name', 'sales_cen_code', 'sales_cen_name', 'sales_region_name', 'province', 'city', 'district', 'customer_type', 'is_usable', 'channel_level']] customer_info['customer_id'] = label_enc.fit_transform(customer_info['customer_code']) customer_info['sales_cen_id'] = label_enc.fit_transform(customer_info['sales_cen_code']) customer_info['sales_region_id'] = label_enc.fit_transform(customer_info['sales_region_name']) customer_info['province_id'] = label_enc.fit_transform(customer_info['province']) customer_info['city_id'] = label_enc.fit_transform(customer_info['city']) customer_info['district_id'] = label_enc.fit_transform(customer_info['district']) customer_info['customer_type'] = label_enc.fit_transform(customer_info['customer_type']) customer_info['is_usable'] = label_enc.fit_transform(customer_info['is_usable']) customer_info['channel_level'] = label_enc.fit_transform(customer_info['channel_level']) customer_info_encoded = customer_info.drop( columns=['customer_name', 'sales_cen_code', 'sales_cen_name', 'sales_region_name', 'province', 'city', 'district'] ).set_index('customer_code') customer_info.set_index('customer_code', inplace=True) customer_info_encoded = customer_info_encoded.reindex(self._index.get_level_values(0)) return customer_info, customer_info_encoded def _get_sku_info(self): """Get information of all SKUs.""" label_enc = LabelEncoder() sku_info = self._dis.drop_duplicates(['item_code'], keep='last') sku_info = sku_info[[ 'item_code', 'item_name', 'first_cate_code', 'first_cate_name', 'second_cate_code', 'second_cate_name', 'item_price', 'channel_name', 'sales_chan_name' ]] sku_info['item_id'] = label_enc.fit_transform(sku_info.item_code) sku_info['first_cate_id'] = label_enc.fit_transform(sku_info.first_cate_code) sku_info['second_cate_id'] = label_enc.fit_transform(sku_info.second_cate_code) sku_info['channel_id'] = label_enc.fit_transform(sku_info.channel_name) sku_info['sales_chan_id'] = label_enc.fit_transform(sku_info.sales_chan_name) sku_info_encoded = sku_info.drop( columns=['item_name', 'first_cate_code', 'first_cate_name', 'second_cate_code', 'second_cate_name', 'channel_name', 'sales_chan_name'] ).set_index('item_code') sku_info = sku_info.set_index('item_code') sku_info_encoded = sku_info_encoded.reindex(self._index.get_level_values(1)) return sku_info, sku_info_encoded def _get_month_dis_per_cate1(self): """Get monthly distribution data per first level category.""" dis_cate1_month = self._dis_cus_sku_month.reset_index() dis_cate1_month['first_cate_id'] = self._sku_info_encoded.first_cate_id.values dis_cate1_month_index = dis_cate1_month['first_cate_id'] dis_cate1_month = dis_cate1_month.groupby(['first_cate_id'])[self._dis_cus_sku_month.columns].sum() dis_cate1_month = dis_cate1_month.reindex(dis_cate1_month_index) return dis_cate1_month def _get_month_dis_per_cate2(self): """Get monthly distribution data per second level category.""" dis_cate2_month = self._dis_cus_sku_month.reset_index() dis_cate2_month['second_cate_id'] = self._sku_info_encoded.second_cate_id.values dis_cate2_month_index = dis_cate2_month['second_cate_id'] dis_cate2_month = dis_cate2_month.groupby(['second_cate_id'])[self._dis_cus_sku_month.columns].sum() dis_cate2_month = dis_cate2_month.reindex(dis_cate2_month_index) return dis_cate2_month def _get_month_dis_per_cus_cate1(self): """Get monthly distribution data per customer per first level category.""" dis_cus_cate1_month = self._dis_cus_sku_month.reset_index() dis_cus_cate1_month['first_cate_id'] = self._sku_info_encoded.first_cate_id.values dis_cus_cate1_month_index = dis_cus_cate1_month[['customer_code', 'first_cate_id']] dis_cus_cate1_month = dis_cus_cate1_month.groupby( ['customer_code', 'first_cate_id'] )[self._dis_cus_sku_month.columns].sum() dis_cus_cate1_month = dis_cus_cate1_month.reindex(dis_cus_cate1_month_index) return dis_cus_cate1_month def _get_month_dis_per_cus_cate2(self): """Get monthly distribution data per customer per second level category.""" dis_cus_cate2_month = self._dis_cus_sku_month.reset_index() dis_cus_cate2_month['second_cate_id'] = self._sku_info_encoded.second_cate_id.values dis_cus_cate2_month_index = dis_cus_cate2_month[['customer_code', 'second_cate_id']] dis_cus_cate2_month = dis_cus_cate2_month.groupby( ['customer_code', 'second_cate_id'] )[self._dis_cus_sku_month.columns].sum() dis_cus_cate2_month = dis_cus_cate2_month.reindex(dis_cus_cate2_month_index) return dis_cus_cate2_month def _get_month_dis_per_cus_chan(self): """Get monthly distribution data per customer per channel.""" dis_cus_chan_month = self._dis_cus_sku_month.reset_index() dis_cus_chan_month['channel_id'] = self._sku_info_encoded.channel_id.values dis_cus_chan_month_index = dis_cus_chan_month[['customer_code', 'channel_id']] dis_cus_chan_month = dis_cus_chan_month.groupby( ['customer_code', 'channel_id'] )[self._dis_cus_sku_month.columns].sum() dis_cus_chan_month = dis_cus_chan_month.reindex(dis_cus_chan_month_index) return dis_cus_chan_month def _get_month_dis_per_cus_sales_chan(self): """Get monthly distribution data per customer per sales channel.""" dis_cus_sales_chan_month = self._dis_cus_sku_month.reset_index() dis_cus_sales_chan_month['sales_chan_id'] = self._sku_info_encoded.sales_chan_id.values dis_cus_sales_chan_month_index = dis_cus_sales_chan_month[['customer_code', 'sales_chan_id']] dis_cus_sales_chan_month = dis_cus_sales_chan_month.groupby( ['customer_code', 'sales_chan_id'])[self._dis_cus_sku_month.columns].sum() dis_cus_sales_chan_month = dis_cus_sales_chan_month.reindex(dis_cus_sales_chan_month_index) return dis_cus_sales_chan_month def prepare_training_set(self, months, gap=0): X_train, y_train = prepare_training_set_for_level3(None, self._dis_cus_sku_month, None, None, self._dis_cus_sku_month_pre15, None, None, self._dis_cus_cate1_month, None, None, self._dis_cus_cate2_month, None, None, self._dis_cus_chan_month, None, None, self._dis_cus_sales_chan_month, None, None, self._dis_sku_month, None, None, self._dis_cate1_month, None, None, self._dis_cate2_month, None, self._customer_info_encoded, self._sku_info_encoded, months, gap, label_data='dis') return modify_training_set(X_train, y_train) def prepare_val_set(self, pred_year, pred_month, gap=0): return prepare_val_set_for_level3(None, self._dis_cus_sku_month, None, None, self._dis_cus_sku_month_pre15, None, None, self._dis_cus_cate1_month, None, None, self._dis_cus_cate2_month, None, None, self._dis_cus_chan_month, None, None, self._dis_cus_sales_chan_month, None, None, self._dis_sku_month, None, None, self._dis_cate1_month, None, None, self._dis_cate2_month, None, self._customer_info_encoded, self._sku_info_encoded, pred_year, pred_month, gap, label_data='dis') def prepare_testing_set(self, pred_year, pred_month, gap=0): return prepare_testing_set_for_level3(None, self._dis_cus_sku_month, None, None, self._dis_cus_sku_month_pre15, None, None, self._dis_cus_cate1_month, None, None, self._dis_cus_cate2_month, None, None, self._dis_cus_chan_month, None, None, self._dis_cus_sales_chan_month, None, None, self._dis_sku_month, None, None, self._dis_cate1_month, None, None, self._dis_cate2_month, None, self._customer_info_encoded, self._sku_info_encoded, pred_year, pred_month, gap) def get_true_data(self, true_pred_year: int, true_pred_month: int, reset_index: bool = False) -> pd.DataFrame: start_dt_str = "%d-%02d-01" % (true_pred_year, true_pred_month) end_dt_str = "%d-%02d-%02d" % (true_pred_year, true_pred_month, get_days_of_month(true_pred_year, true_pred_month)) df = self._dis.loc[(self._dis.order_date >= start_dt_str) & (self._dis.order_date <= end_dt_str)] df['order_date'] = df.order_date.astype(str).apply(lambda x: x[:4] + x[5:7]) df = df.groupby(['customer_code', 'item_code', 'order_date'])[['dis_qty']].sum() df = df.loc[df.dis_qty > 0] df.rename(columns={'dis_qty': 'act_dis_qty'}, inplace=True) return df.reset_index() if reset_index else df def add_index(self, preds: Union[np.ndarray, List[np.ndarray]], start_pred_year: int, start_pred_month: int) -> pd.DataFrame: if isinstance(preds, np.ndarray): preds = [preds] months_pred = ['%d%02d' % infer_month(start_pred_year, start_pred_month, i) for i in range(len(preds))] return pd.DataFrame(np.array(preds).transpose(), index=self._index, columns=months_pred) def decorate_pred_result(self, preds: Union[np.ndarray, List[np.ndarray]], start_pred_year: int, start_pred_month: int, use_unitize: bool = True) -> pd.DataFrame: df_preds = self.add_index(preds, start_pred_year, start_pred_month).stack().to_frame('pred_dis_qty') df_preds.index.set_names(['customer_code', 'item_code', 'order_date'], inplace=True) df_preds['pred_dis_qty'] = df_preds.pred_dis_qty.apply(lambda x: x if x > 0 else 0) df_preds['pred_dis_qty'] = np.round(df_preds.pred_dis_qty, decimals=4 if use_unitize else 0) return df_preds def predict_by_history(self, start_pred_year, start_pred_month, gap=4, left_bound_dt='2018-01'): left_bound_year, left_bound_month = map(int, left_bound_dt.split('-')) start_aver_year, start_aver_month = infer_month(start_pred_year, start_pred_month, gap) pred_len = 12 - gap history = [] for i in range(1, 4): if (start_aver_year - i > left_bound_year) or \ (start_aver_year - i == left_bound_year and start_aver_month >= left_bound_month): start_dt = "%d-%02d-%d" % (start_aver_year - i, start_aver_month, 1) tmp = self._dis_cus_sku_month[
pd.date_range(start_dt, periods=pred_len, freq='M')
pandas.date_range
# importing the dependencies from string import ascii_uppercase import pandas as pd from openpyxl import load_workbook from openpyxl.styles import PatternFill, Alignment, Border, Side import numpy as np #Taking data from GUI Initiative = "GENESIS" OutMonth = "July" # Extracting data from the input calender which is in the day wise format InputDataframe = pd.read_excel(r"C:\Users\vv972\OneDrive\Documents\MATLAB\Excel case study\Excel_Automation_Test\Automation_Sample Calender_v0.6.xlsx", sheet_name='Sample_GENESIS') InputDataframe.columns = ['Month', 'Date', 'Day', 'Course Code', 'Module','Lead1', 'Lead2', 'Lead3', 'Session Slot', 'Session Time','Comments'] InputDataframe = InputDataframe.drop([0, 1]) Date = InputDataframe['Date'] Date = Date.dropna() Date.index = Date.index - 1 Month = InputDataframe['Month'] Month = set(Month.dropna()) Day = InputDataframe['Day'] Day = Day.dropna() Day.index = Day.index - 1 CourseCode = InputDataframe['Course Code'] CourseCode.index = CourseCode.index - 1 Module = InputDataframe['Module'] Module.index = Module.index - 1 Lead1 = InputDataframe['Lead1'] Lead1.index = Lead1.index - 1 Lead2 = InputDataframe['Lead2'] Lead2.index = Lead2.index - 1 Lead3 = InputDataframe['Lead3'] Lead3.index = Lead3.index - 1 SessionSlot = InputDataframe['Session Slot'] SessionSlot.index = SessionSlot.index - 1 Comments = InputDataframe['Comments'] Comments.index = Comments.index - 1 # Extracting data from the Keys sheet of the Master calendar KeysDataframe = pd.read_excel(r"C:\Users\vv972\OneDrive\Documents\MATLAB\Calender auomation product\Product_Calender_Automation\V1\Implementation\MasterCalendar/Master.xlsx", sheet_name='Key') KeysDataframe.columns = ["FixedInitiativeTitles", "FixedInitiativeCodes", "FixedInitiativeColourCodes", "VarName4", "VarName5", "VarName6", "FixedCourseCodes", "FixedCourseTitles"] KeysDataframe = KeysDataframe.drop(["VarName4", "VarName5", "VarName6"], axis=1) FixedInitiativeTitles = KeysDataframe['FixedInitiativeTitles'] FixedInitiativeTitles = FixedInitiativeTitles.dropna() FixedInitiativeTitles.index = FixedInitiativeTitles.index + 1 FixedInitiativeCodes = KeysDataframe['FixedInitiativeCodes'] FixedInitiativeCodes = FixedInitiativeCodes.dropna() FixedInitiativeCodes.index = FixedInitiativeCodes.index + 1 FixedInitiativeColourCodes = KeysDataframe['FixedInitiativeColourCodes'] # reads empty data FixedCourseCodes = KeysDataframe['FixedCourseCodes'] FixedCourseCodes = FixedCourseCodes.dropna() FixedCourseCodes.index = FixedCourseCodes.index + 1 FixedCourseTitles = KeysDataframe['FixedCourseTitles'] FixedCourseTitles = FixedCourseTitles.dropna() FixedCourseTitles.index = FixedCourseTitles.index + 1 #FixedCourses = [FixedCourseCodes,FixedCourseTitles] #FixedCourses = pd.concat([FixedCourseCodes, FixedCourseTitles], axis = 1) # Fixed Courses dataframe #print(FixedCourses) #print(CourseCode) # print(Date, Day, CourseCode, Module, SessionSlot, Lead1, Lead2, Lead3) # print(FixedInitiativeTitles, FixedInitiativeCodes, FixedCourseCodes, FixedCourseTitles) # TO DO fix errors # ExistingDataframe = pd.read_excel('/Users/achu/Downloads/Calendar/Master.xlsx', sheet_name=OutMonth) # ExistingDataframe = ExistingDataframe.drop([0,1]) # ExistingDataframe.index = ExistingDataframe.index -1 # UniqueCourseCode = ExistingDataframe.iloc[:,0] # RespectiveCourseTitleOutMonth = ExistingDataframe.iloc[:,1] # RespectiveFacultyOutMonth = ExistingDataframe.iloc[:2:6] # TimeTableOutMonth = ExistingDataframe.iloc[:,7:68] # print(UniqueCourseCode, RespectiveCourseTitleOutMonth, RespectiveFacultyOutMonth ,TimeTableOutMonth) #print(CourseCode) #print(CourseCode[1]) #print(FixedCourseCodes) #print(FixedCourses.iloc[1,0]) """Error correction : if course code incorrect , course title correct = corrects course code if course code correct , course title incorrect = corrects course title if course code incorrect , course title also incorrect = replaces the course code with "" """ """Fixing the error course codes""" for i in range(1, len(CourseCode)+1): TempFlag=0 for j in range(1, len(FixedCourseCodes)+1): if (CourseCode[i] == FixedCourseCodes[j]): TempFlag = 1 if TempFlag == 0: TempFlagError = 1 for k in range(1, len(FixedCourseTitles)+1): if (Module[i] == FixedCourseTitles[k]): CourseCode[i] = FixedCourseCodes[k] TempFlagError = 0 if TempFlagError == 1: CourseCode[i] = "" "Fixing the error course titles" for i in range(1, len(Module)+1): TempFlag=0 for j in range(1, len(FixedCourseTitles)+1): if (Module[i] == FixedCourseTitles[j]): TempFlag = 1 if TempFlag == 0: TempFlagError = 1 for k in range(1, len(FixedCourseCodes)+1): if (CourseCode[i] == FixedCourseCodes[k]): Module[i] = FixedCourseTitles[k] TempFlagError = 0 if TempFlagError == 1: CourseCode[i] = "" """Selecting the particular initaitive code""" InitiativeCode = 11 for i in range(1, len(FixedInitiativeTitles) + 1): if Initiative == FixedInitiativeTitles[i]: InitiativeCode = FixedInitiativeCodes[i] """UniqueCourseCode containing unique data for CourseCode""" UniqueCourseCode = [] for i in range(1, len(CourseCode)+1): if CourseCode[i] != '' and CourseCode[i] not in UniqueCourseCode: UniqueCourseCode.append(CourseCode[i]) UniqueCourseCode=
pd.Series(UniqueCourseCode)
pandas.Series
""" Script to make a plot of the feature variances across the bags. Use the normalized bags as input, and then show which features have low variances, and are therefore not useful for the model. """ import sys import os import numpy as np import pickle as pkl import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.feature_selection import VarianceThreshold import matplotlib matplotlib.use('Agg') outDir = sys.argv[1] #1. First gather the normalized bags svTypes = ['DEL', 'DUP', 'INV', 'ITX'] #input the normalized bags with open(outDir + '/linkedSVGenePairs/normalizedBags.pkl', 'rb') as handle: bagDict = pkl.load(handle) #get the information for the bag labels degPairs = np.loadtxt(outDir + '/tadDisruptionsZScores/zScores.txt', dtype='object') #labels mutDir = outDir + '/patientGeneMutationPairs/' cnvPatientsAmp = np.load(mutDir + 'cnvPatientsAmp.npy', allow_pickle=True, encoding='latin1').item() svPatientsDup = np.load(mutDir + 'svPatientsDup.npy', allow_pickle=True, encoding='latin1').item() svGenePairs = np.loadtxt(outDir + '/linkedSVGenePairs/nonCoding_geneSVPairs.txt_', dtype='object') splitSVGenePairs = [] for pair in svGenePairs: splitPair = pair[0].split('_') splitSVGenePairs.append(splitPair[0] + '_' + splitPair[7] + '_' + splitPair[12]) #2. Divide into positive and negative instances for svType in svTypes: bagLabels = [] positiveBagPairNames = [] negativeBagPairNames = [] positiveInstanceLabels = [] positiveBags = [] negativeBags = [] #for each SV-gene pair, get the instances for pair in bagDict: #check if the SV type matches our selection splitPair = pair.split("_") shortPair = splitPair[7] + '_' + splitPair[0] if svType != '' and svType != 'ALL': if splitPair[12] != svType: continue #get the label of the bag by checking if it exists in degPairs, some pairs do not have a z-score because the gene is excluded due to mutations. if shortPair in degPairs[:,0]: #get the z-score of the pair. degPairInfo = degPairs[degPairs[:,0] == shortPair][0] #if the z-score matches this criterion, the SV-gene pair is positive if float(degPairInfo[5]) > 1.5 or float(degPairInfo[5]) < -1.5: #go through the instances of this SV-gene pair, and include only those that have gains and losses, and more than 1 instance. This should in principle not happen, but good to keep a check. instances = [] for instance in bagDict[pair]: if instance[0] == 0 and instance[1] == 0: continue instances.append(instance) if len(instances) < 1: continue ###Here do an extra check: #we only look at TADs with SVs across the boundary when computing z-scores, so those z-scores are in the set. #BUT some of these genes are not actually affected by the SV, since this doesn't lead to #regulatory elements gained/lost. SO, we need to remove those here to get the actual pairs. #This only goes wrong for duplications, because we also keep CNV amps that could be the same event, #but then the duplication does not lead to gains/losses, while the CNV amp does because it is slightly #longer. So if there is evidence of a cnv AMP, but no non-coding duplication linked, we can remove #this as a positive pair. if splitPair[7] not in cnvPatientsAmp: positiveBagPairNames.append(pair) positiveBags.append(instances) else: dupMatch = splitPair[0] + '_' + splitPair[7] + '_DUP' if splitPair[0] in cnvPatientsAmp[splitPair[7]] and dupMatch not in splitSVGenePairs: negativeBags.append(instances) negativeBagPairNames.append(pair) else: positiveBagPairNames.append(pair) positiveBags.append(instances) else: #if the z-score is anything else, this bag will be labeled negative. #get the right number of features per instance instances = [] for instance in bagDict[pair]: if instance[0] == 0 and instance[1] == 0: continue instances.append(instance) if len(instances) < 1: continue negativeBags.append(instances) negativeBagPairNames.append(pair) positiveBags = np.array(positiveBags) negativeBags = np.array(negativeBags) #add the number of instances per bag as feature to the instances, which #is not part of the normalized bags. #normalize by the number of bags equal to how other features are normalized. for bag in positiveBags: instCount = len(bag) for instance in bag: instance.append(instCount / positiveBags.shape[0]) for bag in negativeBags: instCount = len(bag) for instance in bag: instance.append(instCount / negativeBags.shape[0]) #remove instances with no variance posInstances = np.vstack(positiveBags) negInstances = np.vstack(negativeBags) allInstances = np.concatenate((posInstances, negInstances)) #3. Calculate variances t = 0 vt = VarianceThreshold(threshold=t) vt.fit(allInstances) #normalize variances for visualization purposes normalizedVariances = np.log(vt.variances_+0.0000001) #Then make a plot of the variances for each SV type model. plotData = [] for ind in range(0, len(vt.variances_)): plotData.append([ind, normalizedVariances[ind]]) data =
pd.DataFrame(plotData)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import unittest import warnings import pandas as pd import numpy as np from qiime2 import Artifact from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn) from qiime2.core.testing.util import get_dummy_plugin, ReallyEqualMixin class TestInvalidMetadataConstruction(unittest.TestCase): def test_non_dataframe(self): with self.assertRaisesRegex( TypeError, 'Metadata constructor.*DataFrame.*not.*Series'): Metadata(pd.Series([1, 2, 3], name='col', index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_ids(self): with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({}, index=pd.Index([], name='id'))) with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({'column': []}, index=pd.Index([], name='id'))) def test_invalid_id_header(self): # default index name with self.assertRaisesRegex(ValueError, r'Index\.name.*None'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c']))) with self.assertRaisesRegex(ValueError, r'Index\.name.*my-id-header'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='my-id-header'))) def test_non_str_id(self): with self.assertRaisesRegex( TypeError, 'non-string metadata ID.*type.*float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', np.nan, 'c'], name='id'))) def test_non_str_column_name(self): with self.assertRaisesRegex( TypeError, 'non-string metadata column name.*type.*' 'float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3], np.nan: [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_empty_id(self): with self.assertRaisesRegex( ValueError, 'empty metadata ID.*at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '', 'c'], name='id'))) def test_empty_column_name(self): with self.assertRaisesRegex( ValueError, 'empty metadata column name.*' 'at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3], '': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_pound_sign_id(self): with self.assertRaisesRegex( ValueError, "metadata ID.*begins with a pound sign.*'#b'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '#b', 'c'], name='id'))) def test_id_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata ID 'sample-id'.*conflicts.*reserved.*" "ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'sample-id', 'c'], name='id'))) def test_column_name_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata column name 'featureid'.*conflicts.*" "reserved.*ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3], 'featureid': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_duplicate_ids(self): with self.assertRaisesRegex(ValueError, "Metadata IDs.*unique.*'a'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'a'], name='id'))) def test_duplicate_column_names(self): data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] with self.assertRaisesRegex(ValueError, "Metadata column names.*unique.*'col1'"): Metadata(pd.DataFrame(data, columns=['col1', 'col2', 'col1'], index=pd.Index(['a', 'b', 'c'], name='id'))) def test_unsupported_column_dtype(self): with self.assertRaisesRegex( TypeError, "Metadata column 'col2'.*unsupported.*dtype.*bool"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [True, False, True]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_unsupported_type(self): with self.assertRaisesRegex( TypeError, "CategoricalMetadataColumn.*strings or missing " r"values.*42\.5.*float.*'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 42.5]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_empty_str(self): with self.assertRaisesRegex( ValueError, "CategoricalMetadataColumn.*empty strings.*" "column 'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', '', 'bar']}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_numeric_column_infinity(self): with self.assertRaisesRegex( ValueError, "NumericMetadataColumn.*positive or negative " "infinity.*column 'col2'"): Metadata(pd.DataFrame( {'col1': ['foo', 'bar', 'baz'], 'col2': [42, float('+inf'), 4.3]}, index=pd.Index(['a', 'b', 'c'], name='id'))) class TestMetadataConstructionAndProperties(unittest.TestCase): def assertEqualColumns(self, obs_columns, exp): obs = [(name, props.type) for name, props in obs_columns.items()] self.assertEqual(obs, exp) def test_minimal(self): md = Metadata(pd.DataFrame({}, index=pd.Index(['a'], name='id'))) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('a',)) self.assertEqualColumns(md.columns, []) def test_single_id(self): index = pd.Index(['id1'], name='id') df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1',)) self.assertEqualColumns(md.columns, [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')]) def test_no_columns(self): index = pd.Index(['id1', 'id2', 'foo'], name='id') df = pd.DataFrame({}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'foo')) self.assertEqualColumns(md.columns, []) def test_single_column(self): index = pd.Index(['id1', 'a', 'my-id'], name='id') df = pd.DataFrame({'column': ['foo', 'bar', 'baz']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 1) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'a', 'my-id')) self.assertEqualColumns(md.columns, [('column', 'categorical')]) def test_retains_column_order(self): # Supply DataFrame constructor with explicit column ordering instead of # a dict. index = pd.Index(['id1', 'id2', 'id3'], name='id') columns = ['z', 'a', 'ch'] data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'id3')) self.assertEqualColumns(md.columns, [('z', 'numeric'), ('a', 'categorical'), ('ch', 'categorical')]) def test_supported_id_headers(self): case_insensitive = { 'id', 'sampleid', 'sample id', 'sample-id', 'featureid', 'feature id', 'feature-id' } exact_match = { '#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name' } # Build a set of supported headers, including exact matches and headers # with different casing. headers = set() for header in case_insensitive: headers.add(header) headers.add(header.upper()) headers.add(header.title()) for header in exact_match: headers.add(header) count = 0 for header in headers: index = pd.Index(['id1', 'id2'], name=header) df = pd.DataFrame({'column': ['foo', 'bar']}, index=index) md = Metadata(df) self.assertEqual(md.id_header, header) count += 1 # Since this test case is a little complicated, make sure that the # expected number of comparisons are happening. self.assertEqual(count, 26) def test_recommended_ids(self): index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'], name='id') df = pd.DataFrame({'col1': ['foo', 'bar']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 2) self.assertEqual(md.column_count, 1) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID')) self.assertEqualColumns(md.columns, [('col1', 'categorical')]) def test_non_standard_characters(self): index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5'], name='id') columns = ['↩c@l1™', 'col(#2)', "#col'3", '"<col_4>"', 'col\t \r\n5'] data = [ ['ƒoo', '(foo)', '#f o #o', 'fo\ro', np.nan], ["''2''", 'b#r', 'ba\nr', np.nan, np.nan], ['b"ar', 'c\td', '4\r\n2', np.nan, np.nan], ['b__a_z', '<42>', '>42', np.nan, np.nan], ['baz', np.nan, '42'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 5) self.assertEqual(md.column_count, 5) self.assertEqual(md.id_header, 'id') self.assertEqual( md.ids, ('©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5')) self.assertEqualColumns(md.columns, [('↩c@l1™', 'categorical'), ('col(#2)', 'categorical'), ("#col'3", 'categorical'), ('"<col_4>"', 'categorical'), ('col\t \r\n5', 'numeric')]) def test_missing_data(self): index = pd.Index(['None', 'nan', 'NA', 'foo'], name='id') df = pd.DataFrame(collections.OrderedDict([ ('col1', [1.0, np.nan, np.nan, np.nan]), ('NA', [np.nan, np.nan, np.nan, np.nan]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) md = Metadata(df) self.assertEqual(md.id_count, 4) self.assertEqual(md.column_count, 4) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('None', 'nan', 'NA', 'foo')) self.assertEqualColumns(md.columns, [('col1', 'numeric'), ('NA', 'numeric'), ('col3', 'categorical'), ('col4', 'categorical')]) def test_does_not_cast_ids_or_column_names(self): index = pd.Index(['0.000001', '0.004000', '0.000000'], dtype=object, name='id') columns = ['42.0', '1000', '-4.2'] data = [ [2.0, 'b', 2.5], [1.0, 'b', 4.2], [3.0, 'c', -9.999] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('0.000001', '0.004000', '0.000000')) self.assertEqualColumns(md.columns, [('42.0', 'numeric'), ('1000', 'categorical'), ('-4.2', 'numeric')]) def test_mixed_column_types(self): md = Metadata( pd.DataFrame({'col0': [1.0, 2.0, 3.0], 'col1': ['a', 'b', 'c'], 'col2': ['foo', 'bar', '42'], 'col3': ['1.0', '2.5', '-4.002'], 'col4': [1, 2, 3], 'col5': [1, 2, 3.5], 'col6': [1e-4, -0.0002, np.nan], 'col7': ['cat', np.nan, 'dog'], 'col8': ['a', 'a', 'a'], 'col9': [0, 0, 0]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 10) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'id3')) self.assertEqualColumns(md.columns, [('col0', 'numeric'), ('col1', 'categorical'), ('col2', 'categorical'), ('col3', 'categorical'), ('col4', 'numeric'), ('col5', 'numeric'), ('col6', 'numeric'), ('col7', 'categorical'), ('col8', 'categorical'), ('col9', 'numeric')]) def test_case_insensitive_duplicate_ids(self): index = pd.Index(['a', 'b', 'A'], name='id') df = pd.DataFrame({'column': ['1', '2', '3']}, index=index) metadata = Metadata(df) self.assertEqual(metadata.ids, ('a', 'b', 'A')) def test_case_insensitive_duplicate_column_names(self): index = pd.Index(['a', 'b', 'c'], name='id') df = pd.DataFrame({'column': ['1', '2', '3'], 'Column': ['4', '5', '6']}, index=index) metadata = Metadata(df) self.assertEqual(set(metadata.columns), {'column', 'Column'}) def test_categorical_column_leading_trailing_whitespace_value(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', ' bar ', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) def test_leading_trailing_whitespace_id(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', ' b ', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) def test_leading_trailing_whitespace_column_name(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], ' col2 ': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) class TestSourceArtifacts(unittest.TestCase): def setUp(self): self.md = Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_source_artifacts(self): self.assertEqual(self.md.artifacts, ()) def test_add_zero_artifacts(self): self.md._add_artifacts([]) self.assertEqual(self.md.artifacts, ()) def test_add_artifacts(self): # First two artifacts have the same data but different UUIDs. artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) self.md._add_artifacts([artifact1]) artifact2 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) artifact3 = Artifact.import_data('IntSequence1', [1, 2, 3, 4]) self.md._add_artifacts([artifact2, artifact3]) self.assertEqual(self.md.artifacts, (artifact1, artifact2, artifact3)) def test_add_non_artifact(self): artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) with self.assertRaisesRegex(TypeError, "Artifact object.*42"): self.md._add_artifacts([artifact, 42]) # Test that the object hasn't been mutated. self.assertEqual(self.md.artifacts, ()) def test_add_duplicate_artifact(self): artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) artifact2 = Artifact.import_data('IntSequence1', [1, 2, 3, 4]) self.md._add_artifacts([artifact1, artifact2]) with self.assertRaisesRegex( ValueError, "Duplicate source artifacts.*artifact: Mapping"): self.md._add_artifacts([artifact1]) # Test that the object hasn't been mutated. self.assertEqual(self.md.artifacts, (artifact1, artifact2)) class TestRepr(unittest.TestCase): def test_singular(self): md = Metadata(pd.DataFrame({'col1': [42]}, index=pd.Index(['a'], name='id'))) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('1 ID x 1 column', obs) self.assertIn("col1: ColumnProperties(type='numeric')", obs) def test_plural(self): md = Metadata(pd.DataFrame({'col1': [42, 42], 'col2': ['foo', 'bar']}, index=pd.Index(['a', 'b'], name='id'))) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('2 IDs x 2 columns', obs) self.assertIn("col1: ColumnProperties(type='numeric')", obs) self.assertIn("col2: ColumnProperties(type='categorical')", obs) def test_column_name_padding(self): data = [[0, 42, 'foo']] index = pd.Index(['my-id'], name='id') columns = ['col1', 'longer-column-name', 'c'] md = Metadata(pd.DataFrame(data, index=index, columns=columns)) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('1 ID x 3 columns', obs) self.assertIn( "col1: ColumnProperties(type='numeric')", obs) self.assertIn( "longer-column-name: ColumnProperties(type='numeric')", obs) self.assertIn( "c: ColumnProperties(type='categorical')", obs) class TestEqualityOperators(unittest.TestCase, ReallyEqualMixin): def setUp(self): get_dummy_plugin() def test_type_mismatch(self): md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) mdc = md.get_column('col1') self.assertIsInstance(md, Metadata) self.assertIsInstance(mdc, NumericMetadataColumn) self.assertReallyNotEqual(md, mdc) def test_id_header_mismatch(self): data = {'col1': ['foo', 'bar'], 'col2': [42, 43]} md1 = Metadata(pd.DataFrame( data, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame( data, index=pd.Index(['id1', 'id2'], name='ID'))) self.assertReallyNotEqual(md1, md2) def test_source_mismatch(self): # Metadata created from an artifact vs not shouldn't compare equal, # even if the data is the same. artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md_from_artifact = artifact.view(Metadata) md_no_artifact = Metadata(md_from_artifact.to_dataframe()) pd.testing.assert_frame_equal(md_from_artifact.to_dataframe(), md_no_artifact.to_dataframe()) self.assertReallyNotEqual(md_from_artifact, md_no_artifact) def test_artifact_mismatch(self): # Metadata created from different artifacts shouldn't compare equal, # even if the data is the same. artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) artifact2 = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md1 = artifact1.view(Metadata) md2 = artifact2.view(Metadata) pd.testing.assert_frame_equal(md1.to_dataframe(), md2.to_dataframe()) self.assertReallyNotEqual(md1, md2) def test_id_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['1'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_name_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'c': '2'}, index=pd.Index(['0'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_type_mismatch(self): md1 = Metadata(pd.DataFrame({'col1': ['42', '43']}, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame({'col1': [42, 43]}, index=pd.Index(['id1', 'id2'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_order_mismatch(self): index = pd.Index(['id1', 'id2'], name='id') md1 = Metadata(pd.DataFrame([[42, 'foo'], [43, 'bar']], index=index, columns=['z', 'a'])) md2 = Metadata(pd.DataFrame([['foo', 42], ['bar', 43]], index=index, columns=['a', 'z'])) self.assertReallyNotEqual(md1, md2) def test_data_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_equality_without_artifact(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) self.assertReallyEqual(md1, md2) def test_equality_with_artifact(self): artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md1 = artifact.view(Metadata) md2 = artifact.view(Metadata) self.assertReallyEqual(md1, md2) def test_equality_with_missing_data(self): md1 = Metadata(pd.DataFrame( {'col1': [1, np.nan, 4.2], 'col2': [np.nan, 'foo', np.nan]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, np.nan, 4.2], 'col2': [np.nan, 'foo', np.nan]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertReallyEqual(md1, md2) class TestToDataframe(unittest.TestCase): def test_minimal(self): df = pd.DataFrame({}, index=pd.Index(['id1'], name='id')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) def test_id_header_preserved(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='#SampleID')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertEqual(obs.index.name, '#SampleID') def test_dataframe_copy(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertIsNot(obs, df) def test_retains_column_order(self): index = pd.Index(['id1', 'id2'], name='id') columns = ['z', 'a', 'ch'] data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertEqual(obs.columns.tolist(), ['z', 'a', 'ch']) def test_missing_data(self): # Different missing data representations should be normalized to np.nan index = pd.Index(['None', 'nan', 'NA', 'id1'], name='id') df = pd.DataFrame(collections.OrderedDict([ ('col1', [42.5, np.nan, float('nan'), 3]), ('NA', [np.nan, 'foo', float('nan'), None]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) md = Metadata(df) obs = md.to_dataframe() exp = pd.DataFrame(collections.OrderedDict([ ('col1', [42.5, np.nan, np.nan, 3.0]), ('NA', [np.nan, 'foo', np.nan, np.nan]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) pd.testing.assert_frame_equal(obs, exp) self.assertEqual(obs.dtypes.to_dict(), {'col1': np.float64, 'NA': object, 'col3': object, 'col4': object}) self.assertTrue(np.isnan(obs['col1']['NA'])) self.assertTrue(np.isnan(obs['NA']['NA'])) self.assertTrue(np.isnan(obs['NA']['id1'])) def test_dtype_int_normalized_to_dtype_float(self): index = pd.Index(['id1', 'id2', 'id3'], name='id') df = pd.DataFrame({'col1': [42, -43, 0], 'col2': [42.0, -43.0, 0.0], 'col3': [42, np.nan, 0]}, index=index) self.assertEqual(df.dtypes.to_dict(), {'col1': np.int64, 'col2': np.float64, 'col3': np.float64}) md = Metadata(df) obs = md.to_dataframe() exp = pd.DataFrame({'col1': [42.0, -43.0, 0.0], 'col2': [42.0, -43.0, 0.0], 'col3': [42.0, np.nan, 0.0]}, index=index) pd.testing.assert_frame_equal(obs, exp) self.assertEqual(obs.dtypes.to_dict(), {'col1': np.float64, 'col2': np.float64, 'col3': np.float64}) class TestGetColumn(unittest.TestCase): def setUp(self): get_dummy_plugin() def test_column_name_not_found(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) with self.assertRaisesRegex(ValueError, "'col3'.*not a column.*'col1', 'col2'"): md.get_column('col3') def test_artifacts_are_propagated(self): A = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) md = A.view(Metadata) obs = md.get_column('b') exp = CategoricalMetadataColumn( pd.Series(['3'], name='b', index=pd.Index(['0'], name='id'))) exp._add_artifacts([A]) self.assertEqual(obs, exp) self.assertEqual(obs.artifacts, (A,)) def test_categorical_column(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.get_column('col2') exp = CategoricalMetadataColumn( pd.Series(['foo', 'bar'], name='col2', index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_numeric_column(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.get_column('col1') exp = NumericMetadataColumn( pd.Series([42, 2.5], name='col1', index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_id_header_preserved(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['a', 'b'], name='#OTU ID')) md = Metadata(df) obs = md.get_column('col1') exp = NumericMetadataColumn( pd.Series([42, 2.5], name='col1', index=pd.Index(['a', 'b'], name='#OTU ID'))) self.assertEqual(obs, exp) self.assertEqual(obs.id_header, '#OTU ID') class TestGetIDs(unittest.TestCase): def test_default(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) actual = metadata.get_ids() expected = {'S1', 'S2', 'S3'} self.assertEqual(actual, expected) def test_incomplete_where(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='sampleid')) metadata = Metadata(df) where = "Subject='subject-1' AND SampleType=" with self.assertRaises(ValueError): metadata.get_ids(where) where = "Subject=" with self.assertRaises(ValueError): metadata.get_ids(where) def test_invalid_where(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='sampleid')) metadata = Metadata(df) where = "not-a-column-name='subject-1'" with self.assertRaises(ValueError): metadata.get_ids(where) def test_empty_result(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=
pd.Index(['S1', 'S2', 'S3'], name='id')
pandas.Index
""" Parses each kind of spreadsheet into our data structures. """ from pathlib import PurePath import logging, sys logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) import math import os from itertools import accumulate, islice, chain import pandas as pd from data_loader import spreadsheets, DATA_DIR def adjust(acc, val): val = 0 if math.isnan(val) else val return acc * (1 + (val/100)) def adjust_pct(acc, val): val = 0 if math.isnan(val) else val return acc * (1 + val) def combine_to_date(year, month): date = f'{year:04d}-{month:02d}-01' return pd.to_datetime(date) def combine_to_date2(year, month): date = f'{year}-{month}-01' return
pd.to_datetime(date)
pandas.to_datetime
import logging import pandas as pd from lib.constant import Datasets from lib.features.dtypes import dtypes_clean, dtypes_featured # features computing functions def _compute_acc_severity(acc_severities: pd.Series) -> str: """Groupby method. Return the worst victim state for each accident. """ # all_severity in ['safe', inj_light', 'inj_hosp', 'killed'] acc_severities_unique = acc_severities.unique() if 'killed' in acc_severities_unique: max_severity = 'killed' elif 'inj_hosp' in acc_severities_unique: max_severity = 'inj_hosp' elif 'inj_light' in acc_severities_unique: max_severity = 'inj_light' else: max_severity = 'safe' return max_severity def get_pct_drivers_by_sex(drivers_count: pd.DataFrame) -> pd.DataFrame: """Nombre de conducteur dans la population en pourcentage par sex.""" pct_drivers_sex = drivers_count \ .mean()[['prop_drive_male', 'prop_drive_female']] \ .mul(100).round(1) return pct_drivers_sex def get_summary_by_sex(drivers: pd.DataFrame, pct_drivers_sex: pd.DataFrame) -> pd.DataFrame: summary = pd.crosstab(index=drivers['acc_severity'], columns=drivers['sexe'], margins=True, normalize=0) \ .mul(100).round(1) \ .append(pd.DataFrame({'female': pct_drivers_sex['prop_drive_female'], 'male': pct_drivers_sex['prop_drive_male']}, index=['Prop. conducteurs'])) \ .rename({'All': 'Tous accidents', 'killed': 'Acc. mortel', 'inj_light': 'Acc. leger', 'inj_hosp': 'Acc.grave'}, axis=0) \ .rename({'female': 'Femmes', 'male': 'Hommes'}, axis=1) return summary def get_drivers(acc_severity: pd.DataFrame, users: pd.DataFrame) -> pd.DataFrame: """Retourne l'ensemble des conducteurs impliqué dans un accident. on ajoute à la table des usager la colonne correspondant au type d'accident dans lequel il est impliqué (= état de la victime la plus grave) on ne récupère de cette table que les usagers conducteurs """ drivers = pd.merge(acc_severity, users.loc[users['catu'] == 'driver', :], on='Num_Acc', how='left') \ .loc[:, ['Num_Acc', 'acc_severity', 'sexe', 'trajet']] return drivers # build new datasets def build_accidents_dataset(caracs: pd.DataFrame, locations: pd.DataFrame, users: pd.DataFrame, dtypes_base_path: str = '') -> pd.DataFrame: logging.info('merge caracs with locations (1 accident = 1 carac = 1 location)') acc_df = pd.merge(caracs, locations, on='Num_Acc', how='inner') logging.info('add nb victims by severity (4 columns)') vict_by_severity_cnt = pd.merge(caracs, users, on='Num_Acc', how='inner') \ .groupby(by=['Num_Acc', 'grav']).count().reset_index()[['Num_Acc', 'grav', 'year']] \ .rename({'year': 'victims_nb'}, axis=1) \ .fillna({'victims_nb': 0}) \ .pivot(index='Num_Acc', columns='grav') vict_by_severity_cnt.columns = vict_by_severity_cnt.columns.get_level_values(1) vict_by_severity_cnt.rename(columns=str).reset_index() acc_df = pd.merge(acc_df, vict_by_severity_cnt, on='Num_Acc', how='inner') logging.info('add total victims number column') victims_nb_by_acc = pd.merge(caracs, users, on='Num_Acc', how='inner') \ .groupby(by=['Num_Acc']).count().reset_index()[['Num_Acc', 'year']] \ .rename({'year': 'victims_nb'}, axis=1) acc_df = pd.merge(acc_df, victims_nb_by_acc, on='Num_Acc', how='inner') logging.info('add acc_severity column') acc_severity =
pd.merge(acc_df, users, on='Num_Acc', how='inner')
pandas.merge
""" Protein sequence alignment creation protocols/workflows. Authors: <NAME> <NAME> - complex protocol, hmm_build_and_search <NAME> - hmm_build_and_search """ from collections import OrderedDict, Iterable import re from shutil import copy import os import numpy as np import pandas as pd from evcouplings.align import tools as at from evcouplings.align.alignment import ( detect_format, parse_header, read_fasta, write_fasta, Alignment ) from evcouplings.couplings.mapping import Segment from evcouplings.utils.config import ( check_required, InvalidParameterError, MissingParameterError, read_config_file, write_config_file ) from evcouplings.utils.system import ( create_prefix_folders, get, valid_file, verify_resources, ResourceError ) from evcouplings.align.ena import ( extract_embl_annotation, extract_cds_ids, add_full_header ) def _verify_sequence_id(sequence_id): """ Verify if a target sequence identifier is in proper format for the pipeline to run without errors (not none, and contains no whitespace) Parameters ---------- id : str Target sequence identifier to verify Raises ------ InvalidParameterError If sequence identifier is not valid """ if sequence_id is None: raise InvalidParameterError( "Target sequence identifier (sequence_id) must be defined and " "cannot be None/null." ) try: if len(sequence_id.split()) != 1 or len(sequence_id) != len(sequence_id.strip()): raise InvalidParameterError( "Target sequence identifier (sequence_id) may not contain any " "whitespace (spaces, tabs, ...)" ) except AttributeError: raise InvalidParameterError( "Target sequence identifier (sequence_id) must be a string" ) def _make_hmmsearch_raw_fasta(alignment_result, prefix): """ HMMsearch results do not contain the query sequence so we must construct a raw_fasta file with the query sequence as the first hit, to ensure proper numbering. The search result is filtered to only contain the columns with match states to the HMM, which has a one to one mapping to the query sequence. Paramters --------- alignment_result : dict Alignment result dictionary, output by run_hmmsearch prefix : str Prefix for file creation Returns ------- str path to raw focus alignment file """ def _add_gaps_to_query(query_sequence_ali, ali): # get the index of columns that do not contain match states (indicated by an x) gap_index = [ i for i, x in enumerate(ali.annotation["GC"]["RF"]) if x != "x" ] # get the index of columns that contain match states (indicated by an x) match_index = [ i for i, x in enumerate(ali.annotation["GC"]["RF"]) if x == "x" ] # ensure that the length of the match states # match the length of the sequence if len(match_index) != query_sequence_ali.L: raise ValueError( "HMMsearch result {} does not have a one-to-one" " mapping to the query sequence columns".format( alignment_result["raw_alignment_file"] ) ) gapped_query_sequence = "" seq = list(query_sequence_ali.matrix[0, :]) # loop through every position in the HMMsearch hits for i in range(len(ali.annotation["GC"]["RF"])): # if that position should be a gap, add a gap if i in gap_index: gapped_query_sequence += "-" # if that position should be a letter, pop the next # letter in the query sequence else: gapped_query_sequence += seq.pop(0) new_sequence_ali = Alignment.from_dict({ query_sequence_ali.ids[0]: gapped_query_sequence }) return new_sequence_ali # open the sequence file with open(alignment_result["target_sequence_file"]) as a: query_sequence_ali = Alignment.from_file(a, format="fasta") # if the provided alignment is empty, just return the target sequence raw_focus_alignment_file = prefix + "_raw.fasta" if not valid_file(alignment_result["raw_alignment_file"]): # write the query sequence to a fasta file with open(raw_focus_alignment_file, "w") as of: query_sequence_ali.write(of) # return as an alignment object return raw_focus_alignment_file # else, open the HMM search result with open(alignment_result["raw_alignment_file"]) as a: ali = Alignment.from_file(a, format="stockholm") # make sure that the stockholm alignment contains the match annotation if not ("GC" in ali.annotation and "RF" in ali.annotation["GC"]): raise ValueError( "Stockholm alignment {} missing RF" " annotation of match states".format(alignment_result["raw_alignment_file"]) ) # add insertions to the query sequence in order to preserve correct # numbering of match sequences gapped_sequence_ali = _add_gaps_to_query(query_sequence_ali, ali) # write a new alignment file with the query sequence as # the first entry with open(raw_focus_alignment_file, "w") as of: gapped_sequence_ali.write(of) ali.write(of) return raw_focus_alignment_file def fetch_sequence(sequence_id, sequence_file, sequence_download_url, out_file): """ Fetch sequence either from database based on identifier, or from input sequence file. Parameters ---------- sequence_id : str Identifier of sequence that should be retrieved sequence_file : str File containing sequence. If None, sqeuence will be downloaded from sequence_download_url sequence_download_url : str URL from which to download missing sequence. Must contain "{}" at the position where sequence ID will be inserted into download URL (using str.format). out_file : str Output file in which sequence will be stored, if sequence_file is not existing. Returns ------- str Path of file with stored sequence (can be sequence_file or out_file) tuple (str, str) Identifier of sequence as stored in file, and sequence """ if sequence_file is None: get( sequence_download_url.format(sequence_id), out_file, allow_redirects=True ) else: # if we have sequence file, try to copy it try: copy(sequence_file, out_file) except FileNotFoundError: raise ResourceError( "sequence_file does not exist: {}".format( sequence_file ) ) # also make sure input file has something in it verify_resources( "Input sequence missing", out_file ) with open(out_file) as f: seq = next(read_fasta(f)) return out_file, seq def cut_sequence(sequence, sequence_id, region=None, first_index=None, out_file=None): """ Cut a given sequence to sub-range and save it in a file Parameters ---------- sequence : str Full sequence that will be cut sequence_id : str Identifier of sequence, used to construct header in output file region : tuple(int, int), optional (default: None) Region that will be cut out of full sequence. If None, full sequence will be returned. first_index : int, optional (default: None) Define index of first position in sequence. Will be set to 1 if None. out_file : str, optional (default: None) Save sequence in a FASTA file (header: >sequence_id/start_region-end_region) Returns ------ str Subsequence contained in region tuple(int, int) Region. If no input region is given, this will be (1, len(sequence)); otherwise, the input region is returned. Raises ------ InvalidParameterError Upon invalid region specification (violating boundaries of sequence) """ cut_seq = None # (not using 1 as default value to allow parameter # to be unspecified in config file) if first_index is None: first_index = 1 # last index is *inclusive*! if region is None: region = (first_index, first_index + len(sequence) - 1) cut_seq = sequence else: start, end = region str_start = start - first_index str_end = end - first_index + 1 cut_seq = sequence[str_start:str_end] # make sure bounds are valid given the sequence that we have if str_start < 0 or str_end > len(sequence): raise InvalidParameterError( "Invalid sequence range: " "region={} first_index={} len(sequence)={}".format( region, first_index, len(sequence) ) ) # save sequence to file if out_file is not None: with open(out_file, "w") as f: header = "{}/{}-{}".format(sequence_id, *region) write_fasta([(header, cut_seq)], f) return region, cut_seq def search_thresholds(use_bitscores, seq_threshold, domain_threshold, seq_len): """ Set homology search inclusion parameters. HMMER hits get included in the HMM according to a two-step rule 1. sequence passes sequence-level treshold 2. domain passes domain-level threshold Therefore, search thresholds are set based on the following logic: 1. If only sequence threshold is given, a MissingParameterException is raised 2. If only bitscore threshold is given, sequence threshold is set to the same 3. If both thresholds are given, they are according to defined values Valid inputs for bitscore thresholds: 1. int or str: taken as absolute score threshold 2. float: taken as relative threshold (absolute threshold derived by multiplication with domain length) Valid inputs for integer thresholds: 1. int: Used as negative exponent, threshold will be set to 1E-<exponent> 2. float or str: Interpreted literally Parameters ---------- use_bitscores : bool Use bitscore threshold instead of E-value threshold domain_threshold : str or int or float Domain-level threshold. See rules above. seq_threshold : str or int or float Sequence-level threshold. See rules above. seq_len : int Length of sequence. Used to calculate absolute bitscore threshold for relative bitscore thresholds. Returns ------- tuple (str, str) Sequence- and domain-level thresholds ready to be fed into HMMER """ def transform_bitscore(x): if isinstance(x, float): # float: interpret as relative fraction of length return "{:.1f}".format(x * seq_len) else: # otherwise interpret as absolute score return str(x) def transform_evalue(x): if isinstance(x, int): # if integer, interpret as negative exponent return "1E{}".format(-x) else: # otherwise interpret literally # (mantissa-exponent string or float) return str(x).upper() if domain_threshold is None: raise MissingParameterError( "domain_threshold must be explicitly defined " "and may not be None/empty" ) if use_bitscores: transform = transform_bitscore else: transform = transform_evalue if seq_threshold is not None: seq_threshold = transform(seq_threshold) if domain_threshold is not None: domain_threshold = transform(domain_threshold) # set "outer" sequence threshold so that it matches domain threshold if domain_threshold is not None and seq_threshold is None: seq_threshold = domain_threshold return seq_threshold, domain_threshold def extract_header_annotation(alignment, from_annotation=True): """ Extract Uniprot/Uniref sequence annotation from Stockholm file (as output by jackhmmer). This function may not work for other formats. Parameters ---------- alignment : Alignment Multiple sequence alignment object from_annotation : bool, optional (default: True) Use annotation line (in Stockholm file) rather than sequence ID line (e.g. in FASTA file) Returns ------- pandas.DataFrame Table containing all annotation (one row per sequence in alignment, in order of occurrence) """ columns = [ ("GN", "gene"), ("OS", "organism"), ("PE", "existence_evidence"), ("SV", "sequence_version"), ("n", "num_cluster_members"), ("Tax", "taxon"), ("RepID", "representative_member") ] col_to_descr = OrderedDict(columns) regex = re.compile("\s({})=".format( "|".join(col_to_descr.keys())) ) # collect rows for dataframe in here res = [] for i, id_ in enumerate(alignment.ids): # annotation line for current sequence seq_id = None anno = None # look for annotation either in separate # annotation line or in full sequence ID line if from_annotation: seq_id = id_ # query level by level to avoid creating new keys # in DefaultOrderedDict if ("GS" in alignment.annotation and id_ in alignment.annotation["GS"] and "DE" in alignment.annotation["GS"][id_]): anno = alignment.annotation["GS"][id_]["DE"] else: split = id_.split(maxsplit=1) if len(split) == 2: seq_id, anno = split else: seq_id = id_ anno = None # extract info from line if we got one if anno is not None: # do split on known field names o keep things # simpler than a gigantic full regex to match # (some fields are allowed to be missing) pairs = re.split(regex, anno) pairs = ["id", seq_id, "name"] + pairs # create feature-value map feat_map = dict(zip(pairs[::2], pairs[1::2])) res.append(feat_map) else: res.append({"id": seq_id}) df = pd.DataFrame(res) return df.loc[:, ["id", "name"] + list(col_to_descr.keys())] def describe_seq_identities(alignment, target_seq_index=0): """ Calculate sequence identities of any sequence to target sequence and create result dataframe. Parameters ---------- alignment : Alignment Alignment for which description statistics will be calculated Returns ------- pandas.DataFrame Table giving the identity to target sequence for each sequence in alignment (in order of occurrence) """ id_to_query = alignment.identities_to( alignment[target_seq_index] ) return pd.DataFrame( {"id": alignment.ids, "identity_to_query": id_to_query} ) def describe_frequencies(alignment, first_index, target_seq_index=None): """ Get parameters of alignment such as gaps, coverage, conservation and summarize. Parameters ---------- alignment : Alignment Alignment for which description statistics will be calculated first_index : int Sequence index of first residue in target sequence target_seq_index : int, optional (default: None) If given, will add the symbol in the target sequence into a separate column of the output table Returns ------- pandas.DataFrame Table detailing conservation and symbol frequencies for all positions in the alignment """ fi = alignment.frequencies conservation = alignment.conservation() fi_cols = {c: fi[:, i] for c, i in alignment.alphabet_map.items()} if target_seq_index is not None: target_seq = alignment[target_seq_index] else: target_seq = np.full((alignment.L), np.nan) info = pd.DataFrame( { "i": range(first_index, first_index + alignment.L), "A_i": target_seq, "conservation": conservation, **fi_cols } ) # reorder columns info = info.loc[:, ["i", "A_i", "conservation"] + list(alignment.alphabet)] return info def describe_coverage(alignment, prefix, first_index, minimum_column_coverage): """ Produce "classical" buildali coverage statistics, i.e. number of sequences, how many residues have too many gaps, etc. Only to be applied to alignments focused around the target sequence. Parameters ---------- alignment : Alignment Alignment for which coverage statistics will be calculated prefix : str Prefix of alignment file that will be stored as identifier in table first_index : int Sequence index of first position of target sequence minimum_column_coverage : Iterable(float) or float Minimum column coverage threshold(s) that will be tested (creating one row for each threshold in output table). .. note:: ``int`` values given to this function instead of a float will be divided by 100 to create the corresponding floating point representation. This parameter is 1.0 - maximum fraction of gaps per column. Returns ------- pd.DataFrame Table with coverage statistics for different gap thresholds """ res = [] NO_MEFF = np.nan if not isinstance(minimum_column_coverage, Iterable): minimum_column_coverage = [minimum_column_coverage] pos = np.arange(first_index, first_index + alignment.L) f_gap = alignment.frequencies[:, alignment.alphabet_map[alignment._match_gap]] for threshold in minimum_column_coverage: if isinstance(threshold, int): threshold /= 100 # all positions that have enough sequence information (i.e. little gaps), # and their indeces uppercase = f_gap <= 1 - threshold uppercase_idx = np.nonzero(uppercase)[0] # where does coverage of sequence by good alignment start and end? cov_first_idx, cov_last_idx = uppercase_idx[0], uppercase_idx[-1] # calculate indeces in sequence numbering space first, last = pos[cov_first_idx], pos[cov_last_idx] # how many lowercase positions in covered region? num_lc_cov = np.sum(~uppercase[cov_first_idx:cov_last_idx + 1]) # total number of upper- and lowercase positions, # and relative percentage num_cov = uppercase.sum() num_lc = (~uppercase).sum() perc_cov = num_cov / len(uppercase) res.append( (prefix, threshold, alignment.N, alignment.L, num_cov, num_lc, perc_cov, first, last, last - first + 1, num_lc_cov, NO_MEFF) ) df = pd.DataFrame( res, columns=[ "prefix", "minimum_column_coverage", "num_seqs", "seqlen", "num_cov", "num_lc", "perc_cov", "1st_uc", "last_uc", "len_cov", "num_lc_cov", "N_eff", ] ) return df def existing(**kwargs): """ Protocol: Use external sequence alignment and extract all relevant information from there (e.g. sequence, region, etc.), then apply gap & fragment filtering as usual Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the pipeline, including the following fields: * sequence_id (passed through from input) * alignment_file * raw_focus_alignment_file * statistics_file * sequence_file * first_index * target_sequence_file * annotation_file (None) * frequencies_file * identities_file * focus_mode * focus_sequence * segments """ check_required( kwargs, [ "prefix", "input_alignment", "sequence_id", "first_index", "extract_annotation" ] ) prefix = kwargs["prefix"] # make sure output directory exists create_prefix_folders(prefix) # this file is starting point of pipeline; # check if input alignment actually exists input_alignment = kwargs["input_alignment"] verify_resources( "Input alignment does not exist", input_alignment ) # first try to autodetect format of alignment with open(input_alignment) as f: format = detect_format(f) if format is None: raise InvalidParameterError( "Format of input alignment {} could not be " "automatically detected.".format( input_alignment ) ) with open(input_alignment) as f: ali_raw = Alignment.from_file(f, format) # save annotation in sequence headers (species etc.) annotation_file = None if kwargs["extract_annotation"]: annotation_file = prefix + "_annotation.csv" from_anno_line = (format == "stockholm") annotation = extract_header_annotation( ali_raw, from_annotation=from_anno_line ) annotation.to_csv(annotation_file, index=False) # Target sequence of alignment sequence_id = kwargs["sequence_id"] # check if sequence identifier is valid _verify_sequence_id(sequence_id) # First, find focus sequence in alignment focus_index = None for i, id_ in enumerate(ali_raw.ids): if id_.startswith(sequence_id): focus_index = i break # if we didn't find it, cannot continue if focus_index is None: raise InvalidParameterError( "Target sequence {} could not be found in alignment" .format(sequence_id) ) # identify what columns (non-gap) to keep for focus focus_seq = ali_raw[focus_index] focus_cols = np.array( [c not in [ali_raw._match_gap, ali_raw._insert_gap] for c in focus_seq] ) # extract focus alignment focus_ali = ali_raw.select(columns=focus_cols) focus_seq_nogap = "".join(focus_ali[focus_index]) # determine region of sequence. If first_index is given, # use that in any case, otherwise try to autodetect full_focus_header = ali_raw.ids[focus_index] focus_id = full_focus_header.split()[0] # try to extract region from sequence header id_, region_start, region_end = parse_header(focus_id) # override with first_index if given if kwargs["first_index"] is not None: region_start = kwargs["first_index"] region_end = region_start + len(focus_seq_nogap) - 1 if region_start is None or region_end is None: raise InvalidParameterError( "Could not extract region information " + "from sequence header {} ".format(full_focus_header) + "and first_index parameter is not given." ) # resubstitute full sequence ID from identifier # and region information header = "{}/{}-{}".format( id_, region_start, region_end ) focus_ali.ids[focus_index] = header # write target sequence to file target_sequence_file = prefix + ".fa" with open(target_sequence_file, "w") as f: write_fasta( [(header, focus_seq_nogap)], f ) # apply sequence identity and fragment filters, # and gap threshold mod_outcfg, ali = modify_alignment( focus_ali, focus_index, id_, region_start, **kwargs ) # generate output configuration of protocol outcfg = { **mod_outcfg, "sequence_id": sequence_id, "sequence_file": target_sequence_file, "first_index": region_start, "target_sequence_file": target_sequence_file, "focus_sequence": header, "focus_mode": True, } if annotation_file is not None: outcfg["annotation_file"] = annotation_file # dump config to YAML file for debugging/logging write_config_file(prefix + ".align_existing.outcfg", outcfg) # return results of protocol return outcfg def modify_alignment(focus_ali, target_seq_index, target_seq_id, region_start, **kwargs): """ Apply pairwise identity filtering, fragment filtering, and exclusion of columns with too many gaps to a sequence alignment. Also generates files describing properties of the alignment such as frequency distributions, conservation, and "old-style" alignment statistics files. .. note:: assumes focus alignment (otherwise unprocessed) as input. .. todo:: come up with something more clever to filter fragments than fixed width (e.g. use 95% quantile of length distribution as reference point) Parameters ---------- focus_ali : Alignment Focus-mode input alignment target_seq_index : int Index of target sequence in alignment target_seq_id : str Identifier of target sequence (without range) region_start : int Index of first sequence position in target sequence kwargs : See required arguments in source code Returns ------- outcfg : Dict File products generated by the function: * alignment_file * statistics_file * frequencies_file * identities_file * raw_focus_alignment_file ali : Alignment Final processed alignment """ check_required( kwargs, [ "prefix", "seqid_filter", "hhfilter", "minimum_sequence_coverage", "minimum_column_coverage", "compute_num_effective_seqs", "theta", ] ) prefix = kwargs["prefix"] create_prefix_folders(prefix) focus_fasta_file = prefix + "_raw_focus.fasta" outcfg = { "alignment_file": prefix + ".a2m", "statistics_file": prefix + "_alignment_statistics.csv", "frequencies_file": prefix + "_frequencies.csv", "identities_file": prefix + "_identities.csv", "raw_focus_alignment_file": focus_fasta_file, } # swap target sequence to first position if it is not # the first sequence in alignment; # this is particularly important for hhfilter run # because target sequence might otherwise be filtered out if target_seq_index != 0: indices = np.arange(0, len(focus_ali)) indices[0] = target_seq_index indices[target_seq_index] = 0 target_seq_index = 0 focus_ali = focus_ali.select(sequences=indices) with open(focus_fasta_file, "w") as f: focus_ali.write(f, "fasta") # apply pairwise identity filter (using hhfilter) if kwargs["seqid_filter"] is not None: filtered_file = prefix + "_filtered.a3m" at.run_hhfilter( focus_fasta_file, filtered_file, threshold=kwargs["seqid_filter"], columns="first", binary=kwargs["hhfilter"] ) with open(filtered_file) as f: focus_ali = Alignment.from_file(f, "a3m") # final FASTA alignment before applying A2M format modifications filtered_fasta_file = prefix + "_raw_focus_filtered.fasta" with open(filtered_fasta_file, "w") as f: focus_ali.write(f, "fasta") ali = focus_ali # filter fragments # come up with something more clever here than fixed width # (e.g. use 95% quantile of length distribution as reference point) min_cov = kwargs["minimum_sequence_coverage"] if min_cov is not None: if isinstance(min_cov, int): min_cov /= 100 keep_seqs = (1 - ali.count("-", axis="seq")) >= min_cov ali = ali.select(sequences=keep_seqs) # Calculate frequencies, conservation and identity to query # on final alignment (except for lowercase modification) # Note: running hhfilter might cause a loss of the target seque # if it is not the first sequence in the file! To be sure that # nothing goes wrong, target_seq_index should always be 0. describe_seq_identities( ali, target_seq_index=target_seq_index ).to_csv( outcfg["identities_file"], float_format="%.3f", index=False ) describe_frequencies( ali, region_start, target_seq_index=target_seq_index ).to_csv( outcfg["frequencies_file"], float_format="%.3f", index=False ) coverage_stats = describe_coverage( ali, prefix, region_start, kwargs["minimum_column_coverage"] ) # keep list of uppercase sequence positions in alignment pos_list = np.arange(region_start, region_start + ali.L, dtype="int32") # Make columns with too many gaps lowercase min_col_cov = kwargs["minimum_column_coverage"] if min_col_cov is not None: if isinstance(min_col_cov, int): min_col_cov /= 100 lc_cols = ali.count(ali._match_gap, axis="pos") > 1 - min_col_cov ali = ali.lowercase_columns(lc_cols) # if we remove columns, we have to update list of positions pos_list = pos_list[~lc_cols] else: lc_cols = None # compute effective number of sequences # (this is intended for cases where coupling stage is # not run, but this number is wanted nonetheless) if kwargs["compute_num_effective_seqs"]: # make sure we only compute N_eff on the columns # that would be used for model inference, dispose # the rest if lc_cols is None: cut_ali = ali else: cut_ali = ali.select(columns=~lc_cols) # compute sequence weights cut_ali.set_weights(kwargs["theta"]) # N_eff := sum of all sequence weights n_eff = float(cut_ali.weights.sum()) # patch into coverage statistics (N_eff column) coverage_stats.loc[:, "N_eff"] = n_eff else: n_eff = None # save coverage statistics to file coverage_stats.to_csv( outcfg["statistics_file"], float_format="%.3f", index=False ) # store description of final sequence alignment in outcfg # (note these parameters will be updated by couplings protocol) outcfg.update( { "num_sites": len(pos_list), "num_sequences": len(ali), "effective_sequences": n_eff, "region_start": region_start, } ) # create segment in outcfg outcfg["segments"] = [ Segment( "aa", target_seq_id, region_start, region_start + ali.L - 1, pos_list ).to_list() ] with open(outcfg["alignment_file"], "w") as f: ali.write(f, "fasta") return outcfg, ali def jackhmmer_search(**kwargs): """ Protocol: Iterative jackhmmer search against a sequence database. Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required .. todo:: explain meaning of parameters in detail. Returns ------- outcfg : dict Output configuration of the protocol, including the following fields: * sequence_id (passed through from input) * first_index (passed through from input) * target_sequence_file * sequence_file * raw_alignment_file * hittable_file * focus_mode * focus_sequence * segments """ check_required( kwargs, [ "prefix", "sequence_id", "sequence_file", "sequence_download_url", "region", "first_index", "use_bitscores", "domain_threshold", "sequence_threshold", "database", "iterations", "cpu", "nobias", "reuse_alignment", "checkpoints_hmm", "checkpoints_ali", "jackhmmer", "extract_annotation" ] ) prefix = kwargs["prefix"] # check if sequence identifier is valid _verify_sequence_id(kwargs["sequence_id"]) # make sure output directory exists create_prefix_folders(prefix) # store search sequence file here target_sequence_file = prefix + ".fa" full_sequence_file = prefix + "_full.fa" # make sure search sequence is defined and load it full_seq_file, (full_seq_id, full_seq) = fetch_sequence( kwargs["sequence_id"], kwargs["sequence_file"], kwargs["sequence_download_url"], full_sequence_file ) # cut sequence to target region and save in sequence_file # (this is the main sequence file used downstream) (region_start, region_end), cut_seq = cut_sequence( full_seq, kwargs["sequence_id"], kwargs["region"], kwargs["first_index"], target_sequence_file ) # run jackhmmer... allow to reuse pre-exisiting # Stockholm alignment file here ali_outcfg_file = prefix + ".align_jackhmmer_search.outcfg" # determine if to rerun, only possible if previous results # were stored in ali_outcfg_file if kwargs["reuse_alignment"] and valid_file(ali_outcfg_file): ali = read_config_file(ali_outcfg_file) # check if the alignment file itself is also there verify_resources( "Tried to reuse alignment, but empty or " "does not exist", ali["alignment"], ali["domtblout"] ) else: # otherwise, we have to run the alignment # modify search thresholds to be suitable for jackhmmer seq_threshold, domain_threshold = search_thresholds( kwargs["use_bitscores"], kwargs["sequence_threshold"], kwargs["domain_threshold"], len(cut_seq) ) # run search process ali = at.run_jackhmmer( query=target_sequence_file, database=kwargs[kwargs["database"]], prefix=prefix, use_bitscores=kwargs["use_bitscores"], domain_threshold=domain_threshold, seq_threshold=seq_threshold, iterations=kwargs["iterations"], nobias=kwargs["nobias"], cpu=kwargs["cpu"], checkpoints_hmm=kwargs["checkpoints_hmm"], checkpoints_ali=kwargs["checkpoints_ali"], binary=kwargs["jackhmmer"], ) # get rid of huge stdout log file immediately # (do not use /dev/null option of jackhmmer function # to make no assumption about operating system) try: os.remove(ali.output) except OSError: pass # turn namedtuple into dictionary to make # restarting code nicer ali = dict(ali._asdict()) # save results of search for possible restart write_config_file(ali_outcfg_file, ali) # prepare output dictionary with result files outcfg = { "sequence_id": kwargs["sequence_id"], "target_sequence_file": target_sequence_file, "sequence_file": full_sequence_file, "first_index": kwargs["first_index"], "focus_mode": True, "raw_alignment_file": ali["alignment"], "hittable_file": ali["domtblout"], } # define a single protein segment based on target sequence outcfg["segments"] = [ Segment( "aa", kwargs["sequence_id"], region_start, region_end, range(region_start, region_end + 1) ).to_list() ] outcfg["focus_sequence"] = "{}/{}-{}".format( kwargs["sequence_id"], region_start, region_end ) return outcfg def hmmbuild_and_search(**kwargs): """ Protocol: Build HMM from sequence alignment using hmmbuild and search against a sequence database using hmmsearch. Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the protocol, including the following fields: * target_sequence_file * sequence_file * raw_alignment_file * hittable_file * focus_mode * focus_sequence * segments """ def _format_alignment_for_hmmbuild(input_alignment_file, **kwargs): # this file is starting point of pipeline; # check if input alignment actually exists verify_resources( "Input alignment does not exist", input_alignment_file ) # first try to autodetect format of alignment with open(input_alignment_file) as f: format = detect_format(f) if format is None: raise InvalidParameterError( "Format of input alignment {} could not be " "automatically detected.".format( input_alignment_file ) ) with open(input_alignment_file) as f: ali_raw = Alignment.from_file(f, format) # Target sequence of alignment sequence_id = kwargs["sequence_id"] if sequence_id is None: raise InvalidParameterError( "Parameter sequence_id must be defined" ) # First, find focus sequence in alignment focus_index = None for i, id_ in enumerate(ali_raw.ids): if id_.startswith(sequence_id): focus_index = i break # if we didn't find it, cannot continue if focus_index is None: raise InvalidParameterError( "Target sequence {} could not be found in alignment" .format(sequence_id) ) # identify what columns (non-gap) to keep for focus # this should be all columns in the raw_focus_alignment_file # but checking anyway focus_seq = ali_raw[focus_index] focus_cols = np.array( [c not in [ali_raw._match_gap, ali_raw._insert_gap] for c in focus_seq] ) # extract focus alignment focus_ali = ali_raw.select(columns=focus_cols) focus_seq_nogap = "".join(focus_ali[focus_index]) # determine region of sequence. If first_index is given, # use that in any case, otherwise try to autodetect full_focus_header = ali_raw.ids[focus_index] focus_id = full_focus_header.split()[0] # try to extract region from sequence header id_, region_start, region_end = parse_header(focus_id) # override with first_index if given if kwargs["first_index"] is not None: region_start = kwargs["first_index"] region_end = region_start + len(focus_seq_nogap) - 1 if region_start is None or region_end is None: raise InvalidParameterError( "Could not extract region information " + "from sequence header {} ".format(full_focus_header) + "and first_index parameter is not given." ) # resubstitute full sequence ID from identifier # and region information header = "{}/{}-{}".format( id_, region_start, region_end ) focus_ali.ids[focus_index] = header # write target sequence to file target_sequence_file = prefix + ".fa" with open(target_sequence_file, "w") as f: write_fasta( [(header, focus_seq_nogap)], f ) # swap target sequence to first position if it is not # the first sequence in alignment; # this is particularly important for hhfilter run # because target sequence might otherwise be filtered out if focus_index != 0: indices = np.arange(0, len(focus_ali)) indices[0] = focus_index indices[focus_index] = 0 focus_index = 0 focus_ali = focus_ali.select(sequences=indices) # write the raw focus alignment for hmmbuild focus_fasta_file = prefix + "_raw_focus_input.fasta" with open(focus_fasta_file, "w") as f: focus_ali.write(f, "fasta") return focus_fasta_file, target_sequence_file, region_start, region_end # define the gap threshold for inclusion in HMM's build by HMMbuild. SYMFRAC_HMMBUILD = 0.0 # check for required options check_required( kwargs, [ "prefix", "sequence_id", "alignment_file", "use_bitscores", "domain_threshold", "sequence_threshold", "database", "cpu", "nobias", "reuse_alignment", "hmmbuild", "hmmsearch" ] ) prefix = kwargs["prefix"] # check if sequence identifier is valid _verify_sequence_id(kwargs["sequence_id"]) # make sure output directory exists create_prefix_folders(prefix) # prepare input alignment for hmmbuild focus_fasta_file, target_sequence_file, region_start, region_end = \ _format_alignment_for_hmmbuild( kwargs["alignment_file"], **kwargs ) # run hmmbuild_and_search... allow to reuse pre-exisiting # Stockholm alignment file here ali_outcfg_file = prefix + ".align_hmmbuild_and_search.outcfg" # determine if to rerun, only possible if previous results # were stored in ali_outcfg_file if kwargs["reuse_alignment"] and valid_file(ali_outcfg_file): ali = read_config_file(ali_outcfg_file) # check if the alignment file itself is also there verify_resources( "Tried to reuse alignment, but empty or " "does not exist", ali["alignment"], ali["domtblout"] ) else: # otherwise, we have to run the alignment # modify search thresholds to be suitable for hmmsearch sequence_length = region_end - region_start + 1 seq_threshold, domain_threshold = search_thresholds( kwargs["use_bitscores"], kwargs["sequence_threshold"], kwargs["domain_threshold"], sequence_length ) # create the hmm hmmbuild_result = at.run_hmmbuild( alignment_file=focus_fasta_file, prefix=prefix, symfrac=SYMFRAC_HMMBUILD, cpu=kwargs["cpu"], binary=kwargs["hmmbuild"], ) hmmfile = hmmbuild_result.hmmfile # run the alignment from the hmm ali = at.run_hmmsearch( hmmfile=hmmfile, database=kwargs[kwargs["database"]], prefix=prefix, use_bitscores=kwargs["use_bitscores"], domain_threshold=domain_threshold, seq_threshold=seq_threshold, nobias=kwargs["nobias"], cpu=kwargs["cpu"], binary=kwargs["hmmsearch"], ) # get rid of huge stdout log file immediately try: os.remove(ali.output) except OSError: pass # turn namedtuple into dictionary to make # restarting code nicer ali = dict(ali._asdict()) # only item from hmmsearch_result to save is the hmmfile ali["hmmfile"] = hmmfile # save results of search for possible restart write_config_file(ali_outcfg_file, ali) # prepare output dictionary with result files outcfg = { "sequence_file": target_sequence_file, "first_index": region_start, "input_raw_focus_alignment": focus_fasta_file, "target_sequence_file": target_sequence_file, "focus_mode": True, "raw_alignment_file": ali["alignment"], "hittable_file": ali["domtblout"], } # convert the raw output alignment to fasta format # and add the appropriate query sequecne raw_focus_alignment_file = _make_hmmsearch_raw_fasta(outcfg, prefix) outcfg["raw_focus_alignment_file"] = raw_focus_alignment_file # define a single protein segment based on target sequence outcfg["segments"] = [ Segment( "aa", kwargs["sequence_id"], region_start, region_end, range(region_start, region_end + 1) ).to_list() ] outcfg["focus_sequence"] = "{}/{}-{}".format( kwargs["sequence_id"], region_start, region_end ) return outcfg def standard(**kwargs): """ Protocol: Standard buildali4 workflow (run iterative jackhmmer search against sequence database, than determine which sequences and columns to include in the calculation based on coverage and maximum gap thresholds). Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the pipeline, including the following fields: * sequence_id (passed through from input) * first_index (passed through from input) * alignment_file * raw_alignment_file * raw_focus_alignment_file * statistics_file * target_sequence_file * sequence_file * annotation_file * frequencies_file * identities_file * hittable_file * focus_mode * focus_sequence * segments ali : Alignment Final sequence alignment """ check_required( kwargs, [ "prefix", "extract_annotation", ] ) prefix = kwargs["prefix"] # make sure output directory exists create_prefix_folders(prefix) # first step of protocol is to get alignment using # jackhmmer; initialize output configuration with # results of this search jackhmmer_outcfg = jackhmmer_search(**kwargs) stockholm_file = jackhmmer_outcfg["raw_alignment_file"] segment = Segment.from_list(jackhmmer_outcfg["segments"][0]) target_seq_id = segment.sequence_id region_start = segment.region_start region_end = segment.region_end # read in stockholm format (with full annotation) with open(stockholm_file) as a: ali_raw = Alignment.from_file(a, "stockholm") # and store as FASTA file first (disabled for now # since equivalent information easily be obtained # from Stockholm file """ ali_raw_fasta_file = prefix + "_raw.fasta" with open(ali_raw_fasta_file, "w") as f: ali_raw.write(f, "fasta") """ # save annotation in sequence headers (species etc.) if kwargs["extract_annotation"]: annotation_file = prefix + "_annotation.csv" annotation = extract_header_annotation(ali_raw) annotation.to_csv(annotation_file, index=False) # center alignment around focus/search sequence focus_cols = np.array([c != "-" for c in ali_raw[0]]) focus_ali = ali_raw.select(columns=focus_cols) target_seq_index = 0 mod_outcfg, ali = modify_alignment( focus_ali, target_seq_index, target_seq_id, region_start, **kwargs ) # merge results of jackhmmer_search and modify_alignment stage outcfg = { **jackhmmer_outcfg, **mod_outcfg, "annotation_file": annotation_file } # dump output config to YAML file for debugging/logging write_config_file(prefix + ".align_standard.outcfg", outcfg) # return results of protocol return outcfg def complex(**kwargs): """ Protocol: Run monomer alignment protocol and postprocess it for EVcomplex calculations Parameters ---------- Mandatory kwargs arguments: See list below in code where calling check_required Returns ------- outcfg : dict Output configuration of the alignment protocol, and the following additional field: genome_location_file : path to file containing the genomic locations for CDs's corresponding to identifiers in the alignment. """ check_required( kwargs, [ "prefix", "alignment_protocol", "uniprot_to_embl_table", "ena_genome_location_table" ] ) verify_resources( "Uniprot to EMBL mapping table does not exist", kwargs["uniprot_to_embl_table"] ) verify_resources( "ENA genome location table does not exist", kwargs["ena_genome_location_table"] ) prefix = kwargs["prefix"] # make sure output directory exists create_prefix_folders(prefix) # run the regular alignment protocol # (standard, existing, ...) alignment_protocol = kwargs["alignment_protocol"] if alignment_protocol not in PROTOCOLS: raise InvalidParameterError( "Invalid choice for alignment protocol: {}".format( alignment_protocol ) ) outcfg = PROTOCOLS[kwargs["alignment_protocol"]](**kwargs) # if the user selected the existing alignment protocol # they can supply an input annotation file # which overwrites the annotation file generated by the existing protocol if alignment_protocol == "existing": check_required(kwargs, ["override_annotation_file"]) if kwargs["override_annotation_file"] is not None: verify_resources( "Override annotation file does not exist", kwargs["override_annotation_file"] ) outcfg["annotation_file"] = prefix + "_annotation.csv" annotation_data =
pd.read_csv(kwargs["override_annotation_file"])
pandas.read_csv
from __future__ import print_function, division import os os.environ["OMP_NUM_THREADS"] = "1" import torch import torch.multiprocessing as mp import time import numpy as np import random import json from tqdm import tqdm from utils.net_util import ScalarMeanTracker from runners import nonadaptivea3c_val, savn_val from pandas import Series, DataFrame def main_eval(args, create_shared_model, init_agent): # 设置随即数种子i np.random.seed(args.seed) torch.manual_seed(args.seed) random.seed(args.seed) if args.gpu_ids == -1: args.gpu_ids = [-1] else: torch.cuda.manual_seed(args.seed) try: mp.set_start_method("spawn") except RuntimeError: pass model_to_open = args.load_model processes = [] res_queue = mp.Queue() if args.model == "SAVN": args.learned_loss = True args.num_steps = 6 target = savn_val else: args.learned_loss = False args.num_steps = args.max_episode_length target = nonadaptivea3c_val rank = 0 for scene_type in args.scene_types: p = mp.Process( target=target, args=( rank, args, model_to_open, create_shared_model, init_agent, res_queue, args.max_val_ep, scene_type, ), ) p.start() processes.append(p) time.sleep(0.1) rank += 1 count = 0 end_count = 0 all_train_scalars = ScalarMeanTracker() # analyze performance for each scene_type scene_train_scalars = {scene_type:ScalarMeanTracker() for scene_type in args.scene_types} # analyze performance for each difficulty level if args.curriculum_learning: diff_train_scalars = {} proc = len(args.scene_types) # pbar = tqdm(total=args.max_val_ep * proc) try: while end_count < proc: train_result = res_queue.get() # pbar.update(1) count += 1 print("{} episdoes evaluated...".format(count)) if "END" in train_result: end_count += 1 continue # analysis performance for each difficulty split if args.curriculum_learning: diff = train_result['difficulty'] if diff not in diff_train_scalars: diff_train_scalars[diff] = ScalarMeanTracker() diff_train_scalars[diff].add_scalars(train_result) # analysis performance for each scene_type scene_train_scalars[train_result["scene_type"]].add_scalars(train_result) all_train_scalars.add_scalars(train_result) all_tracked_means = all_train_scalars.pop_and_reset() scene_tracked_means = {scene_type: scene_train_scalars[scene_type].pop_and_reset() for scene_type in args.scene_types} if args.curriculum_learning: diff_tracked_means = {diff: diff_train_scalars[diff].pop_and_reset() for diff in diff_train_scalars} finally: for p in processes: time.sleep(0.1) p.join() if args.curriculum_learning: result = {"all_result":all_tracked_means, "diff_result":diff_tracked_means, "scene_result":scene_tracked_means} else: result = {"all_result":all_tracked_means, "scene_result":scene_tracked_means} try: with open(args.results_json, "w") as fp: json.dump(result, fp, sort_keys=True, indent=4) except: print("dump result to path {} failed, result dumped to test_result.json".format(args.results_json)) with open("test_result.json", "w") as fp: json.dump(result, fp, sort_keys=True, indent=4) print("\n\n\nall_result:\n") print(Series(all_tracked_means)) print("\n\n\nscene_result:\n") print(DataFrame(scene_tracked_means)) if args.curriculum_learning: print("\n\n\ndiff_result:\n") print(
DataFrame(diff_tracked_means)
pandas.DataFrame
from collections import Counter import numpy as np import pandas as pd from scipy.spatial.distance import cdist class KNN: def __init__(self, k: int): self.k = k # number of nearest neighbors to be found self.features = pd.DataFrame([]) # feature matrix self.labels = pd.Series([]) # label vector self.index =
pd.Index([])
pandas.Index
import pyAgrum as gum from .DiscreteDistribution import DiscreteDistribution from .DiscreteVariable import DiscreteVariable from .MLModel import FitParametersBase, MLModel import colored import pandas as pd import tqdm import typing_extensions import pydantic import typing import copy import pkg_resources import warnings installed_pkg = {pkg.key for pkg in pkg_resources.working_set} if 'ipdb' in installed_pkg: import ipdb # noqa: F401 _CPT_HTML_TEMPLATE = """ <div> Variable {var_name} </div> <div style="float:left; margin:10px"> Conditional count table {cct} </div> <div style="float:left; margin:10px"> Conditional probability table {cpt} </div> """ _BN_HTML_TEMPLATE = """ <div> Model {name} </div> <div> {cpt} </div> """ class BayesianNetwork(pydantic.BaseModel): __slots__ = ('bn',) name: str = pydantic.Field("", description="Bayes net title") variables: typing.Dict[str, typing.Optional[DiscreteVariable]] = pydantic.Field( {}, description="Discrete variable specification") parents: typing.Dict[str, typing.List[str]] = pydantic.Field( {}, description="Dictionary giving for each variable the list of their parents") cct: typing.Dict[str, list] = pydantic.Field( {}, description="Conditional counts for each variable according their parents") backend: typing.Optional[typing_extensions.Literal["pyagrum"]] = pydantic.Field( "pyagrum", description="Bayesian network backend") @pydantic.validator("variables") def normalize_variables(cls, variables): for var_name, var in variables.items(): if var is None: variables[var_name] = DiscreteVariable() variables[var_name].name = var_name return variables def __init__(self, **data: typing.Any): super().__init__(**data) # Init BN backend backend_bn_method = \ getattr(self, self.backend + "_init_bn", None) if callable(backend_bn_method): backend_bn_method() else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") self.init_backend() def init_backend(self): # Add variables to backend for var_name, var in self.variables.items(): self.bn_update_variable(var_name) # Add parents to backend for var_name, var in self.parents.items(): self.bn_update_parents(var_name) # Update CCT for var_name in self.variables.keys(): self.update_cct(var_name) def __str__(self): cct_cpt_sep = colored.stylize(" | ", colored.fg("blue") + colored.attr("bold")) var_strlist = [] for var_name, var in self.variables.items(): var_header_str = colored.stylize(f"Variable: {var_name}", colored.fg("blue") + colored.attr("bold")) cct_str = self.get_cct(var_name, transpose=True).to_string() cpt_str = self.get_cpt(var_name, transpose=True).to_string() cct_strlist = cct_str.split("\n") cpt_strlist = cpt_str.split("\n") cct_cpt_strlist = [cct + cct_cpt_sep + cpt for cct, cpt in zip(cct_strlist, cpt_strlist)] cct_cpt_str = "\n".join(cct_cpt_strlist) var_str = "\n".join([var_header_str, cct_cpt_str]) var_strlist.append(var_str) bn_str = "\n\n".join(var_strlist) return bn_str def to_html(self, transpose=True, filename=None): cpt_html_list = [] for var_name in self.variables.keys(): cpt_html_list.append(self.cpt_to_html( var_name, transpose=transpose)) cpt_html = "\n".join(cpt_html_list) bn_html = _BN_HTML_TEMPLATE.format( name=self.name, cpt=cpt_html) if not(filename is None): with open(filename, "w") as f: f.write(bn_html) return bn_html def cpt_to_html(self, var_name, transpose=True, filename=None): cct = self.get_cct(var_name, transpose=transpose) cpt = self.get_cpt(var_name, transpose=transpose) cpt_html = _CPT_HTML_TEMPLATE.format( var_name=var_name, cct=cct.to_html(), cpt=cpt.to_html()) if not(filename is None): with open(filename, "w") as f: f.write(cpt_html) return cpt_html # Required when using slot attributes def __setattr__(self, attr, value): if attr in self.__slots__: object.__setattr__(self, attr, value) else: super(self.__class__, self).__setattr__(attr, value) def is_num_equal(self, other, check_cct=True): # Check variables if list(self.variables.keys()) != list(other.variables.keys()): return False for var_self, var_other in zip(self.variables.values(), other.variables.values()): if var_self.domain != var_other.domain: return False if var_self.domain_type != var_other.domain_type: return False if (self.get_cpt(var_self.name) != other.get_cpt(var_other.name)).any(None): return False if (self.get_cct(var_self.name) != other.get_cct(var_other.name)).any(None): return False if not(self.backend_is_num_equal(other)): return False return True def backend_is_num_equal(self, other): if self.backend != other.backend: return False backend_is_num_equal_method = \ getattr(self, self.backend + "_is_num_equal", None) if callable(backend_is_num_equal_method): return backend_is_num_equal_method(other) else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") def pyagrum_is_num_equal(self, other): if self.bn.names() != other.bn.names(): return False for var in self.bn.names(): if (self.bn.cpt(var)[:] != other.bn.cpt(var)[:]).any(): return False return True def pyagrum_init_bn(self): self.bn = gum.BayesNet(self.name) def add_variable(self, **var_specs): self.update_variable(**var_specs) def bn_update_variable(self, var_name): backend_bn_method = \ getattr(self, self.backend + "_update_variable", None) if callable(backend_bn_method): backend_bn_method(var_name) else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") def pyagrum_update_variable(self, var_name): bn_var = self.variables[var_name].pyagrum_init_var() if var_name in self.bn.names(): self.bn.erase(var_name) # Pyagrum does not support empty domain variables if bn_var.domainSize() > 0: self.bn.add(bn_var) def remove_parent(self, var_name): self.add_parents(var_name) def add_parents(self, var_name, parents=[]): # TODO: We have a problem here ! if var_name in self.variables.keys(): if all([pa in self.variables.keys() for pa in parents]): self.parents[var_name] = parents # Update parents info in backend self.bn_update_parents(var_name) # Update variables numerical specs self.update_cct(var_name) else: raise ValueError( "Parent variables must be part of BN variables") else: raise ValueError("Variable {var_name} is not part of BN variables") def update_variable(self, **var_specs): """ Update variables specs.""" new_var = DiscreteVariable(**var_specs) # Just add variable self.variables[new_var.name] = new_var self.bn_update_variable(new_var.name) self.update_cct(new_var.name) # Update case: the variable already exists and has children var_children = [v for v in self.variables.keys() if new_var.name in self.parents.get(v, [])] for vc in var_children: self.bn_update_variable(vc) self.update_cct(vc) def bn_update_parents(self, var_name): """ Update parents specs in backend.""" backend_bn_method = \ getattr(self, self.backend + "_update_parents", None) if callable(backend_bn_method): backend_bn_method(var_name) else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") def pyagrum_update_parents(self, var_name): for parent in self.parents.get(var_name, []): if (var_name in self.bn.names()) and \ (parent in self.bn.names()): self.bn.addArc(parent, var_name) def update_cct(self, var_name): parents_var = self.parents.get(var_name, []) var_domain = [var_name] + parents_var var_domain_labels = \ pd.MultiIndex.from_product([self.variables[v].domain for v in var_domain], names=var_domain) init_cct = False if not(var_name in self.cct): init_cct = True else: var_domain_labels_cur = pd.DataFrame(self.cct[var_name]).columns # DOES NOT WORK ANYMORE WITH ADD_PARENT #var_domain_labels_cur = self.get_cct(var_name, flatten=True).index if len(var_domain) == 1: init_cct = set(var_domain_labels.levels[0]) != \ set(var_domain_labels_cur) else: init_cct = set(var_domain_labels) != \ set(var_domain_labels_cur) # Erase CCT only if CPT structure has changed if init_cct: # Init CCT as a DataFrame cct_df = pd.Series(0, index=var_domain_labels, name="count") # Store CCT in cct attribute self.cct[var_name] = cct_df.to_frame()\ .reset_index()\ .to_dict("records") # Update backend parameters # NOTE: This is mandatory even if structure has not changed # All this BN backend can be improved a LOT ! # => Implement PANDAS BN !!! self.update_cpt_params(var_name) def init_from_dataframe(self, df, add_data_var=False): for var_name, dfs in df.items(): # Do not add variable from data columns not defined in # variables dictionary if not(add_data_var) and not(var_name in self.variables.keys()): continue if dfs.dtype.name == "category": if dfs.cat.categories.dtype.name == "interval": var_domain_type = "interval" var_domain = [str(it) for it in dfs.cat.categories.to_list()] else: var_domain_type = "label" var_domain = dfs.cat.categories.to_list() else: # Default behaviour: force categorical data var_domain_type = "label" var_domain = dfs.astype(str).astype( "category").cat.categories.to_list() var = DiscreteVariable(name=var_name, domain=var_domain, domain_type=var_domain_type) self.variables[var_name] = var self.init_backend() def adapt_data(self, data): """Utility method to ensure series has well formatted categorical data, i.e. string labels. """ # parents_var = self.parents.get(var_name, []) # var_dim = [var_name] + parents_var data_new = {} data_var_list = [var for var in self.variables.keys() if var in data.columns] # Check if input dataframe has consistent catagorical variables for var_name, data_var_s in data[data_var_list].items(): data_var_s = data[var_name] if data_var_s.dtype.name != "category": # Try to transform it cat_type = pd.api.types.CategoricalDtype(categories=self.variables[var_name].domain, ordered=self.variables[var_name].domain_type != "label") data_var_s = data_var_s.astype(str).astype(cat_type) if data_var_s.cat.categories.dtype.name == "interval": series_lab = [str(it) for it in data_var_s.cat.categories.to_list()] else: series_lab = data_var_s.cat.categories.to_list() if self.variables[var_name].domain != series_lab: err_msg = f"Domain of variable {var_name}: {self.variables[var_name].domain}\n" err_msg += f"Series categories: : {series_lab}\n" err_msg += f"Inconsistency detected" raise ValueError(err_msg) if data_var_s.cat.categories.dtype.name == "interval": data_var_s.cat.rename_categories( self.variables[var_name].domain, inplace=True) data_new[var_name] = data_var_s return pd.DataFrame(data_new, index=data.index) def fit(self, data, update_fit=False, update_decay=0, logger=None): for var_name in self.variables.keys(): var_domain = [var_name] + self.parents.get(var_name, []) var_not_in_data = [ var for var in var_domain if not(var in data.columns)] if len(var_not_in_data) > 0: warnings.warn(f"Skip variable {var_name} fitting: domain [{var_not_in_data}] not in data", RuntimeWarning) continue df_cur = data[var_domain] self.fit_cpt(data=df_cur, var_name=var_name, update_fit=update_fit, update_decay=update_decay, logger=logger) def fit_cpt(self, data, var_name, update_fit=False, update_decay=0, logger=None): """ This function aims to compute the joint counts associated to CPT parameters from a Pandas dataframe. Parameters - data: a Pandas DataFrame consisting only of categorical variables. - var_name: the variable name associated to the CPT to be fitted. - update_fit: indicates if current joint counts has to be updated with new observation. - update_decay: decay coef in [0,1] to reduce importance of current count comparared to new fitted data. 0 means that old data is as same weight than new data. Otherwise count_update = count_new_fit + (1-decay)*count_old. Note that decay coef == 1 is equivalent to set update_fit == False. Note: this method is an adaptation of codes found at http://www-desir.lip6.fr/~phw/aGrUM/officiel/notebooks/ """ if not(logger is None): logger.debug("- Learn CPT {0}\n".format(var_name)) parents_var = self.parents.get(var_name, []) var_dim = [var_name] + parents_var data = self.adapt_data(data) # # Check if input dataframe has consistent catagorical variables # for var in data[var_domain].columns: # # data_var_type = self.find_consistent_series_type(data[var]) # # data[var] = data[var].astype(str).astype(data_var_type) # self.adapt_series_categories(data[var], inplace=True) # ipdb.set_trace() # Compute counts from input data index_name = data.index.name if not(data.index.name is None) \ else "index" cct_cur_df = data[var_dim].reset_index()\ .groupby(by=var_dim, dropna=False)[index_name]\ .count()\ .rename("count") if len(self.cct.get(var_name, [])) > 0 and update_fit: cct_df = cct_cur_df + \ (1 - update_decay)*self.get_cct(var_name, flatten=True) self.cct[var_name] = cct_df.to_frame()\ .reset_index()\ .to_dict("records") else: # Erase cpt counts with new counts self.cct[var_name] = cct_cur_df.to_frame()\ .reset_index()\ .to_dict("records") # Update backend parameters after learning process self.update_cpt_params(var_name) def get_cct(self, var_name, transpose=False, flatten=False): """ This method returns the variable count table as a dataframe or a serie if flatten is demanded. """ parents_var = self.parents.get(var_name, []) var_domain = [var_name] + parents_var cct_df = pd.DataFrame(self.cct[var_name]) # Set categorical labels for counts columns with respect to # variable labels for var in cct_df[var_domain].columns: cat_type = pd.api.types.CategoricalDtype( categories=self.variables[var].domain, ordered=self.variables[var].domain_type != "label") cct_df[var] = cct_df[var].astype(cat_type) cct_df = pd.pivot_table(data=cct_df, index=var_name, columns=parents_var, dropna=False, values="count").fillna(0) if len(parents_var) == 0: # To have unified output change unique columns name as "" since # there is no parents cct_df.rename(columns={"count": ""}, inplace=True) if flatten: # When no parent, cpt_df.index is a CategoricalIndex # which cannot be reorder_levels if len(parents_var) > 0: # PROBLEM: STACK CANCELS CATEGORICAL MULTINDEX INDEX SPECS IN pandas<=1.2.4 # Use transpose+stack one dim instead # cct_df = cct_df.stack(parents_var).reorder_levels(var_domain) cct_df = cct_df.transpose().stack(var_name).reorder_levels(var_domain) else: cct_df = cct_df[""] cct_df.name = "count" if transpose: cct_df = cct_df.transpose() return cct_df def get_cpt(self, var_name, nan_management="uniform", flatten=False, transpose=False): """ apriori_coef: Parameter representing the apriori weight during the fitting process compared to data. if apriori_coef is a non negative real number : - the higher it is, the closer to the apriori distribution the resulting configuration distribution will be. - the lower it is, the closer to the distribution fitted by data the resulting configuration distribution will be. User can also pass a string associated to an apriori coefficient strategy. Possible values are - smart: in this case, the apriori coefficient is set equal to 1/nb_data_conf if nb_data_conf > 0 else 1 where nb_data_conf is the number of data observed for a given configuration. apriori_dist: shape of the apriori distribution. Possible values are: 'uniform'. Passing None to this parameter disables apriori consideration in the fitting process. apriori_data_threshold: apply apriori for a conditional distribution if the number of oberserved corresponding configurations is lower or equal than this parameter. Notes: - To avoid numerical problems like joint probabilities at 0 during inference process, it is recommanded to ensure non-zeros probabilities for each modalities of each variable | parents. => TODO: implement the smart a priori system to do that """ cct_df = self.get_cct(var_name) parents_var = self.parents.get(var_name, []) var_domain = [var_name] + parents_var var_norm_size = len(self.variables[var_name].domain) # if len(parents_var) == 0: # # To have unified output change unique columns name as "" since # # there is no parents # cpt_df = cct_df/cct_df.sum() # cpt_df.name = "prob" # else: # Normalization cpt_df = cct_df.div(cct_df.sum(axis=0), axis=1) if flatten: # When no parent, cpt_df.index is a CategoricalIndex # which cannot be reorder_levels if len(parents_var) > 0: cpt_df = cpt_df.stack(parents_var, dropna=False) # NOTE: Theoretically reorder level is useless # but we keep it to be sure cpt_df = cpt_df.reorder_levels(var_domain) else: cpt_df = cpt_df[""] cpt_df.name = "prob" # Manage NaN if nan_management == "uniform": cpt_df.fillna(1/var_norm_size, inplace=True) else: cpt_df.fillna(0, inplace=True) if transpose: cpt_df = cpt_df.transpose() return cpt_df # # A priori management # if not(apriori_dist is None): # # Select apriori distribution # apriori_joint_arr = pd.np.zeros(joint_counts.shape) # if apriori_dist == "uniform": # apriori_joint_arr[:] = 1/apriori_joint_arr.shape[0] # else: # err_msg = "apriori distribution {0} is not supported. Possible values are : 'uniform'\n".format(apriori_dist) # raise ValueError(err_msg) # # Build the apriori coefficient array # apriori_coef_arr = pd.np.ones(cond_counts.shape) # if isinstance(apriori_coef, str): # if apriori_coef == "smart": # if len(cond_counts.shape) == 0: # apriori_coef_arr = 1/cond_counts if cond_counts > 0 else 1.0 # else: # idx_cond_count_sup_0 = pd.np.where(cond_counts > 0) # apriori_coef_arr = pd.np.ones(cond_counts.shape) # apriori_coef_arr[idx_cond_count_sup_0] = 1/cond_counts[idx_cond_count_sup_0] # else: # err_msg = "apriori coef {0} is not supported. Possible values are : 'smart' or non negative value\n".format(apriori_coef) # raise ValueError(err_msg) # else: # if len(cond_counts.shape) == 0: # apriori_coef_arr = abs(apriori_coef) # else: # apriori_coef_arr[:] = abs(apriori_coef) # # Check coordinate that need apriori # if len(cond_counts.shape) == 0: # if cond_counts > apriori_data_threshold: apriori_coef_arr = 0. # else: # apriori_counts_idx = cond_counts <= apriori_data_threshold # apriori_coef_arr[~apriori_counts_idx] = 0. # # Update joint and cond counts # joint_counts += apriori_joint_arr*apriori_coef_arr # cond_counts = joint_counts.sum(axis=0) # # Normalization of counts to get a consistent CPT # # Note: np.nan_to_num is used only in the case where no apriori is requested to force nan value to 0 # # => this is of course highly unsafe to work in this situation as CPTs may not sum to 1 for all configurations # bn.cpt(var_name)[:] = pd.np.nan_to_num((joint_counts/cond_counts).transpose().reshape(*domains) def update_cpt_params(self, var_name): update_cpt_params_method = getattr( self, self.backend + "_update_cpt_params", None) if callable(update_cpt_params_method): return update_cpt_params_method(var_name) else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") def pyagrum_update_cpt_params(self, var_name): if not(var_name in self.bn.names()): return cpt = self.get_cpt(var_name, transpose=True) # Reshape parents_var = self.parents.get(var_name, []) var_domain = parents_var + [var_name] cpt_domain_size = [len(self.variables[var].domain) for var in var_domain] try: cpt_np = cpt.to_numpy()\ .reshape(cpt_domain_size) except Exception as e: ipdb.set_trace() # Then transpose axis if needed cpt_nb_dim = len(var_domain) if cpt_nb_dim > 1: cpt_transpose = list( reversed(range(0, cpt_nb_dim - 1))) + [cpt_nb_dim - 1] cpt_np = cpt_np.transpose(cpt_transpose) self.bn.cpt(var_name)[:] = cpt_np def predict(self, data, var_targets, map_k=0, probs=True, progress_mode=False, logger=None, **kwrgs): """ This function is used to predict the value of a target variable from observations using a bayesian network model. Inputs: - data: the data containing the observations used to predict the target variable as a =pandas.DataFrame= object - var_targets: the name of the target variable as a =str= object - probs: indicate if posterior probabilities are returned as a DiscreteDistribution object - map_k: indicate if the k most probable labels are returned. (default map_k == 0) Returns: - a numpy.array containing the predictions of the target variables maximising the maximum a posteriori criterion - a numpy.array containing the posterior probability distribution of the target variable given each observation in data. """ if isinstance(data, pd.core.frame.DataFrame): data_pred = self.adapt_data(data) else: raise ValueError(f"Input data must be a Pandas DataFrame") predict_method = getattr(self, self.backend + "_predict", None) if callable(predict_method): return predict_method(data=data_pred, var_targets=var_targets, map_k=map_k, probs=probs, progress_mode=progress_mode, logger=logger) else: raise ValueError( f"Bayesian network backend '{self.backend}' not supported") def pyagrum_predict(self, data, var_targets, map_k=0, probs=True, progress_mode=False, logger=None): # Initialize the inference engine inf_bn = gum.LazyPropagation(self.bn) inf_bn.setTargets(set(var_targets)) # target_size = len(self.variables[var_target].domain) # target_dom = self.variables[var_target].domain nb_data = len(data) pred_res = {tv: {"scores": DiscreteDistribution(index=data.index, **self.variables[tv].dict()), "comp_ok":
pd.Series(True, index=data.index)
pandas.Series
#%% import os import sys os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory from pymaid_creds import url, name, password, token import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import connectome_tools.process_matrix as pm import connectome_tools.process_graph as pg import connectome_tools.cascade_analysis as casc import connectome_tools.celltype as ct import connectome_tools.cluster_analysis as clust # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' adj = pm.Promat.pull_adj('ad', subgraph='brain and accessory') edges = pd.read_csv('data/edges_threshold/pairwise-threshold_ad_all-edges.csv', index_col=0) pairs = pm.Promat.get_pairs() dVNCs = pymaid.get_skids_by_annotation('mw dVNC') dVNC_pairs = pm.Promat.load_pairs_from_annotation('mw dVNC', pairs, return_type='all_pair_ids_bothsides', skids=dVNCs, use_skids=True) # %% # dVNC projectome data prep import cmasher as cmr projectome = pd.read_csv('data/projectome/projectome_adjacency.csv', index_col = 0, header = 0) projectome.index = [str(x) for x in projectome.index] # identify meshes meshes = ['Brain Hemisphere left', 'Brain Hemisphere right', 'SEZ_left', 'SEZ_right', 'T1_left', 'T1_right', 'T2_left', 'T2_right', 'T3_left', 'T3_right', 'A1_left', 'A1_right', 'A2_left', 'A2_right', 'A3_left', 'A3_right', 'A4_left', 'A4_right', 'A5_left', 'A5_right', 'A6_left', 'A6_right', 'A7_left', 'A7_right', 'A8_left', 'A8_right'] pairOrder_dVNC = [x for sublist in zip(dVNC_pairs.leftid, dVNC_pairs.rightid) for x in sublist] input_projectome = projectome.loc[meshes, [str(x) for x in pairOrder_dVNC]] output_projectome = projectome.loc[[str(x) for x in pairOrder_dVNC], meshes] dVNC_projectome_pairs_summed_output = [] indices = [] for i in np.arange(0, len(output_projectome.index), 2): combined_pairs = (output_projectome.iloc[i, :] + output_projectome.iloc[i+1, :]) combined_hemisegs = [] for j in np.arange(0, len(combined_pairs), 2): combined_hemisegs.append((combined_pairs[j] + combined_pairs[j+1])) dVNC_projectome_pairs_summed_output.append(combined_hemisegs) indices.append(output_projectome.index[i]) dVNC_projectome_pairs_summed_output = pd.DataFrame(dVNC_projectome_pairs_summed_output, index = indices, columns = ['brain','SEZ', 'T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']) #dVNC_projectome_pairs_summed_output = dVNC_projectome_pairs_summed_output.iloc[:, 1:len(dVNC_projectome_pairs_summed_output)] #normalize # of presynaptic sites dVNC_projectome_pairs_summed_output_norm = dVNC_projectome_pairs_summed_output.copy() for i in range(len(dVNC_projectome_pairs_summed_output)): sum_row = sum(dVNC_projectome_pairs_summed_output_norm.iloc[i, :]) for j in range(len(dVNC_projectome_pairs_summed_output.columns)): dVNC_projectome_pairs_summed_output_norm.iloc[i, j] = dVNC_projectome_pairs_summed_output_norm.iloc[i, j]/sum_row # remove brain from columns dVNC_projectome_pairs_summed_output_norm_no_brain = dVNC_projectome_pairs_summed_output_norm.iloc[:, 1:len(dVNC_projectome_pairs_summed_output)] dVNC_projectome_pairs_summed_output_no_brain = dVNC_projectome_pairs_summed_output.iloc[:, 1:len(dVNC_projectome_pairs_summed_output)] # %% # ordering and plotting # sorting with normalized data sort_threshold = 0 dVNC_projectome_pairs_summed_output_sort_norm = dVNC_projectome_pairs_summed_output_norm_no_brain.copy() dVNC_projectome_pairs_summed_output_sort_norm[dVNC_projectome_pairs_summed_output_sort_norm<sort_threshold]=0 order = ['SEZ', 'T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'] order.reverse() dVNC_projectome_pairs_summed_output_sort_norm.sort_values(by=order, ascending=False, inplace=True) sort = dVNC_projectome_pairs_summed_output_sort_norm.index cmap = plt.cm.get_cmap('Blues') # modify 'Blues' cmap to have a white background blue_cmap = cmap(np.linspace(0, 1, 20)) blue_cmap[0] = np.array([1, 1, 1, 1]) blue_cmap = mpl.colors.LinearSegmentedColormap.from_list(name='New_Blues', colors=blue_cmap) cmap = blue_cmap fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.heatmap(dVNC_projectome_pairs_summed_output_norm.loc[sort, :], ax=ax, cmap=cmap) plt.savefig(f'VNC_interaction/plots/projectome/A8-T1_sort_projectome_normalized_sortThres{sort_threshold}.pdf', bbox_inches='tight') # sorting with raw data sort_threshold = 0 dVNC_projectome_pairs_summed_output_sort = dVNC_projectome_pairs_summed_output_no_brain.copy() dVNC_projectome_pairs_summed_output_sort[dVNC_projectome_pairs_summed_output_sort<sort_threshold]=0 order = ['SEZ', 'T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'] order.reverse() dVNC_projectome_pairs_summed_output_sort.sort_values(by=order, ascending=False, inplace=True) sort = dVNC_projectome_pairs_summed_output_sort.index vmax = 70 cmap = blue_cmap fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.heatmap(dVNC_projectome_pairs_summed_output.loc[sort, :], ax=ax, cmap=cmap, vmax=vmax) plt.savefig(f'VNC_interaction/plots/projectome/A8-T1_sort_projectome_sortThres{sort_threshold}.pdf', bbox_inches='tight') # %% # old prototype code; lots of conflicting ordering sections added for testing purposes ''' # order based on clustering raw data cluster = sns.clustermap(dVNC_projectome_pairs_summed_output, col_cluster = False, figsize=(6,4)) row_order = cluster.dendrogram_row.reordered_ind #fig, ax = plt.subplots(figsize=(6,4)) #sns.heatmap(dVNC_projectome_pairs_summed_output.iloc[row_order, :], rasterized=True, ax=ax) plt.savefig(f'VNC_interaction/plots/projectome/clustered_projectome_raw.pdf', bbox_inches='tight') # order based on clustering normalized data cluster = sns.clustermap(dVNC_projectome_pairs_summed_output_norm, col_cluster = False, figsize=(6,4), rasterized=True) row_order = cluster.dendrogram_row.reordered_ind #fig, ax = plt.subplots(figsize=(6,4)) #sns.heatmap(dVNC_projectome_pairs_summed_output_norm.iloc[row_order, :], rasterized=True, ax=ax) plt.savefig(f'VNC_interaction/plots/projectome/clustered_projectome_normalized.pdf', bbox_inches='tight') # order based on counts per column for i in range(1, 51): dVNC_projectome_pairs_summed_output_sort = dVNC_projectome_pairs_summed_output_norm.copy() dVNC_projectome_pairs_summed_output_sort[dVNC_projectome_pairs_summed_output_sort<(i/100)]=0 dVNC_projectome_pairs_summed_output_sort.sort_values(by=['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'], ascending=False, inplace=True) row_order = dVNC_projectome_pairs_summed_output_sort[dVNC_projectome_pairs_summed_output_sort.sum(axis=1)>0].index second_sort = dVNC_projectome_pairs_summed_output_norm[dVNC_projectome_pairs_summed_output_sort.sum(axis=1)==0] second_sort[second_sort<.1]=0 second_sort.sort_values(by=[i for i in reversed(['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'])], ascending=False, inplace=True) row_order = list(row_order) + list(second_sort.index) fig, ax = plt.subplots(figsize=(6,4)) sns.heatmap(dVNC_projectome_pairs_summed_output_norm.loc[row_order, :], ax=ax, rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/projectome_0.{i}-sort-threshold.pdf', bbox_inches='tight') for i in range(1, 51): dVNC_projectome_pairs_summed_output_sort = dVNC_projectome_pairs_summed_output.copy() dVNC_projectome_pairs_summed_output_sort[dVNC_projectome_pairs_summed_output_sort<(i)]=0 dVNC_projectome_pairs_summed_output_sort.sort_values(by=['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'], ascending=False, inplace=True) row_order = dVNC_projectome_pairs_summed_output_sort.index second_sort = dVNC_projectome_pairs_summed_output[dVNC_projectome_pairs_summed_output_sort.sum(axis=1)==0] second_sort[second_sort<10]=0 second_sort.sort_values(by=['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'], ascending=False, inplace=True) row_order = list(row_order) + list(second_sort.index) fig, ax = plt.subplots(figsize=(6,4)) sns.heatmap(dVNC_projectome_pairs_summed_output.loc[row_order, :], ax=ax, rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/projectome_{i}-sort-threshold.pdf', bbox_inches='tight') fig, ax = plt.subplots(figsize=(3,2)) sns.heatmap(dVNC_projectome_pairs_summed_output.iloc[row_order, :], ax=ax) plt.savefig('VNC_interaction/plots/projectome/output_projectome_cluster.pdf', bbox_inches='tight', transparent = True) # order input projectome in the same way dVNC_projectome_pairs_summed_input = [] indices = [] for i in np.arange(0, len(input_projectome.columns), 2): combined_pairs = (input_projectome.iloc[:, i] + input_projectome.iloc[:, i+1]) combined_hemisegs = [] for j in np.arange(0, len(combined_pairs), 2): combined_hemisegs.append((combined_pairs[j] + combined_pairs[j+1])) dVNC_projectome_pairs_summed_input.append(combined_hemisegs) indices.append(input_projectome.columns[i]) dVNC_projectome_pairs_summed_input = pd.DataFrame(dVNC_projectome_pairs_summed_input, index = indices, columns = ['SEZ', 'T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']) dVNC_projectome_pairs_summed_input = dVNC_projectome_pairs_summed_input.iloc[:, 1:len(dVNC_projectome_pairs_summed_input)] #cluster = sns.clustermap(dVNC_projectome_pairs_summed_input, col_cluster = False, cmap = cmr.freeze, figsize=(10,10)) fig, ax = plt.subplots(figsize=(3,2)) sns.heatmap(dVNC_projectome_pairs_summed_input.iloc[row_order, :], cmap=cmr.freeze, ax=ax) plt.savefig('VNC_interaction/plots/projectome/input_projectome_cluster.pdf', bbox_inches='tight', transparent = True) ''' # %% # paths 2-hop upstream of each dVNC from tqdm import tqdm # sort dVNC pairs sort = [int(x) for x in sort] dVNC_pairs.set_index('leftid', drop=False, inplace=True) dVNC_pairs = dVNC_pairs.loc[sort, :] dVNC_pairs.reset_index(inplace=True, drop=True) hops = 2 threshold = 0.01 dVNC_pair_paths_us = [pm.Promat.upstream_multihop(edges=edges, sources=dVNC_pairs.loc[i].to_list(), hops=hops) for i in tqdm(range(0, len(dVNC_pairs)))] dVNC_pair_paths_ds = [pm.Promat.downstream_multihop(edges=edges, sources=dVNC_pairs.loc[i].to_list(), hops=hops) for i in tqdm(range(0, len(dVNC_pairs)))] # %% # plotting individual dVNC paths _, celltypes = ct.Celltype_Analyzer.default_celltypes() skids_list = [list(adj.index)] + [x.get_skids() for x in celltypes] # UPSTREAM all_layers_us = [ct.Celltype_Analyzer.layer_id(dVNC_pair_paths_us, dVNC_pairs.leftid, skids_type)[0] for skids_type in skids_list] layer_names = ['Total'] + [x.get_name() for x in celltypes] threshold = 0.01 layer_colors = ['Greens', 'Greens', 'Blues', 'Greens', 'Oranges', 'Reds', 'Greens', 'Blues', 'Purples', 'Blues', 'Reds', 'Purples', 'Reds', 'Purples', 'Reds', 'Purples', 'Reds'] layer_vmax = [200, 50, 50, 50, 50, 50, 50, 50, 50, 50, 100, 50, 50, 50, 50, 50, 50] save_path = 'VNC_interaction/plots/dVNC_partners/Upstream_' ct.Celltype_Analyzer.plot_layer_types(layer_types=all_layers_us, layer_names=layer_names, layer_colors=layer_colors, layer_vmax=layer_vmax, pair_ids=dVNC_pairs.leftid, figsize=(.5*hops/3, 1.5), save_path=save_path, threshold=threshold, hops=hops) # DOWNSTREAM all_layers_ds = [ct.Celltype_Analyzer.layer_id(dVNC_pair_paths_ds, dVNC_pairs.leftid, skids_type)[0] for skids_type in skids_list] layer_names = ['Total'] + [x.get_name() for x in celltypes] threshold = 0.01 layer_colors = ['Greens', 'Greens', 'Blues', 'Greens', 'Oranges', 'Reds', 'Greens', 'Blues', 'Purples', 'Blues', 'Reds', 'Purples', 'Reds', 'Purples', 'Reds', 'Purples', 'Reds'] layer_vmax = [200, 50, 50, 50, 50, 50, 50, 50, 50, 50, 100, 50, 50, 50, 50, 50, 50] save_path = 'VNC_interaction/plots/dVNC_partners/Downstream-in-brain_' ct.Celltype_Analyzer.plot_layer_types(layer_types=all_layers_ds, layer_names=layer_names, layer_colors=layer_colors, layer_vmax=layer_vmax, pair_ids=dVNC_pairs.leftid, figsize=(.5*hops/3, 1.5), save_path=save_path, threshold=threshold, hops=hops) # %% # make bar plots for 1-hop and 2-hop _, celltypes = ct.Celltype_Analyzer.default_celltypes() figsize = (2,0.5) # UPSTREAM us_1order = ct.Celltype_Analyzer([ct.Celltype(str(dVNC_pairs.loc[i].leftid) + '_us_1o', x[0]) for i, x in enumerate(dVNC_pair_paths_us)]) us_2order = ct.Celltype_Analyzer([ct.Celltype(str(dVNC_pairs.loc[i].leftid) + '_us_2o', x[1]) for i, x in enumerate(dVNC_pair_paths_us)]) us_1order.set_known_types(celltypes) us_2order.set_known_types(celltypes) path = 'VNC_interaction/plots/dVNC_partners/summary_plot_1st_order_upstream.pdf' us_1order.plot_memberships(path = path, figsize=figsize) path = 'VNC_interaction/plots/dVNC_partners/summary_plot_2nd_order_upstream.pdf' us_2order.plot_memberships(path = path, figsize=figsize) # DOWNSTREAM ds_1order = ct.Celltype_Analyzer([ct.Celltype(str(dVNC_pairs.loc[i].leftid) + '_ds_1o', x[0]) for i, x in enumerate(dVNC_pair_paths_ds)]) ds_2order = ct.Celltype_Analyzer([ct.Celltype(str(dVNC_pairs.loc[i].leftid) + '_ds_2o', x[1]) for i, x in enumerate(dVNC_pair_paths_ds)]) ds_1order.set_known_types(celltypes) ds_2order.set_known_types(celltypes) path = 'VNC_interaction/plots/dVNC_partners/summary_plot_1st_order_downstream.pdf' ds_1order.plot_memberships(path = path, figsize=figsize) path = 'VNC_interaction/plots/dVNC_partners/summary_plot_2nd_order_downstream.pdf' ds_2order.plot_memberships(path = path, figsize=figsize) # %% # combine all data types for dVNCs: us1o, us2o, ds1o, ds2o, projectome fraction_cell_types_1o_us = pd.DataFrame([x.iloc[:, 0] for x in fraction_types], index = fraction_types_names).T fraction_cell_types_1o_us.columns = [f'1o_us_{x}' for x in fraction_cell_types_1o_us.columns] unk_col = 1-fraction_cell_types_1o_us.sum(axis=1) unk_col[unk_col==11]=0 fraction_cell_types_1o_us['1o_us_unk']=unk_col fraction_cell_types_2o_us = pd.DataFrame([x.iloc[:, 1] for x in fraction_types], index = fraction_types_names).T fraction_cell_types_2o_us.columns = [f'2o_us_{x}' for x in fraction_cell_types_2o_us.columns] unk_col = 1-fraction_cell_types_2o_us.sum(axis=1) unk_col[unk_col==11]=0 fraction_cell_types_2o_us['2o_us_unk']=unk_col fraction_cell_types_1o_ds = pd.DataFrame([x.iloc[:, 0] for x in fraction_types_ds], index = fraction_types_names).T fraction_cell_types_1o_ds.columns = [f'1o_ds_{x}' for x in fraction_cell_types_1o_ds.columns] unk_col = 1-fraction_cell_types_1o_ds.sum(axis=1) unk_col[unk_col==11]=0 fraction_cell_types_1o_ds['1o_ds_unk']=unk_col fraction_cell_types_1o_ds[fraction_cell_types_1o_ds==-1]=0 fraction_cell_types_2o_ds = pd.DataFrame([x.iloc[:, 1] for x in fraction_types_ds], index = fraction_types_names).T fraction_cell_types_2o_ds.columns = [f'2o_ds_{x}' for x in fraction_cell_types_2o_ds.columns] unk_col = 1-fraction_cell_types_2o_ds.sum(axis=1) unk_col[unk_col==11]=0 fraction_cell_types_2o_ds['2o_ds_unk']=unk_col fraction_cell_types_2o_ds[fraction_cell_types_2o_ds==-1]=0 all_data = dVNC_projectome_pairs_summed_output_norm.copy() all_data.index = [int(x) for x in all_data.index] all_data = pd.concat([fraction_cell_types_1o_us, fraction_cell_types_2o_us, all_data, fraction_cell_types_1o_ds, fraction_cell_types_2o_ds], axis=1) all_data.fillna(0, inplace=True) # clustered version of all_data combined cluster = sns.clustermap(all_data, col_cluster = False, figsize=(30,30), rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/clustered_projectome_all_data.pdf', bbox_inches='tight') order = cluster.dendrogram_row.reordered_ind fig,ax=plt.subplots(1,1,figsize=(6,4)) sns.heatmap(all_data.iloc[order, :].drop(list(fraction_cell_types_1o_us.columns) + list(fraction_cell_types_2o_us.columns) + list(fraction_cell_types_1o_ds.columns) + list(fraction_cell_types_2o_ds.columns), axis=1), ax=ax, rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/clustered_projectome_all_data_same_size.pdf', bbox_inches='tight') cluster = sns.clustermap(all_data.drop(['1o_us_pre-dVNC', '2o_us_pre-dVNC'], axis=1), col_cluster = False, figsize=(20,15), rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/clustered_projectome_all_data_removed_us-pre-dVNCs.pdf', bbox_inches='tight') # decreasing sort of all_data but with feedback and non-feedback dVNC clustered for i in range(1, 50): dVNCs_with_FB = all_data.loc[:, list(fraction_cell_types_1o_ds.columns) + list(fraction_cell_types_2o_ds.columns)].sum(axis=1) dVNCs_FB_true_skids = dVNCs_with_FB[dVNCs_with_FB>0].index dVNCs_FB_false_skids = dVNCs_with_FB[dVNCs_with_FB==0].index dVNC_projectome_pairs_summed_output_sort = all_data.copy() dVNC_projectome_pairs_summed_output_sort = dVNC_projectome_pairs_summed_output_sort.loc[:, ['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']] dVNC_projectome_pairs_summed_output_sort = dVNC_projectome_pairs_summed_output_sort.loc[dVNCs_FB_true_skids] dVNC_projectome_pairs_summed_output_sort[dVNC_projectome_pairs_summed_output_sort<(i/100)]=0 dVNC_projectome_pairs_summed_output_sort.sort_values(by=['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'], ascending=False, inplace=True) row_order_FB_true = dVNC_projectome_pairs_summed_output_sort.index second_sort = all_data.copy() second_sort = second_sort.loc[:, ['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']] second_sort = second_sort.loc[dVNCs_FB_false_skids] second_sort[second_sort<(i/100)]=0 second_sort.sort_values(by=['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8'], ascending=False, inplace=True) row_order_FB_false = second_sort.index row_order = list(row_order_FB_true) + list(row_order_FB_false) fig, ax = plt.subplots(figsize=(20, 15)) sns.heatmap(all_data.loc[row_order, :], ax=ax, rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/splitFB_projectome_0.{i}-sort-threshold.pdf', bbox_inches='tight') fig, ax = plt.subplots(figsize=(6,4)) sns.heatmap(all_data.loc[row_order, ['T1', 'T2', 'T3', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8']], ax=ax, rasterized=True) plt.savefig(f'VNC_interaction/plots/projectome/splitFB_same-size_projectome_0.{i}-sort-threshold.pdf', bbox_inches='tight') # %% # what fraction of us and ds neurons are from different cell types per hop? fraction_cell_types_1o_us = pd.DataFrame([x.iloc[:, 0] for x in fraction_types], index = fraction_types_names) fraction_cell_types_1o_us = fraction_cell_types_1o_us.fillna(0) # one dVNC with no inputs fraction_cell_types_2o_us = pd.DataFrame([x.iloc[:, 1] for x in fraction_types], index = fraction_types_names) fraction_cell_types_2o_us = fraction_cell_types_2o_us.fillna(0) # one dVNC with no inputs fraction_cell_types_1o_us_scatter = [] for j in range(1, len(fraction_cell_types_1o_us.columns)): for i in range(0, len(fraction_cell_types_1o_us.index)): fraction_cell_types_1o_us_scatter.append([fraction_cell_types_1o_us.iloc[i, j], fraction_cell_types_1o_us.index[i]]) fraction_cell_types_1o_us_scatter = pd.DataFrame(fraction_cell_types_1o_us_scatter, columns = ['fraction', 'cell_type']) fraction_cell_types_2o_us_scatter = [] for j in range(1, len(fraction_cell_types_2o_us.columns)): for i in range(0, len(fraction_cell_types_2o_us.index)): fraction_cell_types_2o_us_scatter.append([fraction_cell_types_2o_us.iloc[i, j], fraction_cell_types_2o_us.index[i]]) fraction_cell_types_2o_us_scatter =
pd.DataFrame(fraction_cell_types_2o_us_scatter, columns = ['fraction', 'cell_type'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # **1. Load JSON file**<Br> # **2. Data Exploration and Visualization**<br> # **3. Select variables and Convert into CSV**<br> # **4. Text Preprocessing** # > a) Change to lower cases<Br> # > b) Transform links (tentative?)<br> # > c) Remove punctuation<br> # > d) Remove stopwords<br> # > e) lemmatize words (to root forms)<br> ####### 1. Loading JSON file ####### import numpy as np import pandas as pd import os import json import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import missingno as msno from sklearn.decomposition import PCA from sklearn.cluster import KMeans get_ipython().magic(u'matplotlib inline') inline_rc = dict(mpl.rcParams) from tqdm import tqdm #True: all data (about 8 mil); False: 500,000 entries full_data = False #load user review data reviews = [] with open('data/yelp_academic_dataset_review.json') as f: for i, line in tqdm(enumerate(f)): reviews.append(json.loads(line)) if full_data==False and i+1 >= 500000: break df_review = pd.DataFrame(reviews) df_review.tail() #load business data biz=[] with open('data/yelp_academic_dataset_business.json') as f1: for i, line in tqdm(enumerate(f1)): biz.append(json.loads(line)) if full_data==False and i+1 >= 500000: break df_biz = pd.DataFrame(biz) df_biz.tail() #load user data user=[] with open('data/yelp_academic_dataset_user.json') as f1: for i, line in tqdm(enumerate(f1)): user.append(json.loads(line)) if full_data==False and i+1 >= 500000: break df_user = pd.DataFrame(user) df_user.tail() ####### 2. Data Exloration and Visualization ####### x=df_review['stars'].value_counts() x=x.sort_index() #plot star rating distribution plt.figure(figsize=(6,5)) ax= sns.barplot(x.index, x.values, alpha=0.8) plt.title("Star Rating Distribution", fontsize=16) plt.ylabel('Number of businesses') plt.xlabel('Star Ratings') biz_cat = ''.join(df_biz['categories'].astype('str')) cats=pd.DataFrame(biz_cat.split(','),columns=['categories']) #prep for chart x=cats.categories.value_counts() x=x.sort_values(ascending=False) x=x.iloc[0:20] #chart plt.figure(figsize=(16,4)) ax = sns.barplot(x.index, x.values, alpha=0.8)#,color=color[5]) plt.title("Top business categories",fontsize=25) locs, labels = plt.xticks() plt.setp(labels, rotation=80) plt.ylabel('Number of businesses', fontsize=12) plt.xlabel('Category', fontsize=12) plt.show() ####### 3. Select Variables and Convert into CSV ####### # Issues for consideration:<br> # Are we going to pick an industry, then work with the subset businesses? # Or we do not consider the industry? e.g. cafe, restaurant, hair salon, etc. # Replace business_id with businesss name # Selected three variables: business_name, stars, text df_comb=df_review.copy() df_comb['business_name'] = df_comb['business_id'].map(df_biz.set_index('business_id')['name']) df_comb = df_comb[['business_name','stars','text']] df_comb #plot 20 most reviewed business x=df_comb['business_name'].value_counts() x=x.sort_values(ascending=False) x=x.iloc[0:20] #plot chart plt.figure(figsize=(16,4)) ax = sns.barplot(x.index, x.values, alpha=0.8)#,color=color[5]) plt.title("20 Most Reviewed Businesses",fontsize=20) locs, labels = plt.xticks() plt.setp(labels, rotation=80) plt.ylabel('Number of reviews', fontsize=12) plt.xlabel('Business', fontsize=12) plt.show() ### Conversion into CSV ### #Convert review, business, user datasets into CSV #df_review.to_csv('data/yelp_reviews.csv', index=False) #df_biz.to_csv('data/yelp_business.csv', index=False) #df_user.to_csv('data/yelp_user.csv', index=False) ####### 4. Text Preprocessing ####### #### Preprocessing steps: #### # For Sentiment analysis: # >a) Change to lower cases # >b) Remove HTML # >c) Remove duplicate characters # >d) Remove punctuation & Tokenize # >e) Remove stopwords # >f) Lemmatization/Stemming import nltk #nltk.download('stopwords') #nltk.download('wordnet') from tqdm.auto import tqdm, trange from nltk.tokenize import RegexpTokenizer from nltk.stem import WordNetLemmatizer,PorterStemmer from nltk.corpus import stopwords from bs4 import BeautifulSoup import string import re lemmatizer = WordNetLemmatizer() stemmer = PorterStemmer() #True: preprocessing for sentiment analysis #False: preprocessing for text summarization sentiment=True def preprocess(s): if sentiment==True: #1. lowercase s = s.lower() #2. remove HTML soup = BeautifulSoup(s,'lxml') html_free = soup.get_text() #3. remove duplicate characters reg = re.sub(r'([a-z])\1+', r'\1', s) #4. Remove punctuation & Tokenize no_punct = "".join([c for c in reg if c not in string.punctuation]) tokenizer = RegexpTokenizer(r'\w+') tokens = tokenizer.tokenize(no_punct) #4. Remove stopwords filtered_words = [w for w in tokens if w not in stopwords.words('english')] #5. lemmatize/stem words final_words=[lemmatizer.lemmatize(w) for w in filtered_words] #final_words=[stemmer.stem(w) for w in filtered_words] else: #1. lowercase s = s.lower() #2. remove HTML soup = BeautifulSoup(s,'lxml') html_free = soup.get_text() #3. remove duplicate characters reg = re.sub(r'([a-z])\1+', r'\1', s) tokenizer = RegexpTokenizer(r'\w+') final_words = tokenizer.tokenize(reg) return " ".join(final_words) tqdm.pandas() df_pre['text']=df_pre['text'].progress_map(lambda s:preprocess(s)) #printout before & after of preprocessing
pd.DataFrame({'from': df_review['text'], 'to': df_pre['text']})
pandas.DataFrame
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'),
pd.offsets.Hour(1)
pandas.offsets.Hour
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, date_range) from pandas.core.index import MultiIndex from pandas.compat import StringIO, lrange, range, u from pandas import compat import pandas.util.testing as tm from .common import TestData class TestSeriesRepr(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(lrange(0, len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth, dtype: int64"] expected = "\n".join(expected) self.assertEqual(repr(s), expected) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) # test big series (diff code path) s = Series(lrange(0, 1000)) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) s = Series(index=date_range('20010101', '20020101'), name='test') self.assertIn("Name: test", repr(s)) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(
tm.randn(1000)
pandas.util.testing.randn
# coding=utf-8 # Real-time air quality data from Beijing official environmental department: http://zx.bjmemc.com.cn/getAqiList.shtml import datetime import pandas as pd from selenium import webdriver import requests import const import settings config = settings.config[const.DEFAULT] def get_beijing_aq_latest(): station_id_mapping = { 1: "yongdingmennei_aq", # 永定门 2: "yufa_aq", # 京南 3: "zhiwuyuan_aq", # 香山 5: "fengtaihuayuan_aq", # 丰台花园 6: "shunyi_aq", # 顺义新城 7: "yanqin_aq", # 夏都 8: "pinggu_aq", # 平谷镇 9: "fangshan_aq", # 良乡 10: "yizhuang_aq", # 亦庄 11: "yungang_aq", # 云岗 12: "miyunshuiku_aq", # 京东北 13: "huairou_aq", # 怀柔镇 14: "badaling_aq", # 京西北 15: "wanshouxigong_aq", # 万寿西宫 17: "pingchang_aq", # 昌平镇 18: "mentougou_aq", # 双峪 19: "tongzhou_aq", # 通州北苑 20: "daxing_aq", # 黄村 21: "dingling_aq", # 定陵 23: "qianmen_aq", # 前门 24: "dongsi_aq", # 东四 25: "tiantan_aq", # 天坛 26: "aotizhongxin_aq", # 奥体中心 27: "nongzhanguan_aq", # 农展馆 28: "miyun_aq", # 密云镇 29: "gucheng_aq", # 古城 32: "guanyuan_aq", # 西城官园 34: "nansanhuan_aq", # 南三环 37: "beibuxinqu_aq", # 北部新区 38: "wanliu_aq", # 海淀万柳 40: "yongledian_aq", # 京东南 41: "liulihe_aq", # 京西南 43: "donggaocun_aq", # 京东 46: "dongsihuan_aq", # 东四环 47: "xizhimenbei_aq", # 西直门 } url = "http://zx.bjmemc.com.cn/getAqiList.shtml" driver = webdriver.Chrome(executable_path=config[const.CHROME_DRIVER_PATH]) driver.get(url) data = driver.execute_script("return wfelkfbnx;") rows = list() for item in data: _id = item["id"] if _id not in station_id_mapping: continue station_id = station_id_mapping[_id] pm2_5 = item["pm2_01"] pm10 = item["pm10_01"] no2 = item["no2_01"] co = item["co_01"] o3 = item["o3_01"] so2 = item["so2_01"] time_str = (datetime.datetime.utcfromtimestamp(int(item["date_f"])) - datetime.timedelta(hours=8)).strftime( '%Y-%m-%d %H:%M:%S') rows.append([station_id, time_str, pm2_5, pm10, o3, no2, co, so2]) driver.close() df = pd.DataFrame(data=rows, columns=[const.ID, const.TIME, const.PM25, const.PM10, const.O3, const.NO2, const.CO, const.SO2]) return df def get_beijing_historical(chunk_size = 1): start_date = datetime.date(2015, 1, 1) end_date = datetime.date(2017, 1, 1) date_range =
pd.date_range(start_date, end_date)
pandas.date_range
import numpy as np import pandas as pd import scipy.stats as stats class Aggregation: """Cálculo de padrões de agregação Argumento: file: arquivo de dados no formato csv Retorno: pandas series e dataframe com os resultados da análise de agregação determinados pelo método de McGinnies, Racker-Brischle e Morisita """ def __init__(self, file): self._file = file self._df = pd.read_csv(file, sep=";", decimal=",", encoding="latin-1") self._ni = self._df.Especie.value_counts() self._ut = self._df["Parcela"].nunique() self._Di = self._ni / self._ut self._ui = self._df.groupby("Especie")["Parcela"].nunique() self._fri = self._ui / self._ut self._di = -np.log(1 - self._fri) def __str__(self) -> str: return f"Análise de agregação" def mcginnies(self): return self._Di / self._di def racker_brischle(self): return (self._Di - self._di) / self._di**2 def morisita(self): self._table =
pd.crosstab(self._df["Parcela"], self._df["Especie"])
pandas.crosstab
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/2 23:26 Desc: 东方财富网-行情首页-沪深京 A 股 """ import requests import pandas as pd def stock_zh_a_spot_em() -> pd.DataFrame: """ 东方财富网-沪深京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def stock_zh_b_spot_em() -> pd.DataFrame: """ 东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://28.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:7,m:1 t:3", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def code_id_map_em() -> dict: """ 东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict """ url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["bj_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"]))) return code_id_dict def stock_zh_a_hist( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日行情 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f116", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period_dict[period], "fqt": adjust_dict[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": start_date, "end": end_date, "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df def stock_zh_a_hist_min_em( symbol: str = "000001", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", period: str = "5", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :return: 每日分时行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "https://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "7eea3edcaed734bea9cbfc24409ed989", "ndays": "5", "iscr": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period, "fqt": adjust_map[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df def stock_zh_a_hist_pre_min_em( symbol: str = "000001", start_time: str = "09:00:00", end_time: str = "15:50:00", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情包含盘前数据 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_time: 开始时间 :type start_time: str :param end_time: 结束时间 :type end_time: str :return: 每日分时行情包含盘前数据 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() url = "https://push2.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "ndays": "1", "iscr": "1", "iscca": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) date_format = temp_df.index[0].date().isoformat() temp_df = temp_df[ date_format + " " + start_time : date_format + " " + end_time ] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df def stock_hk_spot_em() -> pd.DataFrame: """ 东方财富网-港股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hk_stocks :return: 港股-实时行情 :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:128 t:3,m:128 t:4,m:128 t:1,m:128 t:2", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "今开", "最高", "最低", "昨收", "成交量", "成交额", ] ] temp_df["序号"] = pd.to_numeric(temp_df["序号"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") return temp_df def stock_hk_hist( symbol: str = "40224", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日行情 http://quote.eastmoney.com/hk/08367.html :param symbol: 港股-每日行情 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://33.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"116.{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) if temp_df.empty: return pd.DataFrame() temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] if temp_df.empty: return pd.DataFrame() temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df def stock_hk_hist_min_em( symbol: str = "01611", period: str = "1", adjust: str = "", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日分时行情 http://quote.eastmoney.com/hk/00948.html :param symbol: 股票代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame """ adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"116.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "klt": period, "fqt": adjust_map[adjust], "secid": f"116.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df def stock_us_spot_em() -> pd.DataFrame: """ 东方财富-美股-实时行情 http://quote.eastmoney.com/center/gridlist.html#us_stocks :return: 美股-实时行情; 延迟 15 min :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:105,m:106,m:107", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "_", "_", "_", "简称", "编码", "名称", "最高价", "最低价", "开盘价", "昨收价", "总市值", "_", "_", "_", "_", "_", "_", "_", "_", "市盈率", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df["代码"] = temp_df["编码"].astype(str) + "." + temp_df["简称"] temp_df = temp_df[ [ "序号", "名称", "最新价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨收价", "总市值", "市盈率", "成交量", "成交额", "振幅", "换手率", "代码", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce") temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce") temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce") temp_df["昨收价"] = pd.to_numeric(temp_df["昨收价"], errors="coerce") temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") return temp_df def stock_us_hist( symbol: str = "105.MSFT", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情-美股-每日行情 http://quote.eastmoney.com/us/ENTX.html#fullScreenChart :param symbol: 股票代码; 此股票代码需要通过调用 ak.stock_us_spot_em() 的 `代码` 字段获取 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} url = "http://63.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_
numeric(temp_df["成交量"])
pandas.to_numeric
import pandas as pd import numpy as np from sklearn import preprocessing from tqdm import tqdm from scipy.stats import t def beta_ridge(Y, X, lamb): """ Compute ridge coeffs Parameters ---------- Y : Nx1 Matrix X : Matrix (with intercept column) lamb : Lambda value to use for L2 Returns ------- coefficients : Vector of ridge coefficients Note ---- For simplicity we use matrix inverses, which are not computationally efficient at O(p^3). SVD would be a more efficient approach. """ Z = X.iloc[:, 1:] Z = pd.DataFrame(preprocessing.scale(Z)) Y_c = Y - np.mean(Y) left = np.linalg.inv(Z.transpose().dot(Z) + lamb * np.identity(Z.shape[1])) right = Z.transpose().dot(Y_c) coefficients = left.dot(right) return(coefficients) def sse(Y, X, betas): ''' Get sum of square errors Parameters ---------- Y : Nx1 Matrix X : Matrix betas : Vector of estimated coefficients Returns ------- sse : Sum of square errors ''' e = betas.dot(X.values.T)-Y sse = np.sum(e**2) return sse def ridge_fit(Y, X, lamb, n_iter=100, progress_disable = False): """ Estimate ridge standard errors through bootstrapping Parameters ---------- Y : Nx1 Matrix X : Matrix lamb : Lambda value to use for L2 n_ter : Integer of number of iterations for bootstrapping progress_disable : Disable option for tqdm progress bar Returns ------- results : Results wrapper with ridge results coefficients = ridge coefficients from full sample bootstrap_coeffs = ridge coefficients from bootstrapping procedure bootstrap_coeffs_var = Coefficient variance from bootstrapping bootstrap_coeffs_SE = Coefficient standard errors from bootstrapping bootstrap_coeffs_t = T-stats (from bootstrapping SE) bootstrap_coeffs_p = P-values """ nobs = np.shape(X)[0] K = np.shape(X)[1] - 1 beta_hat_boots = np.zeros((n_iter, K)) for b_iter in tqdm(range(0, n_iter), disable=progress_disable): b_index = np.random.choice(range(0, nobs), nobs, replace = True) _Y, _X = pd.DataFrame(Y).iloc[b_index],
pd.DataFrame(X)
pandas.DataFrame
#!/usr/bin/env python # Copyright (c) 2020 IBM Corp. - <NAME> <<EMAIL>> # Based on: masked_language_modeling.py # https://keras.io/examples/nlp/masked_language_modeling/ # Fixed spelling errors in messages and comments. # Preparation on dyce2: # virtualenv --system-site-packages tf-nightly # source tf-nightly/bin/activate # pip install tf-nightly # pip install dataclasses # pip install pandas # pip install pydot # Results in TF 2.5.0 using the available CUDA 11 import os #0 = all messages are logged (default behavior) #1 = INFO messages are not printed #2 = INFO and WARNING messages are not printed #3 = INFO, WARNING, and ERROR messages are not printed os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental.preprocessing import TextVectorization from dataclasses import dataclass import pandas as pd import numpy as np import glob import re from pprint import pprint @dataclass class Config: MAX_LEN = 256 # length of each input sample in tokens BATCH_SIZE = 32 # batch size LR = 0.001 # learning rate VOCAB_SIZE = 512 # max number of words in vocabulary EMBED_DIM = 128 # word embedding vector size NUM_HEAD = 8 # used in bert model FF_DIM = 128 # feedforward; used in bert model NUM_LAYERS = 1 # number of BERT module layers config = Config() # Every sample file contains a single line of text. # Returns these lines as a list of strings. def get_text_list_from_files(files): text_list = [] for name in files: with open(name) as f: for line in f: text_list.append(line) return text_list # Compose the full path names to the token files. # Creates and returns a dataframe. # Frame has single key "tokens". def get_data_from_text_files(folder_name): files = glob.glob(folder_name + "/*.toks") texts = get_text_list_from_files(files) df =
pd.DataFrame({"tokens": texts})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[24]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle import pygame pygame.init() # In[25]: WIDTH = 1200 HEIGHT = 600 THICKNESS = 30 BALL_RADIUS = 20 PAD_WIDTH = 30 PAD_HEIGHT = 120 VELOCITY = 1 FRAMERATE = 150 BUFFER = 5 AI = True bgColor = pygame.Color('white') wallColor = pygame.Color('gray') padColor = pygame.Color('orange') ballColor = pygame.Color('red') # In[26]: screen = pygame.display.set_mode((WIDTH, HEIGHT)) screen.fill(bgColor) # In[27]: class Ball: def __init__(self, x, y, vx, vy): self.x = x self.y = y self.vx = vx self.vy = vy def show(self, color): global screen pygame.draw.circle(screen, color, (self.x, self.y), BALL_RADIUS) def level(self, velocity): self.vx = velocity if self.vx > 0 else -velocity self.vy = velocity if self.vy > 0 else -velocity def update(self): global HEIGHT, THICKNESS, BALL_RADIUS, PAD_WIDTH, PAD_WIDTH, bgColor, ballColor, padObject newX = self.x + self.vx newY = self.y + self.vy if newX < (THICKNESS + BALL_RADIUS) or (newX > (WIDTH-PAD_WIDTH-BUFFER-BALL_RADIUS) and not (newX >= WIDTH-BUFFER-PAD_WIDTH//2) and (((self.y+BALL_RADIUS) >= padObject.y) and ((self.y-BALL_RADIUS) <= (padObject.y + PAD_HEIGHT)))): self.vx = -self.vx elif newY < (THICKNESS + BALL_RADIUS) or newY > (HEIGHT-BALL_RADIUS-THICKNESS): self.vy = - self.vy else: self.show(bgColor) self.x = self.x + self.vx self.y = self.y + self.vy self.show(ballColor) class Pad: def __init__(self, y): self.y = y def show(self, color): global screen, PAD_HEIGHT, PAD_WIDTH, BUFFER pygame.draw.rect(screen, color, pygame.Rect((WIDTH-PAD_WIDTH-BUFFER), self.y, PAD_WIDTH, PAD_HEIGHT)) def update(self, position=None): global HEIGHT, THICKNESS, padColor, PAD_HEIGHT if position == None: newY = pygame.mouse.get_pos()[1] else: newY = position if newY > THICKNESS and newY < (HEIGHT-THICKNESS-PAD_HEIGHT): self.show(bgColor) self.y = newY self.show(padColor) # In[28]: pygame.draw.rect(screen, wallColor, pygame.Rect(0, 0, WIDTH, THICKNESS)) pygame.draw.rect(screen, wallColor, pygame.Rect(0, THICKNESS, THICKNESS, (HEIGHT-THICKNESS))) pygame.draw.rect(screen, wallColor, pygame.Rect(0, (HEIGHT-THICKNESS), WIDTH, THICKNESS)) init_x = np.random.choice(range((0+THICKNESS+BALL_RADIUS), ((WIDTH-THICKNESS-BALL_RADIUS)+1))) init_y = np.random.choice(range((0+THICKNESS+BALL_RADIUS), ((HEIGHT-THICKNESS-BALL_RADIUS)+1))) ballObject = Ball(init_x, init_y, -VELOCITY, -VELOCITY) ballObject.show(ballColor) padObject = Pad(HEIGHT//2) padObject.show(padColor) # In[29]: if AI: pongAI = pickle.load(open('pong_AI.sav', 'rb')) pongAI features = ['x', 'y', 'vx', 'vy'] target = 'pad_y' # In[30]: if not AI: logger_df = pd.DataFrame(columns=['x', 'y', 'vx', 'vy', 'pad_y']) game_c = 0 clock = pygame.time.Clock() while True: event = pygame.event.poll() if event.type == pygame.QUIT: pygame.quit() break game_c += 1 _ = clock.tick(FRAMERATE) pygame.display.flip() ballObject.update() if AI: padObject.update(pongAI.predict([[ballObject.x, ballObject.y, ballObject.vx, ballObject.vy]])) else: padObject.update(None) logger_df = logger_df.append({ 'x': ballObject.x, 'y': ballObject.y, 'vx': ballObject.vx, 'vy': ballObject.vy, 'pad_y': padObject.y }, ignore_index=True, sort=False) if game_c%(VELOCITY*5000) == 0: VELOCITY += 1 ballObject.level(VELOCITY) if not AI: print(logger_df.shape) print(logger_df.head()) # In[ ]: if not AI: logger_df.to_parquet('training_data.parquet') # In[ ]: from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score # In[ ]: def mape(A, F): df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from sklearn.model_selection import train_test_split pd.options.mode.chained_assignment = None def data_preprocessing(): df =
pd.read_csv("data/SCADA_data.csv.gz")
pandas.read_csv
import numpy as np import numpy.linalg as linalg import pandas as pd def linear_regression(X, y): return linalg.inv(X.T.dot(X)).dot(X.T).dot(y) def go(): data = np.loadtxt('quasar_train.csv', delimiter=',') wavelengths = data[0] fluxes = data[1] ones = np.ones(fluxes.size) df_ones = pd.DataFrame(ones, columns=['xint']) df_wavelengths = pd.DataFrame(wavelengths, columns=['wavelength']) df_fluxes =
pd.DataFrame(fluxes, columns=['flux'])
pandas.DataFrame
from datetime import datetime import warnings import pytest import pandas as pd import pyodbc from mssql_dataframe.connect import connect from mssql_dataframe.core import custom_warnings, conversion, create pd.options.mode.chained_assignment = "raise" class package: def __init__(self, connection): self.connection = connection.connection self.create = create.create(self.connection) self.create_meta = create.create(self.connection, include_metadata_timestamps=True) @pytest.fixture(scope="module") def sql(): db = connect(database="tempdb", server="localhost") yield package(db) db.connection.close() @pytest.fixture(scope="module") def sample(): dataframe = pd.DataFrame( { "_varchar": [None, "b", "c", "4", "e"], "_tinyint": [None, 2, 3, 4, 5], "_smallint": [256, 2, 6, 4, 5], # tinyint max is 255 "_int": [32768, 2, 3, 4, 5], # smallint max is 32,767 "_bigint": [2147483648, 2, 3, None, 5], # int max size is 2,147,483,647 "_float": [1.111111, 2, 3, 4, 5], # any decicmal places "_time": [str(datetime.now().time())] * 5, # string in format HH:MM:SS.ffffff "_datetime": [datetime.now()] * 4 + [pd.NaT], "_empty": [None] * 5, } ) return dataframe def test_table_errors(sql): table_name = "##test_table_column" with pytest.raises(KeyError): columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, primary_key_column="Z") def test_table_column(sql): table_name = "##test_table_column" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "A") assert all(schema["sql_type"] == "varchar") assert all(schema["is_nullable"] == True) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "string") assert all(schema["odbc_type"] == pyodbc.SQL_VARCHAR) assert all(schema["odbc_size"] == 0) assert all(schema["odbc_precision"] == 0) def test_table_pk(sql): table_name = "##test_table_pk" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "FLOAT"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, pd.NA, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_composite_pk(sql): table_name = "##test_table_composite_pk" columns = {"A": "TINYINT", "B": "VARCHAR(5)", "C": "FLOAT"} primary_key_column = ["A", "B"] not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, 2, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, False, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_pk_input_error(sql): with pytest.raises(ValueError): table_name = "##test_table_pk_input_error" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "DECIMAL(5,2)"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, sql_primary_key=True, ) def test_table_sqlpk(sql): table_name = "##test_table_sqlpk" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, sql_primary_key=True) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 2 assert all(schema.index == ["_pk", "A"]) assert all(schema["sql_type"] == ["int identity", "varchar"]) assert all(schema["is_nullable"] == [False, True]) assert all(schema["ss_is_identity"] == [True, False]) assert schema["pk_seq"].equals( pd.Series([1, pd.NA], index=["_pk", "A"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True]) assert all(schema["pandas_type"] == ["Int32", "string"]) assert all(schema["odbc_type"] == [pyodbc.SQL_INTEGER, pyodbc.SQL_VARCHAR]) assert all(schema["odbc_size"] == [4, 0]) assert all(schema["odbc_precision"] == [0, 0]) def test_table_from_dataframe_simple(sql): table_name = "##test_table_from_dataframe_simple" dataframe = pd.DataFrame({"ColumnA": [1]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "ColumnA") assert all(schema["sql_type"] == "tinyint") assert all(schema["is_nullable"] == False) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "UInt8") assert all(schema["odbc_type"] == pyodbc.SQL_TINYINT) assert all(schema["odbc_size"] == 1) assert all(schema["odbc_precision"] == 0) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result.equals(dataframe) def test_table_from_dataframe_datestr(sql): table_name = "##test_table_from_dataframe_datestr" dataframe = pd.DataFrame({"ColumnA": ["06/22/2021"]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create_meta.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame({ 'column_name': pd.Series(['ColumnA','_time_insert']), 'sql_type': pd.Series(['date','datetime2'], dtype='string'), 'is_nullable': pd.Series([False, True]), 'ss_is_identity': pd.Series([False, False]), 'pk_seq': pd.Series([None, None], dtype='Int64'), 'pk_name': pd.Series([None, None], dtype='string'), 'pandas_type':
pd.Series(['datetime64[ns]', 'datetime64[ns]'], dtype='string')
pandas.Series
import torch import pandas as pd from Util import data_split, data_split_val import spacy import numpy as np import pickle # nlp = spacy.load('en_core_web_sm') import json import dateparser # from bson.int64 import Int64 from datetime import datetime from sklearn.feature_extraction.text import CountVectorizer from scipy.sparse.linalg import svds import os import nltk from Util import data_preprocess import json from transformers import RobertaTokenizer domain_map = {"gossip":0,"politi":1, "health_deterrent":2} def flip_label(labels, p=0.4): mask = np.random.binomial(1, p, len(labels)) flip_label = [] for index, i in enumerate(mask): # keep the label if i == 0: flip_label.append(labels[index]) else: flip_label.append(1-labels[index]) return flip_label class SimpleTextDataset(torch.utils.data.Dataset): def __init__(self, hparams, type, is_tgt, tokenizer): self.hparams = hparams if hparams.clf_method == 'defend': file_name = "./data/simple_text_defend.torch" else: file_name = "./data/simple_text.torch" # file_name = "/home/yli29/FakeDetectionBaseline/data/simple_text.torch" if os.path.exists(file_name): data = torch.load(file_name) for key, value in data.items(): setattr(self, key, json.loads(value)) else: data = pd.read_csv(hparams.data_path) if hparams.clf_method == 'defend': news_content_list = data['content'].tolist() news_sentences = [[j.text for j in nlp(i).sents] for i in news_content_list] # news_sentences = [[j for j in i if len(j) > 10] for i in news_sentences] # truncate the senteces sentence_count = hparams.sentence_count news_sentences = [i[:sentence_count] + (sentence_count - len(i)) * ["<pad>"] for i in news_sentences] data_sentences = [[tokenizer.encode(j, max_length=hparams.max_sentence_length, truncation=True, pad_to_max_length=True ) for j in i] for i in news_sentences] data['encode_text'] = data_sentences else: data['encode_text'] = data['content'].apply(lambda x: tokenizer.encode(x, max_length=hparams.max_length, truncation=True, pad_to_max_length=True, )) self.data = data.to_json(orient="records") torch.save({"data":self.data }, file_name) # select specific domain dataset self.data = [{**self.data[i], "index":i} for i in range(len(self.data))] self.random_seed = hparams.random_seed src_domain = hparams.src_domain tgt_domain = hparams.tgt_domain is_not_in = hparams.is_not_in train_src_data, train_src_label, _, _, val_src_data, val_src_label = \ self.get_domain_data(self.data, src_domain, self.random_seed, is_not_in) train_tgt_data, train_tgt_label, test_tgt_data, test_tgt_label, val_tgt_data, val_tgt_label = \ self.get_domain_data(self.data, tgt_domain, random_seed=self.random_seed, is_not_in=False) # print("Attention We are using validation data as the training dataset") # test_tgt_data = train_src_data # test_tgt_label = train_src_label # train_src_data = val_src_data # train_src_label = val_src_label if src_domain != tgt_domain and type == 'train' and hparams.is_few_shot: train_data_tgt, train_label_tgt, _, _ = self.get_domain_data(self.data, tgt_domain, random_seed=self.random_seed) hparams.tgt_train_size = float(hparams.tgt_train_size) max_len = hparams.tgt_train_size if hparams.tgt_train_size > 1 else int(hparams.tgt_train_size * len(train_data_tgt)) max_len = int(max_len) train_src_data += train_data_tgt[:max_len] train_src_label += train_label_tgt[:max_len] elif src_domain == tgt_domain and type == 'train' and hparams.is_few_shot: max_len = hparams.tgt_train_size if hparams.tgt_train_size > 1 else int( hparams.tgt_train_size * len(train_src_data)) max_len = int(max_len) train_src_data = train_src_data[:max_len] train_src_label = train_src_label[:max_len] if type == "train": self.features = [i[0] for i in train_src_data] self.labels = train_src_label return_element, train_tgt_data_notin = self.get_weak_labels(train_tgt_data) if hparams.is_flip_label: if hparams.is_only_weak: self.labels = return_element['weak_label'].values.tolist() self.features = return_element['encoded_text'].values.tolist() else: self.labels += return_element['weak_label'].values.tolist() self.features += return_element['encoded_text'].values.tolist() if self.hparams.is_get_clean_data: select_data = train_tgt_data_notin.iloc[:self.hparams.clean_count, :] new_index = select_data['index_new'] select_tgt_features = select_data[['encoded_text']].values.tolist() select_tgt_labels = [train_tgt_label[i] for i in new_index] assert len(select_tgt_labels) == self.hparams.clean_count assert len(select_tgt_features) == self.hparams.clean_count self.labels += select_tgt_labels self.features += [i[0] for i in select_tgt_features] elif type == 'test': self.features = [i[0] for i in test_tgt_data] self.labels = test_tgt_label else: self.features = [i[0] for i in val_tgt_data] self.labels = val_tgt_label # def get_weak_labels(self, tgt_train_data): # # data = pd.read_csv(self.hparams.weak_labels_path, header=None) # data = data.rename(columns={0: "index", 1: 'weak_label'}) # tgt_train_data = pd.DataFrame(tgt_train_data, columns=['encoded_text', 'index']) # tgt_train_data['index_new'] = list(range(len(tgt_train_data))) # tgt_train_data_in = tgt_train_data.join(data.set_index('index'), how='inner', on='index') # tgt_train_data_notin = tgt_train_data[ # tgt_train_data['index'].apply(lambda x: x not in set(data['index'].values.tolist()))] # print("There are {} weak samples".format(len(tgt_train_data))) # tgt_train_data_in['weak_label'] = tgt_train_data_in['weak_label'].apply(lambda x: int(x)) # tgt_train_data_in = tgt_train_data_in[['encoded_text', 'weak_label']] # # return tgt_train_data_in, tgt_train_data_notin def get_weak_label_v2(self, tgt_train_data): data = pd.read_csv(self.hparams.weak_labels_path, header=None) data = data.loc[tgt_train_data['index'],:] weak_labels = data[self.hparams.weak_fn].tolist() zero_index = set(data.iloc[list(np.argsort(weak_labels)[:self.hparams.weak_label_count]),'index'].tolist()) one_index = set(data.iloc[list(np.argsort(weak_labels)[-self.hparams.weak_label_count:]),'index'].tolist()) tgt_train_data['index_new'] = list(range(len(tgt_train_data))) def helper_fn(x): if x in zero_index: return 0 elif x in one_index: return 1 else: return np.nan tgt_train_data['weak_label'] = tgt_train_data['index'].apply(lambda x: helper_fn(x)) tgt_train_data_notin = tgt_train_data[tgt_train_data['weak_label'].isna()] tgt_train_data_in = tgt_train_data[tgt_train_data['weak_label'].notna()] tgt_train_data_in = tgt_train_data_in[['encoded_text', 'weak_label', "domain"]] return tgt_train_data_in, tgt_train_data_notin def get_domain_data(self, self_data, domain, random_seed, is_not_in=False): data = [] if is_not_in is False and "," not in domain: for i in self_data: if domain in i['domain']: data.append(i) # balance the dataset one = [(i['encode_text'], i['index']) for i in data if i['label'] == 1] zero = [(i['encode_text'], i['index']) for i in data if i['label'] == 0] min_len = min(len(one), len(zero)) one = one[:min_len] zero = zero[:min_len] data = one + zero # train_X, train_Y, test_X, test_Y, val_X, val_Y train_data, train_label, test_data, test_label, val_data, val_label = data_split_val(data, [1] * min_len + [ 0] * min_len) return train_data, train_label, test_data, test_label, val_data, val_label else: train_data_list = [] train_label_list = [] test_data_list = [] test_label_list = [] val_data_list = [] val_label_list = [] if is_not_in: domains = list(domain_map.keys()) domains = [i for i in domains if domain not in i] else: domains = domain.split(",") for domain in domains: train_data, train_label, test_data, test_label, val_data, val_label = self.get_domain_data(self_data, domain, random_seed=random_seed) print("Domain: {} Train Size: {} Test Size {}".format(domain, len(train_data), len(test_data))) train_data_list += train_data train_label_list += train_label test_data_list += test_data test_label_list += test_label val_data_list += val_data val_label_list += val_label return train_data_list, train_label_list, test_data_list, test_label_list, val_data_list, val_label_list def __len__(self): return len(self.labels) def __getitem__(self, item): return torch.tensor(self.labels[item], dtype=torch.long), torch.tensor(self.features[item], dtype=torch.long) class AdvTextDataset(torch.utils.data.Dataset): def __init__(self, hparams, type, tokenizer, weak_flag=False): super(AdvTextDataset, self).__init__() self.hparams = hparams file_name = "./data/simple_text_roberta.torch" if os.path.exists(file_name): data = torch.load(file_name) for key, value in data.items(): setattr(self, key, json.loads(value)) else: if tokenizer is None: tokenizer = RobertaTokenizer.from_pretrained("roberta-base") data = pd.read_csv(hparams.data_path) data['encode_text'] = data['content'].apply(lambda x: tokenizer.encode(x, max_length=hparams.max_length, truncation=True, pad_to_max_length=True, )) data['index'] = data.index data = data.to_json(orient="records") torch.save({"data": data}, file_name) self.data = json.loads(data) self.random_seed = hparams.random_seed # select specific domain dataset src_domain = hparams.src_domain if "," in src_domain: src_domain = src_domain.split(",") tgt_domain = hparams.tgt_domain is_not_in = hparams.is_not_in train_src_data, train_src_label, test_src_data, test_src_label, val_src_data, val_src_label = self.get_domain_data(self.data, src_domain, self.random_seed, is_not_in) train_tgt_data, train_tgt_label, test_tgt_data, test_tgt_label, val_tgt_data, val_tgt_label = self.get_domain_data(self.data, tgt_domain, random_seed=self.random_seed) self.p_y = self.label_probability(train_tgt_label=torch.tensor(train_tgt_label)) debug = False if type == "train": src_features = [(i[0], i[2]) for i in train_src_data] src_labels = train_src_label tgt_features = [] tgt_labels = [] tgt_no_labels = [] tgt_no_features = [] train_tgt_data_in, train_tgt_data_notin = self.get_weak_label_v2(train_tgt_data) if self.hparams.is_get_clean_data: new_index = train_tgt_data_notin['index_new'].values.tolist() zero_index = [i for i in new_index if train_tgt_label[i] == 0][:int(self.hparams.clean_count / 2)] one_index = [i for i in new_index if train_tgt_label[i] == 1][:int(self.hparams.clean_count / 2)] index = zero_index + one_index train_tgt_data =
pd.DataFrame(train_tgt_data, columns=['encoded_text', 'index', 'domain'])
pandas.DataFrame
import streamlit as st import pandas as pd import altair as alt def clean_summary_data(file_str:str, name:str): input_df = pd.read_csv( file_str, names=['1', '2','3','type','ministry','source','amount'], thousands=',') input_df[['amount']] = input_df[['amount']].fillna(value='EMPTY') input_df = (input_df.fillna(method='ffill') # populate columns with previous value .drop(['1','2'], axis=1) # drop unused columns .drop([0,1,2,3,]) # drop first ununsed rows ) # remove other income / expenses input_df.drop(input_df[input_df['3'] == 'Other Expense'].index, inplace = True) input_df.drop(input_df[input_df['3'] == 'Other Income'].index, inplace = True) input_df.drop(input_df[input_df['3'] == 'Total Other Income'].index, inplace = True) input_df.drop(input_df[input_df['3'] == 'Total Other Expense'].index, inplace = True) input_df = input_df.drop(['3'], axis=1) # exclude Transfer from Invested Funds # input_df.drop(input_df[input_df['source'] == 'Transfer from Invested Funds'].index, inplace = True) # input_df.drop(input_df[input_df['source'] == 'Endowment Fund earnings'].index, inplace = True) # input_df.drop(input_df[input_df['source'] == 'Endowment Fund earnings'].index, inplace = True) # remove summary income fields # input_df.drop(input_df[input_df['ministry'] == 'Transfer from Invested Funds'].index, inplace = True) input_df.drop(input_df[input_df['ministry'].str.startswith('Total')].index, inplace = True) input_df.drop(input_df[input_df['type'].str.startswith('Total')].index, inplace = True) input_df.drop(input_df[input_df['amount'] == 'EMPTY'].index, inplace = True) # set all amount types to float input_df['amount'] = input_df['amount'].astype(float) # input_df = input_df.set_index(['type','ministry', 'source']) input_df.set_index(['type','ministry','source']) input_df = input_df.rename(columns={'amount': name}) # Caputre Guest Pastors guest_pastors_loc = input_df.index[input_df['ministry'] == 'Guest Pastors'].tolist() if guest_pastors_loc: input_df.loc[guest_pastors_loc[0], 'source'] = 'Guest Pastors' input_df.loc[guest_pastors_loc[0], 'ministry'] = 'Pastoral Ministry' # Capture Severance Pay severance_loc = input_df.index[input_df['ministry'] == 'Severance Pay'].tolist() if severance_loc: input_df.loc[severance_loc[0], 'source'] = 'Severance Pay' input_df.loc[severance_loc[0], 'ministry'] = 'Pastoral Ministry' # print(input_df) return input_df # @st.cache def get_UN_data(): data_2018 = clean_summary_data('./data/2018-summary.csv', '2018') data_2019 = clean_summary_data('./data/2019-summary.csv', '2019') data_2020 = clean_summary_data('./data/2020-summary.csv', '2020') # data_2018.join(data_2019, lsuffix='2018') # data_2018.join(data_2019, lsuffix='2018') data =
pd.merge(data_2018, data_2019, how='outer')
pandas.merge
#!/usr/bin/env python3 import argparse import numpy as np import matplotlib.pyplot as plt import pandas from matplotlib.pyplot import cm import os import seaborn as sns from collections import defaultdict SEQUENCE_IDENTITY_IDX = 13 ALIGNMENT_IDENTITY_IDX = 14 SAMPLE = "Sample" SEQUENCE_IDENTITY = "Sequence Identity" ALIGNMENT_IDENTITY = "Alignment Identity" READ_LENGTH_GRANULARITY = 200 KB = 1000 GB = 1000000000 PLOT_TO_PDF=True if PLOT_TO_PDF: plt.style.use('ggplot') text_fontsize = 8 # plt.rcParams['ytick.labelsize']=text_fontsize+4 plt.rcParams.update({'font.size': text_fontsize}) plt.rcParams['pdf.fonttype'] = 42 plt.switch_backend('agg') def parse_args(args = None): parser = argparse.ArgumentParser("Plots information from margin's calcLocalPhasingCorrectness ") parser.add_argument('--input', '-i', dest='input_csvs', default=None, required=True, type=str, action='append', help='Input read identity CSV files (can list multiple)') parser.add_argument('--identifier', '-I', dest='identifiers', default=None, required=False, type=str, action='append', help='Input identifiers (can list multiple)') parser.add_argument('--figure_name', '-f', dest='figure_name', default="output", required=False, type=str, help='Figure name') return parser.parse_args() if args is None else parser.parse_args(args) def main(): args = parse_args() id_list = [] all_identities = list() max_read_length = 0 # for read length plot fig, ax = plt.subplots(figsize=(6, 6)) colors = iter(cm.rainbow(np.linspace(0, 1, len(args.input_csvs)))) for i, csv in enumerate(args.input_csvs): id = csv if args.identifiers is not None and i < len(args.identifiers): id = args.identifiers[i] id_list.append(id) print("Reading {} with ID {}".format(csv, id)) with open(csv) as fin: read_lengths = defaultdict(lambda: 0) for j, line in enumerate(fin): line = line.strip().split(sep=",") if j == 0: if line[SEQUENCE_IDENTITY_IDX] != "sequence_identity" or line[ALIGNMENT_IDENTITY_IDX] != "alignment_identity": raise Exception("Unexpected identity headers: {}".format(line)) continue if len(line) in (0,2): continue seq_iden = float(line[SEQUENCE_IDENTITY_IDX]) aln_iden = float(line[ALIGNMENT_IDENTITY_IDX]) # save rows row = [id, seq_iden, aln_iden] all_identities.append(row) # row = ["All", seq_iden, aln_iden] # all_identities.append(row) # read length length = abs(int(line[4]) - int(line[3])) read_lengths[int(round(length/READ_LENGTH_GRANULARITY))] += 1 color = next(colors) total_coverage = 0 curr_len = max(read_lengths.keys()) max_read_length = max([curr_len, max_read_length]) first = True while curr_len > 0: current_len_sequence = curr_len * READ_LENGTH_GRANULARITY * read_lengths[curr_len] new_total_coverage = total_coverage + current_len_sequence if (first): ax.vlines(curr_len*READ_LENGTH_GRANULARITY/KB, total_coverage/GB, new_total_coverage/GB, alpha=.5, color=color, label=id) ax.hlines(new_total_coverage/GB, curr_len*READ_LENGTH_GRANULARITY/KB, (curr_len-1)*READ_LENGTH_GRANULARITY/KB, alpha=.5, color=color) first = False else: ax.vlines(curr_len*READ_LENGTH_GRANULARITY/KB, total_coverage/GB, new_total_coverage/GB, alpha=.5, color=color) ax.hlines(new_total_coverage/GB, curr_len*READ_LENGTH_GRANULARITY/KB, (curr_len-1)*READ_LENGTH_GRANULARITY/KB, alpha=.5, color=color) total_coverage = new_total_coverage curr_len -= 1 plt.legend() if max_read_length*READ_LENGTH_GRANULARITY > 100000: ax.set_xlim(0, 100) ax.set_ylabel("Total Aligned Sequence (Gb)") ax.set_xlabel("Read Length (kb)") if PLOT_TO_PDF: plt.savefig("{}.read_nx.pdf".format(args.figure_name), dpi=300) else: plt.savefig("{}.read_nx.png".format(args.figure_name)) plt.show() plt.close() print("Plotting identity violins") columns = [SAMPLE, SEQUENCE_IDENTITY, ALIGNMENT_IDENTITY] median = np.median(list(map(lambda x: x[2], all_identities))) mean = np.mean(list(map(lambda x: x[2], all_identities))) fig, ax = plt.subplots(figsize=(3*len(id_list), 6)) df =
pandas.DataFrame(all_identities, columns=columns)
pandas.DataFrame
from .mcmcposteriorsamplergamma import fit from scipy.stats import norm, gamma import pandas as pd import numpy as np import pickle as pk from ..shared_functions import * class mcmcsamplergamma: """ Class for the mcmc sampler of the deconvolution gaussian model """ def __init__(self, K=1, Kc=1, alpha = 1, alphac = 1): """ Constructor of the class Parameters ------------- K: int, Number of components of the noise distribution Kc: int, Number of components of the convolved distribution **kwargs: alpha: float, parameter to determine the hyperprior of the noise weight components alphac: float, parameter to determine the hyperprior of the target weight components """ self.K = K self.Kc = Kc self.alpha = alpha self.alphac = alphac self.fitted = False return def fit(self, dataNoise, dataConvolution, iterations = 1000, ignored_iterations = 1000, chains = 1, priors = None, precission = 0.99, method = "moments", bias = None, initial_conditions = [], show_progress = True, seed = 0): """ Fit the model to the posterior distribution Parameters ------------- dataNoise: list/npArray, 1D array witht he data of the noise dataConvolution: list/npArray, 1D array witht he data of the convolution iterations: int, number of samples to be drawn and stored for each chain during the sampling ignored_iterations: int, number of samples to be drawn and ignored for each chain during the sampling chains: int, number of independently initialised realisations of the markov chain priors: array, parameter of the prior gamma distribution acording to the definition of the wikipedia kconst: float, parameter k of the prior gamma distribution initialConditions: list, 1D array with all the parameters required to initialise manually all the components of all the chains the chains show_progress: bool, indicate if the method should show the progress in the generation of the new data seed: int, value to initialise the random generator and obtain reproducible results Returns --------------- Nothing """ self.data = dataNoise self.datac = dataConvolution self.iterations = iterations self.ignored_iterations = ignored_iterations self.chains = chains if bias == None: m = np.min([dataNoise,dataConvolution]) if m < 0: self.bias = m - 0.01 else: self.bias = 0 elif bias < np.min([dataNoise,dataConvolution]): self.bias = bias else: self.bias = np.min([dataNoise,dataConvolution])*0.9999 if priors==None: m = np.mean(dataNoise-self.bias) v = np.var(dataNoise-self.bias) self.priortheta_theta = 100*v/m self.priork_theta = 100*v/m self.priortheta_k = 1.1 self.priork_k = 1.1 m = np.mean(dataConvolution-self.bias) v = np.var(dataConvolution-self.bias) self.priortheta_thetac = 100*v/m self.priork_thetac = 100*v/m self.priortheta_kc = 1.1 self.priork_kc = 1.1 self.precission = precission self.method = method self.samples = np.array(fit(dataNoise-self.bias, dataConvolution-self.bias, self.ignored_iterations, self.iterations, self.chains, self.K, self.Kc, self.alpha, self.alphac, self.priortheta_k, self.priortheta_theta, self.priork_k, self.priork_theta, self.priortheta_kc, self.priortheta_thetac, self.priork_kc, self.priork_thetac, 0, self.precission, self.method, initial_conditions, show_progress, seed)) self.fitted = True return def save(self, name): """ Pickle save the model. Parameters ---------------- name: string, name in which to store the model Return: nothing """ if self.fitted: pickling_on = open(name+".pickle","wb") pk.dump({"K":self.K, "Kc":self.Kc, "alpha": self.alpha, "alphac": self.alphac, "iterations": self.iterations, "ignored_iterations": self.ignored_iterations, "priortheta_k": self.priortheta_k, "priortheta_theta": self.priortheta_theta, "priork_k": self.priork_k, "priork_theta": self.priork_theta, "priortheta_kc": self.priortheta_kc, "priortheta_thetac": self.priortheta_thetac, "priortheta_thetac": self.priortheta_thetac, "priork_thetac": self.priork_thetac, "bias":self.bias, "chains":self.chains, "samples":self.samples}, pickling_on) pickling_on.close() else: print("The model has not been fitted so there is nothing to save.") return def load(self, name): """ Pickle load the model. Parameters ---------------- name: string, name from which to recover the model Return: nothing """ pickle_off = open(name+".pickle","rb") aux = pk.load(pickle_off) pickle_off.close() self.K = aux["K"] self.Kc = aux ["Kc"] self.alpha = aux["alpha"] self.alphac = aux["alphac"] self.iterations = aux["iterations"] self.ignored_iterations = aux["ignored_iterations"] self.chains = aux["chains"] self.samples = aux["samples"] self.priortheta_k = aux["priortheta_k"] self.priortheta_theta = aux["priortheta_theta"] self.priork_k = aux["priork_k"] self.priork_theta = aux["priork_theta"] self.priortheta_kc = aux["priortheta_kc"] self.priortheta_thetac = aux["priortheta_thetac"] self.priortheta_thetac = aux["priortheta_thetac"] self.priork_thetac = aux["priork_thetac"] self.bias = aux["bias"] self.fitted = True return def sample_autofluorescence(self, size = 1, style = "full", pos = None): """ Generate samples from the fitted posterior distribution according to the noise distribution Parameters ------------- size: int, number of samples to be drawn Returns ------------- list: list, 1D array with *size* samples from the model """ if style=="full": return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias elif style=="single": if pos == None: pos = np.random.choice(range(len(self.samples))) return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias else: return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias # return np.array(sample_autofluorescence_gamma(self.samples,self.K,self.Kc,size)) def sample_deconvolution(self, size = 1, style = "full", pos = None): """ Generate samples from the fitted posterior distribution according to the deconvolved distribution Parameters ------------- size: int, number of samples to be drawn Returns ------------- list: list, 1D array with *size* samples from the model """ if style=="full": return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias elif style=="single": if pos == None: pos = np.random.choice(range(len(self.samples))) return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias else: return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias # return np.array(sample_deconvolution_gamma(self.samples,self.K,self.Kc,size)) def sample_convolution(self, size = 1, style = "full", pos = None): """ Generate samples from the fitted posterior distribution according to the convolved distribution Parameters ------------- size: int, number of samples to be drawn Returns ------------- list: list, 1D array with *size* samples from the model """ if style=="full": return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size, bias=0))+self.bias elif style=="single": if pos == None: pos = np.random.choice(range(len(self.samples))) return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias else: return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size=size,pos=pos, bias=0))+self.bias # return np.array(sample_convolution_gamma(self.samples,self.K,self.Kc,size)) def score_autofluorescence(self, x, percentiles = [5, 95], size = 100): """ Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution Parameters ------------- x: list/array, positions where to evaluate the distribution percentiles: list/array, percentiles to be evaluated size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability Returns ------------- list: list, 2D array with the mean and all the percentile evaluations at all points in x """ yT = [] for l in range(size): i = np.random.choice(self.iterations) y = np.zeros(len(x)) for k in range(self.K): thetastar = self.samples[i,self.K+k] kconststar = self.samples[i,2*self.K+k] y += self.samples[i,k]*gamma.pdf(x,a=kconststar,scale=thetastar) yT.append(y) return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) def score_deconvolution(self, x, percentiles = [5, 95], size = 100): """ Evaluate the mean and percentiles of the the pdf at certain position acording to the deconvolved distribution Parameters ------------- x: list/array, positions where to evaluate the distribution percentiles: list/array, percentiles to be evaluated size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability Returns ------------- list: list, 2D array with the mean and all the percentile evaluations at all points in x """ yT = [] for l in range(size): i = np.random.choice(self.iterations) y = np.zeros(len(x)) for j in range(self.Kc): thetastar = self.samples[i,3*self.K+self.Kc+j] kconststar = self.samples[i,3*self.K+2*self.Kc+j] y += self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar) yT.append(y) return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) def score_convolution(self, x, percentiles = [5, 95], size = 100): """ Evaluate the mean and percentiles of the the pdf at certain position acording to the convolved distribution Parameters ------------- x: list/array, positions where to evaluate the distribution percentiles: list/array, percentiles to be evaluated size: int, number of samples to draw from the posterior to make the statistics, bigger numbers give more stability Returns ------------- list: list, 2D array with the mean and all the percentile evaluations at all points in x """ yT = [] for l in range(size): i = np.random.choice(self.iterations) y = np.zeros(len(x)) for j in range(self.Kc): for k in range(self.K): theta1 = self.samples[i,self.K+k] theta2 = self.samples[i,3*self.K+self.Kc+j] k1 = self.samples[i,2*self.K+k] k2 = self.samples[i,3*self.K+2*self.Kc+j] mu = theta1*k1+theta2*k2 s = theta1*theta1*k1+theta2*theta2*k2 thetastar = s/mu kconststar = mu*mu/s y += self.samples[i,k]*self.samples[i,3*self.K+j]*gamma.pdf(x,a=kconststar,scale=thetastar) yT.append(y) return np.mean(yT,axis=0),np.percentile(yT,percentiles,axis=0) def sampler_statistics(self, sort="weight"): """ Show statistics of correct mixing of the mcmc sampler Args: sort: ["weight", "none", "means"], method for sorting the samples from the different chains Returns ------------- DataFrame: DataFrame the mean, std, percentiles, mixing ratio(rhat) and effective number of samples for each parameter of the model """ self.sampler_statistics =
pd.DataFrame(columns=["Mean","Std","5%","50%","95%","Rhat","Neff"])
pandas.DataFrame
import tkinter as tk import item_database import transactions_database import all_transactions_database from tkintertable import TableCanvas, TableModel import datetime import pandas as pd from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure from decimal import * import win32print import win32api import win32con import os.path import itertools import pygsheets # COLORS BACKGROUND_FRAME_COLOR = '#42423f' BUTTON_AND_LABEL_COLOR = '#adada6' BACK_BUTTON_COLOR = '#d93027' ENTRY_COLOR = '#d9d1d0' # Return & Discount window TK_INPUT_WIN_H = 250 TK_INPUT_WIN_W = 250 TK_INPUT_BG = '#575353' FG_LABELS_COLOR = '#ffffff' ONLINE_IND_COLOR = '#5dc77a' OFFLINE_IND_COLOR = '#ed4c40' YES_BTN = '#82ba6e' NO_BTN = '#b52438' # font FONT = ('Courier', 15, 'bold') # --------------- PRELIMINARY SETUP --------------- # # globals global PRINTER_NAME, G_INV_SH_NAME, G_TRAN_SH_NAME, GC, SH, WKS, SH_T, WKS_T, COLUMNS_GOOGLE_INVENTORY, ALL_TRANSACTIONS global INVENTORY_DF, ON_OFF_CYC # read inputs text file input_file = open('inputs.txt', 'r') for idx, line in enumerate(input_file.readlines()): value = line.split("=")[1] if idx == 0: PRINTER_NAME = value[2:-2] elif idx == 1: G_INV_SH_NAME = value[2:-2] elif idx == 2: G_TRAN_SH_NAME = value[2:-1] else: COLUMNS_GOOGLE_INVENTORY = value.split('[')[1].split(']')[0].split(', ') # authorize google sheets if os.path.isfile('creds.json'): try: GC = pygsheets.authorize(service_file='creds.json') except Exception as e: print("Something went Wrong while getting authorizing credentials file:", str(e)) if len(G_INV_SH_NAME) > 0: try: print("Trying to open the google inventory file...") SH = GC.open(G_INV_SH_NAME) WKS = SH[0] print("Successfully opened the google inventory file!") except Exception as e: print("Something went wrong while opening the google inventory file:", str(e)) if len(G_TRAN_SH_NAME) > 0: try: print("Trying to open the google transactions file...") SH_T = GC.open(G_TRAN_SH_NAME) WKS_T = SH_T[0] print("Successfully opened the google transactions file!") except Exception as e: print("Something went wrong while opening the google transactions file:", str(e)) else: print("You don't yet have a google sheets API set up. Follow this link to set one up:\n" "https://developers.google.com/sheets/api/quickstart/python") """ Checking whether inventory & transactions excel files exist already, if not, then create it. Either way, store the data into data frames. """ if not os.path.isfile('Transactions.xlsx'): header_df = pd.DataFrame({'Name': [], 'S.Price': [], 'Date': [], 'P.Type': [], 'Total': []}) header_df.to_excel('Transactions.xlsx', index=False) ALL_TRANSACTIONS = pd.read_excel('Transactions.xlsx', ignore_index=True) """ Clean up the database for all transactions, because we want to give priority to changes done in the transactions excel file. """ all_transactions_database.deleteData() # Next, add the data in transactions file into the database for idx, name in enumerate(list(ALL_TRANSACTIONS['Name'])): all_transactions_database.addData(name, str(ALL_TRANSACTIONS['S.Price'][idx]), str(ALL_TRANSACTIONS['Date'][idx]), str(ALL_TRANSACTIONS['P.Type'][idx]), str(ALL_TRANSACTIONS['Total'][idx])) # Repeating above for Inventory excel file if not os.path.isfile('Inventory.xlsx'): header_df = pd.DataFrame({'Name': [], 'Barcode': [], 'S.Price': [], 'P.Price': [], 'Quantity': [], 'Online_Price': [], 'Tax': []}) header_df.to_excel('Inventory.xlsx', index=False) INVENTORY_DF = pd.read_excel('Inventory.xlsx', ignore_index=True) item_database.deleteData() for idx, name in enumerate(list(INVENTORY_DF['Name'])): item_database.addData(name, str(INVENTORY_DF['Barcode'][idx]), str(INVENTORY_DF['P.Price'][idx]), str(INVENTORY_DF['S.Price'][idx]), str(INVENTORY_DF['Quantity'][idx]), str(INVENTORY_DF['Online_Price'][idx]), str(INVENTORY_DF['Tax'][idx])) # Initializing cyclical iterator for online/offline label ON_OFF_CYC = itertools.cycle('of') # Open receipt.txt and empty it in case of future runs open('receipt.txt', 'w').write('') # Initializing a list which will encompass the items to which discount is added discount_added = [] # --------------- Helper Functions --------------- # def update_all_transaction_df(): """will take in any modifications done to the database, and also help add a tax column to the excel file.""" all_transactions_data = {"Name": [names[0] for names in all_transactions_database.getNames()], "S.Price": [s_prices[0] for s_prices in all_transactions_database.getSPrices()], "Date": [dates[0] for dates in all_transactions_database.getDates()], "P.Type": [p_types[0] for p_types in all_transactions_database.getPTypes()], "Total": [tots[0] for tots in all_transactions_database.getTotals()]} new_all_transactions_df = pd.DataFrame(data=all_transactions_data) new_all_transactions_df['Total'] = pd.to_numeric(new_all_transactions_df['Total'], errors='coerce') # adding taxes column to be added into the excel file taxes = [] for i in range(len(new_all_transactions_df)): if str(item_database.getTaxableFromNameAndSP(new_all_transactions_df['Name'][i], new_all_transactions_df['S.Price'][i])) == 'T': t = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) * Decimal(0.0825)).quantize(Decimal('.01')) taxes.append(t) elif str(new_all_transactions_df['Name'][i]) == 'Misc.': real_p = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) / Decimal(1.0825)).quantize(Decimal('.01')) t = Decimal(Decimal(new_all_transactions_df['S.Price'][i]) - real_p).quantize(Decimal('.01')) taxes.append(t) else: taxes.append(Decimal(0.0)) new_all_transactions_df['Tax'] = taxes new_all_transactions_df['Tax'] =
pd.to_numeric(new_all_transactions_df['Tax'])
pandas.to_numeric
import requests as r import zipfile import io import json import pandas as pd from datetime import date, datetime, timedelta from dateutil.parser import parse from QualtricsAPI.Setup import Credentials from QualtricsAPI.JSON import Parser from QualtricsAPI.Exceptions import Qualtrics500Error, Qualtrics503Error, Qualtrics504Error, Qualtrics400Error, Qualtrics401Error, Qualtrics403Error import warnings class Responses(Credentials): '''This is a child class to the credentials class that gathers the survey responses from Qualtrics surveys''' def __init__(self): return def setup_request(self, file_format='csv', survey=None): ''' This method sets up the request and handles the setup of the request for the survey.''' assert survey != None, 'Hey There! The survey parameter cannot be None. You need to pass in a survey ID as a string into the survey parameter.' assert isinstance(survey, str) == True, 'Hey There! The survey parameter must be of type string.' assert len(survey) == 18, 'Hey there! It looks like your survey ID is a the incorrect length. It needs to be 18 characters long. Please try again.' assert survey[:3] == 'SV_', 'Hey there! It looks like your survey ID is incorrect. You can find the survey ID on the Qualtrics site under your account settings. Please try again.' headers, url = self.header_setup(content_type=True, xm=False, path='responseexports/') payload = {"format": file_format, "surveyId": survey} request = r.request("POST", url, data=json.dumps(payload), headers=headers) response = request.json() try: progress_id = response['result']['id'] return progress_id, url, headers except: print(f"ServerError:\nError Code: {response['meta']['error']['errorCode']}\nError Message: {response['meta']['error']['errorMessage']}") def send_request(self, file_format='csv', survey=None): '''This method sends the request, and sets up the download request.''' file = None progress_id, url, headers = self.setup_request(file_format=file_format, survey=survey) check_progress = 0 progress_status = "in progress" while check_progress < 100 and (progress_status != "complete") and (file is None): check_url = url + progress_id check_response = r.request("GET", check_url, headers=headers) file = check_response.json()["result"]["file"] check_progress = check_response.json()["result"]["percentComplete"] download_url = url + progress_id + '/file' download_request = r.get(download_url, headers=headers, stream=True) return download_request def get_responses(self, survey=None): '''This function accepts the survey id, and returns the survey responses associated with that survey. :param survey: This is the id associated with a given survey. :return: a Pandas DataFrame ''' warnings.warn('This method is being actively depricated. Please migrate your code over to the new V3 method "Responses().get_survey_responses".', DeprecationWarning, stacklevel=2) download_request = self.send_request(file_format='csv', survey=survey) with zipfile.ZipFile(io.BytesIO(download_request.content)) as survey_zip: for s in survey_zip.infolist(): df = pd.read_csv(survey_zip.open(s.filename)) return df def get_questions(self, survey=None): '''This method returns a DataFrame containing the survey questions and the Question IDs. :param survey: This is the id associated with a given survey. :return: a Pandas DataFrame ''' warnings.warn('This method is being actively depricated. Please migrate your code over to the new V3 method "Responses().get_survey_questions".', DeprecationWarning, stacklevel=2) df = self.get_responses(survey=survey) questions = pd.DataFrame(df[:1].T) questions.columns = ['Questions'] return questions # Version 3 Code def setup_request_v3(self, survey=None, payload=None): ''' This method sets up the request and handles the setup of the request for the survey.''' assert survey != None, 'Hey There! The survey parameter cannot be None. You need to pass in a survey ID as a string into the survey parameter.' assert isinstance(survey, str) == True, 'Hey There! The survey parameter must be of type string.' assert len(survey) == 18, 'Hey there! It looks like your survey ID is a the incorrect length. It needs to be 18 characters long. Please try again.' assert survey[:3] == 'SV_', 'Hey there! It looks like your survey ID is incorrect. You can find the survey ID on the Qualtrics site under your account settings. Please try again.' headers, url = self.header_setup(content_type=True, xm=False, path=f'surveys/{survey}/export-responses/') request = r.request("POST", url, data=json.dumps(payload), headers=headers) response = request.json() try: if response['meta']['httpStatus'] == '500 - Internal Server Error': raise Qualtrics500Error('500 - Internal Server Error') elif response['meta']['httpStatus'] == '503 - Temporary Internal Server Error': raise Qualtrics503Error('503 - Temporary Internal Server Error') elif response['meta']['httpStatus'] == '504 - Gateway Timeout': raise Qualtrics504Error('504 - Gateway Timeout') elif response['meta']['httpStatus'] == '400 - Bad Request': raise Qualtrics400Error('Qualtrics Error\n(Http Error: 400 - Bad Request): There was something invalid about the request.') elif response['meta']['httpStatus'] == '401 - Unauthorized': raise Qualtrics401Error('Qualtrics Error\n(Http Error: 401 - Unauthorized): The Qualtrics API user could not be authenticated or does not have authorization to access the requested resource.') elif response['meta']['httpStatus'] == '403 - Forbidden': raise Qualtrics403Error('Qualtrics Error\n(Http Error: 403 - Forbidden): The Qualtrics API user was authenticated and made a valid request, but is not authorized to access this requested resource.') except (Qualtrics500Error, Qualtrics503Error, Qualtrics504Error, Qualtrics400Error, Qualtrics401Error, Qualtrics403Error) as e: return print(e) else: progress_id = response['result']['progressId'] return progress_id, url, headers # Version 3 Code def send_request_v3(self, survey=None, payload=None): '''This method sends the request, and sets up the download request.''' is_file = None progress_id, url, headers = self.setup_request_v3(survey=survey, payload=payload) progress_status = "in progress" while progress_status != "complete" and progress_status != "failed" and is_file is None: check_url = url + progress_id check_request = r.request("GET", check_url, headers=headers) check_response = check_request.json() try: is_file = check_response["result"]["fileId"] except KeyError: pass progress_status = check_response["result"]["status"] try: if check_response['meta']['httpStatus'] == '500 - Internal Server Error': raise Qualtrics500Error('500 - Internal Server Error') elif check_response['meta']['httpStatus'] == '503 - Temporary Internal Server Error': raise Qualtrics503Error('503 - Temporary Internal Server Error') elif check_response['meta']['httpStatus'] == '504 - Gateway Timeout': raise Qualtrics504Error('504 - Gateway Timeout') elif check_response['meta']['httpStatus'] == '400 - Bad Request': raise Qualtrics400Error('Qualtrics Error\n(Http Error: 400 - Bad Request): There was something invalid about the request.') elif check_response['meta']['httpStatus'] == '401 - Unauthorized': raise Qualtrics401Error('Qualtrics Error\n(Http Error: 401 - Unauthorized): The Qualtrics API user could not be authenticated or does not have authorization to access the requested resource.') elif check_response['meta']['httpStatus'] == '403 - Forbidden': raise Qualtrics403Error('Qualtrics Error\n(Http Error: 403 - Forbidden): The Qualtrics API user was authenticated and made a valid request, but is not authorized to access this requested resource.') except (Qualtrics500Error, Qualtrics503Error, Qualtrics504Error, Qualtrics400Error, Qualtrics401Error, Qualtrics403Error) as e: return print(e) else: download_url = url + is_file + '/file' download_request = r.get(download_url, headers=headers, stream=True) return download_request # Version 3 Code def get_survey_responses(self, survey=None, **kwargs): '''This function accepts the survey id, and returns the survey responses associated with that survey. :param useLabels: Instead of exporting the recode value for the answer choice, export the text of the answer choice. For more information on recode values, see Recode Values on the Qualtrics Support Page. :type useLabels: bool :param includeLabelColumns: For columns that have answer labels, export two columns: one that uses recode values and one that uses labels. The label column will has a IsLabelsColumn field in the 3rd header row. Note that this cannot be used with useLabels. :type includeLabelColumns: bool :param exportResponsesInProgress: Export only responses-in-progress. :type exportResponsesInProgress: bool :param limit: Maximum number of responses exported. This begins with the first survey responses recieved. So a Limit = 10, would be the surveys first 10 responses. :type limit: int :param seenUnansweredRecode: Recode seen-but-unanswered questions with this value. :type seenUnansweredRecode: int :param multiselectSeenUnansweredRecode: Recode seen-but-unanswered choices for multi-select questions with this value. If not set, this will be the seenUnansweredRecode value. :type multiselectSeenUnansweredRecode: int :param includeDisplayOrder: If true, include display order information in your export. This is useful for surveys with randomization. :type includeDisplayOrder: bool :param endDate: Only export responses recorded after the specified UTC date. Example Format: ('%Y-%m-%dT%H:%M:%SZ' => 2020-01-13T12:30:00Z) :type endDate: str :param startDate: Only export responses recorded after the specified UTC date. Example Format: ('%Y-%m-%dT%H:%M:%SZ'=> 2020-01-13T12:30:00Z) :type startDate: str :param timeZone: Timezone used to determine response date values. If this parameter is not provided, dates will be exported in UTC/GMT. See (https://api.qualtrics.com/instructions/docs/Instructions/dates-and-times.md) for the available timeZones. :type timeZone: str :param survey: This is the id associated with a given survey. :return: a Pandas DataFrame ''' dynamic_payload = {"format": 'csv'} for key in list(kwargs.keys()): assert key in ['useLabels', 'includeLabelColumns', 'exportResponsesInProgress', 'limit', 'seenUnansweredRecode', 'multiselectSeenUnansweredRecode', 'includeDisplayOrder', 'startDate', 'endDate', 'timeZone'], "Hey there! You can only pass in parameters with names in the list, ['useLabels', 'includeLabelColumns', 'exportResponsesInProgress', 'limit', 'seenUnansweredRecode', 'multiselectSeenUnansweredRecode', 'includeDisplayOrder', 'startDate', 'endDate', 'timeZone']" if key == 'useLabels': assert 'includeLabelColumns' not in list(kwargs.keys()), 'Hey there, you cannot pass both the "includeLabelColumns" and the "useLabels" parameters at the same time. Please pass just one and try again.' assert isinstance(kwargs['useLabels'], bool), 'Hey there, your "useLabels" parameter needs to be of type "bool"!' dynamic_payload.update({'useLabels': kwargs[(key)]}) elif key == 'exportResponsesInProgress': assert isinstance(kwargs['exportResponsesInProgress'], bool), 'Hey there, your "exportResponsesInProgress" parameter needs to be of type "bool"!' dynamic_payload.update({'exportResponsesInProgress': kwargs[(key)]}) elif key == 'limit': assert isinstance(kwargs['limit'], int), 'Hey there, your "limit" parameter needs to be of type "int"!' dynamic_payload.update({'limit': kwargs[(key)]}) elif key == 'seenUnansweredRecode': assert isinstance(kwargs['seenUnansweredRecode'], int), 'Hey there, your "seenUnansweredRecode" parameter needs to be of type "int"!' dynamic_payload.update({'seenUnansweredRecode': kwargs[(key)]}) elif key == 'multiselectSeenUnansweredRecode': assert isinstance(kwargs['multiselectSeenUnansweredRecode'], int), 'Hey there, your "multiselectSeenUnansweredRecode" parameter needs to be of type "int"!' dynamic_payload.update({'multiselectSeenUnansweredRecode': kwargs[(key)]}) elif key == 'includeLabelColumns': assert isinstance(kwargs['includeLabelColumns'], bool), 'Hey there, your "includeLabelColumns" parameter needs to be of type "bool"!' assert 'useLabels' not in list(kwargs.keys()), 'Hey there, you cannot pass both the "includeLabelColumns" and the "useLabels" parameters at the same time. Please pass just one and try again.' dynamic_payload.update({'includeLabelColumns': kwargs[(key)]}) elif key == 'includeDisplayOrder': assert isinstance(kwargs['includeDisplayOrder'], bool), 'Hey there, your "includeDisplayOrder" parameter needs to be of type "bool"!' dynamic_payload.update({'includeDisplayOrder': kwargs[(key)]}) elif key == 'startDate': assert isinstance(kwargs['startDate'], str), 'Hey there, your "startDate" parameter needs to be of type "str"!' start_date = parse(timestr=kwargs[(key)]) dynamic_payload.update({'startDate': start_date.strftime('%Y-%m-%dT%H:%M:%SZ')}) elif key == 'endDate': assert isinstance(kwargs['endDate'], str), 'Hey there, your "endDate" parameter needs to be of type "str"!' end_date = parse(timestr=kwargs[(key)]) dynamic_payload.update({'endDate': end_date.strftime('%Y-%m-%dT%H:%M:%SZ')}) elif key == 'timeZone': assert isinstance(kwargs['timeZone'], str), 'Hey there, your "timeZone" parameter needs to be of type "str"!' dynamic_payload.update({'timeZone': kwargs[(key)]}) print(dynamic_payload) download_request = self.send_request_v3(survey=survey, payload=dynamic_payload) with zipfile.ZipFile(io.BytesIO(download_request.content)) as survey_zip: for s in survey_zip.infolist(): df = pd.read_csv(survey_zip.open(s.filename)) return df # Version 3 Code def get_survey_questions(self, survey=None): '''This method returns a DataFrame containing the survey questions and the Question IDs. :param survey: This is the id associated with a given survey. :return: a Pandas DataFrame ''' df = self.get_survey_responses(survey=survey, limit=2) questions =
pd.DataFrame(df[:1].T)
pandas.DataFrame
import time import pandas as pd import numpy as np CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('\nHello! Let\'s explore some US bikeshare data!\n') # get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs while True: city = str(input('Please enter a city to analyze (Chicago, New Yor City, Washington): ')).lower() # checking, if the correct selection is entered if city in ('chicago', 'new york city', 'washington'): break else: print('Wrong entry. Please enter the name of the cities.') # get user input for month (all, january, february, ... , june) while True: month = str(input('Enter a month to filter for (all, january, february, ... , june): ')).lower() # checking, if the correct selection is entered if month in ('all', 'january', 'february', 'march', 'april', 'may', 'june'): break else: print('Wrong entry. Please enter the name of a month.') # get user input for day of week (all, monday, tuesday, ... sunday) while True: day = str(input('Enter a day to filter for (all, monday, tuesday, ... sunday): ')).lower() # checking, if the correct selection is entered if day in ('all', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'): break else: print('Wrong entry. Please enter the name of a day.') print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ # load data file into a dataframe df =
pd.read_csv(CITY_DATA[city])
pandas.read_csv
# -*- coding: utf-8 -*- import os import sys import time import openpyxl as openpyxl import pandas import pandas as pd import tushare as ts import numpy as np from datetime import datetime, timedelta import matplotlib.ticker as ticker import matplotlib.dates as mdates import mplfinance as mpf import matplotlib.pyplot as plt from PyQt5.QtWidgets import QApplication, QMessageBox from dateutil.relativedelta import relativedelta from mpl_finance import candlestick_ohlc, candlestick2_ohlc import numpy as np import decimal import sys from PyQt5 import QtGui, QtWidgets, QtCore from PyQt5.QtWidgets import QDialog, QApplication from primodial import Ui_Dialog from numpy import long # author : ye mode = 0 fig, ax = plt.subplots() datadir = './data/' strategydir = './strategy/' financialdir = './financialdata/' x, y, lastday, xminnow, xmaxnow = 1, 1, 0, 0, 0 # 云层细代表震荡,越来越细改变的趋势也越大,要看有没有最高点 # to avoid data collection, change return value to suffix of the file in 'data' dictionary -> enter offline mode! def endDate(): return time.strftime('%Y%m%d') # return '20210818' # 1:excel 0:tushare def getDataByTscode(ts_code, mode): if mode == 1: filedir = os.path.join(datadir, nameStrategy(ts_code)) byexcel = pd.read_excel(filedir) byexcel.index = byexcel['Unnamed: 0'] byexcel = byexcel.drop(columns=['Unnamed: 0']) return byexcel if mode == 0: ts.set_token('<KEY>') pro = ts.pro_api() t1 = endDate() t2 = (datetime.now() - relativedelta(years=1)).strftime('%Y%m%d') df = pro.daily(ts_code=ts_code, start_date=t2, end_date=t1) df = df.iloc[::-1] return df def nameStrategy(code): return code + '-' + endDate() + '.xlsx' def vision(data, ts_name): ichimoku = Ichimoku(data) ichimoku.run() ichimoku.plot(ts_name) def call_back(event): axtemp = event.inaxes x_min, x_max = axtemp.get_xlim() fanwei = (x_max - x_min) / 10 if event.button == 'up': axtemp.set(xlim=(x_min + fanwei, x_max - fanwei)) elif event.button == 'down': axtemp.set(xlim=(x_min - fanwei, x_max + fanwei)) fig.canvas.draw_idle() def button_press_callback(click): global x global y x = click.xdata y = click.ydata point = (click.xdata, click.ydata) print(point) def motion_notify_callback(event): global x, xminnow, xmaxnow if event.button != 1: return xnow = event.xdata print(x) delta = x - xnow plt.xlim(xmin=xminnow + delta, xmax=xmaxnow + delta) xminnow = xminnow + delta xmaxnow = xmaxnow + delta x = xnow point = (event.xdata, event.ydata, xminnow, xmaxnow) print(point) fig.canvas.draw_idle() class Ichimoku(): """ @param: ohcl_df <DataFrame> Required columns of ohcl_df are: Date<Float>,Open<Float>,High<Float>,Close<Float>,Low<Float> """ def __init__(self, ohcl_df): self.ohcl_df = ohcl_df ohcl_df['trade_date'] = pandas.to_datetime(ohcl_df['trade_date'].astype(str)) def run(self): tenkan_window = 9 kijun_window = 26 senkou_span_b_window = 52 cloud_displacement = 26 chikou_shift = -26 ohcl_df = self.ohcl_df # Dates are floats in mdates like 736740.0 # the period is the difference of last two dates last_date = ohcl_df["trade_date"].iloc[-1].date() period = 1 # Add rows for N periods shift (cloud_displacement) ext_beginning = last_date + timedelta(days=1) ext_end = last_date + timedelta(days=((period * cloud_displacement) + period)) dates_ext = pd.date_range(start=ext_beginning, end=ext_end) dates_ext_df =
pd.DataFrame({"trade_date": dates_ext})
pandas.DataFrame
import numpy as np import pandas as pd import pastas as ps def acf_func(**kwargs): index = pd.to_datetime(np.arange(0, 100, 1), unit="D", origin="2000") data = np.sin(np.linspace(0, 10 * np.pi, 100)) r = pd.Series(data=data, index=index) acf_true = np.cos(np.linspace(0.0, np.pi, 11))[1:] acf = ps.stats.acf(r, lags=np.arange(1.0, 11.), min_obs=1, **kwargs).values return acf, acf_true def test_acf_rectangle(): acf, acf_true = acf_func(bin_method="rectangle") assert abs((acf - acf_true)).max() < 0.05 def test_acf_gaussian(): acf, acf_true = acf_func(bin_method="gaussian") assert abs((acf - acf_true)).max() < 0.05 def test_runs_test(): """ http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm True Z-statistic = 2.69 Read NIST test data """ data = pd.read_csv("tests/data/nist.csv") test, _ = ps.stats.runs_test(data) assert test[0] - 2.69 < 0.02 def test_stoffer_toloi(): res = pd.Series(index=
pd.date_range(start=0, periods=1000, freq="D")
pandas.date_range
import argparse import pandas as pd from baseline_tools import write_standard_data, read_IMDB_origin_data, read_AGNEWS_origin_data, \ read_SST2_origin_data parser = argparse.ArgumentParser() parser.add_argument('--dataset') parser.add_argument('--path') parser.add_argument('--output') args = parser.parse_args() dataset = args.dataset path = args.path output = args.output def create_SST2(data_name, sst_folder, output_folder): if sst_folder[-1] != '/': sst_folder += '/' if output_folder[-1] != '/': output_folder += '/' datasetSentences = pd.read_csv(sst_folder + 'datasetSentences.txt', sep='\t') dictionary =
pd.read_csv(sst_folder + 'dictionary.txt', sep='|', header=None, names=['sentence', 'phrase ids'])
pandas.read_csv
import os as os from lib import ReadCsv from lib import ReadConfig from lib import ReadData from lib import NetworkModel from lib import ModelMetrics from lib import SeriesPlot import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from lib import modwt import keras from datetime import date,datetime,time from datetime import datetime config = ReadConfig.ReadConfig() config_data = config.read_config(os.path.join("config", "config.json")) reader = ReadData.ReadData() all_data = reader.readClimateFiles(config_data) subset = all_data[['date','site_x', 'Hs','Hmax','Tz','Tp','DirTpTRUE','SST']] subset.describe() def make_date(series): for dt in series: yield datetime.strptime(dt, '%d/%m/%Y') dates = list(make_date(subset['date'])) subset.index = range(0, subset.shape[0]) datesDf = pd.DataFrame({'dates': pd.Series(dates)}, index=range(0,len(dates))) subset2 = pd.concat([subset, datesDf], axis=1) subset2 = subset2.sort_values('dates') idx1 = subset2.reindex(columns=['dates','site_x']).index subset2.index = idx1 sitenames = subset2['site_x'].unique() def getsite(data, col, site): return data[(data[col] == site)] # 7 day lag. def make_lags(data, fromN, maxN): for i in range(fromN,maxN): nextData = data.shift(i).dropna() colnames = list(map(lambda col: col+'_t-'+str(i), nextData.columns)) nextData.columns = colnames yield nextData target_set = None for site in sitenames: data = getsite(subset2, 'site_x', site) data.index = range(0,data.shape[0]) lags = list(make_lags(data, 1,8)) minrows = lags[6].shape[0] target = data[6:minrows] for i in range(0,len(lags)): lags[i] = lags[i][i:minrows] lags.append(target) if target_set is None: target_set = pd.concat(lags, axis=1) else: temp = pd.concat(lags, axis=1) target_set = pd.concat([target_set, temp], axis=0) target_set = target_set.dropna() target_set[['Hs_t-7','Hs_t-6','Hs_t-5','Hs_t-4','Hs_t-3','Hs_t-2','Hs_t-1','Hs']].head(10) # Now that we have timeseries data we now need to calculate wavelet decompositions for each # window of time. Note that we are lagging only up to a period of 7 days. norm_data = None numeric_cols = ['Hs', 'Hmax','Tz','Tp','DirTpTRUE','SST'] temp = [] for col in numeric_cols: for i in range(1,8): temp.append(col+'_t-'+str(i)) numeric_cols.extend(temp) wavelet='db3' wavelet_cols = [] wavelet_data=None for site in sitenames: data = getsite(target_set, 'site_x', site) data = data[numeric_cols] for col in numeric_cols: C1, C2, C3, A = modwt.modwt(data[col].values, wavelet, 3) nameA = col+"_A1" name1 = col+"_C1" name2 = col+"_C2" name3 = col+"_C3" wavelet_cols.append([nameA,name1,name2,name3]) data[nameA] = pd.Series(A) data[name1] =
pd.Series(C1)
pandas.Series
################################################################################ # The contents of this file are Teradata Public Content and have been released # to the Public Domain. # <NAME> & <NAME> - April 2020 - v.1.1 # Copyright (c) 2020 by Teradata # Licensed under BSD; see "license.txt" file in the bundle root folder. # ################################################################################ # R and Python TechBytes Demo - Part 5: Python in-nodes with SCRIPT # ------------------------------------------------------------------------------ # File: stoRFScoreMM.py # ------------------------------------------------------------------------------ # The R and Python TechBytes Demo comprises of 5 parts: # Part 1 consists of only a Powerpoint overview of R and Python in Vantage # Part 2 demonstrates the Teradata R package tdplyr for clients # Part 3 demonstrates the Teradata Python package teradataml for clients # Part 4 demonstrates using R in-nodes with the SCRIPT and ExecR Table Operators # Part 5 demonstrates using Python in-nodes with the SCRIPT Table Operator ################################################################################ # # This TechBytes demo utilizes a use case to predict the propensity of a # financial services customer base to open a credit card account. # # The present file is the Python scoring script to be used with the SCRIPT # table operator, as described in the following use case 2 of the present demo # Part 5: # # 2) Fitting and scoring multiple models # # We utilize the statecode variable as a partition to built a Random # Forest model for every state. This is done by using SCRIPT Table Operator # to run a model fitting script with a PARTITION BY statecode in the query. # This creates a model for each of the CA, NY, TX, IL, AZ, OH and Other # state codes, and perists the model in the database via CREATE TABLE AS # statement. # Then we run a scoring script via the SCRIPT Table Operator against # these persisted Random Forest models to score the entire data set. # # For this use case, we build an analytic data set nearly identical to the # one in the teradataml demo (Part 3), with one change as indicated by item # (d) below. This is so we can demonstrate the in-database capability of # simultaneously building many models. # 60% of the analytic data set rows are sampled to create a training # subset. The remaining 40% is used to create a testing/scoring dataset. # The train and test/score datasets are used in the SCRIPT operations. ################################################################################ # File Changelog # v.1.0 2019-10-29 First release # v.1.1 2020-04-02 Added change log; no code changes in present file ################################################################################ import sys import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import pickle import base64 ### ### Read input ### delimiter = '\t' inputData = [] try: line = input() if line == '': # Exit if user provides blank line pass else: allArgs = line.split(delimiter) inputData.append(allArgs[0:-2]) modelSerB64 = allArgs[-1] except (EOFError): # Exit if reached EOF or CTRL-D pass while 1: try: line = input() if line == '': # Exit if user provides blank line break else: allArgs = line.split(delimiter) inputData.append(allArgs[0:-2]) except (EOFError): # Exit if reached EOF or CTRL-D break #for line in sys.stdin.read().splitlines(): # line = line.split(delimiter) # inputData.append(line) ### ### If no data received, gracefully exit rather than producing an error later. ### if not inputData: sys.exit() ## In the input information, all rows have the same number of column elements ## except for the first row. The latter also contains the model info in its ## last column. Isolate the serialized model from the end of first row. #modelSerB64 = inputData[0][-1] ### ### Set up input DataFrame according to input schema ### # Know your data: You must know in advance the number and data types of the # incoming columns from the database! # For numeric columns, the database sends in floats in scientific format with a # blank space when the exponential is positive; e.g., 1.0 is sent as 1.000E 000. # The following input data read deals with any such blank spaces in numbers. columns = ['cust_id', 'tot_income', 'tot_age', 'tot_cust_years', 'tot_children', 'female_ind', 'single_ind', 'married_ind', 'separated_ind', 'statecode', 'ck_acct_ind', 'sv_acct_ind', 'cc_acct_ind', 'ck_avg_bal', 'sv_avg_bal', 'cc_avg_bal', 'ck_avg_tran_amt', 'sv_avg_tran_amt', 'cc_avg_tran_amt', 'q1_trans_cnt', 'q2_trans_cnt', 'q3_trans_cnt', 'q4_trans_cnt', 'SAMPLE_ID'] df = pd.DataFrame(inputData, columns=columns) #df = pd.DataFrame.from_records(inputData, exclude=['nRow', 'model'], columns=columns) del inputData df['cust_id'] = pd.to_numeric(df['cust_id']) df['tot_income'] = df['tot_income'].apply(lambda x: "".join(x.split())) df['tot_income'] = pd.to_numeric(df['tot_income']) df['tot_age'] = pd.to_numeric(df['tot_age']) df['tot_cust_years'] = pd.to_numeric(df['tot_cust_years']) df['tot_children'] = pd.to_numeric(df['tot_children']) df['female_ind'] = pd.to_numeric(df['female_ind']) df['single_ind'] = pd.to_numeric(df['single_ind']) df['married_ind'] = pd.to_numeric(df['married_ind']) df['separated_ind'] = pd.to_numeric(df['separated_ind']) df['statecode'] = df['statecode'].apply(lambda x: x.replace('"', '')) df['ck_acct_ind'] = pd.to_numeric(df['ck_acct_ind']) df['sv_acct_ind'] = pd.to_numeric(df['sv_acct_ind']) df['cc_acct_ind'] = pd.to_numeric(df['cc_acct_ind']) df['sv_acct_ind'] = pd.to_numeric(df['sv_acct_ind']) df['cc_acct_ind'] = pd.to_numeric(df['cc_acct_ind']) df['ck_avg_bal'] = df['ck_avg_bal'].apply(lambda x: "".join(x.split())) df['ck_avg_bal'] = pd.to_numeric(df['ck_avg_bal']) df['sv_avg_bal'] = df['sv_avg_bal'].apply(lambda x: "".join(x.split())) df['sv_avg_bal'] = pd.to_numeric(df['sv_avg_bal']) df['cc_avg_bal'] = df['cc_avg_bal'].apply(lambda x: "".join(x.split())) df['cc_avg_bal'] = pd.to_numeric(df['cc_avg_bal']) df['ck_avg_tran_amt'] = df['ck_avg_tran_amt'].apply(lambda x: "".join(x.split())) df['ck_avg_tran_amt'] = pd.to_numeric(df['ck_avg_tran_amt']) df['sv_avg_tran_amt'] = df['sv_avg_tran_amt'].apply(lambda x: "".join(x.split())) df['sv_avg_tran_amt'] = pd.to_numeric(df['sv_avg_tran_amt']) df['cc_avg_tran_amt'] = df['cc_avg_tran_amt'].apply(lambda x: "".join(x.split())) df['cc_avg_tran_amt'] = pd.to_numeric(df['cc_avg_tran_amt']) df['q1_trans_cnt'] = pd.to_numeric(df['q1_trans_cnt']) df['q2_trans_cnt'] = pd.to_numeric(df['q2_trans_cnt']) df['q3_trans_cnt'] = pd.to_numeric(df['q3_trans_cnt']) df['q4_trans_cnt'] = pd.to_numeric(df['q4_trans_cnt']) df['SAMPLE_ID'] =
pd.to_numeric(df['SAMPLE_ID'])
pandas.to_numeric
# -*- coding: utf-8 -*- """ Created on Tue Aug 14 11:21:38 2018 @author: zdiveki """ import pandas as pd import nltk from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model.logistic import LogisticRegression from sklearn.cross_validation import cross_val_score from nltk import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import FunctionTransformer, LabelEncoder import re import numpy as np from sklearn import metrics from sklearn.svm import SVC from sklearn.linear_model import LinearRegression from nltk.corpus import stopwords from string import punctuation from functools import reduce import pdb filename = '../cleaned_wine_list_with_body.xlsx' file1 = '../cleaned_majestic_wine_list_with_body.xlsx' a0=pd.read_excel(filename) a1 = pd.read_excel(file1) columns_sel = ['abv', 'colour', 'country', 'description', 'grape_variety', 'name', 'Body'] a_concat =
pd.concat([a0[columns_sel], a1[columns_sel]])
pandas.concat
import datetime import os, sys import backtrader as bt import empyrical as emp import pyfolio as pyf import numpy as np import pandas as pd class Config: valid_contracts = ["IF00", "IH00", "IC00"] contract = valid_contracts[0] data = os.path.abspath("../data.csv") df =
pd.read_csv(data, index_col='TRADE_DT', parse_dates=True)
pandas.read_csv
# coding: utf-8 # In[1]: from __future__ import division, print_function, absolute_import from past.builtins import basestring import os import gzip import pandas as pd from twip.constant import DATA_PATH from gensim.models import TfidfModel, LsiModel from gensim.corpora import Dictionary # In[2]: import matplotlib from IPython.display import display, HTML get_ipython().magic(u'matplotlib inline') np = pd.np display(HTML("<style>.container { width:100% !important; }</style>")) pd.set_option('display.max_rows', 6) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 800) pd.set_option('precision', 2) get_ipython().magic(u'precision 4') get_ipython().magic(u'pprint') # In[3]: from sklearn.linear_model import SGDRegressor from sklearn.svm import SVR # In[6]: lsi = LsiModel.load(os.path.join(DATA_PATH, 'lsi100')) lsi2 = LsiModel.load(os.path.join(DATA_PATH, 'lsi2')) # In[7]: with gzip.open(os.path.join(DATA_PATH, 'tweet_topic_vectors.csv.gz'), 'rb') as f: topics = pd.DataFrame.from_csv(f, encoding='utf8') topics = topics.fillna(0) # In[8]: dates = pd.read_csv(os.path.join(DATA_PATH, 'datetimes.csv.gz'), engine='python') nums = pd.read_csv(os.path.join(DATA_PATH, 'numbers.csv.gz'), engine='python') # In[9]: nums.favorite_count.hist(bins=[0,1,2,3,4,5,7,10,15,25,40,100,1000]) from matplotlib import pyplot as plt plt.yscale('log', nonposy='clip') plt.xscale('log', nonposy='clip') plt.xlabel('Number of Favorites') plt.ylabel('Number of Tweets') # When I first ran this, my dataframes weren't "aligned". # So it's very important to check your datasets after every load. # The correspondence between dates and topics and numerical features is critical for training! # In[10]: print(len(dates)) print(len(topics)) print(len(nums)) print(sum(nums.favorite_count >= 1)) # In[11]: sum(nums.index == dates.index) == len(dates) # In[12]: sum(nums.index == topics.index) == len(dates) # In[13]: sgd = SGDRegressor() sgd # In[14]: sgd = SGDRegressor().fit(topics.values, nums.favorite_count) # Well, that was **much** faster... # In[15]: predicted_favorites = sgd.predict(topics.values) predicted_favorites # In[16]: np.sum(predicted_favorites >= 1) # Well that seems more "balanced" at least. # And it's nice to have a continuous score. # In[17]: np.sum(nums.favorite_count.values >= 1) # In[18]: from pug.nlp.stats import Confusion # In[19]: results = pd.DataFrame() results['predicted'] = pd.Series(predicted_favorites >= 1) results['truth'] = pd.Series(nums.favorite_count >= 1) conf = Confusion(results) conf # In[20]: results.predicted.corr(results.truth) # Wait, why are we classifying with a regressor anyway? # In[21]: pd.Series(predicted_favorites).corr(nums.favorite_count) # ## Not so hot... # Balance the training again? # Get rid of some negatives? # In[32]: pos = np.array(nums.favorite_count >= 1) neg = ~pos portion_pos = 2 * float(sum(pos)) / len(nums) mask = ((np.random.binomial(1, portion_pos, size=len(nums)).astype(bool) & neg) | pos) sgd = SGDRegressor().fit(topics[mask], nums.favorite_count[mask] >= 1) print(portion_pos) print(sum(mask)) print(sum(pos) * 2) print(sum(neg)) len(nums) # In[33]: results =
pd.DataFrame()
pandas.DataFrame
# Finds and scores all framework mutations from input antibody file (csv format). Outputs normalized FR scores. # Verbose mode prints full pairwise alignment of each antibody. # output_mutations option creates a csv with all antibody scores import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from Bio import pairwise2 from Bio.pairwise2 import format_alignment def get_position(pos, germ): """ Place gaps for IMGT numbering scheme """ try: return positions[positions[germ] == pos].index[0] except: return 0 dict = { "1-2": "QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGRINPNSGGTNYAQKFQGRVTSTRDTSISTAYMELSRLRSDDTVVYYCAR", "1-3": "QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQRLEWMGWINAGNGNTKYSQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCAR", "1-24": "QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCAT", "1-46": "QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR", "1-69": "QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAR", "2-5": "QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWNDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHR", "3-7": "EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR", "3-9": "EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKD", "3-20": "EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYHCAR", "3-21": "EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR", "3-23": "EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK", "3-30": "QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR", "3-33": "QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR", "3-48": "EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR", "3-66": "EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR", "3-74": "EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAR", "4-4": "QVQLQESGPGLVKPPGTLSLTCAVSGGSISSSNWWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYCCAR", "4-30-4": "QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDYYWSWIRQPPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "4-31": "QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSLVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "4-34": "QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "4-39": "QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "4-59": "QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "4-61": "QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR", "5-51": "EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCAR", "6-1": "QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCAR" } verbose = False #True: output alignment and indinvidual scores, False: plot results output_csv = True #output csv file of calculated scores output_mutations = True #output csv file with all antibody scores #input files ab_filename = "FDA_Abs.csv" #input antibody file (use "Flagged" in name for phase identification) norm_filename = "normalization.csv" #input normalization constants numbering = "IMGT_num.csv" #index to IMGT numbering scheme #read input files Abs = pd.read_csv(ab_filename) norm =
pd.read_csv(norm_filename, index_col=0)
pandas.read_csv
import unittest import os import pandas as pd from cgnal.core.tests.core import TestCase, logTest from cgnal.core.logging.defaults import getDefaultLogger from cgnal.core.data.layer.pandas.databases import Database, Table from tests import TMP_FOLDER logger = getDefaultLogger() db = Database(TMP_FOLDER + "/db") df1 =
pd.DataFrame([[1, 2, 3], [6, 5, 4]], columns=["a", "b", "c"])
pandas.DataFrame
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result =
build_table_schema(self.df, version=False)
pandas.io.json.table_schema.build_table_schema
import numpy as np import pandas as pd from bach import Series, DataFrame from bach.operations.cut import CutOperation, QCutOperation from sql_models.util import quote_identifier from tests.functional.bach.test_data_and_utils import assert_equals_data PD_TESTING_SETTINGS = { 'check_dtype': False, 'check_exact': False, 'atol': 1e-3, } def compare_boundaries(expected: pd.Series, result: Series) -> None: for exp, res in zip(expected.to_numpy(), result.to_numpy()): if not isinstance(exp, pd.Interval): assert res is None or np.isnan(res) continue np.testing.assert_almost_equal(exp.left, float(res.left), decimal=2) np.testing.assert_almost_equal(exp.right, float(res.right), decimal=2) if exp.closed_left: assert res.closed_left if exp.closed_right: assert res.closed_right def test_cut_operation_pandas(engine) -> None: p_series = pd.Series(range(100), name='a') series = DataFrame.from_pandas(engine=engine, df=p_series.to_frame(), convert_objects=True).a expected = pd.cut(p_series, bins=10) result = CutOperation(series=series, bins=10)() compare_boundaries(expected, result) expected_wo_right =
pd.cut(p_series, bins=10, right=False)
pandas.cut
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def mysql_url() -> str: conn = os.environ["MYSQL_URL"] return conn def test_mysql_without_partition(mysql_url: str) -> None: query = "select * from test_table limit 3" df = read_sql(mysql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_int": pd.Series([1, 2, 3], dtype="Int64"), "test_float": pd.Series([1.1, 2.2, 3.3], dtype="float64") } ) assert_frame_equal(df, expected, check_names=True) def test_mysql_with_partition(mysql_url: str) -> None: query = "select * from test_table" df = read_sql( mysql_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int":
pd.Series([1, 2, 3, 4, 5, 6], dtype="Int64")
pandas.Series
import ast import time import numpy as np import pandas as pd from copy import deepcopy from typing import Any from matplotlib import dates as mdates from scipy import stats from aistac.components.aistac_commons import DataAnalytics from ds_discovery.components.transitioning import Transition from ds_discovery.components.commons import Commons from aistac.properties.abstract_properties import AbstractPropertyManager from ds_discovery.components.discovery import DataDiscovery from ds_discovery.intent.abstract_common_intent import AbstractCommonsIntentModel __author__ = '<NAME>' class AbstractBuilderIntentModel(AbstractCommonsIntentModel): _INTENT_PARAMS = ['self', 'save_intent', 'column_name', 'intent_order', 'replace_intent', 'remove_duplicates', 'seed'] def __init__(self, property_manager: AbstractPropertyManager, default_save_intent: bool=None, default_intent_level: [str, int, float]=None, default_intent_order: int=None, default_replace_intent: bool=None): """initialisation of the Intent class. :param property_manager: the property manager class that references the intent contract. :param default_save_intent: (optional) The default action for saving intent in the property manager :param default_intent_level: (optional) the default level intent should be saved at :param default_intent_order: (optional) if the default behaviour for the order should be next available order :param default_replace_intent: (optional) the default replace existing intent behaviour """ default_save_intent = default_save_intent if isinstance(default_save_intent, bool) else True default_replace_intent = default_replace_intent if isinstance(default_replace_intent, bool) else True default_intent_level = default_intent_level if isinstance(default_intent_level, (str, int, float)) else 'A' default_intent_order = default_intent_order if isinstance(default_intent_order, int) else 0 intent_param_exclude = ['size'] intent_type_additions = [np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, pd.Timestamp] super().__init__(property_manager=property_manager, default_save_intent=default_save_intent, intent_param_exclude=intent_param_exclude, default_intent_level=default_intent_level, default_intent_order=default_intent_order, default_replace_intent=default_replace_intent, intent_type_additions=intent_type_additions) def run_intent_pipeline(self, canonical: Any=None, intent_levels: [str, int, list]=None, run_book: str=None, seed: int=None, simulate: bool=None, **kwargs) -> pd.DataFrame: """Collectively runs all parameterised intent taken from the property manager against the code base as defined by the intent_contract. The whole run can be seeded though any parameterised seeding in the intent contracts will take precedence :param canonical: a direct or generated pd.DataFrame. see context notes below :param intent_levels: (optional) a single or list of intent_level to run in order given :param run_book: (optional) a preset runbook of intent_level to run in order :param seed: (optional) a seed value that will be applied across the run: default to None :param simulate: (optional) returns a report of the order of run and return the indexed column order of run :return: a pandas dataframe """ simulate = simulate if isinstance(simulate, bool) else False col_sim = {"column": [], "order": [], "method": []} # legacy if 'size' in kwargs.keys(): canonical = kwargs.pop('size') canonical = self._get_canonical(canonical) size = canonical.shape[0] if canonical.shape[0] > 0 else 1000 # test if there is any intent to run if self._pm.has_intent(): # get the list of levels to run if isinstance(intent_levels, (str, list)): column_names = Commons.list_formatter(intent_levels) elif isinstance(run_book, str) and self._pm.has_run_book(book_name=run_book): column_names = self._pm.get_run_book(book_name=run_book) else: # put all the intent in order of model, get, correlate, associate _model = [] _get = [] _correlate = [] _frame_start = [] _frame_end = [] for column in self._pm.get_intent().keys(): for order in self._pm.get(self._pm.join(self._pm.KEY.intent_key, column), {}): for method in self._pm.get(self._pm.join(self._pm.KEY.intent_key, column, order), {}).keys(): if str(method).startswith('get_'): if column in _correlate + _frame_start + _frame_end: continue _get.append(column) elif str(method).startswith('model_'): _model.append(column) elif str(method).startswith('correlate_'): if column in _get: _get.remove(column) _correlate.append(column) elif str(method).startswith('frame_'): if column in _get: _get.remove(column) if str(method).startswith('frame_starter'): _frame_start.append(column) else: _frame_end.append(column) column_names = Commons.list_unique(_frame_start + _get + _model + _correlate + _frame_end) for column in column_names: level_key = self._pm.join(self._pm.KEY.intent_key, column) for order in sorted(self._pm.get(level_key, {})): for method, params in self._pm.get(self._pm.join(level_key, order), {}).items(): try: if method in self.__dir__(): if simulate: col_sim['column'].append(column) col_sim['order'].append(order) col_sim['method'].append(method) continue result = [] params.update(params.pop('kwargs', {})) if isinstance(seed, int): params.update({'seed': seed}) _ = params.pop('intent_creator', 'Unknown') if str(method).startswith('get_'): result = eval(f"self.{method}(size=size, save_intent=False, **params)", globals(), locals()) elif str(method).startswith('correlate_'): result = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) elif str(method).startswith('model_'): canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue elif str(method).startswith('frame_starter'): canonical = self._get_canonical(params.pop('canonical', canonical), deep_copy=False) size = canonical.shape[0] canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue elif str(method).startswith('frame_'): canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue if 0 < size != len(result): raise IndexError(f"The index size of '{column}' is '{len(result)}', " f"should be {size}") canonical[column] = result except ValueError as ve: raise ValueError(f"intent '{column}', order '{order}', method '{method}' failed with: {ve}") except TypeError as te: raise TypeError(f"intent '{column}', order '{order}', method '{method}' failed with: {te}") if simulate: return pd.DataFrame.from_dict(col_sim) return canonical def _get_number(self, from_value: [int, float]=None, to_value: [int, float]=None, relative_freq: list=None, precision: int=None, ordered: str=None, at_most: int=None, size: int=None, seed: int=None) -> list: """ returns a number in the range from_value to to_value. if only to_value given from_value is zero :param from_value: (signed) integer to start from :param to_value: optional, (signed) integer the number sequence goes to but not include :param relative_freq: a weighting pattern or probability that does not have to add to 1 :param precision: the precision of the returned number. if None then assumes int value else float :param ordered: order the data ascending 'asc' or descending 'dec', values accepted 'asc' or 'des' :param at_most: the most times a selection should be chosen :param size: the size of the sample :param seed: a seed value for the random function: default to None """ if not isinstance(from_value, (int, float)) and not isinstance(to_value, (int, float)): raise ValueError(f"either a 'range_value' or a 'range_value' and 'to_value' must be provided") if not isinstance(from_value, (float, int)): from_value = 0 if not isinstance(to_value, (float, int)): (from_value, to_value) = (0, from_value) if to_value <= from_value: raise ValueError("The number range must be a positive different, found to_value <= from_value") at_most = 0 if not isinstance(at_most, int) else at_most size = 1 if size is None else size _seed = self._seed() if seed is None else seed precision = 3 if not isinstance(precision, int) else precision if precision == 0: from_value = int(round(from_value, 0)) to_value = int(round(to_value, 0)) is_int = True if (isinstance(to_value, int) and isinstance(from_value, int)) else False if is_int: precision = 0 # build the distribution sizes if isinstance(relative_freq, list) and len(relative_freq) > 1: freq_dist_size = self._freq_dist_size(relative_freq=relative_freq, size=size, seed=_seed) else: freq_dist_size = [size] # generate the numbers rtn_list = [] generator = np.random.default_rng(seed=_seed) dtype = int if is_int else float bins = np.linspace(from_value, to_value, len(freq_dist_size) + 1, dtype=dtype) for idx in np.arange(1, len(bins)): low = bins[idx - 1] high = bins[idx] if low >= high: continue elif at_most > 0: sample = [] for _ in np.arange(at_most, dtype=dtype): count_size = freq_dist_size[idx - 1] * generator.integers(2, 4, size=1)[0] sample += list(set(np.linspace(bins[idx - 1], bins[idx], num=count_size, dtype=dtype, endpoint=False))) if len(sample) < freq_dist_size[idx - 1]: raise ValueError(f"The value range has insufficient samples to choose from when using at_most." f"Try increasing the range of values to sample.") rtn_list += list(generator.choice(sample, size=freq_dist_size[idx - 1], replace=False)) else: if dtype == int: rtn_list += generator.integers(low=low, high=high, size=freq_dist_size[idx - 1]).tolist() else: choice = generator.random(size=freq_dist_size[idx - 1], dtype=float) choice = np.round(choice * (high-low)+low, precision).tolist() # make sure the precision choice = [high - 10**(-precision) if x >= high else x for x in choice] rtn_list += choice # order or shuffle the return list if isinstance(ordered, str) and ordered.lower() in ['asc', 'des']: rtn_list.sort(reverse=True if ordered.lower() == 'asc' else False) else: generator.shuffle(rtn_list) return rtn_list def _get_category(self, selection: list, relative_freq: list=None, size: int=None, at_most: int=None, seed: int=None) -> list: """ returns a category from a list. Of particular not is the at_least parameter that allows you to control the number of times a selection can be chosen. :param selection: a list of items to select from :param relative_freq: a weighting pattern that does not have to add to 1 :param size: an optional size of the return. default to 1 :param at_most: the most times a selection should be chosen :param seed: a seed value for the random function: default to None :return: an item or list of items chosen from the list """ if not isinstance(selection, list) or len(selection) == 0: return [None]*size _seed = self._seed() if seed is None else seed select_index = self._get_number(len(selection), relative_freq=relative_freq, at_most=at_most, size=size, seed=_seed) rtn_list = [selection[i] for i in select_index] return list(rtn_list) def _get_datetime(self, start: Any, until: Any, relative_freq: list=None, at_most: int=None, ordered: str=None, date_format: str=None, as_num: bool=None, ignore_time: bool=None, size: int=None, seed: int=None, day_first: bool=None, year_first: bool=None) -> list: """ returns a random date between two date and/or times. weighted patterns can be applied to the overall date range. if a signed 'int' type is passed to the start and/or until dates, the inferred date will be the current date time with the integer being the offset from the current date time in 'days'. if a dictionary of time delta name values is passed this is treated as a time delta from the start time. for example if start = 0, until = {days=1, hours=3} the date range will be between now and 1 days and 3 hours Note: If no patterns are set this will return a linearly random number between the range boundaries. :param start: the start boundary of the date range can be str, datetime, pd.datetime, pd.Timestamp or int :param until: up until boundary of the date range can be str, datetime, pd.datetime, pd.Timestamp, pd.delta, int :param relative_freq: (optional) A pattern across the whole date range. :param at_most: the most times a selection should be chosen :param ordered: order the data ascending 'asc' or descending 'dec', values accepted 'asc' or 'des' :param ignore_time: ignore time elements and only select from Year, Month, Day elements. Default is False :param date_format: the string format of the date to be returned. if not set then pd.Timestamp returned :param as_num: returns a list of Matplotlib date values as a float. Default is False :param size: the size of the sample to return. Default to 1 :param seed: a seed value for the random function: default to None :param year_first: specifies if to parse with the year first If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12. If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil). :param day_first: specifies if to parse with the day first If True, parses dates with the day first, eg %d-%m-%Y. If False default to the a preferred preference, normally %m-%d-%Y (but not strict) :return: a date or size of dates in the format given. """ # pre check if start is None or until is None: raise ValueError("The start or until parameters cannot be of NoneType") # Code block for intent as_num = False if not isinstance(as_num, bool) else as_num ignore_time = False if not isinstance(ignore_time, bool) else ignore_time size = 1 if size is None else size _seed = self._seed() if seed is None else seed if isinstance(start, int): start = (pd.Timestamp.now() + pd.Timedelta(days=start)) if isinstance(until, int): until = (pd.Timestamp.now() + pd.Timedelta(days=until)) if isinstance(until, dict): until = (start + pd.Timedelta(**until)) if start == until: rtn_list = [self._convert_date2value(start, day_first=day_first, year_first=year_first)[0]] * size else: _dt_start = self._convert_date2value(start, day_first=day_first, year_first=year_first)[0] _dt_until = self._convert_date2value(until, day_first=day_first, year_first=year_first)[0] precision = 15 if ignore_time: _dt_start = int(_dt_start) _dt_until = int(_dt_until) precision = 0 rtn_list = self._get_number(from_value=_dt_start, to_value=_dt_until, relative_freq=relative_freq, at_most=at_most, ordered=ordered, precision=precision, size=size, seed=seed) if not as_num: rtn_list = mdates.num2date(rtn_list) if isinstance(date_format, str): rtn_list = pd.Series(rtn_list).dt.strftime(date_format).to_list() else: rtn_list = pd.Series(rtn_list).dt.tz_convert(None).to_list() return rtn_list def _get_intervals(self, intervals: list, relative_freq: list=None, precision: int=None, size: int=None, seed: int=None) -> list: """ returns a number based on a list selection of tuple(lower, upper) interval :param intervals: a list of unique tuple pairs representing the interval lower and upper boundaries :param relative_freq: a weighting pattern or probability that does not have to add to 1 :param precision: the precision of the returned number. if None then assumes int value else float :param size: the size of the sample :param seed: a seed value for the random function: default to None :return: a random number """ # Code block for intent size = 1 if size is None else size if not isinstance(precision, int): precision = 0 if all(isinstance(v[0], int) and isinstance(v[1], int) for v in intervals) else 3 _seed = self._seed() if seed is None else seed if not all(isinstance(value, tuple) for value in intervals): raise ValueError("The intervals list must be a list of tuples") interval_list = self._get_category(selection=intervals, relative_freq=relative_freq, size=size, seed=_seed) interval_counts = pd.Series(interval_list, dtype='object').value_counts() rtn_list = [] for index in interval_counts.index: size = interval_counts[index] if size == 0: continue if len(index) == 2: (lower, upper) = index if index == 0: closed = 'both' else: closed = 'right' else: (lower, upper, closed) = index if lower == upper: rtn_list += [round(lower, precision)] * size continue if precision == 0: margin = 1 else: margin = 10**(((-1)*precision)-1) if str.lower(closed) == 'neither': lower += margin upper -= margin elif str.lower(closed) == 'right': lower += margin elif str.lower(closed) == 'both': upper += margin # correct adjustments if lower >= upper: upper = lower + margin rtn_list += self._get_number(lower, upper, precision=precision, size=size, seed=_seed) np.random.default_rng(seed=_seed).shuffle(rtn_list) return rtn_list def _get_dist_normal(self, mean: float, std: float, size: int=None, seed: int=None) -> list: """A normal (Gaussian) continuous random distribution. :param mean: The mean (“centre”) of the distribution. :param std: The standard deviation (jitter or “width”) of the distribution. Must be >= 0 :param size: the size of the sample. if a tuple of intervals, size must match the tuple :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.normal(loc=mean, scale=std, size=size)) return rtn_list def _get_dist_logistic(self, mean: float, std: float, size: int=None, seed: int=None) -> list: """A logistic continuous random distribution. :param mean: The mean (“centre”) of the distribution. :param std: The standard deviation (jitter or “width”) of the distribution. Must be >= 0 :param size: the size of the sample. if a tuple of intervals, size must match the tuple :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.logistic(loc=mean, scale=std, size=size)) return rtn_list def _get_dist_exponential(self, scale: [int, float], size: int=None, seed: int=None) -> list: """An exponential continuous random distribution. :param scale: The scale of the distribution. :param size: the size of the sample. if a tuple of intervals, size must match the tuple :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.exponential(scale=scale, size=size)) return rtn_list def _get_dist_gumbel(self, mean: float, std: float, size: int=None, seed: int=None) -> list: """An gumbel continuous random distribution. The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like” tails. :param mean: The mean (“centre”) of the distribution. :param std: The standard deviation (jitter or “width”) of the distribution. Must be >= 0 :param size: the size of the sample. if a tuple of intervals, size must match the tuple :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.gumbel(loc=mean, scale=std, size=size)) return rtn_list def _get_dist_binomial(self, trials: int, probability: float, size: int=None, seed: int=None) -> list: """A binomial discrete random distribution. The Binomial Distribution represents the number of successes and failures in n independent Bernoulli trials for some given value of n :param trials: the number of trials to attempt, must be >= 0. :param probability: the probability distribution, >= 0 and <=1. :param size: the size of the sample. if a tuple of intervals, size must match the tuple :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.binomial(n=trials, p=probability, size=size)) return rtn_list def _get_dist_poisson(self, interval: float, size: int=None, seed: int=None) -> list: """A Poisson discrete random distribution. The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. :param interval: Expectation of interval, must be >= 0. :param size: the size of the sample. :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) rtn_list = list(generator.poisson(lam=interval, size=size)) return rtn_list def _get_dist_bernoulli(self, probability: float, size: int=None, seed: int=None) -> list: """A Bernoulli discrete random distribution using scipy :param probability: the probability occurrence :param size: the size of the sample :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed rtn_list = list(stats.bernoulli.rvs(p=probability, size=size, random_state=_seed)) return rtn_list def _get_dist_bounded_normal(self, mean: float, std: float, lower: float, upper: float, precision: int=None, size: int=None, seed: int=None) -> list: """A bounded normal continuous random distribution. :param mean: the mean of the distribution :param std: the standard deviation :param lower: the lower limit of the distribution :param upper: the upper limit of the distribution :param precision: the precision of the returned number. if None then assumes int value else float :param size: the size of the sample :param seed: a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size precision = precision if isinstance(precision, int) else 3 _seed = self._seed() if seed is None else seed rtn_list = stats.truncnorm((lower-mean)/std, (upper-mean)/std, loc=mean, scale=std).rvs(size).round(precision) return rtn_list def _get_distribution(self, distribution: str, package: str=None, precision: int=None, size: int=None, seed: int=None, **kwargs) -> list: """returns a number based the distribution type. :param distribution: The string name of the distribution function from numpy random Generator class :param package: (optional) The name of the package to use, options are 'numpy' (default) and 'scipy'. :param precision: (optional) the precision of the returned number :param size: (optional) the size of the sample :param seed: (optional) a seed value for the random function: default to None :return: a random number """ size = 1 if size is None else size _seed = self._seed() if seed is None else seed precision = 3 if precision is None else precision if isinstance(package, str) and package == 'scipy': rtn_list = eval(f"stats.{distribution}.rvs(size=size, random_state=_seed, **kwargs)", globals(), locals()) else: generator = np.random.default_rng(seed=_seed) rtn_list = eval(f"generator.{distribution}(size=size, **kwargs)", globals(), locals()) rtn_list = list(rtn_list.round(precision)) return rtn_list def _get_selection(self, canonical: Any, column_header: str, relative_freq: list=None, sample_size: int=None, selection_size: int=None, size: int=None, at_most: bool=None, shuffle: bool=None, seed: int=None) -> list: """ returns a random list of values where the selection of those values is taken from a connector source. :param canonical: a pd.DataFrame as the reference dataframe :param column_header: the name of the column header to correlate :param relative_freq: (optional) a weighting pattern of the final selection :param selection_size: (optional) the selection to take from the sample size, normally used with shuffle :param sample_size: (optional) the size of the sample to take from the reference file :param at_most: (optional) the most times a selection should be chosen :param shuffle: (optional) if the selection should be shuffled before selection. Default is true :param size: (optional) size of the return. default to 1 :param seed: (optional) a seed value for the random function: default to None :return: list The canonical is normally a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe but can be a pd.DataFrame. the description of each is: - pd.Dataframe -> a deep copy of the pd.DataFrame - pd.Series or list -> creates a pd.DataFrame of one column with the 'header' name or 'default' if not given - str -> instantiates a connector handler with the connector_name and loads the DataFrame from the connection - int -> generates an empty pd.Dataframe with an index size of the int passed. - dict -> use canonical2dict(...) to help construct a dict with a 'method' to build a pd.DataFrame methods: - model_*(...) -> one of the SyntheticBuilder model methods and parameters - @empty -> generates an empty pd.DataFrame where size and headers can be passed :size sets the index size of the dataframe :headers any initial headers for the dataframe - @generate -> generate a synthetic file from a remote Domain Contract :task_name the name of the SyntheticBuilder task to run :repo_uri the location of the Domain Product :size (optional) a size to generate :seed (optional) if a seed should be applied :run_book (optional) if specific intent should be run only """ canonical = self._get_canonical(canonical) _seed = self._seed() if seed is None else seed if isinstance(canonical, dict): canonical = pd.DataFrame.from_dict(data=canonical) if column_header not in canonical.columns: raise ValueError(f"The column '{column_header}' not found in the canonical") _values = canonical[column_header].iloc[:sample_size] if isinstance(selection_size, float) and shuffle: _values = _values.sample(frac=1, random_state=_seed).reset_index(drop=True) if isinstance(selection_size, int) and 0 < selection_size < _values.size: _values = _values.iloc[:selection_size] return self._get_category(selection=_values.to_list(), relative_freq=relative_freq, size=size, at_most=at_most, seed=_seed) def _frame_starter(self, canonical: Any, selection: list=None, headers: [str, list]=None, drop: bool=None, dtype: [str, list]=None, exclude: bool=None, regex: [str, list]=None, re_ignore_case: bool=None, rename_map: dict=None, default_size: int=None, seed: int=None) -> pd.DataFrame: """ Selects rows and/or columns changing the shape of the DatFrame. This is always run last in a pipeline Rows are filtered before the column filter so columns can be referenced even though they might not be included the final column list. :param canonical: a pd.DataFrame as the reference dataframe :param selection: a list of selections where conditions are filtered on, executed in list order An example of a selection with the minimum requirements is: (see 'select2dict(...)') [{'column': 'genre', 'condition': "=='Comedy'"}] :param headers: a list of headers to drop or filter on type :param drop: to drop or not drop the headers :param dtype: the column types to include or exclusive. Default None else int, float, bool, object, 'number' :param exclude: to exclude or include the dtypes :param regex: a regular expression to search the headers. example '^((?!_amt).)*$)' excludes '_amt' columns :param re_ignore_case: true if the regex should ignore case. Default is False :param rename_map: a from: to dictionary of headers to rename :param default_size: if the canonical fails return an empty dataframe with the default index size :param seed: this is a place holder, here for compatibility across methods :return: pd.DataFrame The starter is a pd.DataFrame, a pd.Series or list, a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe. the description of each is: - pd.Dataframe -> a deep copy of the pd.DataFrame - pd.Series or list -> creates a pd.DataFrame of one column with the 'header' name or 'default' if not given - str -> instantiates a connector handler with the connector_name and loads the DataFrame from the connection - int -> generates an empty pd.Dataframe with an index size of the int passed. - dict -> use canonical2dict(...) to help construct a dict with a 'method' to build a pd.DataFrame methods: - model_*(...) -> one of the SyntheticBuilder model methods and parameters - @empty -> generates an empty pd.DataFrame where size and headers can be passed :size sets the index size of the dataframe :headers any initial headers for the dataframe - @generate -> generate a synthetic file from a remote Domain Contract :task_name the name of the SyntheticBuilder task to run :repo_uri the location of the Domain Product :size (optional) a size to generate :seed (optional) if a seed should be applied :run_book (optional) if specific intent should be run only Selections are a list of dictionaries of conditions and optional additional parameters to filter. To help build conditions there is a static helper method called 'select2dict(...)' that has parameter options available to build a condition. An example of a condition with the minimum requirements is [{'column': 'genre', 'condition': "=='Comedy'"}] an example of using the helper method selection = [inst.select2dict(column='gender', condition="=='M'"), inst.select2dict(column='age', condition=">65", logic='XOR')] Using the 'select2dict' method ensure the correct keys are used and the dictionary is properly formed. It also helps with building the logic that is executed in order """ canonical = self._get_canonical(canonical, size=default_size) # not used but in place form method consistency _seed = self._seed() if seed is None else seed if isinstance(selection, list): selection = deepcopy(selection) # run the select logic select_idx = self._selection_index(canonical=canonical, selection=selection) canonical = canonical.iloc[select_idx].reset_index(drop=True) drop = drop if isinstance(drop, bool) else False exclude = exclude if isinstance(exclude, bool) else False re_ignore_case = re_ignore_case if isinstance(re_ignore_case, bool) else False rtn_frame = Commons.filter_columns(canonical, headers=headers, drop=drop, dtype=dtype, exclude=exclude, regex=regex, re_ignore_case=re_ignore_case) if isinstance(rename_map, dict): rtn_frame.rename(mapper=rename_map, axis='columns', inplace=True) return rtn_frame def _frame_selection(self, canonical: Any, selection: list=None, headers: [str, list]=None, drop: bool=None, dtype: [str, list]=None, exclude: bool=None, regex: [str, list]=None, re_ignore_case: bool=None, seed: int=None) -> pd.DataFrame: """ This method always runs at the start of the pipeline, taking a direct or generated pd.DataFrame, see context notes below, as the foundation canonical of all subsequent steps of the pipeline. :param canonical: a direct or generated pd.DataFrame. see context notes below :param selection: a list of selections where conditions are filtered on, executed in list order An example of a selection with the minimum requirements is: (see 'select2dict(...)') [{'column': 'genre', 'condition': "=='Comedy'"}] :param headers: a list of headers to drop or filter on type :param drop: to drop or not drop the headers :param dtype: the column types to include or exclusive. Default None else int, float, bool, object, 'number' :param exclude: to exclude or include the dtypes :param regex: a regular expression to search the headers. example '^((?!_amt).)*$)' excludes '_amt' columns :param re_ignore_case: true if the regex should ignore case. Default is False :param seed: this is a place holder, here for compatibility across methods :return: pd.DataFrame Selections are a list of dictionaries of conditions and optional additional parameters to filter. To help build conditions there is a static helper method called 'select2dict(...)' that has parameter options available to build a condition. An example of a condition with the minimum requirements is [{'column': 'genre', 'condition': "=='Comedy'"}] an example of using the helper method selection = [inst.select2dict(column='gender', condition="=='M'"), inst.select2dict(column='age', condition=">65", logic='XOR')] Using the 'select2dict' method ensure the correct keys are used and the dictionary is properly formed. It also helps with building the logic that is executed in order """ return self._frame_starter(canonical=canonical, selection=selection, headers=headers, drop=drop, dtype=dtype, exclude=exclude, regex=regex, re_ignore_case=re_ignore_case, seed=seed) def _model_custom(self, canonical: Any, code_str: str, seed: int=None, **kwargs): """ Commonly used for custom methods, takes code string that when executed changes the the canonical returning the modified canonical. If the method passes returns a pd.Dataframe this will be returned else the assumption is the canonical has been changed inplace and thus the modified canonical will be returned When referencing the canonical in the code_str it should be referenced either by use parameter label 'canonical' or the short cut '@' symbol. kwargs can also be passed into the code string but must be preceded by a '$' symbol for example: assume canonical['gender'] = ['M', 'F', 'U'] code_str =''' \n@['new_gender'] = [True if x in $value else False for x in @[$header]] \n@['value'] = [4, 5, 6] ''' where kwargs are header="'gender'" and value=['M', 'F'] :param canonical: a pd.DataFrame as the reference dataframe :param code_str: an action on those column values. to reference the canonical use '@' :param seed: (optional) a seed value for the random function: default to None :param kwargs: a set of kwargs to include in any executable function :return: a list (optionally a pd.DataFrame """ canonical = self._get_canonical(canonical) _seed = seed if isinstance(seed, int) else self._seed() local_kwargs = locals() for k, v in local_kwargs.pop('kwargs', {}).items(): local_kwargs.update({k: v}) code_str = code_str.replace(f'${k}', str(v)) code_str = code_str.replace('@', 'canonical') df = exec(code_str, globals(), local_kwargs) if df is None: return canonical return df def _model_iterator(self, canonical: Any, marker_col: str=None, starting_frame: str=None, selection: list=None, default_action: dict=None, iteration_actions: dict=None, iter_start: int=None, iter_stop: int=None, seed: int=None) -> pd.DataFrame: """ This method allows one to model repeating data subset that has some form of action applied per iteration. The optional marker column must be included in order to apply actions or apply an iteration marker An example of use might be a recommender generator where a cohort of unique users need to be selected, for different recommendation strategies but users can be repeated across recommendation strategy :param canonical: a pd.DataFrame as the reference dataframe :param marker_col: (optional) the marker column name for the action outcome. default is to not include :param starting_frame: (optional) a str referencing an existing connector contract name as the base DataFrame :param selection: (optional) a list of selections where conditions are filtered on, executed in list order An example of a selection with the minimum requirements is: (see 'select2dict(...)') [{'column': 'genre', 'condition': "=='Comedy'"}] :param default_action: (optional) a default action to take on all iterations. defaults to iteration value :param iteration_actions: (optional) a dictionary of actions where the key is a specific iteration :param iter_start: (optional) the start value of the range iteration default is 0 :param iter_stop: (optional) the stop value of the range iteration default is start iteration + 1 :param seed: (optional) this is a place holder, here for compatibility across methods :return: pd.DataFrame The starting_frame can be a pd.DataFrame, a pd.Series, int or list, a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe. the description of each is: - pd.Dataframe -> a deep copy of the pd.DataFrame - pd.Series or list -> creates a pd.DataFrame of one column with the 'header' name or 'default' if not given - str -> instantiates a connector handler with the connector_name and loads the DataFrame from the connection - int -> generates an empty pd.Dataframe with an index size of the int passed. - dict -> use canonical2dict(...) to help construct a dict with a 'method' to build a pd.DataFrame methods: - model_*(...) -> one of the SyntheticBuilder model methods and parameters - @empty -> generates an empty pd.DataFrame where size and headers can be passed :size sets the index size of the dataframe :headers any initial headers for the dataframe - @generate -> generate a synthetic file from a remote Domain Contract :task_name the name of the SyntheticBuilder task to run :repo_uri the location of the Domain Product :size (optional) a size to generate :seed (optional) if a seed should be applied :run_book (optional) if specific intent should be run only Selections are a list of dictionaries of conditions and optional additional parameters to filter. To help build conditions there is a static helper method called 'select2dict(...)' that has parameter options available to build a condition. An example of a condition with the minimum requirements is [{'column': 'genre', 'condition': "=='Comedy'"}] an example of using the helper method selection = [inst.select2dict(column='gender', condition="=='M'"), inst.select2dict(column='age', condition=">65", logic='XOR')] Using the 'select2dict' method ensure the correct keys are used and the dictionary is properly formed. It also helps with building the logic that is executed in order Actions are the resulting outcome of the selection (or the default). An action can be just a value or a dict that executes a intent method such as get_number(). To help build actions there is a helper function called action2dict(...) that takes a method as a mandatory attribute. With actions there are special keyword 'method' values: @header: use a column as the value reference, expects the 'header' key @constant: use a value constant, expects the key 'value' @sample: use to get sample values, expected 'name' of the Sample method, optional 'shuffle' boolean @eval: evaluate a code string, expects the key 'code_str' and any locals() required An example of a simple action to return a selection from a list: {'method': 'get_category', selection: ['M', 'F', 'U']} This same action using the helper method would look like: inst.action2dict(method='get_category', selection=['M', 'F', 'U']) an example of using the helper method, in this example we use the keyword @header to get a value from another column at the same index position: inst.action2dict(method="@header", header='value') We can even execute some sort of evaluation at run time: inst.action2dict(method="@eval", code_str='sum(values)', values=[1,4,2,1]) """ canonical = self._get_canonical(canonical) rtn_frame = self._get_canonical(starting_frame) _seed = self._seed() if seed is None else seed iter_start = iter_start if isinstance(iter_start, int) else 0 iter_stop = iter_stop if isinstance(iter_stop, int) and iter_stop > iter_start else iter_start + 1 default_action = default_action if isinstance(default_action, dict) else 0 iteration_actions = iteration_actions if isinstance(iteration_actions, dict) else {} for counter in range(iter_start, iter_stop): df_count = canonical.copy() # selection df_count = self._frame_selection(df_count, selection=selection, seed=_seed) # actions if isinstance(marker_col, str): if counter in iteration_actions.keys(): _action = iteration_actions.get(counter, None) df_count[marker_col] = self._apply_action(df_count, action=_action, seed=_seed) else: default_action = default_action if isinstance(default_action, dict) else counter df_count[marker_col] = self._apply_action(df_count, action=default_action, seed=_seed) rtn_frame = pd.concat([rtn_frame, df_count], ignore_index=True) return rtn_frame def _model_group(self, canonical: Any, headers: [str, list], group_by: [str, list], aggregator: str=None, list_choice: int=None, list_max: int=None, drop_group_by: bool=False, seed: int=None, include_weighting: bool=False, freq_precision: int=None, remove_weighting_zeros: bool=False, remove_aggregated: bool=False) -> pd.DataFrame: """ returns the full column values directly from another connector data source. in addition the the standard groupby aggregators there is also 'list' and 'set' that returns an aggregated list or set. These can be using in conjunction with 'list_choice' and 'list_size' allows control of the return values. if list_max is set to 1 then a single value is returned rather than a list of size 1. :param canonical: a pd.DataFrame as the reference dataframe :param headers: the column headers to apply the aggregation too :param group_by: the column headers to group by :param aggregator: (optional) the aggregator as a function of Pandas DataFrame 'groupby' or 'list' or 'set' :param list_choice: (optional) used in conjunction with list or set aggregator to return a random n choice :param list_max: (optional) used in conjunction with list or set aggregator restricts the list to a n size :param drop_group_by: (optional) drops the group by headers :param include_weighting: (optional) include a percentage weighting column for each :param freq_precision: (optional) a precision for the relative_freq values :param remove_aggregated: (optional) if used in conjunction with the weighting then drops the aggregator column :param remove_weighting_zeros: (optional) removes zero values :param seed: (optional) this is a place holder, here for compatibility across methods :return: a pd.DataFrame """ canonical = self._get_canonical(canonical) _seed = self._seed() if seed is None else seed generator = np.random.default_rng(seed=_seed) freq_precision = freq_precision if isinstance(freq_precision, int) else 3 aggregator = aggregator if isinstance(aggregator, str) else 'sum' headers = Commons.list_formatter(headers) group_by = Commons.list_formatter(group_by) df_sub = Commons.filter_columns(canonical, headers=headers + group_by).dropna() if aggregator.startswith('set') or aggregator.startswith('list'): df_tmp = df_sub.groupby(group_by)[headers[0]].apply(eval(aggregator)).apply(lambda x: list(x)) df_tmp = df_tmp.reset_index() for idx in range(1, len(headers)): result = df_sub.groupby(group_by)[headers[idx]].apply(eval(aggregator)).apply(lambda x: list(x)) df_tmp = df_tmp.merge(result, how='left', left_on=group_by, right_index=True) for idx in range(len(headers)): header = headers[idx] if isinstance(list_choice, int): df_tmp[header] = df_tmp[header].apply(lambda x: generator.choice(x, size=list_choice)) if isinstance(list_max, int): df_tmp[header] = df_tmp[header].apply(lambda x: x[0] if list_max == 1 else x[:list_max]) df_sub = df_tmp else: df_sub = df_sub.groupby(group_by, as_index=False).agg(aggregator) if include_weighting: df_sub['sum'] = df_sub.sum(axis=1, numeric_only=True) total = df_sub['sum'].sum() df_sub['weighting'] = df_sub['sum'].\ apply(lambda x: round((x / total), freq_precision) if isinstance(x, (int, float)) else 0) df_sub = df_sub.drop(columns='sum') if remove_weighting_zeros: df_sub = df_sub[df_sub['weighting'] > 0] df_sub = df_sub.sort_values(by='weighting', ascending=False) if remove_aggregated: df_sub = df_sub.drop(headers, axis=1) if drop_group_by: df_sub = df_sub.drop(columns=group_by, errors='ignore') return df_sub def _model_merge(self, canonical: Any, other: Any, left_on: str=None, right_on: str=None, on: str=None, how: str=None, headers: list=None, suffixes: tuple=None, indicator: bool=None, validate: str=None, seed: int=None) -> pd.DataFrame: """ returns the full column values directly from another connector data source. The indicator parameter can be used to mark the merged items. :param canonical: a pd.DataFrame as the reference dataframe :param other: a direct or generated pd.DataFrame. see context notes below :param left_on: the canonical key column(s) to join on :param right_on: the merging dataset key column(s) to join on :param on: if th left and right join have the same header name this can replace left_on and right_on :param how: (optional) One of 'left', 'right', 'outer', 'inner'. Defaults to inner. See below for more detailed description of each method. :param headers: (optional) a filter on the headers included from the right side :param suffixes: (optional) A tuple of string suffixes to apply to overlapping columns. Defaults ('', '_dup'). :param indicator: (optional) Add a column to the output DataFrame called _merge with information on the source of each row. _merge is Categorical-type and takes on a value of left_only for observations whose merge key only appears in 'left' DataFrame or Series, right_only for observations whose merge key only appears in 'right' DataFrame or Series, and both if the observation’s merge key is found in both. :param validate: (optional) validate : string, default None. If specified, checks if merge is of specified type. “one_to_one” or “1:1”: checks if merge keys are unique in both left and right datasets. “one_to_many” or “1:m”: checks if merge keys are unique in left dataset. “many_to_one” or “m:1”: checks if merge keys are unique in right dataset. “many_to_many” or “m:m”: allowed, but does not result in checks. :param seed: this is a place holder, here for compatibility across methods :return: a pd.DataFrame The other is a pd.DataFrame, a pd.Series, int or list, a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe. the description of each is: - pd.Dataframe -> a deep copy of the pd.DataFrame - pd.Series or list -> creates a pd.DataFrame of one column with the 'header' name or 'default' if not given - str -> instantiates a connector handler with the connector_name and loads the DataFrame from the connection - int -> generates an empty pd.Dataframe with an index size of the int passed. - dict -> use canonical2dict(...) to help construct a dict with a 'method' to build a pd.DataFrame methods: - model_*(...) -> one of the SyntheticBuilder model methods and parameters - @empty -> generates an empty pd.DataFrame where size and headers can be passed :size sets the index size of the dataframe :headers any initial headers for the dataframe - @generate -> generate a synthetic file from a remote Domain Contract :task_name the name of the SyntheticBuilder task to run :repo_uri the location of the Domain Product :size (optional) a size to generate :seed (optional) if a seed should be applied :run_book (optional) if specific intent should be run only """ # Code block for intent canonical = self._get_canonical(canonical) other = self._get_canonical(other, size=canonical.shape[0]) _seed = self._seed() if seed is None else seed how = how if isinstance(how, str) and how in ['left', 'right', 'outer', 'inner'] else 'inner' indicator = indicator if isinstance(indicator, bool) else False suffixes = suffixes if isinstance(suffixes, tuple) and len(suffixes) == 2 else ('', '_dup') # Filter on the columns if isinstance(headers, list): headers.append(right_on if isinstance(right_on, str) else on) other = Commons.filter_columns(other, headers=headers) df_rtn = pd.merge(left=canonical, right=other, how=how, left_on=left_on, right_on=right_on, on=on, suffixes=suffixes, indicator=indicator, validate=validate) return df_rtn def _model_concat(self, canonical: Any, other: Any, as_rows: bool=None, headers: [str, list]=None, drop: bool=None, dtype: [str, list]=None, exclude: bool=None, regex: [str, list]=None, re_ignore_case: bool=None, shuffle: bool=None, seed: int=None) -> pd.DataFrame: """ returns the full column values directly from another connector data source. :param canonical: a pd.DataFrame as the reference dataframe :param other: a direct or generated pd.DataFrame. see context notes below :param as_rows: (optional) how to concatenate, True adds the connector dataset as rows, False as columns :param headers: (optional) a filter of headers from the 'other' dataset :param drop: (optional) to drop or not drop the headers if specified :param dtype: (optional) a filter on data type for the 'other' dataset. int, float, bool, object :param exclude: (optional) to exclude or include the data types if specified :param regex: (optional) a regular expression to search the headers. example '^((?!_amt).)*$)' excludes '_amt' :param re_ignore_case: (optional) true if the regex should ignore case. Default is False :param shuffle: (optional) if the rows in the loaded canonical should be shuffled :param seed: this is a place holder, here for compatibility across methods :return: a pd.DataFrame The other is a pd.DataFrame, a pd.Series, int or list, a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe. the description of each is: - pd.Dataframe -> a deep copy of the pd.DataFrame - pd.Series or list -> creates a pd.DataFrame of one column with the 'header' name or 'default' if not given - str -> instantiates a connector handler with the connector_name and loads the DataFrame from the connection - int -> generates an empty pd.Dataframe with an index size of the int passed. - dict -> use canonical2dict(...) to help construct a dict with a 'method' to build a pd.DataFrame methods: - model_*(...) -> one of the SyntheticBuilder model methods and parameters - @empty -> generates an empty pd.DataFrame where size and headers can be passed :size sets the index size of the dataframe :headers any initial headers for the dataframe - @generate -> generate a synthetic file from a remote Domain Contract :task_name the name of the SyntheticBuilder task to run :repo_uri the location of the Domain Product :size (optional) a size to generate :seed (optional) if a seed should be applied :run_book (optional) if specific intent should be run only """ canonical = self._get_canonical(canonical) other = self._get_canonical(other, size=canonical.shape[0]) _seed = self._seed() if seed is None else seed shuffle = shuffle if isinstance(shuffle, bool) else False as_rows = as_rows if isinstance(as_rows, bool) else False # Filter on the columns df_rtn = Commons.filter_columns(df=other, headers=headers, drop=drop, dtype=dtype, exclude=exclude, regex=regex, re_ignore_case=re_ignore_case, copy=False) if shuffle: df_rtn.sample(frac=1, random_state=_seed).reset_index(drop=True) if canonical.shape[0] <= df_rtn.shape[0]: df_rtn = df_rtn.iloc[:canonical.shape[0]] axis = 'index' if as_rows else 'columns' return pd.concat([canonical, df_rtn], axis=axis) def _model_dict_column(self, canonical: Any, header: str, convert_str: bool=None, replace_null: Any=None, seed: int=None) -> pd.DataFrame: """ takes a column that contains dict and expands them into columns. Note, the column must be a flat dictionary. Complex structures will not work. :param canonical: a pd.DataFrame as the reference dataframe :param header: the header of the column to be convert :param convert_str: (optional) if the header has the dict as a string convert to dict using ast.literal_eval() :param replace_null: (optional) after conversion, replace null values with this value :param seed: (optional) this is a place holder, here for compatibility across methods :return: pd.DataFrame """ canonical = self._get_canonical(canonical) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") _seed = self._seed() if seed is None else seed convert_str = convert_str if isinstance(convert_str, bool) else False # replace NaN with '{}' if the column is strings, otherwise replace with {} if convert_str: canonical[header] = canonical[header].fillna('{}').apply(ast.literal_eval) else: canonical[header] = canonical[header].fillna({i: {} for i in canonical.index}) # convert the key/values into columns (this is the fasted code) result = pd.json_normalize(canonical[header]) if isinstance(replace_null, (int, float, str)): result.replace(np.nan, replace_null, inplace=True) return canonical.join(result).drop(columns=[header]) def _model_explode(self, canonical: Any, header: str, seed: int=None) -> pd.DataFrame: """ takes a single column of list values and explodes the DataFrame so row is represented by each elements in the row list :param canonical: a pd.DataFrame as the reference dataframe :param header: the header of the column to be exploded :param seed: (optional) this is a place holder, here for compatibility across methods :return: a pd.DataFrame The canonical is a pd.DataFrame, a pd.Series or list, a connector contract str reference or a set of parameter instructions on how to generate a pd.Dataframe. the description of each is: """ canonical = self._get_canonical(canonical) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") _seed = self._seed() if seed is None else seed return canonical.explode(column=header, ignore_index=True) def _model_sample(self, canonical: Any, sample: Any, columns_list: list=None, exclude_associate: list=None, auto_transition: bool=None, detail_numeric: bool=None, strict_typing: bool=None, category_limit: int=None, apply_bias: bool=None, seed: int = None) -> pd.DataFrame: """ Takes a sample dataset and using analytics, builds a set of synthetic columns that are representative of the sample but scaled to the size of the canonical :param canonical: :param sample: :param columns_list: :param exclude_associate: :param auto_transition: :param detail_numeric: :param strict_typing: :param category_limit: :param apply_bias: :param seed: (optional) this is a place holder, here for compatibility across methods :return: a pd.DataFrame """ canonical = self._get_canonical(canonical) sample = self._get_canonical(sample) auto_transition = auto_transition if isinstance(auto_transition, bool) else True columns_list = columns_list if isinstance(columns_list, list) else list(sample.columns) sample = Commons.filter_columns(sample, headers=columns_list) if auto_transition: Transition.from_memory().cleaners.auto_transition(sample, inplace=True) blob = DataDiscovery.analyse_association(sample, columns_list=columns_list, exclude_associate=exclude_associate, detail_numeric=detail_numeric, strict_typing=strict_typing, category_limit=category_limit) return self._model_analysis(canonical=canonical, analytics_blob=blob, apply_bias=apply_bias, seed=seed) def _model_script(self, canonical: Any, script_contract: str, seed: int = None) -> pd.DataFrame: """Takes a synthetic build script and using analytics, builds a set of synthetic columns that are that are defined by the build script and scaled to the size of the canonical :param canonical: :param script_contract: :param seed: (optional) this is a place holder, here for compatibility across methods :return: a pd.DataFrame """ canonical = self._get_canonical(canonical) script = self._get_canonical(script_contract) type_options = {'number': '_get_number', 'date': '_get_datetime', 'category': 'get_category', 'selection': 'get_selection', 'intervals': 'get_intervals', 'distribution': 'get_distribution'} script['params'] = script['params'].replace(['', ' '], np.nan) script['params'].loc[script['params'].isna()] = '[]' script['params'] = [ast.literal_eval(x) if isinstance(x, str) and x.startswith('[') and x.endswith(']') else x for x in script['params']] # replace all other items with list script['params'] = [x if isinstance(x, list) else [x] for x in script['params']] script['params'] = script['params'].astype('object') for index, row in script.iterrows(): method = type_options.get(row['type']) params = row['params'] canonical[row['name']] = eval(f"self.{method}(size={canonical.shape[0]}, **params)", globals(), locals()) return canonical def _model_analysis(self, canonical: Any, analytics_blob: dict, apply_bias: bool=None, seed: int=None) -> pd.DataFrame: """ builds a set of columns based on an analysis dictionary of weighting (see analyse_association) if a reference DataFrame is passed then as the analysis is run if the column already exists the row value will be taken as the reference to the sub category and not the random value. This allows already constructed association to be used as reference for a sub category. :param canonical: a pd.DataFrame as the reference dataframe :param analytics_blob: the analytics blob from DataDiscovery.analyse_association(...) :param apply_bias: (optional) if dominant values have been excluded, re-include to maintain bias :param seed: seed: (optional) a seed value for the random function: default to None :return: a DataFrame """ def get_level(analysis: dict, sample_size: int, _seed: int=None): _seed = self._seed(seed=_seed, increment=True) for name, values in analysis.items(): if row_dict.get(name) is None: row_dict[name] = list() _analysis = DataAnalytics(analysis=values.get('insight', {})) result_type = object if str(_analysis.intent.dtype).startswith('cat'): result_type = 'category' result = self._get_category(selection=_analysis.intent.categories, relative_freq=_analysis.patterns.get('relative_freq', None), seed=_seed, size=sample_size) elif str(_analysis.intent.dtype).startswith('num'): result_type = 'int' if _analysis.params.precision == 0 else 'float' result = self._get_intervals(intervals=[tuple(x) for x in _analysis.intent.intervals], relative_freq=_analysis.patterns.get('relative_freq', None), precision=_analysis.params.get('precision', None), seed=_seed, size=sample_size) elif str(_analysis.intent.dtype).startswith('date'): result_type = 'object' if _analysis.params.is_element('data_format') else 'date' result = self._get_datetime(start=_analysis.stats.lowest, until=_analysis.stats.highest, relative_freq=_analysis.patterns.get('relative_freq', None), date_format=_analysis.params.get('data_format', None), day_first=_analysis.params.get('day_first', None), year_first=_analysis.params.get('year_first', None), seed=_seed, size=sample_size) else: result = [] # if the analysis was done with excluding dominance then se if they should be added back if apply_bias and _analysis.patterns.is_element('dominant_excluded'): _dom_percent = _analysis.patterns.dominant_percent/100 _dom_values = _analysis.patterns.dominant_excluded if len(_dom_values) > 0: s_values = pd.Series(result, dtype=result_type) non_zero = s_values[~s_values.isin(_dom_values)].index choice_size = int((s_values.size * _dom_percent) - (s_values.size - len(non_zero))) if choice_size > 0: generator = np.random.default_rng(_seed) _dom_choice = generator.choice(_dom_values, size=choice_size) s_values.iloc[generator.choice(non_zero, size=choice_size, replace=False)] = _dom_choice result = s_values.to_list() # now add the result to the row_dict row_dict[name] += result if sum(_analysis.patterns.relative_freq) == 0: unit = 0 else: unit = sample_size / sum(_analysis.patterns.relative_freq) if values.get('sub_category'): leaves = values.get('branch', {}).get('leaves', {}) for idx in range(len(leaves)): section_size = int(round(_analysis.patterns.relative_freq[idx] * unit, 0)) + 1 next_item = values.get('sub_category').get(leaves[idx]) get_level(next_item, section_size, _seed) return canonical = self._get_canonical(canonical) apply_bias = apply_bias if isinstance(apply_bias, bool) else True row_dict = dict() seed = self._seed() if seed is None else seed size = canonical.shape[0] get_level(analytics_blob, sample_size=size, _seed=seed) for key in row_dict.keys(): row_dict[key] = row_dict[key][:size] return pd.concat([canonical, pd.DataFrame.from_dict(data=row_dict)], axis=1) def _model_encoding(self, canonical: Any, headers: [str, list], encoding: bool=None, ordinal: dict=None, prefix=None, dtype: Any=None, prefix_sep: str=None, dummy_na: bool=False, drop_first: bool=False, seed: int=None) -> pd.DataFrame: """ encodes categorical data types, by default, as dummy encoded but optionally can choose label encoding :param canonical: a pd.DataFrame as the reference dataframe :param headers: the header(s) to apply multi-hot :param encoding: the type of encoding to apply to the categories, types supported 'dummy', 'ordinal', 'label' :param ordinal: a dictionary of ordinal encoding. encoding must be 'ordinal', if not mapped then returns null :param prefix : str, list of str, or dict of str, default None String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes. :param prefix_sep : str, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`. :param dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. :param drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. :param dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. :param seed: seed: (optional) a seed value for the random function: default to None :return: a pd.Dataframe """ # intend code block on the canonical canonical = self._get_canonical(canonical) headers = Commons.list_formatter(headers) seed = self._seed() if seed is None else seed encoding = encoding if isinstance(encoding, str) and encoding in ['label', 'ordinal'] else 'dummy' prefix = prefix if isinstance(prefix, str) else None prefix_sep = prefix_sep if isinstance(prefix_sep, str) else "_" dummy_na = dummy_na if isinstance(dummy_na, bool) else False drop_first = drop_first if isinstance(drop_first, bool) else False dtype = dtype if dtype else np.uint8 for header in headers: if canonical[header].dtype.name != 'category': canonical[header] = canonical[header].astype('category') if encoding == 'ordinal': ordinal = ordinal if isinstance(ordinal, dict) else {} canonical[header] = canonical[header].map(ordinal, na_action=np.nan) elif encoding == 'label': canonical[f"{prefix}{prefix_sep}{header}"] = canonical[header].cat.codes if encoding == 'dummy': dummy_df = pd.get_dummies(canonical, columns=headers, prefix=prefix, prefix_sep=prefix_sep, dummy_na=dummy_na, drop_first=drop_first, dtype=dtype) for name in dummy_df.columns: canonical[name] = dummy_df[name] return canonical def _correlate_selection(self, canonical: Any, selection: list, action: [str, int, float, dict], default_action: [str, int, float, dict]=None, seed: int=None, rtn_type: str=None): """ returns a value set based on the selection list and the action enacted on that selection. If the selection criteria is not fulfilled then the default_action is taken if specified, else null value. If a DataFrame is not passed, the values column is referenced by the header '_default' :param canonical: a pd.DataFrame as the reference dataframe :param selection: a list of selections where conditions are filtered on, executed in list order An example of a selection with the minimum requirements is: (see 'select2dict(...)') [{'column': 'genre', 'condition': "=='Comedy'"}] :param action: a value or dict to act upon if the select is successful. see below for more examples An example of an action as a dict: (see 'action2dict(...)') {'method': 'get_category', 'selection': ['M', 'F', 'U']} :param default_action: (optional) a default action to take if the selection is not fulfilled :param seed: (optional) a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: value set based on the selection list and the action Selections are a list of dictionaries of conditions and optional additional parameters to filter. To help build conditions there is a static helper method called 'select2dict(...)' that has parameter options available to build a condition. An example of a condition with the minimum requirements is [{'column': 'genre', 'condition': "=='Comedy'"}] an example of using the helper method selection = [inst.select2dict(column='gender', condition="=='M'"), inst.select2dict(column='age', condition=">65", logic='XOR')] Using the 'select2dict' method ensure the correct keys are used and the dictionary is properly formed. It also helps with building the logic that is executed in order Actions are the resulting outcome of the selection (or the default). An action can be just a value or a dict that executes a intent method such as get_number(). To help build actions there is a helper function called action2dict(...) that takes a method as a mandatory attribute. With actions there are special keyword 'method' values: @header: use a column as the value reference, expects the 'header' key @constant: use a value constant, expects the key 'value' @sample: use to get sample values, expected 'name' of the Sample method, optional 'shuffle' boolean @eval: evaluate a code string, expects the key 'code_str' and any locals() required An example of a simple action to return a selection from a list: {'method': 'get_category', selection: ['M', 'F', 'U']} This same action using the helper method would look like: inst.action2dict(method='get_category', selection=['M', 'F', 'U']) an example of using the helper method, in this example we use the keyword @header to get a value from another column at the same index position: inst.action2dict(method="@header", header='value') We can even execute some sort of evaluation at run time: inst.action2dict(method="@eval", code_str='sum(values)', values=[1,4,2,1]) """ canonical = self._get_canonical(canonical) if len(canonical) == 0: raise TypeError("The canonical given is empty") if not isinstance(selection, list): raise ValueError("The 'selection' parameter must be a 'list' of 'dict' types") if not isinstance(action, (str, int, float, dict)) or (isinstance(action, dict) and len(action) == 0): raise TypeError("The 'action' parameter is not of an accepted format or is empty") _seed = seed if isinstance(seed, int) else self._seed() # prep the values to be a DataFrame if it isn't already action = deepcopy(action) selection = deepcopy(selection) # run the logic select_idx = self._selection_index(canonical=canonical, selection=selection) if not isinstance(default_action, (str, int, float, dict)): default_action = None rtn_values = self._apply_action(canonical, action=default_action, seed=_seed) # deal with categories is_category = False if rtn_values.dtype.name == 'category': is_category = True rtn_values = rtn_values.astype('object') rtn_values.update(self._apply_action(canonical, action=action, select_idx=select_idx, seed=_seed)) if is_category: rtn_values = rtn_values.astype('category') if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): rtn_values = rtn_values.astype(rtn_type) return rtn_values return rtn_values.to_list() def _correlate_custom(self, canonical: Any, code_str: str, seed: int=None, **kwargs): """ Commonly used for custom list comprehension, takes code string that when evaluated returns a list of values When referencing the canonical in the code_str it should be referenced either by use parameter label 'canonical' or the short cut '@' symbol. for example: code_str = "[x + 2 for x in @['A']]" # where 'A' is a header in the canonical kwargs can also be passed into the code string but must be preceded by a '$' symbol for example: code_str = "[True if x == $v1 else False for x in @['A']]" # where 'v1' is a kwargs :param canonical: a pd.DataFrame as the reference dataframe :param code_str: an action on those column values. to reference the canonical use '@' :param seed: (optional) a seed value for the random function: default to None :param kwargs: a set of kwargs to include in any executable function :return: a list (optionally a pd.DataFrame """ canonical = self._get_canonical(canonical) _seed = seed if isinstance(seed, int) else self._seed() local_kwargs = locals() for k, v in local_kwargs.pop('kwargs', {}).items(): local_kwargs.update({k: v}) code_str = code_str.replace(f'${k}', str(v)) code_str = code_str.replace('@', 'canonical') rtn_values = eval(code_str, globals(), local_kwargs) if rtn_values is None: return [np.nan] * canonical.shape[0] return rtn_values def _correlate_aggregate(self, canonical: Any, headers: list, agg: str, seed: int=None, precision: int=None, rtn_type: str=None): """ correlate two or more columns with each other through a finite set of aggregation functions. The aggregation function names are limited to 'sum', 'prod', 'count', 'min', 'max' and 'mean' for numeric columns and a special 'list' function name to combine the columns as a list :param canonical: a pd.DataFrame as the reference dataframe :param headers: a list of headers to correlate :param agg: the aggregation function name enact. The available functions are: 'sum', 'prod', 'count', 'min', 'max', 'mean' and 'list' which combines the columns as a list :param precision: the value precision of the return values :param seed: (optional) a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: a list of equal length to the one passed """ canonical = self._get_canonical(canonical) if not isinstance(headers, list) or len(headers) < 2: raise ValueError("The headers value must be a list of at least two header str") if agg not in ['sum', 'prod', 'count', 'min', 'max', 'mean', 'list']: raise ValueError("The only allowed func values are 'sum', 'prod', 'count', 'min', 'max', 'mean', 'list'") # Code block for intent _seed = seed if isinstance(seed, int) else self._seed() precision = precision if isinstance(precision, int) else 3 if agg == 'list': return canonical.loc[:, headers].values.tolist() rtn_values = eval(f"canonical.loc[:, headers].{agg}(axis=1)", globals(), locals()).round(precision) if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): rtn_values = rtn_values.astype(rtn_type) return rtn_values return rtn_values.to_list() def _correlate_choice(self, canonical: Any, header: str, list_size: int=None, random_choice: bool=None, replace: bool=None, shuffle: bool=None, convert_str: bool=None, seed: int=None, rtn_type: str=None): """ correlate a column where the elements of the columns contains a list, and a choice is taken from that list. if the list_size == 1 then a single value is correlated otherwise a list is correlated Null values are passed through but all other elements must be a list with at least 1 value in. if 'random' is true then all returned values will be a random selection from the list and of equal length. if 'random' is false then each list will not exceed the 'list_size' Also if 'random' is true and 'replace' is False then all lists must have more elements than the list_size. By default 'replace' is True and 'shuffle' is False. In addition 'convert_str' allows lists that have been formatted as a string can be converted from a string to a list using 'ast.literal_eval(x)' :param canonical: a pd.DataFrame as the reference dataframe :param header: The header containing a list to chose from. :param list_size: (optional) the number of elements to return, if more than 1 then list :param random_choice: (optional) if the choice should be a random choice. :param replace: (optional) if the choice selection should be replaced or selected only once :param shuffle: (optional) if the final list should be shuffled :param convert_str: if the header has the list as a string convert to list using ast.literal_eval() :param seed: (optional) a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: a list of equal length to the one passed """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") # Code block for intent list_size = list_size if isinstance(list_size, int) else 1 random_choice = random_choice if isinstance(random_choice, bool) else False convert_str = convert_str if isinstance(convert_str, bool) else False replace = replace if isinstance(replace, bool) else True shuffle = shuffle if isinstance(shuffle, bool) else False _seed = seed if isinstance(seed, int) else self._seed() s_values = canonical[header].copy() if s_values.empty: return list() s_idx = s_values.where(~s_values.isna()).dropna().index if convert_str: s_values.iloc[s_idx] = [ast.literal_eval(x) if isinstance(x, str) else x for x in s_values.iloc[s_idx]] s_values.iloc[s_idx] = Commons.list_formatter(s_values.iloc[s_idx]) generator = np.random.default_rng(seed=_seed) if random_choice: try: s_values.iloc[s_idx] = [generator.choice(x, size=list_size, replace=replace, shuffle=shuffle) for x in s_values.iloc[s_idx]] except ValueError: raise ValueError(f"Unable to make a choice. Ensure {header} has all appropriate values for the method") s_values.iloc[s_idx] = [x[0] if list_size == 1 else list(x) for x in s_values.iloc[s_idx]] else: s_values.iloc[s_idx] = [x[:list_size] if list_size > 1 else x[0] for x in s_values.iloc[s_idx]] if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): s_values = s_values.astype(rtn_type) return s_values return s_values.to_list() def _correlate_join(self, canonical: Any, header: str, action: [str, dict], sep: str=None, seed: int=None, rtn_type: str=None): """ correlate a column and join it with the result of the action, This allows for composite values to be build from. an example might be to take a forename and add the surname with a space separator to create a composite name field, of to join two primary keys to create a single composite key. :param canonical: a pd.DataFrame as the reference dataframe :param header: an ordered list of columns to join :param action: (optional) a string or a single action whose outcome will be joined to the header value :param sep: (optional) a separator between the values :param seed: (optional) a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: a list of equal length to the one passed Actions are the resulting outcome of the selection (or the default). An action can be just a value or a dict that executes a intent method such as get_number(). To help build actions there is a helper function called action2dict(...) that takes a method as a mandatory attribute. With actions there are special keyword 'method' values: @header: use a column as the value reference, expects the 'header' key @constant: use a value constant, expects the key 'value' @sample: use to get sample values, expected 'name' of the Sample method, optional 'shuffle' boolean @eval: evaluate a code string, expects the key 'code_str' and any locals() required An example of a simple action to return a selection from a list: {'method': 'get_category', selection=['M', 'F', 'U'] an example of using the helper method, in this example we use the keyword @header to get a value from another column at the same index position: inst.action2dict(method="@header", header='value') We can even execute some sort of evaluation at run time: inst.action2dict(method="@eval", code_str='sum(values)', values=[1,4,2,1]) """ canonical = self._get_canonical(canonical, header=header) if not isinstance(action, (dict, str)): raise ValueError(f"The action must be a dictionary of a single action or a string value") if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") # Code block for intent _seed = seed if isinstance(seed, int) else self._seed() sep = sep if isinstance(sep, str) else '' s_values = canonical[header].copy() if s_values.empty: return list() action = deepcopy(action) null_idx = s_values[s_values.isna()].index s_values.to_string() result = self._apply_action(canonical, action=action, seed=_seed) s_values = pd.Series([f"{a}{sep}{b}" for (a, b) in zip(s_values, result)], dtype='object') if null_idx.size > 0: s_values.iloc[null_idx] = np.nan if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): s_values = s_values.astype(rtn_type) return s_values return s_values.to_list() def _correlate_sigmoid(self, canonical: Any, header: str, precision: int=None, seed: int=None, rtn_type: str=None): """ logistic sigmoid a.k.a logit, takes an array of real numbers and transforms them to a value between (0,1) and is defined as f(x) = 1/(1+exp(-x) :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param precision: (optional) how many decimal places. default to 3 :param seed: (optional) the random seed. defaults to current datetime :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: an equal length list of correlated values """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") s_values = canonical[header].copy() if s_values.empty: return list() precision = precision if isinstance(precision, int) else 3 _seed = seed if isinstance(seed, int) else self._seed() rtn_values = np.round(1 / (1 + np.exp(-s_values)), precision) if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): rtn_values = rtn_values.astype(rtn_type) return rtn_values return rtn_values.to_list() def _correlate_polynomial(self, canonical: Any, header: str, coefficient: list, seed: int=None, rtn_type: str=None, keep_zero: bool=None) -> list: """ creates a polynomial using the reference header values and apply the coefficients where the index of the list represents the degree of the term in reverse order. e.g [6, -2, 0, 4] => f(x) = 4x**3 - 2x + 6 :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param coefficient: the reverse list of term coefficients :param seed: (optional) the random seed. defaults to current datetime :param keep_zero: (optional) if True then zeros passed remain zero, Default is False :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: an equal length list of correlated values """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") s_values = canonical[header].copy() if s_values.empty: return list() keep_zero = keep_zero if isinstance(keep_zero, bool) else False _seed = seed if isinstance(seed, int) else self._seed() def _calc_polynomial(x, _coefficient): if keep_zero and x == 0: return 0 res = 0 for index, coeff in enumerate(_coefficient): res += coeff * x ** index return res rtn_values = s_values.apply(lambda x: _calc_polynomial(x, coefficient)) if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): rtn_values = rtn_values.astype(rtn_type) return rtn_values return rtn_values.to_list() def _correlate_missing(self, canonical: Any, header: str, granularity: [int, float]=None, as_type: str=None, lower: [int, float]=None, upper: [int, float]=None, nulls_list: list=None, exclude_dominant: bool=None, replace_zero: [int, float]=None, precision: int=None, day_first: bool=None, year_first: bool=None, seed: int=None, rtn_type: str=None): """ imputes missing data with a weighted distribution based on the analysis of the other elements in the column :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param granularity: (optional) the granularity of the analysis across the range. Default is 5 int passed - represents the number of periods float passed - the length of each interval list[tuple] - specific interval periods e.g [] list[float] - the percentile or quantities, All should fall between 0 and 1 :param as_type: (optional) specify the type to analyse :param lower: (optional) the lower limit of the number value. Default min() :param upper: (optional) the upper limit of the number value. Default max() :param nulls_list: (optional) a list of nulls that should be considered null :param exclude_dominant: (optional) if overly dominant are to be excluded from analysis to avoid bias (numbers) :param replace_zero: (optional) with categories, a non-zero minimal chance relative frequency to replace zero This is useful when the relative frequency of a category is so small the analysis returns zero :param precision: (optional) by default set to 3. :param day_first: (optional) if the date provided has day first :param year_first: (optional) if the date provided has year first :param seed: (optional) the random seed. defaults to current datetime :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") s_values = canonical[header].copy() if s_values.empty: return list() as_type = as_type if isinstance(as_type, str) else s_values.dtype.name _seed = seed if isinstance(seed, int) else self._seed() nulls_list = nulls_list if isinstance(nulls_list, list) else [np.nan, None, 'nan', '', ' '] if isinstance(nulls_list, list): s_values.replace(nulls_list, np.nan, inplace=True, regex=True) null_idx = s_values[s_values.isna()].index if as_type.startswith('int') or as_type.startswith('float') or as_type.startswith('num'): _analysis = DataAnalytics(DataDiscovery.analyse_number(s_values, granularity=granularity, lower=lower, upper=upper, detail_stats=False, precision=precision, exclude_dominant=exclude_dominant)) s_values.iloc[null_idx] = self._get_intervals(intervals=[tuple(x) for x in _analysis.intent.intervals], relative_freq=_analysis.patterns.relative_freq, precision=_analysis.params.precision, seed=_seed, size=len(null_idx)) elif as_type.startswith('cat'): _analysis = DataAnalytics(DataDiscovery.analyse_category(s_values, replace_zero=replace_zero)) s_values.iloc[null_idx] = self._get_category(selection=_analysis.intent.categories, relative_freq=_analysis.patterns.relative_freq, seed=_seed, size=len(null_idx)) elif as_type.startswith('date'): _analysis = DataAnalytics(DataDiscovery.analyse_date(s_values, granularity=granularity, lower=lower, upper=upper, day_first=day_first, year_first=year_first)) s_values.iloc[null_idx] = self._get_datetime(start=_analysis.intent.lowest, until=_analysis.intent.highest, relative_freq=_analysis.patterns.relative_freq, date_format=_analysis.params.data_format, day_first=_analysis.params.day_first, year_first=_analysis.params.year_first, seed=_seed, size=len(null_idx)) else: raise ValueError(f"The data type '{as_type}' is not supported. Try using the 'as_type' parameter") if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): s_values = s_values.astype(rtn_type) return s_values return s_values.to_list() def _correlate_numbers(self, canonical: Any, header: str, to_numeric: bool=None, standardize: bool=None, normalize: tuple=None, offset: [int, float, str]=None, jitter: float=None, jitter_freq: list=None, precision: int=None, replace_nulls: [int, float]=None, seed: int=None, keep_zero: bool=None, min_value: [int, float]=None, max_value: [int, float]=None, rtn_type: str=None): """ returns a number that correlates to the value given. The jitter is based on a normal distribution with the correlated value being the mean and the jitter its standard deviation from that mean :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param to_numeric: (optional) ensures numeric type. None convertable strings are set to null :param standardize: (optional) if the column should be standardised :param normalize: (optional) normalise the column between two values. the tuple is the lower and upper bounds :param offset: (optional) a fixed value to offset or if str an operation to perform using @ as the header value. :param jitter: (optional) a perturbation of the value where the jitter is a std. defaults to 0 :param jitter_freq: (optional) a relative freq with the pattern mid point the mid point of the jitter :param precision: (optional) how many decimal places. default to 3 :param replace_nulls: (optional) a numeric value to replace nulls :param seed: (optional) the random seed. defaults to current datetime :param keep_zero: (optional) if True then zeros passed remain zero, Default is False :param min_value: a minimum value not to go below :param max_value: a max value not to go above :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: an equal length list of correlated values The offset can be a numeric offset that is added to the value, e.g. passing 2 will add 2 to all values. If a string is passed if format should be a calculation with the '@' character used to represent the column value. e.g. '1-@' would subtract the column value from 1, '@*0.5' would multiply the column value by 0.5 """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") s_values = canonical[header].copy() if s_values.empty: return list() if isinstance(to_numeric, bool) and to_numeric: s_values = pd.to_numeric(s_values.apply(str).str.replace('[$£€, ]', '', regex=True), errors='coerce') if not (s_values.dtype.name.startswith('int') or s_values.dtype.name.startswith('float')): raise ValueError(f"The header column is of type '{s_values.dtype.name}' and not numeric. " f"Use the 'to_numeric' parameter if appropriate") keep_zero = keep_zero if isinstance(keep_zero, bool) else False precision = precision if isinstance(precision, int) else 3 _seed = seed if isinstance(seed, int) else self._seed() if isinstance(replace_nulls, (int, float)): s_values[s_values.isna()] = replace_nulls null_idx = s_values[s_values.isna()].index zero_idx = s_values.where(s_values == 0).dropna().index if keep_zero else [] if isinstance(offset, (int, float)) and offset != 0: s_values = s_values.add(offset) elif isinstance(offset, str): offset = offset.replace("@", 'x') s_values = s_values.apply(lambda x: eval(offset)) if isinstance(jitter, (int, float)) and jitter != 0: sample = self._get_number(-abs(jitter) / 2, abs(jitter) / 2, relative_freq=jitter_freq, size=s_values.size, seed=_seed) s_values = s_values.add(sample) if isinstance(min_value, (int, float)): if min_value < s_values.max(): min_idx = s_values.dropna().where(s_values < min_value).dropna().index s_values.iloc[min_idx] = min_value else: raise ValueError(f"The min value {min_value} is greater than the max result value {s_values.max()}") if isinstance(max_value, (int, float)): if max_value > s_values.min(): max_idx = s_values.dropna().where(s_values > max_value).dropna().index s_values.iloc[max_idx] = max_value else: raise ValueError(f"The max value {max_value} is less than the min result value {s_values.min()}") if isinstance(standardize, bool) and standardize: s_values = pd.Series(Commons.list_standardize(s_values.to_list())) if isinstance(normalize, tuple): if normalize[0] >= normalize[1] or len(normalize) != 2: raise ValueError("The normalize tuple must be of size 2 with the first value lower than the second") s_values = pd.Series(Commons.list_normalize(s_values.to_list(), normalize[0], normalize[1])) # reset the zero values if any s_values.iloc[zero_idx] = 0 s_values = s_values.round(precision) if precision == 0 and not s_values.isnull().any(): s_values = s_values.astype(int) if null_idx.size > 0: s_values.iloc[null_idx] = np.nan if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): s_values = s_values.astype(rtn_type) return s_values return s_values.to_list() def _correlate_categories(self, canonical: Any, header: str, correlations: list, actions: dict, default_action: [str, int, float, dict]=None, seed: int=None, rtn_type: str=None): """ correlation of a set of values to an action, the correlations must map to the dictionary index values. Note. to use the current value in the passed values as a parameter value pass an empty dict {} as the keys value. If you want the action value to be the current value of the passed value then again pass an empty dict action to be the current value simple correlation list: ['A', 'B', 'C'] # if values is 'A' then action is 0 and so on multiple choice correlation: [['A','B'], 'C'] # if values is 'A' OR 'B' then action is 0 and so on For more complex correlation the selection logic can be used, see notes below. for actions also see notes below. :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param correlations: a list of categories (can also contain lists for multiple correlations. :param actions: the correlated set of categories that should map to the index :param default_action: (optional) a default action to take if the selection is not fulfilled :param seed: a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: a list of equal length to the one passed Selections are a list of dictionaries of conditions and optional additional parameters to filter. To help build conditions there is a static helper method called 'select2dict(...)' that has parameter options available to build a condition. An example of a condition with the minimum requirements is [{'column': 'genre', 'condition': "=='Comedy'"}] an example of using the helper method selection = [inst.select2dict(column='gender', condition="=='M'"), inst.select2dict(column='age', condition=">65", logic='XOR')] Using the 'select2dict' method ensure the correct keys are used and the dictionary is properly formed. It also helps with building the logic that is executed in order Actions are the resulting outcome of the selection (or the default). An action can be just a value or a dict that executes a intent method such as get_number(). To help build actions there is a helper function called action2dict(...) that takes a method as a mandatory attribute. With actions there are special keyword 'method' values: @header: use a column as the value reference, expects the 'header' key @constant: use a value constant, expects the key 'value' @sample: use to get sample values, expected 'name' of the Sample method, optional 'shuffle' boolean @eval: evaluate a code string, expects the key 'code_str' and any locals() required An example of a simple action to return a selection from a list: {'method': 'get_category', selection: ['M', 'F', 'U']} This same action using the helper method would look like: inst.action2dict(method='get_category', selection=['M', 'F', 'U']) an example of using the helper method, in this example we use the keyword @header to get a value from another column at the same index position: inst.action2dict(method="@header", header='value') We can even execute some sort of evaluation at run time: inst.action2dict(method="@eval", code_str='sum(values)', values=[1,4,2,1]) """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") _seed = seed if isinstance(seed, int) else self._seed() actions = deepcopy(actions) correlations = deepcopy(correlations) corr_list = [] for corr in correlations: corr_list.append(Commons.list_formatter(corr)) if not isinstance(default_action, (str, int, float, dict)): default_action = None rtn_values = self._apply_action(canonical, action=default_action, seed=_seed) # deal with categories if rtn_values.dtype.name == 'category': rtn_values = rtn_values.astype('object') s_values = canonical[header].copy().astype(str) for i in range(len(corr_list)): action = actions.get(i, actions.get(str(i), -1)) if action == -1: continue if isinstance(corr_list[i][0], dict): corr_idx = self._selection_index(canonical, selection=corr_list[i]) else: corr_idx = s_values[s_values.isin(map(str, corr_list[i]))].index rtn_values.update(self._apply_action(canonical, action=action, select_idx=corr_idx, seed=_seed)) if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): rtn_values = rtn_values.astype(rtn_type) return rtn_values return rtn_values.to_list() def _correlate_dates(self, canonical: Any, header: str, offset: [int, dict]=None, jitter: int=None, jitter_units: str=None, jitter_freq: list=None, now_delta: str=None, date_format: str=None, min_date: str=None, max_date: str=None, fill_nulls: bool=None, day_first: bool=None, year_first: bool=None, seed: int=None, rtn_type: str=None): """ correlates dates to an existing date or list of dates. The return is a list of pd :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param offset: (optional) and offset to the date. if int then assumed a 'days' offset int or dictionary associated with pd. eg {'days': 1} :param jitter: (optional) the random jitter or deviation in days :param jitter_units: (optional) the units of the jitter, Options: 'W', 'D', 'h', 'm', 's'. default 'D' :param jitter_freq: (optional) a relative freq with the pattern mid point the mid point of the jitter :param now_delta: (optional) returns a delta from now as an int list, Options: 'Y', 'M', 'W', 'D', 'h', 'm', 's' :param min_date: (optional)a minimum date not to go below :param max_date: (optional)a max date not to go above :param fill_nulls: (optional) if no date values should remain untouched or filled based on the list mode date :param day_first: (optional) if the dates given are day first format. Default to True :param year_first: (optional) if the dates given are year first. Default to False :param date_format: (optional) the format of the output :param seed: (optional) a seed value for the random function: default to None :param rtn_type: (optional) changes the default return of a 'list' to a pd.Series other than the int, float, category, string and object, passing 'as-is' will return as is :return: a list of equal size to that given """ canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") values = canonical[header].copy() if values.empty: return list() def _clean(control): _unit_type = ['years', 'months', 'weeks', 'days', 'leapdays', 'hours', 'minutes', 'seconds'] _params = {} if isinstance(control, int): control = {'days': control} if isinstance(control, dict): for k, v in control.items(): if k not in _unit_type: raise ValueError(f"The key '{k}' in 'offset', is not a recognised unit type for pd.DateOffset") return control _seed = self._seed() if seed is None else seed fill_nulls = False if fill_nulls is None or not isinstance(fill_nulls, bool) else fill_nulls offset = _clean(offset) if isinstance(offset, (dict, int)) else None if isinstance(now_delta, str) and now_delta not in ['Y', 'M', 'W', 'D', 'h', 'm', 's']: raise ValueError(f"the now_delta offset unit '{now_delta}' is not recognised " f"use of of ['Y', 'M', 'W', 'D', 'h', 'm', 's']") units_allowed = ['W', 'D', 'h', 'm', 's'] jitter_units = jitter_units if isinstance(jitter_units, str) and jitter_units in units_allowed else 'D' jitter = pd.Timedelta(value=jitter, unit=jitter_units) if isinstance(jitter, int) else None # set minimum date _min_date = pd.to_datetime(min_date, errors='coerce', infer_datetime_format=True, utc=True) if _min_date is None or _min_date is pd.NaT: _min_date = pd.to_datetime(pd.Timestamp.min, utc=True) # set max date _max_date = pd.to_datetime(max_date, errors='coerce', infer_datetime_format=True, utc=True) if _max_date is None or _max_date is pd.NaT: _max_date = pd.to_datetime(pd.Timestamp.max, utc=True) if _min_date >= _max_date: raise ValueError(f"the min_date {min_date} must be less than max_date {max_date}") # convert values into datetime s_values = pd.Series(pd.to_datetime(values.copy(), errors='coerce', infer_datetime_format=True, dayfirst=day_first, yearfirst=year_first, utc=True)) if jitter is not None: if jitter_units in ['W', 'D']: value = jitter.days zip_units = 'D' else: value = int(jitter.to_timedelta64().astype(int) / 1000000000) zip_units = 's' zip_spread = self._get_number(-abs(value) / 2, (abs(value + 1) / 2), relative_freq=jitter_freq, precision=0, size=s_values.size, seed=_seed) zipped_dt = list(zip(zip_spread, [zip_units]*s_values.size)) s_values += np.array([pd.Timedelta(x, y).to_timedelta64() for x, y in zipped_dt]) if fill_nulls: generator = np.random.default_rng(seed=_seed) s_values = s_values.fillna(generator.choice(s_values.mode())) null_idx = s_values[s_values.isna()].index if isinstance(offset, dict) and offset: s_values = s_values.add(pd.DateOffset(**offset)) if _min_date > pd.to_datetime(pd.Timestamp.min, utc=True): if _min_date > s_values.min(): min_idx = s_values.dropna().where(s_values < _min_date).dropna().index s_values.iloc[min_idx] = _min_date else: raise ValueError(f"The min value {min_date} is greater than the max result value {s_values.max()}") if _max_date < pd.to_datetime(pd.Timestamp.max, utc=True): if _max_date < s_values.max(): max_idx = s_values.dropna().where(s_values > _max_date).dropna().index s_values.iloc[max_idx] = _max_date else: raise ValueError(f"The max value {max_date} is less than the min result value {s_values.min()}") if now_delta: s_values = (s_values.dt.tz_convert(None) - pd.Timestamp('now')).abs() s_values = (s_values / np.timedelta64(1, now_delta)) s_values = s_values.round(0) if null_idx.size > 0 else s_values.astype(int) else: if isinstance(date_format, str): s_values = s_values.dt.strftime(date_format) else: s_values = s_values.dt.tz_convert(None) if null_idx.size > 0: s_values.iloc[null_idx].apply(lambda x: np.nan) if isinstance(rtn_type, str): if rtn_type in ['category', 'object'] or rtn_type.startswith('int') or rtn_type.startswith('float'): s_values = s_values.astype(rtn_type) return s_values return s_values.to_list() def _correlate_discrete(self, canonical: Any, header: str, granularity: [int, float, list]=None, lower: [int, float]=None, upper: [int, float]=None, categories: list=None, precision: int=None, seed: int=None) -> list: """ converts continuous representation into discrete representation through interval categorisation :param canonical: a pd.DataFrame as the reference dataframe :param header: the header in the DataFrame to correlate :param granularity: (optional) the granularity of the analysis across the range. Default is 3 int passed - represents the number of periods float passed - the length of each interval list[tuple] - specific interval periods e.g [] list[float] - the percentile or quantities, All should fall between 0 and 1 :param lower: (optional) the lower limit of the number value. Default min() :param upper: (optional) the upper limit of the number value. Default max() :param precision: (optional) The precision of the range and boundary values. by default set to 5. :param categories:(optional) a set of labels the same length as the intervals to name the categories :return: a list of equal size to that given """ # exceptions check canonical = self._get_canonical(canonical, header=header) if not isinstance(header, str) or header not in canonical.columns: raise ValueError(f"The header '{header}' can't be found in the canonical DataFrame") _seed = seed if isinstance(seed, int) else self._seed() # intend code block on the canonical granularity = 3 if not isinstance(granularity, (int, float, list)) or granularity == 0 else granularity precision = precision if isinstance(precision, int) else 5 # firstly get the granularity lower = canonical[header].min() if not isinstance(lower, (int, float)) else lower upper = canonical[header].max() if not isinstance(upper, (int, float)) else upper if lower >= upper: upper = lower granularity = [(lower, upper, 'both')] if isinstance(granularity, (int, float)): # if granularity float then convert frequency to intervals if isinstance(granularity, float): # make sure frequency goes beyond the upper _end = upper + granularity - (upper % granularity) periods = pd.interval_range(start=lower, end=_end, freq=granularity).drop_duplicates() periods = periods.to_tuples().to_list() granularity = [] while len(periods) > 0: period = periods.pop(0) if len(periods) == 0: granularity += [(period[0], period[1], 'both')] else: granularity += [(period[0], period[1], 'left')] # if granularity int then convert periods to intervals else: periods = pd.interval_range(start=lower, end=upper, periods=granularity).drop_duplicates() granularity = periods.to_tuples().to_list() if isinstance(granularity, list): if all(isinstance(value, tuple) for value in granularity): if len(granularity[0]) == 2: granularity[0] = (granularity[0][0], granularity[0][1], 'both') granularity = [(t[0], t[1], 'right') if len(t) == 2 else t for t in granularity] elif all(isinstance(value, float) and 0 < value < 1 for value in granularity): quantiles = list(set(granularity + [0, 1.0])) boundaries = canonical[header].quantile(quantiles).values boundaries.sort() granularity = [(boundaries[0], boundaries[1], 'both')] granularity += [(boundaries[i - 1], boundaries[i], 'right') for i in range(2, boundaries.size)] else: granularity = (lower, upper, 'both') granularity = [(np.round(p[0], precision), np.round(p[1], precision), p[2]) for p in granularity] # now create the categories conditions = [] for interval in granularity: lower, upper, closed = interval if str.lower(closed) == 'neither': conditions.append((canonical[header] > lower) & (canonical[header] < upper)) elif str.lower(closed) == 'right': conditions.append((canonical[header] > lower) & (canonical[header] <= upper)) elif str.lower(closed) == 'both': conditions.append((canonical[header] >= lower) & (canonical[header] <= upper)) else: conditions.append((canonical[header] >= lower) & (canonical[header] < upper)) if isinstance(categories, list) and len(categories) == len(conditions): choices = categories else: if canonical[header].dtype.name.startswith('int'): choices = [f"{int(i[0])}->{int(i[1])}" for i in granularity] else: choices = [f"{i[0]}->{i[1]}" for i in granularity] # noinspection PyTypeChecker return np.select(conditions, choices, default="<NA>").tolist() """ UTILITY METHODS SECTION """ @staticmethod def _convert_date2value(dates: Any, day_first: bool = True, year_first: bool = False): values = pd.to_datetime(dates, errors='coerce', infer_datetime_format=True, dayfirst=day_first, yearfirst=year_first) return mdates.date2num(pd.Series(values)).tolist() @staticmethod def _convert_value2date(values: Any, date_format: str=None): dates = [] for date in mdates.num2date(values): date =
pd.Timestamp(date)
pandas.Timestamp
try: # Error handling if something happens during script initialisation from csv import QUOTE_ALL # Needed to export data to CSV from bs4 import BeautifulSoup # Needed to parse the dynamic webpage of the Ducanator from requests import get # Needed to get the webpage of the Ducanator from re import search # Needed to find the json string to import into pandas from pandas import read_csv, set_option, merge, to_numeric, DataFrame, read_json, read_html, ExcelWriter # Needed to convert the json string into a usable dataframe object for manipulation from traceback import format_exc # Needed for more friendly error messages. from openpyxl import load_workbook from numpy import arange from json import loads, dumps from re import compile from time import sleep, time from os import path except ModuleNotFoundError: print('OOPSIE WOOPSIE!! Uwu We made a fucky wucky!! A wittle fucko boingo! The code monkeys at our headquarters are working VEWY HAWD to fix this!') print('You didn\'t install the packages like I told you to. Please run \"pip install bs4 requests pandas\" in a cmd window to install the required packages!') print('\033[1;31m' + format_exc()) exit(1) def get_items(retry_attempts): url_items = 'https://api.warframe.market/v1/items' for x in range(0, retry_attempts): try: item_json = get(url_items).json() break except Exception: print('Item data download failed, retrying... ' + str(retry_attempts - x - 1) + ' attempts left...', end='\r') item_json = item_json['payload']['items'] df_items_get_items = DataFrame(item_json) df_items_get_items['item_name'] = df_items_get_items['item_name'].replace(to_replace=r' \(.+\)', value='', regex=True) df_items_get_items = df_items_get_items.drop(columns=['thumb']) df_items_get_items.to_csv(csv_name, index=None, quoting=QUOTE_ALL) return df_items_get_items def standing_to_plat_syndicates(url_syndicate_fragment, df_items_local, collapsible_regex, retry_attempts, res_per_syndicate, include_offline, order_type): try: print('Processing ' + url_syndicate_fragment.replace('_', ' ') + ' Warframe.Market Orders') workbook_name = 'StandingToPlat.xlsx' sheet_name_standing_to_plat_data = 'Standing To Plat Data' url_syndicate = 'https://warframe.fandom.com/wiki/' + url_syndicate_fragment soup = BeautifulSoup(get(url_syndicate).content, "html.parser").find('div', {'id': collapsible_regex}).find_all('span') item_list = [] cost_list = [] for count1, elem1 in enumerate(soup): if count1 % 2 == 0: cost_list.append(elem1.text) else: item_list.append(elem1.text) df_syndicate_item =
DataFrame(item_list)
pandas.DataFrame
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """DataAdapter tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.data.experimental.ops import cardinality from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.keras.engine import data_adapter from tensorflow.python.keras.utils import data_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test from tensorflow.python.util import nest class DummyArrayLike(object): """Dummy array-like object.""" def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, key): return self.data[key] @property def shape(self): return self.data.shape @property def dtype(self): return self.data.dtype def fail_on_convert(x, **kwargs): _ = x _ = kwargs raise TypeError('Cannot convert DummyArrayLike to a tensor') ops.register_tensor_conversion_function(DummyArrayLike, fail_on_convert) class DataAdapterTestBase(keras_parameterized.TestCase): def setUp(self): super(DataAdapterTestBase, self).setUp() self.batch_size = 5 self.numpy_input = np.zeros((50, 10)) self.numpy_target = np.ones(50) self.tensor_input = constant_op.constant(2.0, shape=(50, 10)) self.tensor_target = array_ops.ones((50,)) self.arraylike_input = DummyArrayLike(self.numpy_input) self.arraylike_target = DummyArrayLike(self.numpy_target) self.dataset_input = dataset_ops.DatasetV2.from_tensor_slices( (self.numpy_input, self.numpy_target)).shuffle(50).batch( self.batch_size) def generator(): while True: yield (np.zeros((self.batch_size, 10)), np.ones(self.batch_size)) self.generator_input = generator() self.iterator_input = data_utils.threadsafe_generator(generator)() self.sequence_input = TestSequence(batch_size=self.batch_size, feature_shape=10) self.model = keras.models.Sequential( [keras.layers.Dense(8, input_shape=(10,), activation='softmax')]) class TestSequence(data_utils.Sequence): def __init__(self, batch_size, feature_shape): self.batch_size = batch_size self.feature_shape = feature_shape def __getitem__(self, item): return (np.zeros((self.batch_size, self.feature_shape)), np.ones((self.batch_size,))) def __len__(self): return 10 class TensorLikeDataAdapterTest(DataAdapterTestBase): def setUp(self): super(TensorLikeDataAdapterTest, self).setUp() self.adapter_cls = data_adapter.TensorLikeDataAdapter def test_can_handle_numpy(self): self.assertTrue(self.adapter_cls.can_handle(self.numpy_input)) self.assertTrue( self.adapter_cls.can_handle(self.numpy_input, self.numpy_target)) self.assertFalse(self.adapter_cls.can_handle(self.dataset_input)) self.assertFalse(self.adapter_cls.can_handle(self.generator_input)) self.assertFalse(self.adapter_cls.can_handle(self.sequence_input)) def test_size_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5) self.assertEqual(adapter.get_size(), 10) self.assertFalse(adapter.has_partial_batch()) def test_batch_size_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5) self.assertEqual(adapter.batch_size(), 5) def test_partial_batch_numpy(self): adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=4) self.assertEqual(adapter.get_size(), 13) # 50/4 self.assertTrue(adapter.has_partial_batch()) self.assertEqual(adapter.partial_batch_size(), 2) def test_epochs(self): num_epochs = 3 adapter = self.adapter_cls( self.numpy_input, self.numpy_target, batch_size=5, epochs=num_epochs) ds_iter = iter(adapter.get_dataset()) num_batches_per_epoch = self.numpy_input.shape[0] // 5 for _ in range(num_batches_per_epoch * num_epochs): next(ds_iter) with self.assertRaises(StopIteration): next(ds_iter) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_training_numpy(self): self.model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', run_eagerly=testing_utils.should_run_eagerly()) self.model.fit(self.numpy_input, self.numpy_target, batch_size=5) def test_can_handle_pandas(self): try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: self.skipTest('Skipping test because pandas is not installed.') self.assertTrue(self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input))) self.assertTrue( self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)[0])) self.assertTrue( self.adapter_cls.can_handle( pd.DataFrame(self.numpy_input), pd.DataFrame(self.numpy_input)[0])) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_training_pandas(self): try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: self.skipTest('Skipping test because pandas is not installed.') input_a = keras.Input(shape=(3,), name='input_a') input_b = keras.Input(shape=(3,), name='input_b') input_c = keras.Input(shape=(1,), name='input_b') x = keras.layers.Dense(4, name='dense_1')(input_a) y = keras.layers.Dense(3, name='dense_2')(input_b) z = keras.layers.Dense(1, name='dense_3')(input_c) model_1 = keras.Model(inputs=input_a, outputs=x) model_2 = keras.Model(inputs=[input_a, input_b], outputs=[x, y]) model_3 = keras.Model(inputs=input_c, outputs=z) model_1.compile(optimizer='rmsprop', loss='mse') model_2.compile(optimizer='rmsprop', loss='mse') input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) input_a_df =
pd.DataFrame(input_a_np)
pandas.DataFrame
#! /usr/bin/env python3 ############################################################################### import sys import os import argparse import logging from datetime import date import time import requests import textwrap import pandas as pd import pprint from lib import utils as ut ############################################################################### program_name = os.path.basename(__file__) VERSION = 0.2 logger = logging.getLogger(__name__) ############################################################################### class ArgumentParser(argparse.ArgumentParser): def error(self, message): print('\n\033[1;33mError: {}\x1b[0m\n'.format(message)) print("invoke \033[1m{} -h\033[0m for help\n".format(os.path.basename(__file__))) self.print_help(sys.stderr) # self.exit(2, '%s: error: %s\n' % (self.prog, message)) self.exit(2) # def format_usage(self): # usage = super() # return "CUSTOM"+usage ############################################################################### # Subroutines # ------------------------------------------------------------------------------ def parser_add_arguments(): """ Parse comamnd line parameters """ date_now = date.today().strftime('%Y%m%d') parser = ArgumentParser( prog=program_name, description=textwrap.dedent('''\ Utility for interacting with the batch requests API of internet.nl The following commands are supported: \033[1m sub\033[0m - submit a new batch request \033[1m list\033[0m - list all or some of the batch requests \033[1m stat\033[0m - get the status of a specific request \033[1m get\033[0m - retrieve the results of a request \033[1m del\033[0m - delete a request '''), epilog=textwrap.dedent('''\ \033[1mConfiguration\033[0m The configuration (endpoint and credentials) are taken from the first section of the \033[3mbatch-request.conf\033[0m configuration file. You can specify other sections to use with the \033[3m-p\033[0m option. If username or password are missing then you are prompted for them. If the endpoint is missing then the default internet.nl endpoint is used. If there is no configuration file then the default internet.nl endpoint is used and you are prompted for a username and password. '''), # \033[1mSome examples:\033[0m # # \033[3m./%(prog)s\033[0m # list the details of all the measurement batches # # \033[3m./%(prog)s list 4 \033[0m # list the details of the last four measurement batches # # \033[3m./%(prog)s list 4 -p \033[0m # same, but prompts you for username and password # # \033[3m./%(prog)s list 4 -p dev\033[0m # same, takes configuration from \033[3m[dev]\033[0m section in \033[3mbatch-request.conf\033[0m # # \033[3m./%(prog)s stat 02e19b69317a4aa2958980312754de52\033[0m # get the status of batch 02e19b69317a4aa2958980312754de52 # # \033[3m./%(prog)s get 02e19b69317a4aa2958980312754de52\033[0m # get the json results of batch 02e19b69317a4aa2958980312754de52 formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument("command", help=textwrap.dedent('''\ the request to execute '''), action="store", # nargs="?", choices=["sub", "list", "stat", "get", "del", ], # default="list") ) parser.add_argument('parameter', nargs='?', metavar='parameter', help=textwrap.dedent('''\ extra parameter for the request, type and meaning depend on the request: \033[1msub\033[0m (required): \033[1m{web|mail}\033[0m the type of measurement to submit \033[1mlist\033[0m (optional): the number of items to list (default: 0 = all) \033[1mstat,get,del\033[0m (required): the request_id for the \033[1mstat,get or del\033[0m request ''')) parser.add_argument("-d", metavar='FILE', help=textwrap.dedent('''\ the domains xlsx file to use for the sub request (mandatory) the domains file is used to get all the domains to be tested the database for each processed domain. This is typically the same file as used for submitting domains to internet.nl, containing a \033[3mweb\033[0m column with the domains for a website test and a \033[3mmail\033[0m column with the domains for a mail test. metadata will be retrieved from the column with the name \033[3mtype\033[0m, unless another name or names are provided with the \033[3m-m\033[0m argument web, mail and the metadata column(s) need to aligned, e.g. \033[3m'www.foo.org', 'foo.org', 'foo metadata'\033[0m must be in the same row in their respective web, mail and metadata column. '''), action="store") parser.add_argument("-s", metavar='sheet_name', help=textwrap.dedent('''\ the name of the sheet in FILE to use. Only effective in combination with the \033[3m-d\033[0m argument for the \033[3msub\033[0m command '''), action="store") parser.add_argument("-n", metavar='name', help=textwrap.dedent('''\ the name of the measurement submission request. Only effective in combination with the \033[3msub\033[0m command (default: use current date of {}) '''.format(date_now)), action="store") parser.add_argument('-o', action="store", metavar='output file', help=textwrap.dedent('''\ filename to store the measurement results in for a \033[3mget\033[0m command. Default is to show the results on screen. ''')) parser.add_argument('-p', action="store", nargs="?", const='', metavar='SECTION', help=textwrap.dedent('''\ get the credentials from the specified \033[3m[SECTION]\033[0m in the configuration file just the option without SECTION will prompt you for username and password ''')) parser.add_argument("-v", "--verbose", help="more verbose output", action="store_true") parser.add_argument("--debug", help="show debug output", action="store_true") parser.add_argument("-V", "--version", help="print version and exit", action="version", version='%(prog)s (version {})'.format(VERSION)) # parser.usage = "duckdb-to-graphs.py [-q] [-t TYPE] database [N]" return parser # ------------------------------------------------------------------------------ class CustomConsoleFormatter(logging.Formatter): """ Log facility format """ def format(self, record): # info = '\033[0;32m' info = '' warning = '\033[0;33m' error = '\033[1;33m' debug = '\033[1;34m' reset = "\x1b[0m" # formatter = "%(levelname)s - %(message)s" formatter = "%(message)s" if record.levelno == logging.INFO: log_fmt = info + formatter + reset self._style._fmt = log_fmt elif record.levelno == logging.WARNING: log_fmt = warning + formatter + reset self._style._fmt = log_fmt elif record.levelno == logging.ERROR: log_fmt = error + formatter + reset self._style._fmt = log_fmt elif record.levelno == logging.DEBUG: # formatter = '%(asctime)s %(levelname)s [%(filename)s.py:%(lineno)s/%(funcName)s] %(message)s' formatter = '%(levelname)s [%(filename)s.py:%(lineno)s/%(funcName)s] %(message)s' log_fmt = debug + formatter + reset self._style._fmt = log_fmt else: self._style._fmt = formatter return super().format(record) # ------------------------------------------------------------------------------ def get_logger(args): logger = logging.getLogger(__name__) # Create handlers console_handler = logging.StreamHandler() # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') formatter = CustomConsoleFormatter() console_handler.setFormatter(formatter) if args.verbose: logger.setLevel(logging.INFO) if args.debug: logger.setLevel(logging.DEBUG) # add handlers to the logger logger.addHandler(console_handler) return logger # ------------------------------------------------------------------------------ def call_API(action, credentials, request_id): if action == 'list': r = requests.get(credentials['endpoint'], params={'limit': request_id}, auth=(credentials['username'], credentials['password'])) elif action == 'stat': r = requests.get(credentials['endpoint'] + '/' + request_id, auth=(credentials['username'], credentials['password'])) elif action == 'get': r = requests.get(credentials['endpoint'] + '/' + request_id + '/results', auth=(credentials['username'], credentials['password'])) elif action == 'del': r = requests.patch(credentials['endpoint'] + '/' + request_id, auth=(credentials['username'], credentials['password'])) return r ############################################################################### def main(): global VERBOSE, DEBUG, logger parser = parser_add_arguments() args = parser.parse_args() VERBOSE = args.verbose DEBUG = args.debug logger = get_logger(args) pp = pprint.PrettyPrinter(indent=4) request_id = '0' domainsFile = None sheet_name = 0 action = args.command parameter = args.parameter domains =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Merge individual result files with the planned experimental design to create a single all-encompassing dataframe with experiment and results. """ import click import logging import pandas as pd import glob from pathlib import Path from dotenv import find_dotenv, load_dotenv @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn experimental data from (../interim) into cleaned data ready to be analyzed (saved in ../processed). Parameters: ---------- input_filepath: string location of experimental data output_filepath: string destination for processed results csv file Returns: ------- None: writes results dataframe to csv in processed folder """ logger = logging.getLogger(__name__) logger.info('making final data set from generated experimental data') # initialize list to store results from experiment runs df_list = [] result_paths = glob.glob(f"{input_filepath}/run*_results.txt") # read in dataframe results for path in result_paths: exp_result = pd.read_json(path, orient = 'index') exp_result = exp_result.transpose() # transpose to be in row wise format df_list.append(exp_result) # concatenate into one df for analysis raw_results = pd.concat(df_list).sort_values('run_number') # rename columns to match exp design titles raw_results.columns = ["run_id","job_name", "train_time", "billable_seconds","f1"] raw_results = raw_results.reset_index(drop=True) # read in exp design to match experiments to the raw results exp_design =
pd.read_csv(f'{input_filepath}/experimental_design.csv')
pandas.read_csv
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_timedelta64_block(self): from pandas import to_timedelta rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat(dict(a=None, b=df0, c=df0[:2], d=df0[:1], e=df0)) expected = concat(dict(b=df0, c=df0[:2], d=df0[:1], e=df0)) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = pd.concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_same_names_ignore_index(self): dates = date_range("01-Jan-2013", "01-Jan-2014", freq="MS")[0:-1] s1 = Series(randn(len(dates)), index=dates, name="value") s2 = Series(randn(len(dates)), index=dates, name="value") result = concat([s1, s2], axis=1, ignore_index=True) expected = Index([0, 1]) tm.assert_index_equal(result.columns, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(pd.concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(pd.concat(CustomIterator2(), ignore_index=True), expected) def test_concat_invalid(self): # trying to concat a ndframe with a non-ndframe df1 = tm.makeCustomDataframe(10, 2) for obj in [1, dict(), [1, 2], (1, 2)]: msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): concat([df1, obj]) def test_concat_invalid_first_argument(self): df1 = tm.makeCustomDataframe(10, 2) df2 = tm.makeCustomDataframe(10, 2) msg = ( "first argument must be an iterable of pandas " 'objects, you passed an object of type "DataFrame"' ) with pytest.raises(TypeError, match=msg): concat(df1, df2) # generator ok though concat(DataFrame(np.random.rand(5, 5)) for _ in range(3)) # text reader ok # GH6583 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = read_csv(StringIO(data), chunksize=1) result = concat(reader, ignore_index=True) expected = read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = pd.concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = pd.concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3]) tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = pd.concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) def test_default_index(self): # is_series and ignore_index s1 = Series([1, 2, 3], name="x") s2 = Series([4, 5, 6], name="y") res = pd.concat([s1, s2], axis=1, ignore_index=True) assert isinstance(res.columns, pd.RangeIndex) exp = DataFrame([[1, 4], [2, 5], [3, 6]]) # use check_index_type=True to check the result have # RangeIndex (default index) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) # is_series and all inputs have no names s1 = Series([1, 2, 3]) s2 = Series([4, 5, 6]) res = pd.concat([s1, s2], axis=1, ignore_index=False) assert isinstance(res.columns, pd.RangeIndex) exp = DataFrame([[1, 4], [2, 5], [3, 6]]) exp.columns = pd.RangeIndex(2) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) # is_dataframe and ignore_index df1 = DataFrame({"A": [1, 2], "B": [5, 6]}) df2 = DataFrame({"A": [3, 4], "B": [7, 8]}) res = pd.concat([df1, df2], axis=0, ignore_index=True) exp = DataFrame([[1, 5], [2, 6], [3, 7], [4, 8]], columns=["A", "B"]) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) res = pd.concat([df1, df2], axis=1, ignore_index=True) exp = DataFrame([[1, 5, 3, 7], [2, 6, 4, 8]]) tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True) def test_concat_multiindex_rangeindex(self): # GH13542 # when multi-index levels are RangeIndex objects # there is a bug in concat with objects of len 1 df = DataFrame(np.random.randn(9, 2)) df.index = MultiIndex( levels=[pd.RangeIndex(3), pd.RangeIndex(3)], codes=[np.repeat(np.arange(3), 3), np.tile(np.arange(3), 3)], ) res = concat([df.iloc[[2, 3, 4], :], df.iloc[[5], :]]) exp = df.iloc[[2, 3, 4, 5], :] tm.assert_frame_equal(res, exp) def test_concat_multiindex_dfs_with_deepcopy(self): # GH 9967 from copy import deepcopy example_multiindex1 = pd.MultiIndex.from_product([["a"], ["b"]]) example_dataframe1 = DataFrame([0], index=example_multiindex1) example_multiindex2 = pd.MultiIndex.from_product([["a"], ["c"]]) example_dataframe2 = DataFrame([1], index=example_multiindex2) example_dict = {"s1": example_dataframe1, "s2": example_dataframe2} expected_index = pd.MultiIndex( levels=[["s1", "s2"], ["a"], ["b", "c"]], codes=[[0, 1], [0, 0], [0, 1]], names=["testname", None, None], ) expected = DataFrame([[0], [1]], index=expected_index) result_copy = pd.concat(deepcopy(example_dict), names=["testname"]) tm.assert_frame_equal(result_copy, expected) result_no_copy = pd.concat(example_dict, names=["testname"]) tm.assert_frame_equal(result_no_copy, expected) def test_categorical_concat_append(self): cat = Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = DataFrame({"cats": cat, "vals": vals}) cat2 = Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = DataFrame({"cats": cat2, "vals": vals2}, index=Index([0, 1, 0, 1])) tm.assert_frame_equal(pd.concat([df, df]), exp) tm.assert_frame_equal(df.append(df), exp) # GH 13524 can concat different categories cat3 = Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_different_categories = DataFrame({"cats": cat3, "vals": vals3}) res = pd.concat([df, df_different_categories], ignore_index=True) exp = DataFrame({"cats": list("abab"), "vals": [1, 2, 1, 2]}) tm.assert_frame_equal(res, exp) res = df.append(df_different_categories, ignore_index=True) tm.assert_frame_equal(res, exp) def test_categorical_concat_dtypes(self): # GH8143 index = ["cat", "obj", "num"] cat = Categorical(["a", "b", "c"]) obj = Series(["a", "b", "c"]) num = Series([1, 2, 3]) df = pd.concat([Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == "object" expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "int64" expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "category" expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_categorical_concat(self, sort): # See GH 10177 df1 = DataFrame( np.arange(18, dtype="int64").reshape(6, 3), columns=["a", "b", "c"] ) df2 = DataFrame(np.arange(14, dtype="int64").reshape(7, 2), columns=["a", "c"]) cat_values = ["one", "one", "two", "one", "two", "two", "one"] df2["h"] = Series(Categorical(cat_values)) res = pd.concat((df1, df2), axis=0, ignore_index=True, sort=sort) exp = DataFrame( { "a": [0, 3, 6, 9, 12, 15, 0, 2, 4, 6, 8, 10, 12], "b": [ 1, 4, 7, 10, 13, 16, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ], "c": [2, 5, 8, 11, 14, 17, 1, 3, 5, 7, 9, 11, 13], "h": [None] * 6 + cat_values, } ) tm.assert_frame_equal(res, exp) def test_categorical_concat_gh7864(self): # GH 7864 # make sure ordering is preserved df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": list("abbaae")}) df["grade"] = Categorical(df["raw_grade"]) df["grade"].cat.set_categories(["e", "a", "b"]) df1 = df[0:3] df2 = df[3:] tm.assert_index_equal(df["grade"].cat.categories, df1["grade"].cat.categories) tm.assert_index_equal(df["grade"].cat.categories, df2["grade"].cat.categories) dfx = pd.concat([df1, df2]) tm.assert_index_equal(df["grade"].cat.categories, dfx["grade"].cat.categories) dfa = df1.append(df2) tm.assert_index_equal(df["grade"].cat.categories, dfa["grade"].cat.categories) def test_categorical_concat_preserve(self): # GH 8641 series concat not preserving category dtype # GH 13524 can concat different categories s = Series(list("abc"), dtype="category") s2 = Series(list("abd"), dtype="category") exp = Series(list("abcabd")) res = pd.concat([s, s2], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), dtype="category") res = pd.concat([s, s], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), index=[0, 1, 2, 0, 1, 2], dtype="category") res = pd.concat([s, s]) tm.assert_series_equal(res, exp) a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame({"A": a, "B": b.astype(CategoricalDtype(list("cab")))}) res = pd.concat([df2, df2]) exp = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ) tm.assert_frame_equal(res, exp) def test_categorical_index_preserver(self): a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame( {"A": a, "B": b.astype(CategoricalDtype(list("cab")))} ).set_index("B") result = pd.concat([df2, df2]) expected = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ).set_index("B") tm.assert_frame_equal(result, expected) # wrong categories df3 = DataFrame( {"A": a, "B": Categorical(b, categories=list("abe"))} ).set_index("B") msg = "categories must match existing categories when appending" with pytest.raises(TypeError, match=msg): pd.concat([df2, df3]) def test_concat_categoricalindex(self): # GH 16111, categories that aren't lexsorted categories = [9, 0, 1, 2, 3] a = Series(1, index=pd.CategoricalIndex([9, 0], categories=categories)) b = Series(2, index=pd.CategoricalIndex([0, 1], categories=categories)) c = Series(3, index=pd.CategoricalIndex([1, 2], categories=categories)) result =
pd.concat([a, b, c], axis=1)
pandas.concat
import pandas as pd import re # Creating `text_id `column from index def make_text_id(df): df["text_id"] = df.index df = df[["text_id", "article", "highlights"]] return df def split_into_2_dfs(df): df_1 = df[["text_id", "article"]] df_2 = df[["text_id", "highlights"]] return df_1, df_2 def split_sentences(text): # Segment texts into sentences r_sentence_boundary = re.compile( r"\s?[.!?]\s?" ) # Modify this to not include abbreviations and other exceptions return r_sentence_boundary.split(text)[:-1] # Split text by sentences def split_by_sentence(df): df["sentences"] = df["article"].apply(lambda x: split_sentences(str(x))) # Make a list of (text_id, sentence_list) pairs def tup_list_maker(tup_list): """ Takes a list of tuples with index 0 being the text_id and index 1 being a list of sentences and broadcasts the text_id to each sentence """ final_list = [] for item in tup_list: index = item[0] sentences = item[1] for sentence in sentences: pair = (index, sentence) final_list.append(pair) return final_list # Create a list of tuples containing in index0, text_id and in index 1 the list of sentences corresponding to this text def create_full_tuple(df): tuples = list(zip(df["text_id"], [sentence for sentence in df["sentences"]])) tup_list = tup_list_maker(tuples) # Converting the tuples list into a dataframe sentences = pd.DataFrame(tup_list, columns=["text_id", "sentence"]) return sentences # Create full dataframe def create_full_final_dataframe(df): """ Creates the final segmented dataframe with the `is_summary` column """ dataframe = make_text_id(df) df_article, df_highlights = split_into_2_dfs(dataframe) df_article["sentences"] = df_article["article"].apply( lambda x: split_sentences(str(x)) ) df_highlights["sentences"] = df_highlights["highlights"].apply( lambda x: split_sentences(str(x)) ) segmented_df_articles = create_full_tuple(df_article) segmented_df_highlights = create_full_tuple(df_highlights) # Create targets for dataframes segmented_df_articles["is_summary_sentence"] = 0 segmented_df_highlights["is_summary_sentence"] = 1 # Stack the 2 dataframes and order by `text_id` column return segmented_df_articles.append( segmented_df_highlights, ignore_index=True ).sort_values(by=["text_id"]) if __name__ == "__main__": # Load data train =
pd.read_csv("data/interim/cnn_dm_train.csv.gz", compression="gzip")
pandas.read_csv
import os import numpy as np import pytest from pandas.compat import is_platform_little_endian import pandas as pd from pandas import DataFrame, HDFStore, Series, _testing as tm, read_hdf from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io import pytables as pytables from pandas.io.pytables import ClosedFileError, PossibleDataLossError, Term pytestmark = pytest.mark.single def test_mode(setup_path): df = tm.makeTimeDataFrame() def check(mode): msg = r"[\S]* does not exist" with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): with HDFStore(path, mode=mode) as store: pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: msg = ( "mode w is not allowed while performing a read. " r"Allowed modes are r, r\+ and a." ) with pytest.raises(ValueError, match=msg): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() msg = ( r"Re-opening the file \[[\S]*\] with mode \[a\] will delete the " "current file!" ) # invalid mode change with pytest.raises(PossibleDataLossError, match=msg): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(setup_path): with tm.ensure_clean(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_complibs_default_settings(setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame({"A": "foo", "B": "bar"}, index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) tm.assert_series_equal(s_nan, retr) def test_multiple_open_close(setup_path): # gh-4409: open & close multiple times with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") # single store = HDFStore(path) assert "CLOSED" not in store.info() assert store.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open with ensure_clean_path(setup_path) as path: if pytables._table_file_open_policy_is_strict: # multiples store1 = HDFStore(path) msg = ( r"The file [\S]* is already opened\. Please close it before " r"reopening in write mode\." ) with pytest.raises(ValueError, match=msg): HDFStore(path) store1.close() else: # multiples store1 = HDFStore(path) store2 = HDFStore(path) assert "CLOSED" not in store1.info() assert "CLOSED" not in store2.info() assert store1.is_open assert store2.is_open store1.close() assert "CLOSED" in store1.info() assert not store1.is_open assert "CLOSED" not in store2.info() assert store2.is_open store2.close() assert "CLOSED" in store1.info() assert "CLOSED" in store2.info() assert not store1.is_open assert not store2.is_open # nested close store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store2.append("df2", df) store2.close() assert "CLOSED" in store2.info() assert not store2.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open # double closing store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store.close() assert "CLOSED" in store.info() assert not store.is_open store2.close() assert "CLOSED" in store2.info() assert not store2.is_open # ops on a closed store with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") store = HDFStore(path) store.close() msg = r"[\S]* file is not open!" with pytest.raises(ClosedFileError, match=msg): store.keys() with pytest.raises(ClosedFileError, match=msg): "df" in store with pytest.raises(ClosedFileError, match=msg): len(store) with pytest.raises(ClosedFileError, match=msg): store["df"] with pytest.raises(ClosedFileError, match=msg): store.select("df") with pytest.raises(ClosedFileError, match=msg): store.get("df") with pytest.raises(ClosedFileError, match=msg): store.append("df2", df) with pytest.raises(ClosedFileError, match=msg): store.put("df3", df) with pytest.raises(ClosedFileError, match=msg): store.get_storer("df2") with pytest.raises(ClosedFileError, match=msg): store.remove("df2") with pytest.raises(ClosedFileError, match=msg): store.select("df") msg = "'HDFStore' object has no attribute 'df'" with pytest.raises(AttributeError, match=msg): store.df def test_fspath(): with
tm.ensure_clean("foo.h5")
pandas._testing.ensure_clean
from PyQt5 import QtWidgets as Qtw from PyQt5 import QtCore as Qtc from PyQt5 import QtGui as Qtg from datetime import datetime, timedelta from bu_data_model import BU366 import sys import socket import time import pandas as pd from openpyxl.chart import ScatterChart, Reference, Series class CheckingThread(Qtc.QThread): answer_thread = Qtc.pyqtSignal(str, list) running_state = Qtc.pyqtSignal(str) remaining_time = Qtc.pyqtSignal(str) error_threads = Qtc.pyqtSignal(str) running_threads = {} def __init__(self, threadid_, n366, total_time, polling_interval, poll_rest): Qtc.QThread.__init__(self) self.threadid = threadid_ self.name = n366.name self.n366 = n366 self.total_time = total_time self.polling_inteval = polling_interval self.poll_rest = timedelta(seconds=poll_rest) self.next_poll = datetime.now() self.end = datetime.now() + timedelta(minutes=total_time) self.poll_rest_flag = False if poll_rest > 0: self.poll_rest_flag = True def run(self): # we run iterating over time until the test is over time_ = datetime.now() # get the time now for the loop self.running_threads[f'{self.name}'] = self # we add the object to the queue to be able to stop it later while time_ < self.end: # main loop until end time is bigger than current time self.remaining_time.emit(f'{self.end - time_}') # we update the remaining time of the test via signal self.running_state.emit('°R') # we update the status to °R via a signal try: # we check if the conection is active self.n366.check_active() # here we poll the DN and get the values to the dataframes except: # try to reconnect self.running_state.emit('°RC') while not self.n366.connection_state and datetime.now() < self.end: # while there is no connection we try to reconnect for tu_name_disconnect in self.n366.tus: # updates display to show the disconnection status tu_item = self.n366.tus[tu_name_disconnect] self.answer_thread.emit(tu_name_disconnect, [ # emit list with values -1, # set local sector -100, # set RSSI 0, # set SNR 0, # set RXMCS 0, # set TXMCS 0, # set RX PER 0, # set TX PER 0, # set RX MCS DR 0, # set TX MCS DR tu_item.get_availability(), tu_item.get_disconnection_counter(), tu_item.get_disconnection_ldt(), tu_item.get_disconnection_lds(), tu_item.get_disconnection_tdt(), False, 0, ]) self.n366.connect(self.n366.username, self.n366.password, 22, 1) # mini loop to fill in the disconnection time for each TU. We get disconnection start from object # and disconnection end at that time except_disconnection_start = self.n366.disconnection_start except_disconnection_end = datetime.now() while except_disconnection_start < except_disconnection_end: # while there is time between both events for tu_name_reconnect in self.n366.tus: # updates display to show the disconnection status except_tu_item = self.n366.tus[tu_name_reconnect] # get each TU # create a record with the disconnection parameters record = {'Local Sector': 0, 'RSSI': -100, 'SNR': 0, 'MCS-RX': 0, 'MCS-TX': 0, 'MCS-DR-RX': 0, 'MCS-DR-TX': 0, 'Power Index': 0} record_series = pd.Series(record, name=except_disconnection_start) # add the record of the disconnection except_tu_item.parameters_df = except_tu_item.parameters_df.append(record_series) # add the time for the next event except_disconnection_start = except_disconnection_start + self.poll_rest continue # jump over the loop to try to parse the active connection as we had no # conection extablished tu_counter = len(self.n366.tus) for tu_name in self.n366.tus: tu_item = self.n366.tus[tu_name] self.answer_thread.emit(tu_name, [ # emit list with values tu_item.get_local_sector(), tu_item.get_rssi(), tu_item.get_snr(), tu_item.get_rxmcs(), tu_item.get_txmcs(), tu_item.get_rxspeednum(), tu_item.get_txspeednum(), tu_item.get_rxmcsdr(), tu_item.get_txmcsdr(), tu_item.get_availability(), tu_item.get_disconnection_counter(), tu_item.get_disconnection_ldt(), tu_item.get_disconnection_lds(), tu_item.get_disconnection_tdt(), tu_item.get_connection_status(), tu_item.get_power_index(), ]) if self.poll_rest_flag and self.next_poll < time_ and tu_counter >= 0: if tu_item.connection_state: record = {'Local Sector': tu_item.get_local_sector(), 'RSSI': tu_item.get_rssi(), 'SNR': tu_item.get_snr(), 'MCS-RX': tu_item.get_rxmcs(), 'MCS-TX': tu_item.get_txmcs(), 'MCS-DR-RX': tu_item.get_rxmcsdr(), 'MCS-DR-TX': tu_item.get_txmcsdr(), 'Power Index': tu_item.get_power_index()} else: record = {'Local Sector': 0, 'RSSI': -100, 'SNR': 0, 'MCS-RX': 0, 'MCS-TX': 0, 'MCS-DR-RX': 0, 'MCS-DR-TX': 0, 'Power Index': 0} record_series =
pd.Series(record, name=time_)
pandas.Series
import numpy as np import re import pandas as pd from nova.utils import CalcVol import logging # create logger module_logger = logging.getLogger('NOVA.datastruct') class DataStruct(object): def __init__(self, model): """ :param model: pyCloudy Model object """ self.logger = logging.getLogger('NOVA.datastruct.DataStruct') self.logger.info('creating an instance of DataStruct') self.model = model self._model_id = self.model.model_name_s.split("_")[0] self._model_info = {} self._lines = {"line_id": [], "value": [], "model_id": []} self._ionic_frac = {"model_id": [], "ion": [], "value": []} self._abundance = {"model_id": [], "elem": [], "value": []} self._model_input = {"model_id": None, "input": None} self._params = {"model_id": [], "param": [], "value": []} self.df_tables = {"model_info": None, "lines": None, "ionic_frac": None, "abund": None, "model_input": None} def build(self): self._tab_model_info() self._tab_lines() self._tab_ionic_frac() self._tab_abundance() self._tab_model_input() self._tab_model_params() self._make_df() def _make_df(self): self.df_tables = {"model_info": pd.DataFrame(self._model_info, index=[0]), "lines": pd.DataFrame(self._lines), "ionic_frac": pd.DataFrame(self._ionic_frac), "abund": pd.DataFrame(self._abundance), "model_input":
pd.DataFrame(self._model_input, index=[0])
pandas.DataFrame