prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# _____ _ _ _ ____ _ _ _ # |_ _| |__ (_)___ (_)___ | _ \(_)_ __ _ _| | __ _| |_ ___ # | | | '_ \| / __| | / __| | |_) | | '_ \| | | | |/ _` | __/ _ \ # | | | | | | \__ \ | \__ \ | __/| | |_) | |_| | | (_| | || __/ # |_| |_| |_|_|___/ |_|___/ |_| |_| .__/ \__,_|_|\__,_|\__\___| # There are many frameworks like it, |_| but this one is mine. --MikeL # IMPORTANT THINGS TO REMEMBER: # 1. Make life easy by filling your ~/.bash_profile with aliases. # 2. Make life easy by filling /usr/local/sbin with helper scripts. # 3. pip puts things ~here: /usr/local/lib/python3.5/dist-packages/ # 4. oauth2client is deprecated. Replace it soon. import sys import os import gspread import httplib2 from datetime import date, datetime, timedelta from inspect import getfile, currentframe, getouterframes, stack from collections import defaultdict import pytz from oauth2client.client import OAuth2WebServerFlow from oauth2client import file, tools import pandas as pd from time import sleep, gmtime, strftime from pyfiglet import figlet_format from colorama import Fore from logzero import logger, setup_logger filename = "oauth.dat" client_id = "769904540573-knscs3mhvd56odnf7i8h3al13kiqulft.apps.googleusercontent.com" client_secret = "<KEY>" # To count how frequently functions have been called. counters = defaultdict(int) def return_error(): """Return error tuple and stop execution. Useful on naked exceptions.""" e = sys.exc_info() print(e) raise SystemExit() def pipulate(tab, rows, cols, columns=None): """All that pipulate really is""" row1, row2 = rows col1, col2 = cols col1, col2 = aa(col1), aa(col2) cl = tab.range(row1, col1, row2, col2) list_of_tuples = cl_to_tuples(cl) if not columns: columns = tab.range(row1, col1, row1, col2) columns = [cc(x.col) for x in columns] df =
pd.DataFrame(list_of_tuples, columns=columns)
pandas.DataFrame
# -*- coding:utf-8 -*- # Author: <NAME> # Data: 2/20/2018 # Describe: Build a dictionary based on my own needs. import os.path import re import pandas as pd import translate as tl class Dictionary(object): def __init__(self, dic_name): if not os.path.isfile(dic_name): open(dic_name, 'a').close() self.total_words = 0 self.dic_name = dic_name self.columns = ['英', '汉'] self.pronounce = True self.nostorage = False try: self.dic = pd.read_csv(dic_name) except pd.io.common.EmptyDataError: self.dic =
pd.DataFrame(columns=self.columns, dtype=str)
pandas.DataFrame
import numpy as np import pandas as pd import pickle import time import random import os from sklearn import linear_model, model_selection, ensemble from sklearn.svm import SVC from sklearn.ensemble import GradientBoostingClassifier from sklearn.base import clone from sklearn import metrics from sklearn.model_selection import cross_validate, train_test_split, StratifiedKFold import sklearn.metrics as m from joblib import Parallel, delayed from sklearn.base import clone from sklearn.utils import shuffle, resample type_='marker' basename = type_+'_features_expired_prediction_' dir_ = '../../data/' t0_all=time.time() seed = 42 np.random.seed(seed) max_depth = 1 C=1 tol=1e-3 min_samples_leaf=2 min_samples_split=2 n_estimators=100 models = { "Logistic Regression" : linear_model.LogisticRegression( C=C, penalty='l1', solver="liblinear", tol=tol, random_state=seed) } classification_metrics = ['roc_auc'] cv_split = 10 test_size = 0.15 n_jobs = 25 nboot=200 X_all_proteins = pd.read_csv(dir_+'integrated_X_raw_all_proteins.csv',index_col=0) proteins_no_immunoglobulins = pickle.load(open(dir_+'proteins_no_immunoglobulins.pkl','rb')) X_all_proteins = X_all_proteins.loc[:,proteins_no_immunoglobulins] joined = pd.read_csv(dir_+'mortality_X_y.csv',index_col=0) X_all_clinical = pd.read_csv(dir_+'integrated_X_clinical_and_cohort_covariates.csv',index_col=0) Y_pgd = pd.read_csv(dir_+'integrated_pgd_y.csv',index_col=0,header=None) Y_pgd.columns = ['PGD'] X_all_clinical = X_all_clinical.join(Y_pgd) Y_mortality = joined[['expired']] Y_mortality.index.name='' X_all_clinical = X_all_clinical.join(Y_mortality) Y_lvad = joined[['Mechanical_Support_Y']] Y_lvad.index.name='' Y_survival = (joined[['expired']]==0).astype(int) Y_survival.columns = ['Survival'] Y_survival.index.name='' X_all_clinical = X_all_clinical.join(Y_survival) idmap_sub = pd.read_csv(dir_+'protein_gene_map_full.csv')[['Protein','Gene_name']].dropna() cov_df = X_all_clinical.loc[:,['Cohort_Columbia','Cohort_Cedar']].copy().astype(int) all_cov_df = cov_df.copy() all_cov_df.loc[:,'Cohort_Paris'] = ( (all_cov_df['Cohort_Columbia'] + all_cov_df['Cohort_Cedar'])==0).astype(int) params = {'Y' : Y_survival, 'cv_split' : cv_split, 'metrics' : classification_metrics, 'n_jobs' : 1, 'test_size' : test_size, 'retrained_models' : True, 'patient_level_predictions' : True} def permute(Y,seed=42): """ shuffle sample values Parameters: ---------- Y : pandas series Index of samples and values are their class labels seed : int Random seed for shuffling Returns: ------ arr_shuffle: pandas series A shuffled Y """ arr = shuffle(Y.values,random_state=seed) arr_shuffle = (pd.Series(arr.reshape(1,-1)[0],index=Y.index)) return arr_shuffle def observed_val(X,Y,models,metrics=['roc_auc'],cv_split=10,seed=42,test_size=0.15,return_train_score=False,n_jobs=1,retrained_models=False,patient_level_predictions=False,return_estimator=True): # make sure given metrics are in list and not one metric is given as a string if type(metrics)!=list: metrics = [metrics] # 1/ reindex X = X.loc[Y.index] dfs = [] model_retrained_fits = {} model_confs = [] #iterate through model dictionary for name,mod in models.items(): # /2 generate model parameters and fold scores with cv splitter fit = clone(mod).fit(X,Y.values.reshape(1,-1)[0]) conf = pd.DataFrame({'y_true' : Y.values.reshape(1,-1)[0],'y_pred' : fit.predict(X),'bootstrap' : 'observed','model' : np.repeat(name,len(Y.index))},index=Y.index) model_confs.append(conf) #do prediction for each metric tmp = pd.DataFrame({'model' : name,'bootstrap' : 'observed'},index=[0]) for metric in metrics: tmp[metric] = m.SCORERS[metric](fit,X,Y) model_retrained_fits[name] = fit dfs.append(tmp) return pd.concat(dfs).reset_index(drop=True), model_retrained_fits, pd.concat(model_confs) def resample_observed_val(X,Y,models,metrics=['roc_auc'],cv_split=10,seed=42,test_size=0.15,return_train_score=False,n_jobs=1,retrained_models=False,patient_level_predictions=False,return_estimator=True): # make sure given metrics are in list and not one metric is given as a string if type(metrics)!=list: metrics = [metrics] # 1/ reindex X = X.loc[Y.index] Y_resample = resample(Y,random_state=seed) X = X.loc[Y_resample.index] Y = Y_resample.copy() dfs = [] model_retrained_fits = {} model_confs = [] #iterate through model dictionary for name,mod in models.items(): # /2 generate model parameters and fold scores with cv splitter fit = clone(mod).fit(X,Y.values.reshape(1,-1)[0]) conf = pd.DataFrame({'y_true' : Y.values.reshape(1,-1)[0],'y_pred' : fit.predict(X),'bootstrap' : 'observed','model' : np.repeat(name,len(Y.index))},index=Y.index) model_confs.append(conf) #do prediction for each metric tmp = pd.DataFrame({'model' : name,'bootstrap' : 'observed'},index=[0]) for metric in metrics: tmp[metric] = m.SCORERS[metric](fit,X,Y) model_retrained_fits[name] = fit dfs.append(tmp) return pd.concat(dfs).reset_index(drop=True), model_retrained_fits, pd.concat(model_confs) def permuted_observed_val(X,Y,models,metrics=['roc_auc'],cv_split=10,seed=42,test_size=0.15,return_train_score=False,n_jobs=1,retrained_models=False,patient_level_predictions=False,return_estimator=True): # make sure given metrics are in list and not one metric is given as a string if type(metrics)!=list: metrics = [metrics] # 1/ reindex X = X.loc[Y.index] Y_shuffle = permute(Y,seed=seed) X = X.loc[Y_shuffle.index] Y = Y_shuffle.copy() dfs = [] model_retrained_fits = {} model_confs = [] #iterate through model dictionary for name,mod in models.items(): # /2 generate model parameters and fold scores with cv splitter fit = clone(mod).fit(X,Y.values.reshape(1,-1)[0]) conf = pd.DataFrame({'y_true' : Y.values.reshape(1,-1)[0],'y_pred' : fit.predict(X),'bootstrap' : 'observed','model' : np.repeat(name,len(Y.index))},index=Y.index) model_confs.append(conf) #do prediction for each metric tmp = pd.DataFrame({'model' : name,'bootstrap' : 'observed'},index=[0]) for metric in metrics: tmp[metric] = m.SCORERS[metric](fit,X,Y) model_retrained_fits[name] = fit dfs.append(tmp) return pd.concat(dfs).reset_index(drop=True), model_retrained_fits, pd.concat(model_confs) def train_test_val_top_fold_01_within(X,Y,models,metrics=['roc_auc'],cv_split=10,seed=42,test_size=0.15,return_train_score=True,n_jobs=1,retrained_models=False,patient_level_predictions=False,return_estimator=True): # make sure given metrics are in list and not one metric given as a string if type(metrics)!=list: metrics = [metrics] # 1/ train and test split X = X.loc[Y.index] X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size=test_size, random_state=seed, stratify=Y, shuffle=True) X_train = X_train.apply(lambda x : (x - min(x))/(max(x) - min(x)),axis=0) X_test = X_test.apply(lambda x : (x - min(x))/(max(x) - min(x)),axis=0) X_train[X_train.isna()]=0 X_test[X_test.isna()]=0 #define K fold splitter cv = StratifiedKFold(n_splits=cv_split,random_state=seed,shuffle=True) #Instantiate lists to collect prediction and model results dfs = [] model_retrained_fits = {} model_confs = [] #iterate through model dictionary for name,mod in models.items(): # /2 generate model parameters and fold scores with cv splitter fit = cross_validate(clone(mod),X_train,y_train.values.reshape(1,-1)[0],cv=cv,scoring=metrics, n_jobs=n_jobs,return_train_score=return_train_score, return_estimator=return_estimator) tmp = pd.DataFrame({'fold' : range(cv_split), 'model' : name}, index=range(cv_split)) #populate scores in dataframe cols = [k for k in fit.keys() if (k.find('test')+k.find('train'))==-1] for col in cols: tmp[col] = fit[col] # /3 Identify best performing model top_fold = np.where(fit['test_roc_auc']==fit['test_roc_auc'].max())[0][0] keys = [x for x in fit.keys()] vals = [fit[x][top_fold] for x in keys] top_model_key_vals = {} for i in range(len(vals)): top_model_key_vals[keys[i]] = vals[i] #4/ train models on training set # also get sample level predictions f = top_model_key_vals['estimator'] fitted = clone(f).fit(X_train,y_train.values.reshape(1,-1)[0]) conf = pd.DataFrame({'y_true' : y_test.values.reshape(1,-1)[0], 'y_pred' : fitted.predict(X_test), 'y_proba' : fitted.predict_proba(X_test)[:,1], 'bootstrap' : np.repeat(seed,len(y_test.index)), 'model' : np.repeat(name,len(y_test.index))}, index=y_test.index) model_confs.append(conf) #do prediction for each metric for metric in metrics: tmp['validation_'+metric] = m.SCORERS[metric](fitted,X_test,y_test) model_retrained_fits[name] = fitted dfs.append(tmp.query('fold==@top_fold').drop('fold',1)) return pd.concat(dfs,sort=True).reset_index(drop=True), model_retrained_fits, pd.concat(model_confs,sort=True) def permuted_train_test_val_top_fold_01_within(X,Y,models,metrics=['roc_auc'],cv_split=10,seed=42,test_size=0.15,return_train_score=True,n_jobs=1,retrained_models=False,patient_level_predictions=False,return_estimator=True): X = X.loc[Y.index] Y_shuffle = permute(Y,seed=seed) X_shuffle = X.loc[Y_shuffle.index] # make sure given metrics are in list and not one metric given as a string if type(metrics)!=list: metrics = [metrics] # 1/ train and test split X_train, X_test, y_train, y_test = train_test_split(X_shuffle,Y_shuffle, test_size=test_size, random_state=seed, stratify=Y, shuffle=True) X_train = X_train.apply(lambda x : (x - min(x))/(max(x) - min(x)),axis=0) X_test = X_test.apply(lambda x : (x - min(x))/(max(x) - min(x)),axis=0) X_train[X_train.isna()]=0 X_test[X_test.isna()]=0 #define K fold splitter cv = StratifiedKFold(n_splits=cv_split,random_state=seed,shuffle=True) #Instantiate lists to collect prediction and model results dfs = [] model_retrained_fits = {} model_confs = [] #iterate through model dictionary for name,mod in models.items(): # /2 generate model parameters and fold scores with cv splitter fit = cross_validate(clone(mod),X_train,y_train.values.reshape(1,-1)[0],cv=cv,scoring=metrics, n_jobs=n_jobs,return_train_score=return_train_score, return_estimator=return_estimator) tmp = pd.DataFrame({'fold' : range(cv_split), 'model' : name}, index=range(cv_split)) #populate scores in dataframe cols = [k for k in fit.keys() if (k.find('test')+k.find('train'))==-1] for col in cols: tmp[col] = fit[col] # /3 Identify best performing model top_fold = np.where(fit['test_roc_auc']==fit['test_roc_auc'].max())[0][0] keys = [x for x in fit.keys()] vals = [fit[x][top_fold] for x in keys] top_model_key_vals = {} for i in range(len(vals)): top_model_key_vals[keys[i]] = vals[i] #4/ train models on training set # also get sample level predictions f = top_model_key_vals['estimator'] fitted = clone(f).fit(X_train,y_train.values.reshape(1,-1)[0]) conf = pd.DataFrame({'y_true' : y_test.values.reshape(1,-1)[0], 'y_pred' : fitted.predict(X_test), 'y_proba' : fitted.predict_proba(X_test)[:,1], 'bootstrap' : np.repeat(seed,len(y_test.index)), 'model' : np.repeat(name,len(y_test.index))}, index=y_test.index) model_confs.append(conf) #do prediction for each metric for metric in metrics: tmp['validation_'+metric] = m.SCORERS[metric](fitted,X_test,y_test) model_retrained_fits[name] = fitted dfs.append(tmp.query('fold==@top_fold').drop('fold',1)) return pd.concat(dfs,sort=True).reset_index(drop=True), model_retrained_fits, pd.concat(model_confs,sort=True) def bootstrap_of_fcn(func=None,params={},n_jobs=4,nboot=2): if func==None: return "Need fcn to bootstrap" parallel = Parallel(n_jobs=n_jobs) return parallel( delayed(func)( seed=k,**params) for k in range(nboot)) def get_performance(lst): perf = (pd. concat(lst,keys=range(len(lst))). reset_index(level=1,drop=True). rename_axis('bootstrap'). reset_index() ) return perf def model_feature_importances(boot_mods): dfs = [] X = params['X'].copy() X.loc[:,'Intercept'] = 0 for i in range(len(boot_mods)): for j in boot_mods[i].keys(): mod = boot_mods[i][j] coef = [] try: coef.extend([i for i in mod.feature_importances_]) except: coef.extend([i for i in mod.coef_[0]]) coef.extend(mod.intercept_) fs = [] fs.extend(X.columns.values) df = pd.DataFrame({ 'Feature' : fs, 'Gene_name' : (X.T. join(idmap_sub. set_index('Protein'),how='left'). Gene_name.values), 'Importance' : coef, 'Model' : j, 'Bootstrap' : i }) dfs.append(df) return pd.concat(dfs,sort=True) def patient_predictions(lst): col = pd.concat(lst).index.name dat = \ (pd. concat( lst ). reset_index(). rename(columns={col : 'Sample'}). set_index('Sample'). join(all_cov_df). reset_index(). melt(id_vars=['Sample','bootstrap','model','y_true','y_pred','y_proba'], var_name='cohort',value_name='mem') ) dat.cohort = dat.cohort.str.split('_').apply(lambda x : x[1]) dat = dat[dat.mem==1].drop('mem',1).reset_index(drop=True) return dat def get_performance(lst): perf = (pd. concat(lst,keys=range(len(lst))). reset_index(level=1,drop=True). rename_axis('bootstrap'). reset_index() ) return perf def model_feature_importances(boot_mods): dfs = [] X = params['X'].copy() X.loc[:,'Intercept'] = 0 for i in range(len(boot_mods)): for j in boot_mods[i].keys(): mod = boot_mods[i][j] coef = [] try: coef.extend([i for i in mod.feature_importances_]) except: coef.extend([i for i in mod.coef_[0]]) coef.extend(mod.intercept_) fs = [] fs.extend(X.columns.values) df = pd.DataFrame({ 'Feature' : fs, 'Gene_name' : (X.T. join(idmap_sub. set_index('Protein'),how='left'). Gene_name.values), 'Importance' : coef, 'Model' : j, 'Bootstrap' : i }) dfs.append(df) return pd.concat(dfs,sort=True) def patient_predictions(lst): col = pd.concat(lst).index.name dat = \ (pd. concat( lst ). reset_index(). rename(columns={col : 'Sample'}). set_index('Sample'). join(all_cov_df). reset_index(). melt(id_vars=['Sample','bootstrap','model','y_true','y_pred','y_proba'], var_name='cohort',value_name='mem') ) dat.cohort = dat.cohort.str.split('_').apply(lambda x : x[1]) dat = dat[dat.mem==1].drop('mem',1).reset_index(drop=True) return dat import itertools clin_combos = [[list(i) for i in itertools.combinations( np.intersect1d( X_all_clinical.columns.values, X_all_clinical.columns.values),r) ] for r in np.arange(1,2)] prot_combos = [[list(i) for i in itertools.combinations( np.intersect1d( X_all_proteins.columns.values, X_all_proteins.columns.values),r) ] for r in np.arange(1,2)] all_clin_1 = list(np.concatenate(list(itertools.chain(*clin_combos)))) print(len(all_clin_1)) all_prot_1 = list(np.concatenate(list(itertools.chain(*prot_combos)))) print(len(all_prot_1)) all_clin_1_and_prot_1 = list( itertools.chain(*[all_clin_1,all_prot_1]) ) print(len(all_clin_1_and_prot_1)) all_clin_1_prot_1 = list( itertools.chain(* [[list(itertools.chain(*[[x],[y]])) for x in all_prot_1] for y in all_clin_1] ) ) print(len(all_clin_1_prot_1)) all_clin_1_prot_1_and_clin_1_and_prot_1 = list( itertools.chain(*[all_clin_1,all_prot_1,all_clin_1_prot_1]) ) print(len(all_clin_1_prot_1_and_clin_1_and_prot_1)) all_clin_2 = [list(i) for i in itertools.combinations(all_clin_1,2)] print(len(all_clin_2)) all_prot_2 = [list(i) for i in itertools.combinations(all_prot_1,2)] print(len(all_prot_2)) all_clin_1_prot_1_and_prot_2 = list( itertools.chain(*[all_clin_1_prot_1,all_prot_2]) ) len(all_clin_1_prot_1_and_prot_2) all_clin_2_and_clin_1_prot_1_and_prot_2 = list( itertools.chain(*[all_clin_2,all_clin_1_prot_1,all_prot_2]) ) len(all_clin_2_and_clin_1_prot_1_and_prot_2) all_clin_2_and_clin_1_prot_1_and_prot_2_and_clin_1_and_prot_1 = list( itertools.chain(*[all_clin_2,all_clin_1_prot_1,all_prot_2,all_clin_1,all_prot_1]) ) print(len(all_clin_2_and_clin_1_prot_1_and_prot_2_and_clin_1_and_prot_1)) t0 = time.time() fimps_dfs = [] perf_dfs = [] ppreds_dfs = [] perm_fimps_dfs = [] perm_perf_dfs = [] perm_ppreds_dfs = [] feature_set = {} for i,features in enumerate(all_clin_1_and_prot_1): if features in all_cov_df.columns: continue print(features) print(i) X_all = X_all_proteins.join(X_all_clinical) if type(features)==np.str_: X = X_all[[features]] if type(features)==list: X = X_all[features] feature_set[str(i)] = X.columns.tolist() params.update({'X' : X.join(all_cov_df),'models' : models.copy()}) lst = bootstrap_of_fcn(func=train_test_val_top_fold_01_within, params=params,n_jobs=n_jobs,nboot=nboot) perf = get_performance([lst[i][0] for i in range(len(lst))]) perf['set'] = str(i) perf_dfs.append(perf) fimps = model_feature_importances([lst[i][1] for i in range(len(lst))]) fimps['set'] = str(i) fimps_dfs.append(fimps) ppreds = patient_predictions([lst[i][2] for i in range(len(lst))]) ppreds['set'] = str(i) ppreds_dfs.append(ppreds) lst = bootstrap_of_fcn(func=permuted_train_test_val_top_fold_01_within, params=params,n_jobs=n_jobs,nboot=nboot) perm_perf = get_performance([lst[i][0] for i in range(len(lst))]) perm_perf['set'] = str(i) perm_perf_dfs.append(perm_perf) perm_fimps = model_feature_importances([lst[i][1] for i in range(len(lst))]) perm_fimps['set'] = str(i) perm_fimps_dfs.append(perm_fimps) perm_ppreds = patient_predictions([lst[i][2] for i in range(len(lst))]) perm_ppreds['set'] = str(i) perm_ppreds_dfs.append(perm_ppreds) perf_df = (
pd.concat(perf_dfs)
pandas.concat
import re import requests from bs4 import BeautifulSoup import json from collections import OrderedDict from io import StringIO import pandas as pd from astropy.time import Time from datetime import datetime,date,timedelta from tns_api_search import search, get, format_to_json, get_file from astropy.coordinates import SkyCoord from astropy import units as u url_tns_api="https://wis-tns.weizmann.ac.il/api/get" from credentials import tns api_key = tns.settings.API_KEY def goodrow(class_): return ((class_=="row-even public odd") or (class_=='row-odd public odd')) def getTNS(reportdays=5,discoverdays=5,enddate=None,classified=1,disc_mag_min=16,disc_mag_max=21,z_min=0.015,z_max=0.08, skip_ztf=False,num_page=100,verbose=False,otherparams={},**kwargs): ''' returns a coma separated list with the redshift, internal name, discovery date, and discovery magnitude of objetcs from TNS which match the search criteria parameters: reportdays - maximum number of days that have past since being reported z_min - minimum redshift z_max - maximum redshift disc_mag_min - minimum discovery magnitude disc_mag_max - maximum discovery magnitude Note: I believe this is just a numerical cut, not physical, i.e. the minimum is the lowest numerical value that will be returned calssified - 1: is classified, 0: classification not considered unclassified - 1: is unclassified, 0: unclassification not considered ''' # link = f'https://wis-tns.weizmann.ac.il/search?&discovered_period_value={reportdays}&discovered_period_units=days&unclassified_at={unclassified}&classified_sne={classified}&name=&name_like=0&isTNS_AT=all&public=all&coords_unit=arcsec&redshift_min={z_min}&redshift_max={z_max}&discovery_mag_min={disc_mag_min}&discovery_mag_max={disc_mag_max}&objtype=3&sort=desc&order=discoverydate&num_page=500' link = 'https://wis-tns.weizmann.ac.il/search' if enddate is None: enddate = date.today() startdate = enddate - timedelta(discoverdays) params = {"discovered_period_value":reportdays, "discovered_period_units":"days", "date_start[date]":startdate.isoformat(), "date_end[date]":enddate.isoformat(), "classified_sne":int(classified), "unclassified_at":int(not(classified)), "discovery_mag_min":disc_mag_min, "discovery_mag_max":disc_mag_max, "num_page":num_page } params.update(otherparams) if classified: params.update({"objtype":3, "redshift_min":z_min, "redshift_max":z_max, "sort":"desc", "order":"discoverydate"}) else: params.update({"at_type":1, "sort":"asc", "order":"internal_name"}) r = requests.get(link,params=params) if verbose: print(r.url) soup = BeautifulSoup(r.text, "lxml") return_arr = [] tr = soup.find_all('tbody') if verbose: print("Number of tables on the webpage:",len(tr)) if len(tr)>0: tr = tr[0] else: raise RuntimeError("No result is found") cols = ['internal_name','redshift','ra','decl','hostname','host_redshift','discoverydate','discoverymag','disc_filter_name','name','ot_name'] dflist = [] if verbose: print("Number of rows in search result: ",len(tr.find_all(class_=goodrow,recursive=False))) for row in tr.find_all(class_=goodrow,recursive=False): df = {} for col in cols: value = row.find('td',class_='cell-{}'.format(col),recursive=False) if value is None: df[col] = None else: df[col] = value.text df['name'] = df['name'].split()[1] if (not classified) & skip_ztf & df['internal_name'].startswith('ZTF'): break dflist.append(df) df = pd.DataFrame(dflist) df.columns = ['internal_name','redshift','ra_s','dec_s','hostname','host_redshift','discoverydate','discoverymag','disc_filter_name','tns_name','type'] c = SkyCoord(ra=df.ra_s.values, dec=df.dec_s.values, unit=(u.hourangle,u.deg)) df['meanra'] = c.ra.degree df['meandec'] = c.dec.degree df['oid'] = df['tns_name'] return df.sort_values('discoverydate',ascending=False).reset_index(drop=True) def get_tns_name(internal_name): search_obj = [("internal_name",internal_name)] response = search(url_tns_api,search_obj) if None not in response: json_data = format_to_json(response.text) reply = json.loads(json_data)['data']['reply'] if len(reply) == 0: return else: return reply[0]['objname'] else: print(response[1]) return def get_tns_data(tns_name): data = {} get_obj=[("objname",tns_name), ("photometry","1"), ("spectra","1")] response=get(url_tns_api,get_obj) if None not in response: # Here we just display the full json data as the response json_data = format_to_json(response.text) data['meta'] = format_meta(json.loads(json_data)['data']['reply']) photometry = json.loads(json_data)['data']['reply']['photometry'] spectra = json.loads(json_data)['data']['reply']['spectra'] data['photometry'] = format_photometry(photometry) data['spectra'] = format_spectra(spectra) else: print (response[1]) data = None return data def format_meta(reply): cols = ['internal_name','redshift','radeg','decdeg','hostname','host_redshift','discoverydate','discoverymag','discmagfilter','name'] df = {k: reply[k] for k in cols} return pd.DataFrame([
pd.DataFrame(df)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Nov 28 17:05:36 2018 @author: kutay.erkan """ """ References: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html https://seaborn.pydata.org/generated/seaborn.lmplot.html https://cmdlinetips.com/2018/03/pca-example-in-python-with-scikit-learn/ """ import os os.getcwd() # %% Import libraries import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split # from sklearn.feature_selection import SelectFromModel from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, recall_score, precision_score, confusion_matrix from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "last_expr" # "all" to print multiple statements # %% Read data df = pd.read_table("dataset.txt", sep=",", header=None) # Name features df.columns = ["word_freq_make", "word_freq_address", "word_freq_all", "word_freq_3d", "word_freq_our", "word_freq_over", "word_freq_remove", "word_freq_internet", "word_freq_order", "word_freq_mail", "word_freq_receive", "word_freq_will", "word_freq_people", "word_freq_report", "word_freq_addresses", "word_freq_free", "word_freq_business", "word_freq_email", "word_freq_you", "word_freq_credit", "word_freq_your", "word_freq_font", "word_freq_000", "word_freq_money", "word_freq_hp", "word_freq_hpl", "word_freq_george", "word_freq_650", "word_freq_lab", "word_freq_labs", "word_freq_telnet", "word_freq_857", "word_freq_data", "word_freq_415", "word_freq_85", "word_freq_technology", "word_freq_1999", "word_freq_parts", "word_freq_pm", "word_freq_direct", "word_freq_cs", "word_freq_meeting", "word_freq_original", "word_freq_project", "word_freq_re", "word_freq_edu", "word_freq_table", "word_freq_conference", "char_freq_;", "char_freq_(", "char_freq_[", "char_freq_!", "char_freq_$", "char_freq_#", "capital_run_length_average", "capital_run_length_longest", "capital_run_length_total", "is_spam" ] # %% Explore data print (df.head(),"\n") print ("Number of all instances: {}".format(len(df))) print ("Number of spam instances: {}\n".format(df.is_spam.sum())) print ("Features:\n {}".format(list(df))) # %% Name the label and features label = df.is_spam features = df.drop(columns=['is_spam']) # %% Train/Test Split features_train, features_test, label_train, label_test = train_test_split(features,label, test_size=0.5, random_state = 22, stratify=df.is_spam) print ("Number of spam instances in training set: {}".format(label_train.sum())) print ("Number of spam instances in test set: {}".format(label_test.sum())) # %% Directly run kNN on training and test data without PCA or feature reduction clf = KNeighborsClassifier(n_neighbors=5, metric='euclidean') clf.fit(features_train, label_train) label_train_pred = clf.predict(features_train) label_test_pred = clf.predict(features_test) print ("\nPerformance on Training Data without Feature Reduction:") print ("Accuracy: {}".format(accuracy_score(label_train, label_train_pred))) print ("Recall: {}".format(recall_score(label_train, label_train_pred))) print ("Precision: {}".format(precision_score(label_train, label_train_pred))) print ("Confusion Matrix: \n{}\n".format(confusion_matrix(label_train, label_train_pred))) print ("Performance on Test Data without Feature Reduction:") print ("Accuracy: {}".format(accuracy_score(label_test, label_test_pred))) print ("Recall: {}".format(recall_score(label_test, label_test_pred))) print ("Precision: {}".format(precision_score(label_test, label_test_pred))) print ("Confusion Matrix: \n{}\n".format(confusion_matrix(label_test, label_test_pred))) # %% See accuracy score and cumulative explained variance for different m using training data selected_n = 0 pca_accuracy = 0 for i in range(1, 58): pca = PCA(n_components=i) pca.fit(features_train) pc = pca.fit_transform(features_train) clf.fit(pc,label_train) label_train_pred = clf.predict(pc) if accuracy_score(label_train, label_train_pred) > pca_accuracy: pca_accuracy = accuracy_score(label_train, label_train_pred) selected_n = i print ("Accuracy for {} features: {}".format(i,accuracy_score(label_train, label_train_pred))) print ("Recall for {} features: {}".format(i,recall_score(label_train, label_train_pred))) print ("Precision for {} features: {}".format(i,precision_score(label_train, label_train_pred))) print ("Cum. explained variance ratio for {} features: {}".format(i,pca.explained_variance_ratio_.cumsum()[-1])) print ("\nSelected n_components with highest accuracy score: {}".format(selected_n)) print ("Accuracy score for {} components: {}".format(selected_n, pca_accuracy)) # %% Plot for m=2 pca = PCA(n_components=2) pc = pca.fit_transform(features_train) pc_df = pd.DataFrame(data = pc, columns = ['PC1', 'PC2']) label_train=label_train.reset_index(drop=True) pc_df = pd.concat([pc_df,label_train],axis=1) print ("\nPlot for 2 principal components PC1, PC2:") sns.lmplot(x="PC1", y="PC2", data=pc_df, hue='is_spam', fit_reg=False, scatter_kws={"alpha": 0.2}); # %% See performance metrics for chosen m using training and test data print('n_components=41 and 42 have the same accuracy. Which one is selected DOES change on runtime.') print ("\nSelected n_components: {}".format(selected_n)) pca = PCA(n_components=selected_n) pca.fit(features_train) pc = pca.fit_transform(features_train) clf.fit(pc,label_train) label_train_pred = clf.predict(pc) print ("\nPerformance on Training Data with Feature Reduction Using PCA:") print ("Accuracy: {}".format(accuracy_score(label_train, label_train_pred))) print ("Recall: {}".format(recall_score(label_train, label_train_pred))) print ("Precision: {}".format(precision_score(label_train, label_train_pred))) print ("Confusion Matrix: \n{}\n".format(confusion_matrix(label_train, label_train_pred))) pca = PCA(n_components=42) pca.fit(features_test) pc = pca.fit_transform(features_test) clf.fit(pc,label_test) label_test_pred = clf.predict(pc) print ("Performance on Test Data with Feature Reduction Using PCA:") print ("Accuracy: {}".format(accuracy_score(label_test, label_test_pred))) print ("Recall: {}".format(recall_score(label_test, label_test_pred))) print ("Precision: {}".format(precision_score(label_test, label_test_pred))) print ("Confusion Matrix: \n{}\n".format(confusion_matrix(label_test, label_test_pred))) # %% Finding feature accuracies clf = KNeighborsClassifier(n_neighbors=5, metric='euclidean') knn_accuracy = 0 accuracy_list =
pd.DataFrame(columns=["feature","accuracy"])
pandas.DataFrame
# coding: utf-8 # # CareerCon 2019 - Help Navigate Robots # ## Robots are smart… by design !! # # ![](https://www.lextronic.fr/imageslib/4D/0J7589.320.gif) # # --- # # Robots are smart… by design. To fully understand and properly navigate a task, however, they need input about their environment. # # In this competition, you’ll help robots recognize the floor surface they’re standing on using data collected from Inertial Measurement Units (IMU sensors). # # We’ve collected IMU sensor data while driving a small mobile robot over different floor surfaces on the university premises. The task is to predict which one of the nine floor types (carpet, tiles, concrete) the robot is on using sensor data such as acceleration and velocity. Succeed and you'll help improve the navigation of robots without assistance across many different surfaces, so they won’t fall down on the job. # # ### Its a golden chance to help humanity, by helping Robots ! # # <br> # <img src="https://media2.giphy.com/media/EizPK3InQbrNK/giphy.gif" border="1" width="400" height="300"> # <br> # # DATA # **X_[train/test].csv** - the input data, covering 10 sensor channels and 128 measurements per time series plus three ID columns: # # - ```row_id```: The ID for this row. # # - ```series_id: ID``` number for the measurement series. Foreign key to y_train/sample_submission. # # - ```measurement_number```: Measurement number within the series. # # The orientation channels encode the current angles how the robot is oriented as a quaternion (see Wikipedia). Angular velocity describes the angle and speed of motion, and linear acceleration components describe how the speed is changing at different times. The 10 sensor channels are: # # ``` # orientation_X # # orientation_Y # # orientation_Z # # orientation_W # # angular_velocity_X # # angular_velocity_Y # # angular_velocity_Z # # linear_acceleration_X # # linear_acceleration_Y # # linear_acceleration_Z # ``` # # **y_train.csv** - the surfaces for training set. # # - ```series_id```: ID number for the measurement series. # # - ```group_id```: ID number for all of the measurements taken in a recording session. Provided for the training set only, to enable more cross validation strategies. # # - ```surface```: the target for this competition. # # **sample_submission.csv** - a sample submission file in the correct format. # ### Load packages # In[1]: import numpy as np import pandas as pd import os from time import time from sklearn import preprocessing from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from scipy.stats import norm from sklearn.preprocessing import StandardScaler from matplotlib import rcParams get_ipython().run_line_magic('matplotlib', 'inline') le = preprocessing.LabelEncoder() from numba import jit import itertools from seaborn import countplot,lineplot, barplot from numba import jit from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn import preprocessing from scipy.stats import randint as sp_randint from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import KFold from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.metrics import confusion_matrix from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV import matplotlib.style as style style.use('ggplot') import warnings warnings.filterwarnings('ignore') import gc gc.enable() get_ipython().system('ls ../input/') get_ipython().system('ls ../input/robots-best-submission') print ("Ready !") # ### Load data # In[2]: data = pd.read_csv('../input/career-con-2019/X_train.csv') tr = pd.read_csv('../input/career-con-2019/X_train.csv') sub = pd.read_csv('../input/career-con-2019/sample_submission.csv') test = pd.read_csv('../input/career-con-2019/X_test.csv') target = pd.read_csv('../input/career-con-2019/y_train.csv') print ("Data is ready !!") # # Data exploration # In[3]: data.head() # In[4]: test.head() # In[5]: target.head() # In[6]: len(data.measurement_number.value_counts()) # Each series has 128 measurements. # # **1 serie = 128 measurements**. # # For example, serie with series_id=0 has a surface = *fin_concrete* and 128 measurements. # ### describe (basic stats) # In[7]: data.describe() # In[8]: test.describe() # In[9]: target.describe() # ### There is missing data in test and train data # In[10]: totalt = data.isnull().sum().sort_values(ascending=False) percent = (data.isnull().sum()/data.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([totalt, percent], axis=1, keys=['Total', 'Percent']) print ("Missing Data at Training") missing_data.tail() # In[11]: totalt = test.isnull().sum().sort_values(ascending=False) percent = (test.isnull().sum()/data.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([totalt, percent], axis=1, keys=['Total', 'Percent']) print ("Missing Data at Test") missing_data.tail() # In[12]: print ("Test has ", (test.shape[0]-data.shape[0])/128, "series more than Train (later I will prove it) = 768 registers") dif = test.shape[0]-data.shape[0] print ("Let's check this extra 6 series") test.tail(768).describe() # If we look at the features: orientation, angular velocity and linear acceleration, we can see big differences between **max** and **min** from entire test vs 6 extra test's series (see **linear_acceleration_Z**). # # Obviously we are comparing 3810 series vs 6 series so this is not a big deal. # ### goup_id will be important !! # In[13]: target.groupby('group_id').surface.nunique().max() # In[14]: target['group_id'].nunique() # **73 groups** # **Each group_id is a unique recording session and has only one surface type ** # In[15]: sns.set(style='darkgrid') sns.countplot(y = 'surface', data = target, order = target['surface'].value_counts().index) plt.show() # ### Target feature - surface and group_id distribution # Let's show now the distribution of target feature - surface and group_id. # by @gpreda. # In[16]: fig, ax = plt.subplots(1,1,figsize=(26,8)) tmp = pd.DataFrame(target.groupby(['group_id', 'surface'])['series_id'].count().reset_index()) m = tmp.pivot(index='surface', columns='group_id', values='series_id') s = sns.heatmap(m, linewidths=.1, linecolor='black', annot=True, cmap="YlGnBu") s.set_title('Number of surface category per group_id', size=16) plt.show() # We need to classify on which surface our robot is standing. # # Multi-class Multi-output # # 9 classes (suface) # In[17]: plt.figure(figsize=(23,5)) sns.set(style="darkgrid") countplot(x="group_id", data=target, order = target['group_id'].value_counts().index) plt.show() # **So, we have 3810 train series, and 3816 test series. # Let's engineer some features!** # # ## Example: Series 1 # # Let's have a look at the values of features in a single time-series, for example series 1 ```series_id=0``` # # Click to see all measurements of the **first series** # In[18]: serie1 = tr.head(128) serie1.head() # In[19]: serie1.describe() # In[20]: plt.figure(figsize=(26, 16)) for i, col in enumerate(serie1.columns[3:]): plt.subplot(3, 4, i + 1) plt.plot(serie1[col]) plt.title(col) # In this example, we can see a quite interesting performance: # 1. Orientation X increases # 2. Orientation Y decreases # 3. We don't see any kind of pattern except for linear_acceleration_Y # # And we know that in this series, the robot moved throuh "fine_concrete". # In[21]: target.head(1) # In[22]: del serie1 gc.collect() # ## Visualizing Series # # Before, I showed you as an example the series 1. # # **This code allows you to visualize any series.** # # From: *Code Snippet For Visualizing Series Id by @shaz13* # In[23]: series_dict = {} for series in (data['series_id'].unique()): series_dict[series] = data[data['series_id'] == series] # In[24]: def plotSeries(series_id): style.use('ggplot') plt.figure(figsize=(28, 16)) print(target[target['series_id'] == series_id]['surface'].values[0].title()) for i, col in enumerate(series_dict[series_id].columns[3:]): if col.startswith("o"): color = 'red' elif col.startswith("a"): color = 'green' else: color = 'blue' if i >= 7: i+=1 plt.subplot(3, 4, i + 1) plt.plot(series_dict[series_id][col], color=color, linewidth=3) plt.title(col) # **Now, Let's see code for series 15 ( is an example, try what you want)** # In[25]: id_series = 15 plotSeries(id_series) # In[26]: del series_dict gc.collect() # <br> # ### Correlations (Part I) # In[27]: f,ax = plt.subplots(figsize=(8, 8)) sns.heatmap(tr.iloc[:,3:].corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) # **Correlations test (click "code")** # In[28]: f,ax = plt.subplots(figsize=(8, 8)) sns.heatmap(test.iloc[:,3:].corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) # Well, this is immportant, there is a **strong correlation** between: # - angular_velocity_Z and angular_velocity_Y # - orientation_X and orientation_Y # - orientation_Y and orientation_Z # # Moreover, test has different correlations than training, for example: # # - angular_velocity_Z and orientation_X: -0.1(training) and 0.1(test). Anyway, is too small in both cases, it should not be a problem. # ## Fourier Analysis # # My hope was, that different surface types yield (visible) differences in the frequency spectrum of the sensor measurements. # # Machine learning techniques might learn frequency filters on their own, but why don't give the machine a little head start? So I computed the the cyclic FFT for the angular velocity and linear acceleration sensors and plotted mean and standard deviation of the absolute values of the frequency components per training surface category (leaving out the frequency 0 (i.e. constants like sensor bias, earth gravity, ...). # # The sensors show some different frequency characterists (see plots below), but unfortunately the surface categories have all similar (to the human eye) shapes, varying mostly in total power, and the standard deviations are high (compared to differences in the means). So there are no nice strong characteristic peaks for surface types. But that does not mean, that there is nothing detectable by more sophisticated statistical methods. # # This article http://www.kaggle.com/christoffer/establishing-sampling-frequency makes a convincing case, that the sampling frequency is around 400Hz, so according to that you would see the frequency range to 3-200 Hz in the diagrams (and aliased higher frequencies). # # by [@trohwer64](https://www.kaggle.com/trohwer64) # In[29]: get_ipython().system('ls ../input') # In[30]: train_x = pd.read_csv('../input/career-con-2019/X_train.csv') train_y = pd.read_csv('../input/career-con-2019/y_train.csv') # In[31]: import math def prepare_data(t): def f(d): d=d.sort_values(by=['measurement_number']) return pd.DataFrame({ 'lx':[ d['linear_acceleration_X'].values ], 'ly':[ d['linear_acceleration_Y'].values ], 'lz':[ d['linear_acceleration_Z'].values ], 'ax':[ d['angular_velocity_X'].values ], 'ay':[ d['angular_velocity_Y'].values ], 'az':[ d['angular_velocity_Z'].values ], }) t= t.groupby('series_id').apply(f) def mfft(x): return [ x/math.sqrt(128.0) for x in np.absolute(np.fft.fft(x)) ][1:65] t['lx_f']=[ mfft(x) for x in t['lx'].values ] t['ly_f']=[ mfft(x) for x in t['ly'].values ] t['lz_f']=[ mfft(x) for x in t['lz'].values ] t['ax_f']=[ mfft(x) for x in t['ax'].values ] t['ay_f']=[ mfft(x) for x in t['ay'].values ] t['az_f']=[ mfft(x) for x in t['az'].values ] return t # In[32]: t=prepare_data(train_x) t=pd.merge(t,train_y[['series_id','surface','group_id']],on='series_id') t=t.rename(columns={"surface": "y"}) # In[33]: def aggf(d, feature): va= np.array(d[feature].tolist()) mean= sum(va)/va.shape[0] var= sum([ (va[i,:]-mean)**2 for i in range(va.shape[0]) ])/va.shape[0] dev= [ math.sqrt(x) for x in var ] return pd.DataFrame({ 'mean': [ mean ], 'dev' : [ dev ], }) display={ 'hard_tiles_large_space':'r-.', 'concrete':'g-.', 'tiled':'b-.', 'fine_concrete':'r-', 'wood':'g-', 'carpet':'b-', 'soft_pvc':'y-', 'hard_tiles':'r--', 'soft_tiles':'g--', } # In[34]: import matplotlib.pyplot as plt plt.figure(figsize=(14, 8*7)) #plt.margins(x=0.0, y=0.0) #plt.tight_layout() # plt.figure() features=['lx_f','ly_f','lz_f','ax_f','ay_f','az_f'] count=0 for feature in features: stat= t.groupby('y').apply(aggf,feature) stat.index= stat.index.droplevel(-1) b=[*range(len(stat.at['carpet','mean']))] count+=1 plt.subplot(len(features)+1,1,count) for i,(k,v) in enumerate(display.items()): plt.plot(b, stat.at[k,'mean'], v, label=k) # plt.errorbar(b, stat.at[k,'mean'], yerr=stat.at[k,'dev'], fmt=v) leg = plt.legend(loc='best', ncol=3, mode="expand", shadow=True, fancybox=True) plt.title("sensor: " + feature) plt.xlabel("frequency component") plt.ylabel("amplitude") count+=1 plt.subplot(len(features)+1,1,count) k='concrete' v=display[k] feature='lz_f' stat= t.groupby('y').apply(aggf,feature) stat.index= stat.index.droplevel(-1) b=[*range(len(stat.at['carpet','mean']))] plt.errorbar(b, stat.at[k,'mean'], yerr=stat.at[k,'dev'], fmt=v) plt.title("sample for error bars (lz_f, surface concrete)") plt.xlabel("frequency component") plt.ylabel("amplitude") plt.show() # In[35]: del train_x, train_y gc.collect() # ## Is it an Humanoid Robot instead of a car? # # ![](https://media1.giphy.com/media/on7ipUR0rFjRS/giphy.gif) # # **Acceleration** # - X (mean at 0) # - Y axis is centered at a value wich shows us the movement (straight ). # - Z axis is centered at 10 (+- 9.8) wich is the gravity !! , you can see how the robot bounds. # # Angular velocity (X,Y,Z) has mean (0,0,0) so there is no lineal movement on those axis (measured with an encoder or potentiometer) # # **Fourier** # # We can see: with a frequency 3 Hz we can see an acceleration, I think that acceleration represents one step. # Maybe ee can suppose that every step is caused by many different movements, that's why there are different accelerations at different frequencies. # # Angular velocity represents spins. # Every time the engine/servo spins, the robot does an step - relation between acc y vel. # --- # # # Feature Engineering # In[36]: def plot_feature_distribution(df1, df2, label1, label2, features,a=2,b=5): i = 0 sns.set_style('whitegrid') plt.figure() fig, ax = plt.subplots(a,b,figsize=(17,9)) for feature in features: i += 1 plt.subplot(a,b,i) sns.kdeplot(df1[feature], bw=0.5,label=label1) sns.kdeplot(df2[feature], bw=0.5,label=label2) plt.xlabel(feature, fontsize=9) locs, labels = plt.xticks() plt.tick_params(axis='x', which='major', labelsize=8) plt.tick_params(axis='y', which='major', labelsize=8) plt.show(); # In[37]: features = data.columns.values[3:] plot_feature_distribution(data, test, 'train', 'test', features) # Godd news, our basic features have the **same distribution (Normal) on test and training**. There are some differences between *orientation_X* , *orientation_Y* and *linear_acceleration_Y*. # # I willl try **StandardScaler** to fix this, and remember: orientation , angular velocity and linear acceleration are measured with different units, scaling might be a good choice. # In[38]: def plot_feature_class_distribution(classes,tt, features,a=5,b=2): i = 0 sns.set_style('whitegrid') plt.figure() fig, ax = plt.subplots(a,b,figsize=(16,24)) for feature in features: i += 1 plt.subplot(a,b,i) for clas in classes: ttc = tt[tt['surface']==clas] sns.kdeplot(ttc[feature], bw=0.5,label=clas) plt.xlabel(feature, fontsize=9) locs, labels = plt.xticks() plt.tick_params(axis='x', which='major', labelsize=8) plt.tick_params(axis='y', which='major', labelsize=8) plt.show(); # In[39]: classes = (target['surface'].value_counts()).index aux = data.merge(target, on='series_id', how='inner') plot_feature_class_distribution(classes, aux, features) # **Normal distribution** # # There are obviously differences between *surfaces* and that's good, we will focus on that in order to classify them better. # # Knowing this differences and that variables follow a normal distribution (in most of the cases) we need to add new features like: ```mean, std, median, range ...``` (for each variable). # # However, I will try to fix *orientation_X* and *orientation_Y* as I explained before, scaling and normalizing data. # # --- # # ### Now with a new scale (more more precision) # In[40]: plt.figure(figsize=(26, 16)) for i,col in enumerate(aux.columns[3:13]): ax = plt.subplot(3,4,i+1) ax = plt.title(col) for surface in classes: surface_feature = aux[aux['surface'] == surface] sns.kdeplot(surface_feature[col], label = surface) # ### Histogram for main features # In[41]: plt.figure(figsize=(26, 16)) for i, col in enumerate(data.columns[3:]): ax = plt.subplot(3, 4, i + 1) sns.distplot(data[col], bins=100, label='train') sns.distplot(test[col], bins=100, label='test') ax.legend() # ## Step 0 : quaternions # Orientation - quaternion coordinates # You could notice that there are 4 coordinates: X, Y, Z, W. # # Usually we have X, Y, Z - Euler Angles. But Euler Angles are limited by a phenomenon called "gimbal lock," which prevents them from measuring orientation when the pitch angle approaches +/- 90 degrees. Quaternions provide an alternative measurement technique that does not suffer from gimbal lock. Quaternions are less intuitive than Euler Angles and the math can be a little more complicated. # # Here are some articles about it: # # http://www.chrobotics.com/library/understanding-quaternions # # http://www.tobynorris.com/work/prog/csharp/quatview/help/orientations_and_quaternions.htm # # Basically 3D coordinates are converted to 4D vectors. # In[42]: # https://stackoverflow.com/questions/53033620/how-to-convert-euler-angles-to-quaternions-and-get-the-same-euler-angles-back-fr?rq=1 def quaternion_to_euler(x, y, z, w): import math t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) X = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 Y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) Z = math.atan2(t3, t4) return X, Y, Z # In[43]: def fe_step0 (actual): # https://www.mathworks.com/help/aeroblks/quaternionnorm.html # https://www.mathworks.com/help/aeroblks/quaternionmodulus.html # https://www.mathworks.com/help/aeroblks/quaternionnormalize.html # Spoiler: you don't need this ;) actual['norm_quat'] = (actual['orientation_X']**2 + actual['orientation_Y']**2 + actual['orientation_Z']**2 + actual['orientation_W']**2) actual['mod_quat'] = (actual['norm_quat'])**0.5 actual['norm_X'] = actual['orientation_X'] / actual['mod_quat'] actual['norm_Y'] = actual['orientation_Y'] / actual['mod_quat'] actual['norm_Z'] = actual['orientation_Z'] / actual['mod_quat'] actual['norm_W'] = actual['orientation_W'] / actual['mod_quat'] return actual # # > *Are there any reasons to not automatically normalize a quaternion? And if there are, what quaternion operations do result in non-normalized quaternions?* # # Any operation that produces a quaternion will need to be normalized because floating-point precession errors will cause it to not be unit length. # I would advise against standard routines performing normalization automatically for performance reasons. # Any competent programmer should be aware of the precision issues and be able to normalize the quantities when necessary - and it is not always necessary to have a unit length quaternion. # The same is true for vector operations. # # source: https://stackoverflow.com/questions/11667783/quaternion-and-normalization # In[44]: data = fe_step0(data) test = fe_step0(test) print(data.shape) data.head() # In[45]: fig, (ax1, ax2, ax3, ax4) = plt.subplots(ncols=4, figsize=(18, 5)) ax1.set_title('quaternion X') sns.kdeplot(data['norm_X'], ax=ax1, label="train") sns.kdeplot(test['norm_X'], ax=ax1, label="test") ax2.set_title('quaternion Y') sns.kdeplot(data['norm_Y'], ax=ax2, label="train") sns.kdeplot(test['norm_Y'], ax=ax2, label="test") ax3.set_title('quaternion Z') sns.kdeplot(data['norm_Z'], ax=ax3, label="train") sns.kdeplot(test['norm_Z'], ax=ax3, label="test") ax4.set_title('quaternion W') sns.kdeplot(data['norm_W'], ax=ax4, label="train") sns.kdeplot(test['norm_W'], ax=ax4, label="test") plt.show() # ## Step 1: (x, y, z, w) -> (x,y,z) quaternions to euler angles # In[46]: def fe_step1 (actual): """Quaternions to Euler Angles""" x, y, z, w = actual['norm_X'].tolist(), actual['norm_Y'].tolist(), actual['norm_Z'].tolist(), actual['norm_W'].tolist() nx, ny, nz = [], [], [] for i in range(len(x)): xx, yy, zz = quaternion_to_euler(x[i], y[i], z[i], w[i]) nx.append(xx) ny.append(yy) nz.append(zz) actual['euler_x'] = nx actual['euler_y'] = ny actual['euler_z'] = nz return actual # In[47]: data = fe_step1(data) test = fe_step1(test) print (data.shape) data.head() # ![](https://d2gne97vdumgn3.cloudfront.net/api/file/UMYT4v0TyIgtyGm8ZXDQ) # In[48]: fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(15, 5)) ax1.set_title('Roll') sns.kdeplot(data['euler_x'], ax=ax1, label="train") sns.kdeplot(test['euler_x'], ax=ax1, label="test") ax2.set_title('Pitch') sns.kdeplot(data['euler_y'], ax=ax2, label="train") sns.kdeplot(test['euler_y'], ax=ax2, label="test") ax3.set_title('Yaw') sns.kdeplot(data['euler_z'], ax=ax3, label="train") sns.kdeplot(test['euler_z'], ax=ax3, label="test") plt.show() # **Euler angles** are really important, and we have a problem with Z. # # ### Why Orientation_Z (euler angle Z) is so important? # # We have a robot moving around, imagine a robot moving straight through different surfaces (each with different features), for example concrete and hard tile floor. Our robot can can **bounce** or **balance** itself a little bit on if the surface is not flat and smooth, that's why we need to work with quaternions and take care of orientation_Z. # # ![](https://lifeboat.com/blog.images/robot-car-find-share-on-giphy.gif.gif) # In[49]: data.head() # ## Step 2: + Basic features # In[50]: def feat_eng(data): df = pd.DataFrame() data['totl_anglr_vel'] = (data['angular_velocity_X']**2 + data['angular_velocity_Y']**2 + data['angular_velocity_Z']**2)** 0.5 data['totl_linr_acc'] = (data['linear_acceleration_X']**2 + data['linear_acceleration_Y']**2 + data['linear_acceleration_Z']**2)**0.5 data['totl_xyz'] = (data['orientation_X']**2 + data['orientation_Y']**2 + data['orientation_Z']**2)**0.5 data['acc_vs_vel'] = data['totl_linr_acc'] / data['totl_anglr_vel'] def mean_change_of_abs_change(x): return np.mean(np.diff(np.abs(np.diff(x)))) for col in data.columns: if col in ['row_id','series_id','measurement_number']: continue df[col + '_mean'] = data.groupby(['series_id'])[col].mean() df[col + '_median'] = data.groupby(['series_id'])[col].median() df[col + '_max'] = data.groupby(['series_id'])[col].max() df[col + '_min'] = data.groupby(['series_id'])[col].min() df[col + '_std'] = data.groupby(['series_id'])[col].std() df[col + '_range'] = df[col + '_max'] - df[col + '_min'] df[col + '_maxtoMin'] = df[col + '_max'] / df[col + '_min'] df[col + '_mean_abs_chg'] = data.groupby(['series_id'])[col].apply(lambda x: np.mean(np.abs(np.diff(x)))) df[col + '_mean_change_of_abs_change'] = data.groupby('series_id')[col].apply(mean_change_of_abs_change) df[col + '_abs_max'] = data.groupby(['series_id'])[col].apply(lambda x: np.max(np.abs(x))) df[col + '_abs_min'] = data.groupby(['series_id'])[col].apply(lambda x: np.min(np.abs(x))) df[col + '_abs_avg'] = (df[col + '_abs_min'] + df[col + '_abs_max'])/2 return df # In[51]: get_ipython().run_cell_magic('time', '', 'data = feat_eng(data)\ntest = feat_eng(test)\nprint ("New features: ",data.shape)') # In[52]: data.head() # ## New advanced features # **Useful functions** # In[53]: from scipy.stats import kurtosis from scipy.stats import skew def _kurtosis(x): return kurtosis(x) def CPT5(x): den = len(x)*np.exp(np.std(x)) return sum(np.exp(x))/den def skewness(x): return skew(x) def SSC(x): x = np.array(x) x = np.append(x[-1], x) x = np.append(x,x[1]) xn = x[1:len(x)-1] xn_i2 = x[2:len(x)] # xn+1 xn_i1 = x[0:len(x)-2] # xn-1 ans = np.heaviside((xn-xn_i1)*(xn-xn_i2),0) return sum(ans[1:]) def wave_length(x): x = np.array(x) x = np.append(x[-1], x) x = np.append(x,x[1]) xn = x[1:len(x)-1] xn_i2 = x[2:len(x)] # xn+1 return sum(abs(xn_i2-xn)) def norm_entropy(x): tresh = 3 return sum(np.power(abs(x),tresh)) def SRAV(x): SRA = sum(np.sqrt(abs(x))) return np.power(SRA/len(x),2) def mean_abs(x): return sum(abs(x))/len(x) def zero_crossing(x): x = np.array(x) x = np.append(x[-1], x) x = np.append(x,x[1]) xn = x[1:len(x)-1] xn_i2 = x[2:len(x)] # xn+1 return sum(np.heaviside(-xn*xn_i2,0)) # This advanced features based on robust statistics. # In[54]: def fe_advanced_stats(data): df =
pd.DataFrame()
pandas.DataFrame
import viola import pandas as pd from io import StringIO import sys, os HERE = os.path.abspath(os.path.dirname(__file__)) data_expected = """test1 0 small_del test2 0 small_del test3 0 large_del test4 0 large_del test5 0 large_del test6 0 small_dup test7 0 small_inv test8 0 others test9 0 small_inv viola_breakpoint:0 0 tra viola_breakpoint:1 0 tra """ DEFINITIONS = """name 'small_del' 0 SVLEN > -100 1 SVTYPE == DEL logic 0 & 1 name 'large_del' 0 SVTYPE == DEL logic 0 name 'small_dup' 0 SVLEN < 100 1 SVTYPE == DUP logic 0 & 1 name 'large_dup' 0 SVTYPE == DUP logic 0 name 'small_inv' 0 SVLEN < 100 1 SVTYPE == INV logic 0 & 1 name 'tra' 0 SVTYPE == TRA logic 0 """ def small_del(x): return x.filter(['svlen > -100', 'svtype == DEL']).ids def large_del(x): return x.filter(['svtype == DEL']).ids def small_dup(x): return x.filter(['svlen < 100', 'svtype == DUP']).ids def large_dup(x): return x.filter(['svtype == DUP']).ids def small_inv(x): return x.filter(['svlen < 100', 'svtype == INV']).ids def tra(x): return x.filter('svtype == TRA').ids def test_classify_manual_svtype(): vcf = viola.read_vcf(os.path.join(HERE, 'data/manta1.vcf')) vcf = vcf.breakend2breakpoint() ls_conditions = [small_del, large_del, small_dup, large_dup, small_inv, tra] ls_names = ['small_del', 'large_del', 'small_dup', 'large_dup', 'small_inv', 'tra'] result = vcf.classify_manual_svtype(ls_conditions=ls_conditions, ls_names=ls_names) manual_sv_type = vcf.manual_sv_type manual_sv_type.set_index('id', inplace=True) manual_sv_type_expected = pd.read_csv(StringIO(data_expected), sep='\t', names=('id', 'value_idx', 'manual_sv_type')) manual_sv_type_expected.set_index('id', inplace=True) pd.testing.assert_frame_equal(manual_sv_type, manual_sv_type_expected, check_like=True) result_expected =
pd.Series([2, 3, 1, 0, 2, 2, 1])
pandas.Series
#!/usr/bin/env python3 # various functions and mixins for downstream genomic and epigenomic anlyses import os import glob import re import random from datetime import datetime import time from pybedtools import BedTool import pandas as pd import numpy as np from tqdm import tqdm_notebook, tqdm # Get Current Git Commit Hash for version path = [x.replace(' ', r'\ ') for x in os.popen('echo $PYTHONPATH').read().split(':') if 'dkfunctions' in x.split('/')] if len(path) > 0: version = os.popen(f'cd {path[0]}; git rev-parse HEAD').read()[:-1] __version__ = f'v0.1, Git SHA1: {version}' else: __version__ = f'v0.1, {datetime.now():%Y-%m-%d}' def val_folder(folder): folder = folder if folder.endswith('/') else f'{folder}/' folder = f'{os.getcwd()}/' if folder == '/' else folder os.makedirs(folder, exist_ok=True) return folder def image_display(file): from IPython.display import Image, display display(Image(file)) def rplot(plot_func, filename, filetype, *args, **kwargs): from rpy2.robjects.packages import importr grdevices = importr('grDevices') filetype = filetype.lower() plot_types = {'png': grdevices.png, 'svg': grdevices.svg, 'pdf': grdevices.pdf } plot_types[filetype](f'{filename}.{filetype}') return_object = plot_func(*args, **kwargs) grdevices.dev_off() if filetype == 'png': image_display(f'{filename}.{filetype}') return return_object def read_pd(file, *args, **kwargs): if (file.split('.')[-1] == 'txt') or (file.split('.')[-1] == 'tab'): return pd.read_table(file, header=0, index_col=0, *args, **kwargs) elif (file.split('.')[-1] == 'xls') or (file.split('.')[-1] == 'xlsx'): return pd.read_excel(file, *args, **kwargs) else: raise IOError("Cannot parse count matrix. Make sure it is .txt, .xls, or .xlsx") def rout_write(x): ''' function for setting r_out to print to file instead of jupyter rpy2.rinterface.set_writeconsole_regular(rout_write) rpy2.rinterface.set_writeconsole_warnerror(rout_write) ''' print(x, file=open(f'{os.getcwd()}/R_out_{datetime.now():%Y-%m-%d}.txt', 'a')) def alert_me(text): ''' Send me a pop up alert to macosx. ''' os.system(f'''osascript -e 'tell Application "System Events" to display dialog "{text}"' ''') def tq_type(): environ = os.environ if '_' in environ.keys(): jupyter = True if os.environ['_'].endswith('jupyter') else False elif 'MPLBACKEND' in environ.keys(): jupyter = True if 'ipykernel' in os.environ['MPLBACKEND'] else jupyter return tqdm_notebook if jupyter else tqdm def peak_overlap_MC(df_dict, background, permutations=1000, seed=42, notebook=True): ''' Monte Carlo simulation of peak overlaps in a given background pvalue calucated as liklihood over emperical random background overlap of shuffled peaks per chromosome. Inputs ------ df_dict: dictinoary of dataframes in bed format background genome space: pybedtool bed of background genome space permutations: number of permutations seed: random seed Returns ------- pvalue ''' np.random.seed(seed) tq = tq_type() # generate probability of chosing a chromosome region based on its size bregions = background.to_dataframe() bregions.index = range(len(bregions)) bregions['Size'] = bregions.iloc[:, 2] - bregions.iloc[:, 1] total_size = bregions.Size.sum() bregions['fraction'] = bregions.Size / total_size bed_dict = {name: df.copy() for name, df in df_dict.items()} # determine length of each peak region for df in bed_dict.values(): df['Length'] = df.iloc[:, 2] - df.iloc[:, 1] # determine baseline overlap intersect count of preshuffled peaks. A, B = bed_dict.values() overlap = len(BedTool.from_dataframe(A).sort().merge() + BedTool.from_dataframe(B).sort().merge()) results = [] for permutation in tq(range(permutations)): for df in bed_dict.values(): # randomly pick a region in the background based on size distribution of the regions index_list = bregions.index.tolist() df_size = len(df) bregions_fraction = bregions.fraction first_pick = np.random.choice(index_list, size=df_size, p=bregions_fraction) lengths = df.Length.tolist() alternatives = np.random.choice(index_list, size=df_size, p=bregions_fraction) # repick regions if the peak length is larger than the region size (this part can be optimized) regions = [] new_pick = 0 for reg, length in zip(first_pick, lengths): reg_length = bregions.iloc[reg, 2] - bregions.iloc[reg, 1] if reg_length > length: regions.append(reg) else: while reg_length <= length: new_reg = alternatives[new_pick] reg_length = bregions.iloc[new_reg, 2] - bregions.iloc[new_reg, 1] new_pick += 1 regions.append(new_reg) # assign the chromosome df.iloc[:, 0] = [bregions.iloc[x, 0] for x in regions] # randomly pick a start within the selected background region within the peak size constraints df.iloc[:, 1] = [np.random.randint(bregions.iloc[reg, 1], bregions.iloc[reg, 2] - length) for length, reg in zip(lengths, regions)] # assign end based on peak length df.iloc[:, 2] = df.iloc[:, 1] + df.Length new_overlap = len(BedTool.from_dataframe(A).sort().merge() + BedTool.from_dataframe(B).sort().merge()) results.append(1 if new_overlap >= overlap else 0) p = (sum(results) + 1) / (len(results) + 1) A_name, B_name = df_dict.keys() print(f'Number of intersected peaks of {A_name} and {B_name}: {overlap}') print(f'Number of times simulated intersections exceeded or equaled the actual overlap: {sum(results)}') print(f'Monte Carlo p-value estimate: {p}') return p ''' Implementation of an Enrichr API with graphs Author: <NAME> ''' def post_genes(gene_list, description): ''' posts gene list to Enricr Returns ------- dictionary: userListId, shortId ''' import json import requests ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList' genes_str = '\n'.join([str(x) for x in gene_list]) payload = {'list': (None, genes_str), 'description': (None, description) } response = requests.post(ENRICHR_URL, files=payload) if not response.ok: raise Exception('Error analyzing gene list') return json.loads(response.text) def enrich(userListId, filename, gene_set_library): ''' Returns ------- Text file of enrichment results ''' import requests ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/export' query_string = '?userListId=%s&filename=%s&backgroundType=%s' url = ENRICHR_URL + query_string % (userListId, filename, gene_set_library) response = requests.get(url, stream=True) with open(filename, 'wb') as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) return response def enrichr_barplot(filename, gene_library, out_dir, description, max_n=20, q_thresh=0.05, color='slategray', display_image=True): ''' Saves barplot from Enrichr results Paramaters ---------- filename: enrichr response file gene_library: gene set library to test out_dir: result output folder description: sample or gene set source name max_n: max number of significant to display q_thresh: qvalue threshold color: plot color dispaly_image: bool Return ------ None ''' import seaborn as sns import matplotlib.pyplot as plt e_df = pd.read_csv(filename, header=0, sep="\t").sort_values(by=['Adjusted P-value']).head(max_n) e_df['Clean_term'] = e_df.Term.apply(lambda x: x.split("_")[0]) e_df['log_q'] = -np.log10(e_df['Adjusted P-value']) plt.clf() sns.set(context='paper', font='Arial', font_scale=1.2, style='white', rc={'figure.dpi': 300, 'figure.figsize': (8, 6)} ) fig, ax = plt.subplots() fig.suptitle(f'{description} {gene_library.replace("_", " ")} enrichment\n(q<{q_thresh}, max {max_n})') sig = e_df[e_df['Adjusted P-value'] <= q_thresh].copy() if len(sig) > 0: g = sns.barplot(data=sig, x='log_q', y='Clean_term', color=color, ax=ax) plt.xlabel('q-value (-log$_{10}$)') plt.ylabel('Enrichment Term') ymin, ymax = g.get_ylim() g.vlines(x=-np.log10(q_thresh), ymin=ymin, ymax=ymax, colors='k', linestyles='dashed', label=f'q = {q_thresh}') g.legend() sns.despine() else: ax.text(0.5, 0.5, 'No Significant Enrichments.', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes ) try: plt.tight_layout(h_pad=1, w_pad=1) except ValueError: pass plt.subplots_adjust(top=0.88) file = f'{out_dir}{description}_{gene_library}_enrichr.barplot.png' fig.savefig(file, dpi=300) plt.close() image_display(file) def enrichr(dict_of_genelists, out_dir, dict_of_genelibraries=None, display=True, q_thresh=0.05, plot_color='slategray', max_n=20 ): ''' Runs enrichment analysis through Enrichr and plots results Paramaters ---------- dict_of_genelists: dictionary of description to genelists dict_of_genelibraries: dictionary of enrichr gene libraries to test against If None, will use default libraries display: bool whether to display inline q_thresh: qvalue threshold plot_color: max_n: ''' out_dir = out_dir if out_dir.endswith('/') else f'{out_dir}/' gene_libraries ={'KEGG': 'KEGG_2016', 'GO_Biological_Process': 'GO_Biological_Process_2018', 'ChIP-X_Consensus_TFs': 'ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X', 'ChEA': 'ChEA_2016', 'OMIM_Disease': 'OMIM_Disease' } libraries = gene_libraries if dict_of_genelibraries is None else dict_of_genelibraries generator = ((d,g,l,gl) for d,g in dict_of_genelists.items() for l, gl in libraries.items() ) for description, genes, library, gene_library in generator: filename=f'{out_dir}{description}_{library}.enrichr.txt' post = post_genes(genes, description) get = enrich(post['userListId'], filename, gene_library) if get.ok: enrichr_barplot(filename=filename, gene_library=library, out_dir=out_dir, description=description, max_n=max_n,q_thresh=q_thresh, color=plot_color, display_image=display) else: print(f'Enrichr error: {library}, {description}') ''' end enrichr ''' def gsea_dotplot(df_dict, title='', qthresh=0.05, top_term=None, gene_sets=[], dotsize_factor=4, figsize=(4, 10), out_dir='.'): ''' Makes a dotplot of GSEA results with the dot size as the percent of genes in the leading edge and the color the NES. Plots only significant dots at given fdr theshold Inputs ------ df_dict: dictionary of named GSEA results for the analysis. pandas df of gsea_report.xls (use pd.concat to combine pos and neg enrichments) name: name used for title and filename qthresh: qvalue theshold for includsion pgene_sets: list of gene sets to plot. If empty, will plot all with FDR q value < 0.05 top_term: integer specifing top number of sets to plot (by qvalue). None plots all. dot_size_factor: scale to increase dot size for leading edge % out_dir: output directory Returns ------- Gene_Sets used for plotting ''' import matplotlib.pyplot as plt import seaborn as sns out_dir = val_folder(out_dir) index = [] # get leading edge percentages for df in df_dict.values(): if 'NAME' in df.columns.tolist(): df.index = df.NAME df['le_tags'] = df['LEADING EDGE'].apply(lambda x: x.split('%')[0].split('=')[-1]) df.sort_values(by='NES', ascending=False, inplace=True) index += df[df['FDR q-val'] < 0.05].index.tolist() index = list(set(index)) # use gene_sets if provided if len(gene_sets) > 0: index = gene_sets # make master df data_df = pd.DataFrame() for name, df in df_dict.items(): df['sample_name'] = name data_df =
pd.concat([data_df, df.loc[index]])
pandas.concat
""" plotting functions for Dataset objects To Do: Edit hyp_stats plots to take transitions.HypStats object instead of ioeeg.Dataset object Remove redundant plotting fns added into EKG classs Add subsetEEG function to break up concatenated NREM segments for plotting. Will require adjustments to specified detections added to plot. """ import itertools import igraph as ig import math import matplotlib import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import shapely.geometry as SG from matplotlib.widgets import Slider from pandas.plotting import register_matplotlib_converters from scipy.signal import find_peaks, butter, sosfiltfilt from scipy import interpolate register_matplotlib_converters() def plotEEG(d, raw=True, filtered=False, spindles=False, spindle_rejects=False): """ plot multichannel EEG w/ option for double panel raw & filtered. For short, pub-ready figures. Use vizeeg for data inspection red = spindle rejects by time domain criteria; dark red = spindle rejects by frequency domain criteria Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: False Option to plot filtered EEG spindles: bool, optional, default: False Option to plot spindle detections spindle_rejects: bool, optional, default: False Option to plot rejected spindle detections Returns ------- matplotlib.pyplot figure instance """ data = [] title = [] # import data if raw == True: raw = d.data data.append(raw) title.append('Raw') if filtered == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(10,10), squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) for dat, ax, t in zip(data, axs.flatten(), title): for i, c in enumerate(channels): # normalize each channel to [0, 1] dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i # subtract i for plotting offset ax.plot(norm_dat, linewidth=.5, color='C0') # plot spindles if spindles == True: sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5) if spindle_rejects == True: # plot time-domain rejects sp_rejs_t_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat[i]] spin_rejects_t = pd.Series(index=norm_dat.index) spin_rejects_t[sp_rejs_t_TS] = norm_dat[sp_rejs_t_TS] ax.plot(spin_rejects_t, color='red', alpha=0.5) # plot frequency-domain rejects sp_rejs_f_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat[i]] spin_rejects_f = pd.Series(index=norm_dat.index) spin_rejects_f[sp_rejs_f_TS] = norm_dat[sp_rejs_f_TS] ax.plot(spin_rejects_f, color='darkred', alpha=0.5) ax.set_title(t) ax.set_yticks(list(np.arange(0.5, -(len(channels)-1), -1))) ax.set_yticklabels(channels) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # set overall parameters fig.suptitle(d.metadata['file_info']['in_num']) plt.xlabel('Time') return fig, axs def plotEEG_singlechan(d, chan, raw=True, filtered=False, rms=False, thresholds=False, spindles=False, spindle_rejects=False): """ plot single channel EEG. Options for multipaneled calculations. Not for concatenated datasets Parameters ---------- d: instance of ioeeg Dataset class chan: str channel to plot raw: bool, optional, default: True Option to plot raw EEG panel filtered: bool, optional, default: False Option to plot filtered EEG panel rms: bool, optional, default: False Option to plot filtered EEG panel with RMS and RMS moving average thresholds: bool, optional, default: False Option to plot spindle threshold lines on rms panel spindles: bool, optional, default: False Option to plot filtered EEG with spindle detection panel spindle_rejects: bool, optional, default: False Option to plot filtered EEG with spindle rejection panel. Note: Spindles and spindle_rejects plot on same panel if both True Returns ------- matplotlib.pyplot figure instance """ data = [] dtype = [] labels = [] c = chan # import data if raw == True: raw_data = d.data[c, 'Raw'] if filtered == True or rms == True or spindles == True or spindle_rejects == True: filtd_data = d.spindle_calcs.loc(axis=1)[c, 'Filtered'] # set data to plot if raw == True: #raw = d.data[c, 'Raw'] data.append(raw_data) dtype.append('raw') labels.append('Raw Signal') if filtered == True: #filtd = d.spindle_calcs.loc(axis=1)[c, 'Filtered'] data.append(filtd_data) dtype.append('filtd') labels.append('Filtered Signal') if rms == True: data.append(filtd_data) dtype.append('filtd+rms') labels.append('Filtered Signal') if spindles == True or spindle_rejects == True: data.append(filtd_data) labels.append('Filtered Signal') if spindles == True and spindle_rejects == False: dtype.append('filtd+spin') elif spindles == False and spindle_rejects == True: dtype.append('filtd+rej') elif spindles == True and spindle_rejects == True: dtype.append('filtd+spin+rej') # pull out thresholds for labels loSD = d.metadata['spindle_analysis']['sp_loSD'] hiSD = d.metadata['spindle_analysis']['sp_hiSD'] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(18,6), squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) for dat, ax, dt, label in zip(data, axs.flatten(), dtype, labels): # plot EEG ax.plot(dat, linewidth=.5, color='C0', label=label) # plot filtered EEG w/ rms & thresholds if dt == 'filtd+rms': ax.plot(d.spRMS[c], label='RMS', color='green') ax.plot(d.spRMSmavg[c], label='RMS moving average', color='orange') if dt == 'filtd+rms' and thresholds == True: ax.axhline(d.spThresholds[c].loc['Low Threshold'], linestyle='solid', color='grey', label = f'Mean RMS + {loSD} SD') ax.axhline(d.spThresholds[c].loc['High Threshold'], linestyle='dashed', color='grey', label = f'Mean RMS + {hiSD} SD') # plot spindles if dt =='filtd+spin' or dt =='filtd+spin+rej': sp_valuesflat = [] sp_eventsflat = [] for n in range(len(d.spindle_events[c])): for m in range(len(d.spindle_events[c][n])): sp_valuesflat.append(dat[d.spindle_events[c][n][m]]) sp_eventsflat.append(d.spindle_events[c][n][m]) sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat] spins = pd.Series(index=dat.index) spins[sp_events_TS] = dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5, label='Spindle Detection') # plot spindle rejections if dt == 'filtd+rej' or dt == 'filtd+spin+rej': # plot time-domain rejects sp_rej_t_valuesflat = [] sp_rej_t_eventsflat = [] for n in range(len(d.spindle_rejects_t[c])): for m in range(len(d.spindle_rejects_t[c][n])): sp_rej_t_valuesflat.append(dat[d.spindle_rejects_t[c][n][m]]) sp_rej_t_eventsflat.append(d.spindle_rejects_t[c][n][m]) sp_rej_t_events_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat] spin_rejects_t = pd.Series(index=dat.index) spin_rejects_t[sp_rej_t_events_TS] = dat[sp_rej_t_events_TS] ax.plot(spin_rejects_t, color='red', alpha=0.5, label='Rejected Detection (T)') # plot frequency-domain rejects sp_rej_f_valuesflat = [] sp_rej_f_eventsflat = [] for n in range(len(d.spindle_rejects_f[c])): for m in range(len(d.spindle_rejects_f[c][n])): sp_rej_f_valuesflat.append(dat[d.spindle_rejects_f[c][n][m]]) sp_rej_f_eventsflat.append(d.spindle_rejects_f[c][n][m]) sp_rej_f_events_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat] spin_rejects_f = pd.Series(index=dat.index) spin_rejects_f[sp_rej_f_events_TS] = dat[sp_rej_f_events_TS] ax.plot(spin_rejects_f, color='darkred', alpha=0.5, label='Rejected Detection (F)') ax.legend(loc='lower left') #ax.set_title(t) #ax.set_yticks(list(np.arange(0.5, -(len(chan)-1), -1))) #ax.set_yticklabels(chan) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # plot minor axes seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set overall parameters fig.suptitle(d.metadata['file_info']['in_num']) plt.xlabel('Time') return fig def vizeeg(d, raw=True, filtered=False, spindles=False, spindle_rejects=False, slider=True, win_width=15, raw_lowpass=True, lowpass_freq=25, lowpass_order=4): """ vizualize multichannel EEG w/ option for double panel raw and/or filtered. Optimized for inspecting spindle detections (title/axis labels removed for space) Spindles rejected based on time-domain criteria are plotted in red; rejections based on frequency-domain criteria are plotted in darkred. Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: False Option to plot spindle filtered EEG spindles: bool, optional, default: False Option to plot spindle detections spindle_rejects: bool, optional, default: False Option to plot rejected spindle detections slider: bool (default: False) Option to implement an X-axis slider instead of built-in matplotlib zoom. Useful for inspecting long segments of EEG with a set window win_width: int (default: 15) If using slider option, number of seconds to set window width raw_lowpass: bool (default: True) Whether to plot the lowpass filtered raw data [in place of the unchanged raw data] lowpass_freq: int (default: 25) Frequency to lowpass the raw data for visualization (if not already applied) lowpass_order: int (default: 4) Butterworth lowpass filter order to be used if lowpass_raw is not None (doubles for filtfilt) Returns ------- matplotlib.pyplot figure instance """ # Set figure size (double height if plotting both raw & filtered) if raw == True & filtered == True: figsize = (14, 14) else: figsize = (14, 7) data = [] title = [] # import data if raw == True: if not raw_lowpass: # use the unchanged raw data raw_data = d.data elif raw_lowpass: # use the lowpass filtered raw data try: # check if filtered data exists raw_lowpass_data = d.data_lowpass except AttributeError: # apply lowpass filter d.lowpass_raw(lowpass_freq, lowpass_order) raw_lowpass_data = d.data_lowpass if filtered == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] # set data to plot (title corresponds to multiindex level 2 in data df) if raw == True: if not raw_lowpass: # plot the unchanged data data.append(raw_data) title.append('Raw') elif raw_lowpass: # plot the lowpass data data.append(raw_lowpass_data) title.append('raw_lowpass') if filtered == True: data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: # time-domain rejects sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] # frequency domain rejects sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns if x[0] not in ['EKG', 'EOG_L', 'EOG_R']] # set offset multiplier (distance between channels in plot) mx = 0.1 # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=figsize, squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) yticks = [] for dat, ax, t in zip(data, axs.flatten(), title): for i, c in enumerate(channels): # normalize each channel to [0, 1] -> can also simply subtract the mean (cleaner looking), but # normalization preserves relative differences between channels while putting them on a common scale dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i*mx # subtract i for plotting offset yticks.append(np.nanmedian(norm_dat)) ax.plot(norm_dat, linewidth=.5, color='C0') # plot spindles if spindles == True: sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5) if spindle_rejects == True: # plot time-domain rejects sp_rejs_t_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat[i]] spin_t_rejects = pd.Series(index=norm_dat.index) spin_t_rejects[sp_rejs_t_TS] = norm_dat[sp_rejs_t_TS] ax.plot(spin_t_rejects, color='red', alpha=0.5) # plot frequency-domain rejects sp_rejs_f_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat[i]] spin_f_rejects = pd.Series(index=norm_dat.index) spin_f_rejects[sp_rejs_f_TS] = norm_dat[sp_rejs_f_TS] ax.plot(spin_f_rejects, color='darkred', alpha=0.5) # remove title to maximize on-screen plot area #ax.set_title(t) # set y axis params ax.set_yticks(yticks) ax.set_yticklabels(channels) ax.set_ylim(bottom = yticks[-1]-3*mx, top=yticks[0]+3*mx) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # if data roughly 5 mins or less, set minor x-axes if (d.data.index[-1] - d.data.index[0]).total_seconds() < 400: seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set overall parameters #fig.tight_layout(pad=0) # remove figure padding --> this pushes slider onto fig # remove labels to maximize on-screen plot area #plt.xlabel('Time') #fig.suptitle(d.metadata['file_info']['in_num']) # option to use x-axis slider insted of matplotlib zoom if slider: # plot minor axes --> requires slider for segments longer than 5mins seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set initial window x_min_index = 0 x_max_index = win_width*int(d.s_freq) x_min = d.data.index[x_min_index] x_max = d.data.index[x_max_index] x_dt = x_max - x_min y_min, y_max = plt.axis()[2], plt.axis()[3] plt.axis([x_min, x_max, y_min, y_max]) axcolor = 'lightgoldenrodyellow' axpos = plt.axes([0.2, 0.1, 0.65, 0.03], facecolor=axcolor) slider_max = len(d.data) - x_max_index - 1 # set slider position object spos = Slider(axpos, 'Pos', matplotlib.dates.date2num(x_min), matplotlib.dates.date2num(d.data.index[slider_max])) # format date names #plt.gcf().autofmt_xdate() # create slider update function def update(val): pos = spos.val xmin_time = matplotlib.dates.num2date(pos) xmax_time = matplotlib.dates.num2date(pos) + x_dt ax.axis([xmin_time, xmax_time, y_min, y_max]) fig.canvas.draw_idle() # update slider position on click spos.on_changed(update) #return fig, axs return fig def plotLFP(d, raw=True, filtered=True, thresholds=True, spindles=True, spindle_rejects=True, raw_lowpass=True, lowpass_freq=25, lowpass_order=4, win_frac=None, xlim=None): """ plot dual-channel LFP w/ option for double panel raw & filtered. red = spindle rejects by time domain criteria; dark red = spindle rejects by frequency domain criteria Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: True Option to plot filtered EEG thresholds: bool, optional, default: True Option to plot spindle detection thresholds spindles: bool, optional, default: True Option to plot spindle detections spindle_rejects: bool, optional, default: True Option to plot rejected spindle detections raw_lowpass: bool (default: True) Whether to plot the lowpass filtered raw data [in place of the unchanged raw data] lowpass_freq: int (default: 25) Frequency to lowpass the raw data for visualization (if not already applied) lowpass_order: int (default: 4) Butterworth lowpass filter order to be used if lowpass_raw is not None (doubles for filtfilt) win_frac: str or None (default: None) window count, if plotting x-axis in windows (ex. '3/4' for window 3 of 4) xlim: tuple of DateTimeIndex x-axis values to be used for x-limits Returns ------- matplotlib.pyplot figure instance """ data = [] title = [] # import data if raw == True: if not raw_lowpass: # use the unchanged raw data raw_data = d.data elif raw_lowpass: # use the lowpass filtered raw data try: # check if filtered data exists raw_lowpass_data = d.data_lowpass except AttributeError: # apply lowpass filter d.lowpass_raw(lowpass_freq, lowpass_order) raw_lowpass_data = d.data_lowpass if filtered == True or thresholds == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] # set data to plot (title corresponds to multiindex level 2 in data df) if raw == True: if not raw_lowpass: # plot the unchanged data data.append(raw_data) title.append('Raw') elif raw_lowpass: # plot the lowpass data data.append(raw_lowpass_data) title.append('raw_lowpass') if filtered == True: data.append(filtd) title.append('Filtered') if thresholds == True: data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(18,6), squeeze=False) fig.subplots_adjust(hspace=.2, top=.9, bottom=.1, left=.05, right=.95) for (e, dat), ax, t in zip(enumerate(data), axs.flatten(), title): for i, c in enumerate(channels): # set labels for only the first filtered channel (prevent duplicate legends) if i == 0: loSD = d.metadata['spindle_analysis']['sp_loSD'] hiSD = d.metadata['spindle_analysis']['sp_hiSD'] labels = {'RMS': 'RMS', 'RMS mavg': 'RMS mavg', 'lo_thres':f'RMS + {loSD} SD','hi_thres':f'RMS + {hiSD} SD', 'spindles':'Spindle Detection', 'spindle_rejects_t': 'Rejected Detection (time-domain)', 'spindle_rejects_f':'Rejected Detection (frequency-domain)'} else: label_keys = ['RMS', 'RMS mavg', 'lo_thres', 'hi_thres', 'spindles', 'spindle_rejects_t', 'spindle_rejects_f'] labels = {k:'_nolegend_' for k in label_keys} # normalize each channel to [0, 1]; plot signal on 1st & 2nd panels dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i # subtract i for plotting offset ax.plot(norm_dat, linewidth=.5, color='C0') # plot thresholds on the second panel if (thresholds == True) & (e == 1): # RMS rms_ser = d.spRMS[c].RMS norm_rms = (rms_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.plot(norm_rms, linewidth=.8, color='green', label = labels['RMS']) # RMS moving average rmsmavg_ser = d.spRMSmavg[c].RMSmavg norm_rmsmavg = (rmsmavg_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.plot(norm_rmsmavg, linewidth=.8, color='orange', label = labels['RMS mavg']) # threshold values norm_lo = (d.spThresholds[c].loc['Low Threshold'] - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i norm_hi = (d.spThresholds[c].loc['High Threshold'] - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.axhline(norm_lo, linestyle='solid', color='grey', label = labels['lo_thres']) ax.axhline(norm_hi, linestyle='dashed', color='grey', label = labels['hi_thres']) # plot spindles on the 3rd panel if (spindles == True) & (e == 2): sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5, label=labels['spindles']) if (spindle_rejects == True) & (e == 2): # plot time-domain rejects sp_rejs_t_TS = [
pd.Timestamp(x)
pandas.Timestamp
import pandas as pd import numpy as np from datetime import datetime from tqdm import tqdm from tqdm.notebook import tqdm as tqdmn try: from trade import Trade except: pass try: from backtest.trade import Trade except: pass import chart_studio.plotly as py import plotly.graph_objs as go from plotly import subplots import plotly.express as px from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot pd.options.display.float_format = '{:.5f}'.format import random class Backtest: def __init__(self, strategy, data, from_date, to_date, balance=10000, leverage=0, max_units=10000000, verbose=True, ipynb=False, direct=True, test=False, ddw=0, commission=0.0, rfr=0.02): # initial variables self.strategy = strategy # trading strategy self.Leverage = leverage # leverage self.FromDate = str(from_date).split(' ')[0] # starting date self.ToDate = str(to_date).split(' ')[0] # ending date self.Data = self.section(data, self.FromDate, self.ToDate) # slice from the dataset self.Data['MC'] = ((self.Data['AC'] + self.Data['BC']) / 2) # middle close price self.Data['MO'] = ((self.Data['AO'] + self.Data['BO']) / 2) # middle open price self.Datasets = [] # all datasets nad instruments self.Verbose = verbose # verbose checkker self.ipynb = ipynb # only for Jupyter notebook self.Direct = direct # calculating instrument units directly or indirectly self.Test = test # run as a test only, with no balance calculation self.DDW = ddw # drawdown value self.RfR = rfr # risk-free rate # variables for the simulation self.Commission = commission # commision per trade (percentage) self.OpenPositions = [] # list of the opened trades self.CurrentProfit = 0 # unrealized profit/loos self.GrossLoss = 0 # total loss self.GrossProfit = 0 # total profit self.TotalPL = 0 # total profit/loss self.InitBalance = balance # initial balance self.Balance = balance # account balance with closed trades self.MarginLeft = balance # margin left with unrealized profit self.Unrealized = 0 # unrealized profit/loss self.MaxUnits = max_units # maximal trading ammount self.History = [] # list to store previus prices for the user self.IndicatorList = [] # list to store indicators columns=['Type', 'Open Time', 'Close Time', 'Units', 'Margin Used', 'Open Price', 'Close Price', 'Spread', 'Profit', 'Balance', 'AutoClose', 'TP', 'SL'] self.Results = pd.DataFrame(columns = ['Ratio', 'Value']) # dataframe for result analysis self.TradeLog = pd.DataFrame(columns = columns) # pandas dataframe to log activity self.AutoCloseCount = 0 # counts how many times were trades closed automatically snp_benchmark = None # loading S&P as benchmark dji_benchmark = None # loading DJI as benchmark dax_benchmark = None # loading DAX as benchmark try: snp_benchmark = pd.read_csv('data/datasets/spx500usd/spx500usd_hour.csv') except: snp_benchmark = pd.read_csv('../data/datasets/spx500usd/spx500usd_hour.csv') try: dji_benchmark = pd.read_csv('data/datasets/djiusd/djiusd_hour.csv') except: dji_benchmark = pd.read_csv('../data/datasets/djiusd/djiusd_hour.csv') try: dax_benchmark =
pd.read_csv('data/datasets/de30eur/de30eur_hour.csv')
pandas.read_csv
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds =
DataFrame(columns=['unit'])
pandas.core.frame.DataFrame
import pandas as pd from pandas import DataFrame import sys #-------- # Imports medi dataset with icd9 and rxcui descriptions to .csv file # PARAMETERS: # medi = medi spreadsheet # icd9_desc = contains icd9 codes and their descriptions # rxcui_desc = contains rxcui codes and their descriptions def add_info_to_medi(medi, icd9_desc, rxcui_desc): # adding in icd9 descriptions df_icd9_desc = pd.read_table(icd9_desc, sep=' ', header=None, usecols=[0, 1]) df_icd9_desc.columns = ['ICD9', 'ICD9_DESC'] # adding in rxcui descriptions into the medi spreadsheet df_rxcui_desc = pd.read_csv(rxcui_desc, encoding='latin-1').drop_duplicates().groupby('RXCUI_IN')['STR'].apply('; '.join) rxcui_desc = pd.DataFrame({'RXCUI_IN': df_rxcui_desc.index, 'STR': df_rxcui_desc.values}) df_medi = pd.read_csv(medi) df_medi_desc = pd.merge(df_medi, rxcui_desc, how='left', on='RXCUI_IN') df_rxcui_icd9 = pd.merge(df_medi_desc, df_icd9_desc, how='left', on='ICD9') df_rxcui_icd9 = df_rxcui_icd9[['RXCUI_IN', 'STR', 'DRUG_DESC', 'ICD9', 'ICD9_DESC', 'INDICATION_DESCRIPTION', 'MENTIONEDBYRESOURCES', 'HIGHPRECISIONSUBSET', 'POSSIBLE_LABEL_USE']] df_rxcui_icd9.to_csv('medi_with_icd9_rxcui.csv', index=False) #-------- # Imports medi_rxcui_icd9 dataset with icd9-phecode mappings to .csv file # Maps drug (rxcui codes) with clinical phenotype (phecode) through icd9 codes # PARAMETERS: # medi_rxcui_icd9 = medi spreadsheet (created from add_info_to_medi function above) with rxcui + icd9 descriptions # phecode_icd9_mapping = maps phecodes to icd9 codes def drug_phenotype(phecode_icd9_mapping, medi_rxcui_icd9): df_rxcui_icd9 = pd.read_csv(medi_rxcui_icd9) df_phecode_icd9 = pd.read_csv(phecode_icd9_mapping, usecols=['ICD9', 'PheCode']) result = pd.merge(df_rxcui_icd9, df_phecode_icd9, how='left', on='ICD9').drop_duplicates().sort_values('RXCUI_IN') result.to_csv('drug_phenotype.csv', index=False) #print (result) #-------- # Imports medi_rxcui_icd9 dataset with drug-targeted gene mappings to .csv file # Maps drugs (rxcui codes) with corresponding targeted genes (HuGOIDs) through unii codes and DrugBank drug IDs # PARAMETERS: # unii_rxcui = contains mapping of unii codes to rxcui codes # unii_drug = contains mapping of unii codes to HuGOIDs (DrugBank), needs to be .txt file # medi_rxcui_icd9 = medi spreadsheet (created from add_info_to_medi function above) with rxcui + icd9 descriptions # drug_gene = for each gene, contains list of drugs that target said gene def drug_gene(unii_rxcui, unii_drug, drug_gene, medi_rxcui_icd9): df_unii_rxcui = pd.read_csv(unii_rxcui) df_unii_drug = pd.read_table(unii_drug, header=0, sep=':', usecols=['unii', 'drug_id']) df_rxcui_icd9 =
pd.read_csv(medi_rxcui_icd9)
pandas.read_csv
import numpy as np import pandas as pd from joblib import Parallel, delayed from argparse import ArgumentParser from os import path from time import time from utils import trj2blocks # MDAnalysis import MDAnalysis as mda from MDAnalysis.analysis.hydrogenbonds import hbond_analysis def parse(): '''Parse command line arguments. Returns: Namespace object containing input arguments. ''' parser = ArgumentParser(description='MDTools: Hydrogen bond analysis') parser.add_argument('-i', '--input', required=True, type=str, help='Input .xyz file') parser.add_argument('-n', '--n_cpu', required=True, type=int, help='Number of CPUs for parallel processing') parser.add_argument('-c', '--cell_vectors', required=True, type=float, help='Lattice vectors in angstroms (a, b, c)', nargs=3) return parser.parse_args() def hbonds(u, block): '''Computes hydrogen bond (HB) statistics. Args: u: MDAnalysis Universe object containing trajectory. block: Range of frames composing block. Returns: Accepted and donated hydrogen bond counts and surface separations ''' # Initialize hydrogen bond analysis hbonds = hbond_analysis.HydrogenBondAnalysis( u, d_h_a_angle_cutoff=135, d_a_cutoff=3.5) hbonds.donors_sel = 'name O' hbonds.acceptors_sel = 'name O' hbonds.hydrogens_sel = 'name H' # Run hydrogen bond analysis hbonds.run(start=block.start, stop=block.stop, verbose=True) out = hbonds.results.hbonds # Select oxygen atoms, initialize output arrays oxygen = u.select_atoms('name O') acc_counts = np.zeros((len(block), oxygen.n_atoms)) don_counts = np.zeros((len(block), oxygen.n_atoms)) heights = np.zeros((len(block), oxygen.n_atoms)) for i, ts in enumerate(u.trajectory[block.start:block.stop]): print('Processing blocks %.1f%%' % (100*i/len(block)), end='\r') # Get all HBs of current frame step = out[(out[:, 0] == ts.frame)] # Loop over each oxygen for j, idx in enumerate(oxygen.indices): # Get number of accepted and donated HBs + position along z don_counts[i, j] = len(step[(step[:, 1] == idx)]) acc_counts[i, j] = len(step[(step[:, 3] == idx)]) heights[i, j] = oxygen[j].position[2] return np.stack((heights, acc_counts, don_counts)) def main(): args = parse() input = args.input n_jobs = args.n_cpu a, b, c = args.cell_vectors CURRENT_PATH = path.dirname(path.realpath(__file__)) DATA_PATH = path.normpath(path.join(CURRENT_PATH, path.dirname(input))) base = path.splitext(path.basename(input))[0] # Initialize universe (time step 0.5 fs) u = mda.Universe(input, dt=5e-4) u.add_TopologyAttr('charges') u.dimensions = np.array([a, b, c, 90, 90, 90]) # Split trajectory into blocks blocks = trj2blocks.get_blocks(u, n_jobs) print('Analyzing...') results = Parallel(n_jobs=n_jobs)(delayed(hbonds)( u, block) for block in blocks) # Concatenate results results = np.concatenate(results, axis=1) # Save results (heights, accepted HBs, donated HBs) as .csv df1 =
pd.DataFrame(results[0])
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable """ tests.test_validator ~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2018 by <NAME>. :license: MIT, see LICENSE for more details. """ import numpy as np from pandas import Series, date_range, to_datetime from dfmapper import ( DateRangeValidator, DtypeValidator, MinValueValidator, MaxValueValidator, MaxLengthValidator, NullableValidator ) def test_date_range_validator(): series_1 = Series(['2018-01-15 12:00:00', '2018-01-15 13:00:00']) series_1 = to_datetime(series_1) date_range_validator_1 = DateRangeValidator(date_range(start='2018-01-01', end='2018-01-30')) assert date_range_validator_1(series_1) == True series_2 = Series(['2018-01-15 12:00:00', '2018-01-15 13:00:00']) series_2 =
to_datetime(series_2)
pandas.to_datetime
import pandas as pd from geopy.geocoders import Nominatim import os import pathlib as plib def add_coords(coords, city, state): gloc = Nominatim(user_agent='my-application', timeout=3) loc = gloc.geocode(city + ' ' + state) if loc is None: coords[city] = None else: coords[city] = [loc.raw['lon'], loc.raw['lat']] pass def get_coords(cities, state): coords = {} for city in cities: add_coords(coords, city, state) cts = list(coords.keys()) vals = list(coords.values()) lats = [] lons = [] for x in vals: if x is None: lats.append(None) lons.append(None) else: lats.append(x[0]) lons.append(x[1]) df =
pd.DataFrame({'City': cts, 'Latitude': lats, 'Longitude': lons})
pandas.DataFrame
''' PipelineTranscriptDiffExpression.py - Utility functions for pipeline_transcriptdiffexpression.py ============================================================== :Author: <NAME> :Release: $Id$ :Date: |today| :Tags: Python Code ---- ''' import cgatpipelines.tasks.expression as Expression import cgatpipelines.tasks.counts as Counts import cgatcore.iotools as iotools from cgatcore import pipeline as P from cgatcore.pipeline import cluster_runnable from rpy2.robjects import r as R import pandas as pd import numpy as np import sqlite3 import os def connect(database, annotations_database): '''utility function to connect to database. Use this method to connect to the pipeline database. Additional databases can be attached here as well. Returns an sqlite3 database handle. ''' dbh = sqlite3.connect(database) statement = '''ATTACH DATABASE '%s' as annotations''' % ( annotations_database) cc = dbh.cursor() cc.execute(statement) cc.close() return dbh @cluster_runnable def runSleuth(design, base_dir, model, contrasts, outfile, counts, tpm, fdr, lrt=False, reduced_model=None): ''' run sleuth. Note: all samples in the design table must also have a directory with the same name in `base_dir` with kallisto results in a file called abundance.h5''' outfile_prefix = P.snip(outfile, ".tsv") Design = Expression.ExperimentalDesign(design) exp = Expression.DEExperiment_Sleuth() res = exp.run(Design, base_dir, model, contrasts, outfile_prefix, counts, tpm, fdr, lrt, reduced_model) res.getResults(fdr) for contrast in set(res.table['contrast']): res.plotMA(contrast, outfile_prefix) res.plotVolcano(contrast, outfile_prefix) res.table.to_csv(outfile, sep="\t", index=False) @cluster_runnable def runSleuthAll(samples, base_dir, counts, tpm): ''' run sleuth for all samples to obtain counts and tpm tables Note: all samples in the design table must also have a directory with the same name in `base_dir` with kallisto results in a file called abundance.h5 ''' design = pd.DataFrame({ "group": ([0, 1] * ((len(samples) + 1) / 2))[0:len(samples)], "include": [1, ] * len(samples), "pair": [0, ] * len(samples)}) design.index = samples Design = Expression.ExperimentalDesign(design) exp = Expression.DEExperiment_Sleuth() res = exp.run(Design, base_dir, counts=counts, tpm=tpm, model="~group", dummy_run=True) @cluster_runnable def makeExpressionSummaryPlots(counts_inf, design_inf, logfile): ''' use the plotting methods for Counts object to make summary plots''' with iotools.openFile(logfile, "w") as log: plot_prefix = P.snip(logfile, ".log") # need to manually read in data as index column is not the first column counts = Counts.Counts(pd.read_table(counts_inf, sep="\t")) counts.table.set_index(["transcript_id"]) design = Expression.ExperimentalDesign(design_inf) # make certain counts table only include samples in design counts.restrict(design) cor_outfile = plot_prefix + "_pairwise_correlations.png" pca_var_outfile = plot_prefix + "_pca_variance.png" pca1_outfile = plot_prefix + "_pc1_pc2.png" pca2_outfile = plot_prefix + "_pc3_pc4.png" heatmap_outfile = plot_prefix + "_heatmap.png" counts_log10 = counts.log(base=10, pseudocount=0.1, inplace=False) counts_highExp = counts_log10.clone() counts_highExp.table['order'] = counts_highExp.table.apply( np.mean, axis=1) counts_highExp.table.sort(["order"], ascending=0, inplace=True) counts_highExp.table = counts_highExp.table.iloc[0:500, :] counts_highExp.table.drop("order", axis=1, inplace=True) log.write("plot correlations: %s\n" % cor_outfile) counts_log10.plotPairwiseCorrelations(cor_outfile, subset=1000) log.write("plot pc3,pc4: %s\n" % pca1_outfile) counts_log10.plotPCA(design, pca_var_outfile, pca1_outfile, x_axis="PC1", y_axis="PC2", colour="group", shape="group") log.write("plot pc3,pc4: %s\n" % pca2_outfile) counts_log10.plotPCA(design, pca_var_outfile, pca2_outfile, x_axis="PC3", y_axis="PC4", colour="group", shape="group") log.write("plot heatmap: %s\n" % heatmap_outfile) counts_highExp.heatmap(heatmap_outfile) @cluster_runnable def identifyLowConfidenceTranscripts(infile, outfile): ''' identify transcripts which cannot be confidently quantified in the simulation ''' df = pd.read_table(infile, sep="\t", index_col=0) with iotools.openFile(outfile, "w") as outf: outf.write("%s\t%s\n" % ("transcript_id", "reason")) # identify transcript with low fraction of kmers - these show # poorer correlation between ground truth and esimated counts low_fraction = df[df['fraction_bin'] < 0.03].index.tolist() for transcript in low_fraction: outf.write("%s\t%s\n" % (transcript, "low_kmers")) # identify transcript with poor accuracy of quantification low_accuracy = df[[abs(x) > 0.585 for x in df['log2diff_tpm']]].index.tolist() for transcript in low_accuracy: outf.write("%s\t%s\n" % (transcript, "poor_accuracy")) @cluster_runnable def mergeAbundanceCounts(infile, outfile, counts): ''' merge the abundance and simulation counts files for each simulation ''' df_abund = pd.read_table(infile, sep="\t", index_col=0) df_counts = pd.read_table(counts, sep="\t", index_col=0) df_abund.columns = [x if x != "tpm" else "est_tpm" for x in df_abund.columns] df_merge = pd.merge(df_abund, df_counts, left_index=True, right_index=True) df_merge.index.name = "id" df_merge.to_csv(outfile, sep="\t") @cluster_runnable def calculateCorrelations(infiles, outfile, bin_step=1): ''' calculate correlation across simulation iterations per transcript''' abund, kmers = infiles df_abund = pd.read_table(abund, sep="\t", index_col=0) df_kmer = pd.read_table(kmers, sep="\t", index_col=0) # this is hacky, it's doing all against all correlations for the # two columns and subsetting df_agg_tpm = df_abund.groupby(level=0)[[ "est_tpm", "tpm"]].corr().ix[0::2, 'tpm'] # drop the "read_count" level, make into dataframe and rename column df_agg_tpm.index = df_agg_tpm.index.droplevel(1) df_agg_tpm = pd.DataFrame(df_agg_tpm) df_agg_tpm.columns = ["tpm_cor"] df_agg_count = df_abund.groupby(level=0)[[ "est_counts", "read_count"]].corr().ix[0::2, 'read_count'] # drop the "read_count" level, make into dataframe and rename column df_agg_count.index = df_agg_count.index.droplevel(1) df_agg_count = pd.DataFrame(df_agg_count) df_agg_count.columns = ["counts_cor"] # merge and bin the unique fraction values df_agg = pd.merge(df_agg_count, df_agg_tpm, left_index=True, right_index=True) df_final =
pd.merge(df_kmer, df_agg, left_index=True, right_index=True)
pandas.merge
"""Transform signaling data to smoothed trajectories.""" import sys import numpy import pandas as pd import geopandas as gpd import shapely.geometry import matplotlib.patches import matplotlib.pyplot as plt import mobilib.voronoi SAMPLING = pd.Timedelta('00:01:00') STD = pd.Timedelta('00:05:00') def smoothen(array, std_quant): return pd.Series(array).rolling( int(numpy.ceil(8 * std_quant)), min_periods=0, center=True, win_type='gaussian' ).mean(std=std_quant) def trajectory(df, xcol, ycol, sampling, std): ts = pd.date_range(df.index.min(), df.index.max(), freq=sampling) obs_ind = ts.searchsorted(df.index) xs_src = numpy.full(ts.size, numpy.nan) xs_src[obs_ind] = df[xcol] ys_src = numpy.full(ts.size, numpy.nan) ys_src[obs_ind] = df[ycol] std_quant = std / sampling return smoothen(xs_src, std_quant), smoothen(ys_src, std_quant), ts if __name__ == '__main__': signals = pd.read_csv(sys.argv[1], sep=';') signals = signals[signals['phone_nr'] == int(sys.argv[3])] signals['pos_time'] =
pd.to_datetime(signals['pos_time'])
pandas.to_datetime
""" Plots the tracker charts. """ import os from datetime import datetime from datetime import timedelta import logging import shutil import pathlib import multiprocessing as mp import typing from timeit import default_timer as timer import pandas as pd import numpy as np from scipy.interpolate import interp1d import plotly.express as px import plotly.graph_objects as go SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) CHART_OUTPUT = os.path.join(SCRIPT_DIR, "_includes", "tracker", "charts") TEMPLATE = 'plotly_dark' PERIOD_DAYS = [14, 30] MA_SUFFIX = '_MA7' MA_NAME = "7-day MA" REGION = 'Region' CITY_MUN = 'CityMunRes' CASE_REP_TYPE = 'CaseRepType' ONSET_PROXY = 'OnsetProxy' RECOVER_PROXY = 'RecoverProxy' CASE_STATUS = 'CaseStatus' DATE_CLOSED = 'DateClosed' AGE_GROUP_CATEGORYARRAY=['0 to 4', '5 to 9', '10 to 14', '15 to 19', '20 to 24', '25 to 29', '30 to 34', '35 to 39', '40 to 44', '45 to 49', '50 to 54', '55 to 59', '60 to 64', '65 to 69', '70 to 74', '75 to 79', '80+', 'No Data' ] # Number of processes to launch when applying a parallel processing. # We leave one core idle to avoid hogging all the resources. num_processes = 1 if (mp.cpu_count() <= 2) else mp.cpu_count() - 1 def apply_parallel(df: pd.DataFrame, func, n_proc=num_processes): """ Apply function to the dataframe using multiprocessing. The initial plan was to use modin but because there are still a lot of missing features and instability in modin, I've resorted to doing the parallel processing in here. """ logging.info(f"Running multiprocessing on {func.__name__} with {n_proc} processes") df_split = np.array_split(df, n_proc) pool = mp.Pool(n_proc) df = pd.concat(pool.map(func, df_split)) pool.close() pool.join() return df def write_table(header, body, filename): logging.info(f"Writing {filename}") table = "".join(f"<th>{cell}</th>" for cell in header) for row in body: row_html = "".join(f"<td>{cell}</td>" for cell in row) table += f"<tr>{row_html}</tr>" table = f"<div><table>{table}</table></div>" with open(f"{CHART_OUTPUT}/{filename}.html", 'w') as f: f.write(table) def write_chart(fig, filename): logging.info(f"Writing {filename}") fig.update_layout(template=TEMPLATE) fig.update_layout(margin=dict(l=5, r=5, b=50, t=70)) fig.write_html(f"{CHART_OUTPUT}/{filename}.html", include_plotlyjs='cdn', full_html=False) def plot_for_period(df: pd.DataFrame, plot: typing.Callable, filter_df: typing.Callable[[pd.DataFrame, int], pd.DataFrame], **kwargs): """Execute the plot function for the overall data and for each PERIOD_DAYS. The plot function must take a 'write_chart' keyword argument which is the function that writes the chart to a file. """ plot(df, **kwargs) for days in PERIOD_DAYS: filtered = filter_df(df, days) kwargs_passed = kwargs.copy() # Append the period in days at the end of the filename. if 'write_chart' in kwargs_passed: write_fn = kwargs_passed['write_chart'] else: write_fn = write_chart kwargs_passed['write_chart'] = (lambda fig, filename : write_fn(fig, f"{filename}{days}days")) plot(df, **kwargs_passed) def filter_date_range(data, start=None, end=None, date_column=None): """Return only the rows within the specified date range.""" if date_column: if start and end: return data[(data[date_column] >= start) & (data[date_column] <= end)] elif start: return data[data[date_column] >= start] elif end: return data[data[date_column] <= end] else: raise ValueError("Either start or end should not be None") else: if start and end: return data[(data.index >= start) & (data.index <= end)] elif start: return data[data.index >= start] elif end: return data[data.index <= end] else: raise ValueError("Either start or end should not be None") def filter_latest(data, days, date_column=None, return_latest=True): """ Filter data by the days indicated in the days parameter. If date_column is None, the index is used as the date column. The default behavior is to return the latest data. If return_latest is False, the latest data is filtered out instead. """ if date_column: cutoff_date = data[date_column].max() - pd.Timedelta(days=days) logging.debug(f"Filtering {date_column} cutoff {cutoff_date}.") if return_latest: return data[data[date_column] > cutoff_date] return data[data[date_column] < cutoff_date] else: cutoff_date = data.index.max()-
pd.Timedelta(days=days)
pandas.Timedelta
import unittest import numpy as np import pandas as pd from sklearn.cluster import DBSCAN, KMeans from sklearn.covariance import EmpiricalCovariance, MinCovDet from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.mixture import GaussianMixture from dsbox.ml.outliers import CovarianceOutliers, GaussianProcessOutliers from dsbox.ml.outliers import GMMOutliers, ClusteringOutliers from dsbox.ml.outliers import KMeansOneClusterOutliers, KMeansIterativeOneClusterOutliers from dsbox.ml.outliers import MADOutliers, FFTOutliers class CovarianceOutliersTest(unittest.TestCase): def test_covarianceoutliers_constructor_should_accept_different_scikit_covariance_estimators(self): # given robust_cov = MinCovDet() emp_cov = EmpiricalCovariance() # when cov_outliers_1 = CovarianceOutliers(emp_cov) cov_outliers_2 = CovarianceOutliers(robust_cov) # then self.assertTrue(isinstance(cov_outliers_1, CovarianceOutliers)) self.assertTrue(isinstance(cov_outliers_2, CovarianceOutliers)) def test_covarianceoutliers_predict_proba_gives_biggest_proba_to_biggest_outlier(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when cov_outliers = CovarianceOutliers() cov_outliers.fit(df) probas = cov_outliers.predict_proba(df) outlier_index = np.argmax(probas) # then outlier_index_true = 6 self.assertEqual(outlier_index_true, outlier_index) def test_covarianceoutliers_predict_should_return_correct_values(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when cov_outliers = CovarianceOutliers() cov_outliers.fit(df) outliers = cov_outliers.predict(df) # then outliers_true = [False, False, False, False, False, False, True, True, False, False, False, False, False, False] self.assertListEqual(outliers_true, outliers.tolist()) class GaussianProcessOutliersTest(unittest.TestCase): def test_gpoutliers_predict_should_return_correct_values(self): # given data = np.random.random_sample(1000) * 2 - 1 data[300] = 5 data[700] = -6 df = pd.DataFrame(data) # when gp_outliers = GaussianProcessOutliers(GaussianProcessRegressor(alpha=0.9, normalize_y=True), n_samples=100) gp_outliers.fit(df) outliers = gp_outliers.predict(df, confidence=0.999) # then outlier_positions_true = [300, 700] self.assertTrue(outliers[outlier_positions_true[0]]) self.assertTrue(outliers[outlier_positions_true[1]]) class KMeansOneClusterOutliersTest(unittest.TestCase): def test_kmeansonecluster_outliers_predict_should_return_correct_values(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when kmoc_outliers = KMeansOneClusterOutliers() kmoc_outliers.fit(df) outliers = kmoc_outliers.predict(df) # then outliers_true = [False, False, False, False, False, False, True, True, False, False, False, False, False, False] self.assertListEqual(outliers_true, outliers.tolist()) class KMeansIterativeOneClusterOutliersTest(unittest.TestCase): def test_kmeans_iterative_onecluster_outliers_predict_should_return_correct_values(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when kmoc_outliers = KMeansIterativeOneClusterOutliers() outliers = kmoc_outliers.fit_predict(df) # then outliers_true = [2., 1., 1., 2., 2., -1., 0., 0., 1., 1., -1., 1., 1., 2.] self.assertListEqual(outliers_true, outliers.tolist()) class GMMOutliersTest(unittest.TestCase): def test_gmm_outliers_predict_should_return_correct_values(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when gmm_outliers = GMMOutliers() gmm_outliers.fit(df) outliers = gmm_outliers.predict(df) # then outliers_true = [False, False, False, False, False, False, True, True, False, False, False, False, False, False] self.assertListEqual(outliers_true, outliers.tolist()) class ClusteringOutliersTest(unittest.TestCase): def test_clustering_outliers_predict_proba_with_unclustered_strategy_should_return_correct_values(self): # given df = pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1]) # when clustering_outliers = ClusteringOutliers(cluster_estimator=DBSCAN(min_samples=2), strategy='unclustered') clustering_outliers.fit(df) outliers = clustering_outliers.predict_proba(df) # then outliers_true = [0., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0.] self.assertListEqual(outliers_true, outliers.tolist()) def test_clustering_outliers_predict_with_unclustered_strategy_should_return_correct_values(self): # given df =
pd.DataFrame([1, 0, 0, 1, 10, 2, 115, 110, 32, 16, 2, 0, 15, 1])
pandas.DataFrame
# https://www.udemy.com/course/ai-finance import os from glob import glob from datetime import datetime, date import random import pandas as pd import yfinance as yf def load_stock_list(market='br', symbols_list='', qty = 100): """This function loads the desirable symbols. Args: market (str): accepts only 'br' or 'us' symbols_list (list): list of symbols. Returns: list: list of desirable symbols. """ qty = qty - len(symbols_list) symbols =
pd.read_csv('./data/interim/lst_stock_symbols.txt', sep=';')
pandas.read_csv
import os import numpy as np import pandas as pd from pkg_resources import resource_filename def load_arrests(return_X_y=False, give_pandas=False): """ Loads the arrests dataset which can serve as a benchmark for fairness. It is data on the police treatment of individuals arrested in Toronto for simple possession of small quantities of marijuana. The goal is to predict whether or not the arrestee was released with a summons while maintaining a degree of fairness. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_arrests >>> X, y = load_arrests(return_X_y=True) >>> X.shape (5226, 7) >>> y.shape (5226,) >>> load_arrests(give_pandas=True).columns Index(['released', 'colour', 'year', 'age', 'sex', 'employed', 'citizen', 'checks'], dtype='object') The dataset was copied from the carData R package and can originally be found in: - Personal communication from <NAME>, York University. The documentation page of the dataset from the package can be viewed here: http://vincentarelbundock.github.io/Rdatasets/doc/carData/Arrests.html """ filepath = resource_filename("sklego", os.path.join("data", "arrests.zip")) df = pd.read_csv(filepath) if give_pandas: return df X, y = ( df[["colour", "year", "age", "sex", "employed", "citizen", "checks"]].values, df["released"].values, ) if return_X_y: return X, y return {"data": X, "target": y} def load_chicken(return_X_y=False, give_pandas=False): """ Loads the chicken dataset. The chicken data has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks. The body weights of the chicks were measured at birth and every second day thereafter until day 20. They were also measured on day 21. There were four groups on chicks on different protein diets. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_chicken >>> X, y = load_chicken(return_X_y=True) >>> X.shape (578, 3) >>> y.shape (578,) >>> load_chicken(give_pandas=True).columns Index(['weight', 'time', 'chick', 'diet'], dtype='object') The datasets can be found in the following sources: - Crowder, M. and <NAME>. (1990), Analysis of Repeated Measures, Chapman and Hall (example 5.3) - Hand, D. and <NAME>. (1996), Practical Longitudinal Data Analysis, Chapman and Hall (table A.2) """ filepath = resource_filename("sklego", os.path.join("data", "chickweight.zip")) df = pd.read_csv(filepath) if give_pandas: return df if give_pandas: return df X, y = df[["time", "diet", "chick"]].values, df["weight"].values if return_X_y: return X, y return {"data": X, "target": y} def load_abalone(return_X_y=False, give_pandas=False): """ Loads the abalone dataset where the goal is to predict the gender of the creature. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_abalone >>> X, y = load_abalone(return_X_y=True) >>> X.shape (4177, 8) >>> y.shape (4177,) >>> load_abalone(give_pandas=True).columns Index(['sex', 'length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight', 'rings'], dtype='object') The dataset was copied from Kaggle and can originally be found in: can be found in the following sources: - <NAME>, <NAME>, <NAME>, <NAME> and <NAME> (1994) "The Population Biology of Abalone (_Haliotis_ species) in Tasmania." Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288) """ filepath = resource_filename("sklego", os.path.join("data", "abalone.zip")) df = pd.read_csv(filepath) if give_pandas: return df X = df[ [ "length", "diameter", "height", "whole_weight", "shucked_weight", "viscera_weight", "shell_weight", "rings", ] ].values y = df["sex"].values if return_X_y: return X, y return {"data": X, "target": y} def load_heroes(return_X_y=False, give_pandas=False): """ A dataset from a video game: "heroes of the storm". The goal of the dataset is to predict the attack type. Note that the pandas dataset returns more information. This is because we wanted to keep the X simple in the return_X_y case. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> X, y = load_heroes(return_X_y=True) >>> X.shape (84, 2) >>> y.shape (84,) >>> df = load_heroes(give_pandas=True) >>> df.columns Index(['name', 'attack_type', 'role', 'health', 'attack', 'attack_spd'], dtype='object') """ filepath = resource_filename("sklego", os.path.join("data", "heroes.zip")) df = pd.read_csv(filepath) if give_pandas: return df X = df[["health", "attack"]].values y = df["attack_type"].values if return_X_y: return X, y return {"data": X, "target": y} def make_simpleseries( n_samples=365 * 5, trend=0.001, season_trend=0.001, noise=0.5, give_pandas=False, seed=None, stack_noise=False, start_date=None, ): """ Generate a very simple timeseries dataset to play with. The generator assumes to generate daily data with a season, trend and noise. :param n_samples: The number of days to simulate the timeseries for. :param trend: The long term trend in the dataset. :param season_trend: The long term trend in the seasonality. :param noise: The noise that is applied to the dataset. :param give_pandas: Return a pandas dataframe instead of a numpy array. :param seed: The seed value for the randomness. :param stack_noise: Set the noise to be stacked by a cumulative sum. :param start_date: Also add a start date (only works if `give_pandas`=True). :return: numpy array unless dataframe is specified :Example: >>> from sklego.datasets import make_simpleseries >>> make_simpleseries(seed=42) array([-0.34078806, -0.61828731, -0.18458236, ..., -0.27547402, -0.38237413, 0.13489355]) >>> make_simpleseries(give_pandas=True, start_date="2018-01-01", seed=42).head(3) yt date 0 -0.340788 2018-01-01 1 -0.618287 2018-01-02 2 -0.184582 2018-01-03 """ if seed: np.random.seed(seed) time = np.arange(0, n_samples) noise = np.random.normal(0, noise, n_samples) if stack_noise: noise = noise.cumsum() r1, r2 = np.random.normal(0, 1, 2) seasonality = r1 * np.sin(time / 365 * 2 * np.pi) + r2 * np.cos( time / 365 * 4 * np.pi + 1 ) result = seasonality + season_trend * seasonality * time + trend * time + noise if give_pandas: if start_date: stamps = pd.date_range(start_date, periods=n_samples) return
pd.DataFrame({"yt": result, "date": stamps})
pandas.DataFrame
import argparse import os import os.path as path import pandas as pd import cv2 import progressbar from annotations import ImageAnnotation, SUPPORTED_CLASSES from keypoints_detection.KeypointDetector import KeypointDetector from keypoints_detection.factory import create_keypoint_detector allowed_extensions = ['.jpg'] class InvalidDirectoryStructureError(Exception): pass def parse_args(): ap = argparse.ArgumentParser(description='Processes images placed in images_directory with keypoint detector and ' 'creates annotation file for whole dataset in csv format. Images in ' 'images_directory must be organized in subfolders named by image ' 'class names') ap.add_argument("-i", "--images_directory", required=True, help="Path to directory with images") ap.add_argument("-m", "--model_path", required=True, help="Path to directory with images") return ap.parse_args() def get_images_to_process(directory_path): image_path_to_class_mapping = {} for subdirectory_name in list_directories(directory_path): subdirectory_path = os.path.join(directory_path, subdirectory_name) class_name = subdirectory_name if not os.path.isdir(subdirectory_path): raise InvalidDirectoryStructureError( "Incorrect directory structure. images_directory should contain " "images in subdirectories named by class name") if class_name in SUPPORTED_CLASSES: for file_path in list_files_with_extension(subdirectory_path, allowed_extensions): if image_path_to_class_mapping.get(file_path) is not None: print(f'Duplicate file {file_path}') continue image_path_to_class_mapping[file_path] = class_name return image_path_to_class_mapping def process_images(images_directory, keypoint_detector: KeypointDetector): annotations_df = pd.DataFrame() images_to_class_mapping = get_images_to_process(images_directory) progress_bar = progressbar.ProgressBar(max_value=len(images_to_class_mapping)) for i, image_info in enumerate(images_to_class_mapping.items()): image_path, class_name = image_info keypoints = process_image(image_path, keypoint_detector) annotations_df = annotations_df.append( get_image_annotation(image_path, class_name, keypoints), ignore_index=True) progress_bar.update(i) return annotations_df def process_image(image_path, keypoint_detector: KeypointDetector): keypoints = keypoint_detector.detect(image_path) if len(keypoints) == 0: return None # We process only first detection # TODO: Select detection by size or something else keypoints = keypoints[0] return keypoints def get_image_annotation(image_path, class_name, keypoints): if keypoints is None: return
pd.DataFrame()
pandas.DataFrame
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import account import allocation import investment import mock import pandas as pd import unittest import portfolio class BuildPortolioTest(unittest.TestCase): def setUp(self): self._account_desc = """ [ { "institution": "Fidelity", "name": "<NAME>", "filename": "Personal_Account_Positions.csv", "taxable": "True", "headers": { "name": "Account Name/Number", "symbol": "Symbol", "description": "Description", "num_shares": "Quantity", "share_price": "Last Price" } } ] """ @mock.patch('account.Account') def test_build_portfolio(self, mock_account): test_account = mock.MagicMock(account.Account, autospect=True) test_account.name = '<NAME>' test_account.institution = 'Fidelity' test_account.account_file = 'Personal_Account_Positions.csv' test_account.is_taxable = True test_account.holdings = [ investment.Investment('CRISX', 'Small Cap Value Fund Inst', 'GOOGLE LLC 401(K) SAVINGS PLAN', 18576.337, share_price=18.36)] test_account.options = [holding.fund for holding in test_account.holdings] mock_account.return_value = test_account with mock.patch('portfolio.open', mock.mock_open(read_data=self._account_desc)) as m: actual_portfolio = portfolio.build_portfolio('data/accounts.json') expected_portfolio = portfolio.Portfolio([test_account]) self.assertEqual(actual_portfolio, expected_portfolio) class PortfolioTest(unittest.TestCase): def setUp(self): fidelity_account = mock.MagicMock(account.Account, autospect=True) fidelity_account.name = 'ACME 401(K) SAVINGS PLAN' fidelity_account.institution = 'Fidelity' fidelity_account.account_file = 'Fidelity_Positions.csv' fidelity_account.is_taxable = True fidelity_account.holdings = [ investment.Investment('CRISX', investment.AssetClass.SMALL_CAP, 'Small Cap Value Fund Class Institutional', 500, share_price=10), investment.Investment('FSKAX', investment.AssetClass.CORE_US, 'Fidelity Total Market Index', 1000, share_price=10), investment.Investment('CASH', investment.AssetClass.CASH, 'Money Market', 5000, share_price=1) ] fidelity_account.options = [holding.fund for holding in fidelity_account.holdings] vanguard_account = mock.MagicMock(account.Account, autospec=True) vanguard_account.name = '<NAME>' vanguard_account.institution = 'Vanguard' vanguard_account.account_file = 'Vanguard_Positions.csv' vanguard_account.is_taxable = False vanguard_account.holdings = [ investment.Investment('VNQ', investment.AssetClass.REAL_ESTATE, 'Vanguard Real Estate Index Fund', 2000, share_price=10) ] vanguard_account.options = [holding.fund for holding in vanguard_account.holdings] self._portfolio = portfolio.Portfolio([fidelity_account, vanguard_account]) def test_get_allocation_by_asset_class(self): allocation_index = pd.Index([investment.AssetClass.CORE_US, investment.AssetClass.SMALL_CAP, investment.AssetClass.CASH, investment.AssetClass.REAL_ESTATE], name='asset_class') expected_allocation_df = pd.DataFrame(data=[10000.0, 5000.0, 5000.0, 20000.0], index=allocation_index, columns=['value']) expected_allocation_df.sort_index(inplace=True) pd.testing.assert_frame_equal(self._portfolio.get_allocation_by_asset_class().sort_index(inplace=False), expected_allocation_df) def test_get_allocation_by_institution(self): allocation_index =
pd.Index(['Fidelity', 'Vanguard'], name='institution')
pandas.Index
""" Transforms the extracted data. """ import click import feather import numpy as np import pandas as pd import re import tqdm import yaml from logging import * from typing import * def yes_no(x: str) -> float: """ Transforms a yes/no value to a numeric value. Args: x: The value to transform. Returns: The transformed value. Raises: ValueError: When the value cannot be translated. """ if pd.isnull(x) or x == '': return np.nan y = x.lower() if y in ['y', 'pos']: return 1. elif y.startswith('n'): return 0. raise ValueError('cannot translate yes/no value: {!r}'.format(x)) def float_(x: str) -> float: """ Transforms what should be a float value to a numeric value. Args: x: The value to transform. Returns: The transformed value. Raises: ValueError: When the value cannot be translated. """ if pd.isnull(x): return np.nan try: return float(x) except ValueError: y = x.lower() if y.startswith('neg'): return 0. m = re.match(r'^(\d+)', y) if m is not None: return float(m.group(1)) m = re.match(r'^<(.+)$', y) if m is not None: return float(m.group(1)) - 1e-6 m = re.match(r'^>(.+)$', y) if m is not None: return float(m.group(1)) + 1e-6 raise ValueError('cannot parse float value: {!r}'.format(x)) def sex_female(x: str) -> float: """ Transforms a sex into a numeric value denoting whether a patient is female. Args: x: The value to transform. Returns: The transformed value. Raises: ValueError: When the value cannot be translated. """ if
pd.isnull(x)
pandas.isnull
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert as_json_table_type(t) == 'duration' def test_as_json_table_type_string_dtypes(self): strings = [object] # TODO for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_dtypes(self): # TODO: I think before is_categorical_dtype(Categorical) # returned True, but now it's False. Figure out why or # if it matters assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(CategoricalDtype()) == 'any' class TestTableOrient(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), 'E': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'])), 'F': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], ordered=True)), 'G': [1., 2., 3, 4.], 'H': pd.date_range('2016-01-01', freq='d', periods=4, tz='US/Central'), }, index=pd.Index(range(4), name='idx')) def test_build_series(self): s = pd.Series([1, 2], name='a') s.index.name = 'id' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [{'name': 'id', 'type': 'integer'}, {'name': 'a', 'type': 'integer'}] schema = { 'fields': fields, 'primaryKey': ['id'], } expected = OrderedDict([ ('schema', schema), ('data', [OrderedDict([('id', 0), ('a', 1)]), OrderedDict([('id', 1), ('a', 2)])])]) assert result == expected def test_to_json(self): df = self.df.copy() df.index.name = 'idx' result = df.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [ {'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'E', 'ordered': False, 'type': 'any'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'F', 'ordered': True, 'type': 'any'}, {'name': 'G', 'type': 'number'}, {'name': 'H', 'type': 'datetime', 'tz': 'US/Central'} ] schema = { 'fields': fields, 'primaryKey': ['idx'], } data = [ OrderedDict([('idx', 0), ('A', 1), ('B', 'a'), ('C', '2016-01-01T00:00:00.000Z'), ('D', 'P0DT1H0M0S'), ('E', 'a'), ('F', 'a'), ('G', 1.), ('H', '2016-01-01T06:00:00.000Z') ]), OrderedDict([('idx', 1), ('A', 2), ('B', 'b'), ('C', '2016-01-02T00:00:00.000Z'), ('D', 'P0DT1H1M0S'), ('E', 'b'), ('F', 'b'), ('G', 2.), ('H', '2016-01-02T06:00:00.000Z') ]), OrderedDict([('idx', 2), ('A', 3), ('B', 'c'), ('C', '2016-01-03T00:00:00.000Z'), ('D', 'P0DT1H2M0S'), ('E', 'c'), ('F', 'c'), ('G', 3.), ('H', '2016-01-03T06:00:00.000Z') ]), OrderedDict([('idx', 3), ('A', 4), ('B', 'c'), ('C', '2016-01-04T00:00:00.000Z'), ('D', 'P0DT1H3M0S'), ('E', 'c'), ('F', 'c'), ('G', 4.), ('H', '2016-01-04T06:00:00.000Z') ]), ] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_float_index(self): data = pd.Series(1, index=[1., 2.]) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', { 'fields': [{'name': 'index', 'type': 'number'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'] }), ('data', [OrderedDict([('index', 1.0), ('values', 1)]), OrderedDict([('index', 2.0), ('values', 1)])])]) ) assert result == expected def test_to_json_period_index(self): idx = pd.period_range('2016', freq='Q-JAN', periods=2) data = pd.Series(1, idx) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'freq': 'Q-JAN', 'name': 'index', 'type': 'datetime'}, {'name': 'values', 'type': 'integer'}] schema = {'fields': fields, 'primaryKey': ['index']} data = [OrderedDict([('index', '2015-11-01T00:00:00.000Z'), ('values', 1)]), OrderedDict([('index', '2016-02-01T00:00:00.000Z'), ('values', 1)])] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_categorical_index(self): data = pd.Series(1, pd.CategoricalIndex(['a', 'b'])) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', {'fields': [{'name': 'index', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']}), ('data', [ OrderedDict([('index', 'a'), ('values', 1)]), OrderedDict([('index', 'b'), ('values', 1)])])]) ) assert result == expected def test_date_format_raises(self): with pytest.raises(ValueError): self.df.to_json(orient='table', date_format='epoch') # others work self.df.to_json(orient='table', date_format='iso') self.df.to_json(orient='table') def test_make_field_int(self): data = [1, 2, 3] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'integer'} assert result == expected def test_make_field_float(self): data = [1., 2., 3.] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'number'} assert result == expected def test_make_field_datetime(self): data = [1., 2., 3.] kinds = [pd.Series(pd.to_datetime(data), name='values'), pd.to_datetime(data)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime'} assert result == expected kinds = [pd.Series(pd.to_datetime(data, utc=True), name='values'), pd.to_datetime(data, utc=True)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime', "tz": "UTC"} assert result == expected arr = pd.period_range('2016', freq='A-DEC', periods=4) result =
make_field(arr)
pandas.io.json.table_schema.make_field
import pandas as pd p1 =
pd.Series({'a':10,'b':20,'c':30})
pandas.Series
import csv import pandas as pd import numpy as np ######=================================================######## ###### Segment A.1 ######## ######=================================================######## SimDays = 365 SimHours = SimDays * 24 HorizonHours = 24 ##planning horizon (e.g., 24, 48, 72 hours etc.) TransLoss = 0.075 ##transmission loss as a percent of generation n1criterion = 0.75 ##maximum line-usage as a percent of line-capacity res_margin = 0.15 ##minimum reserve as a percent of system demand spin_margin = 0.50 ##minimum spinning reserve as a percent of total reserve data_name = 'pownet_data_camb_2016' ######=================================================######## ###### Segment A.2 ######## ######=================================================######## #read parameters for dispatchable resources (coal/gas/oil/biomass generators, imports) df_gen =
pd.read_csv('data_camb_genparams.csv',header=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import os from pathlib import Path testfolder = str(Path().resolve().parent.parent / 'PV_ICE' / 'TEMP' / 'ElectricFutures') # Another option using relative address; for some operative systems you might need '/' instead of '\' # testfolder = os.path.abspath(r'..\..\PV_DEMICE\TEMP') print ("Your simulation will be stored in %s" % testfolder) # In[2]: if not os.path.exists(testfolder): os.makedirs(testfolder) # In[3]: MATERIALS = ['glass','silver','silicon', 'copper','aluminium_frames'] MATERIAL = MATERIALS[0] MODULEBASELINE = r'..\..\baselines\ElectrificationFutures_2021\EF-CapacityByState-basecase.csv' MODULEBASELINE_High = r'..\..\baselines\ElectrificationFutures_2021\EF-CapacityByState-LowREHighElec.csv' # In[4]: import PV_ICE import matplotlib.pyplot as plt import pandas as pd import numpy as np # In[5]: PV_ICE.__version__ # ### Loading Module Baseline. Will be used later to populate all the columsn otehr than 'new_Installed_Capacity_[MW]' which will be supplied by the REEDS model # In[6]: r1 = PV_ICE.Simulation(name='Simulation1', path=testfolder) #r1.createScenario(name='US', file=r'..\..\baselines\ReedsSubset\baseline_modules_US_Reeds_EF.csv') r1.createScenario(name='US', file=r'..\..\baselines\ElectrificationFutures_2021\baseline_modules_US_NREL_Electrification_Futures_2021_basecase.csv') baseline = r1.scenario['US'].data baseline = baseline.drop(columns=['new_Installed_Capacity_[MW]']) baseline.set_index('year', inplace=True) baseline.index = pd.PeriodIndex(baseline.index, freq='A') # A -- Annual baseline.head() # In[7]: plt.rcParams.update({'font.size': 22}) plt.rcParams['figure.figsize'] = (12, 5) # In[8]: df = pd.read_csv(MODULEBASELINE) df.set_index(['Type','State','year'], inplace=True) df.head() # In[9]: for ii in range (len(df.unstack(level=2))): STATE = df.unstack(level=2).iloc[ii].name[1] SCEN = df.unstack(level=2).iloc[ii].name[0] SCEN=SCEN.replace('+', '_') filetitle = 'base_'+SCEN+'_'+STATE +'.csv' subtestfolder = os.path.join(testfolder, 'baselines') if not os.path.exists(subtestfolder): os.makedirs(subtestfolder) filetitle = os.path.join(subtestfolder, filetitle) A = df.unstack(level=2).iloc[ii] A = A.droplevel(level=0) A.name = 'new_Installed_Capacity_[MW]' A = pd.DataFrame(A) A.index=pd.PeriodIndex(A.index, freq='A') A = pd.DataFrame(A) A['new_Installed_Capacity_[MW]'] = A['new_Installed_Capacity_[MW]'] # 0.85 marketshares['Si'] already included # Add other columns A = pd.concat([A, baseline.reindex(A.index)], axis=1) header = "year,new_Installed_Capacity_[MW],mod_eff,mod_reliability_t50,mod_reliability_t90," "mod_degradation,mod_lifetime,mod_MFG_eff,mod_EOL_collection_eff,mod_EOL_collected_recycled," "mod_Repair,mod_MerchantTail,mod_Reuse\n" "year,MW,%,years,years,%,years,%,%,%,%,%,%\n" with open(filetitle, 'w', newline='') as ict: # Write the header lines, including the index variable for # the last one if you're letting Pandas produce that for you. # (see above). for line in header: ict.write(line) # savedata.to_csv(ict, index=False) A.to_csv(ict, header=False) # In[10]: df = pd.read_csv(MODULEBASELINE_High) df.set_index(['Type','State','year'], inplace=True) df.head() # In[11]: for ii in range (len(df.unstack(level=2))): STATE = df.unstack(level=2).iloc[ii].name[1] SCEN = df.unstack(level=2).iloc[ii].name[0] SCEN=SCEN.replace('+', '_') subtestfolder = os.path.join(testfolder, 'baselines') if not os.path.exists(subtestfolder): os.makedirs(subtestfolder) filetitle = 'LowREHighElec_'+SCEN+'_'+STATE +'.csv' filetitle = os.path.join(subtestfolder, filetitle) A = df.unstack(level=2).iloc[ii] A = A.droplevel(level=0) A.name = 'new_Installed_Capacity_[MW]' A = pd.DataFrame(A) A.index=pd.PeriodIndex(A.index, freq='A') A = pd.DataFrame(A) A['new_Installed_Capacity_[MW]'] = A['new_Installed_Capacity_[MW]'] # 0.85 marketshares['Si'] already included # Add other columns A = pd.concat([A, baseline.reindex(A.index)], axis=1) header = "year,new_Installed_Capacity_[MW],mod_eff,mod_reliability_t50,mod_reliability_t90," "mod_degradation,mod_lifetime,mod_MFG_eff,mod_EOL_collection_eff,mod_EOL_collected_recycled," "mod_Repair,mod_MerchantTail,mod_Reuse\n" "year,MW,%,years,years,%,years,%,%,%,%,%\n" with open(filetitle, 'w', newline='') as ict: # Write the header lines, including the index variable for # the last one if you're letting Pandas produce that for you. # (see above). for line in header: ict.write(line) # savedata.to_csv(ict, index=False) A.to_csv(ict, header=False) # In[12]: ict # # DO SIMULATIONS # In[13]: Sims=['base','LowREHighElec'] # In[14]: baselineinstalls = os.path.join(testfolder, 'baselines') onlyfiles = [f for f in os.listdir(baselineinstalls)] # In[15]: sim1 = [f for f in onlyfiles if f.startswith(Sims[0])] sim2 = [f for f in onlyfiles if f.startswith(Sims[1])] # In[16]: STATEs = [i.split('_', 4)[2] for i in sim1] STATEs = [i.split('.', 1)[0] for i in STATEs] Type = [i.split('_', 4)[1] for i in sim1] # In[31]: #for ii in range (0, 1): #len(scenarios): i = 0 r1 = PV_ICE.Simulation(name=Sims[i], path=testfolder) for jj in range (0, len(sim1)): filetitle = sim1[jj] filetitle = os.path.join(testfolder, 'baselines', filetitle) scen = Type[jj]+'_'+STATEs[jj] r1.createScenario(name=scen, file=filetitle) r1.scenario[scen].addMaterial('glass', file=r'..\..\baselines\SolarFutures_2021\baseline_material_glass_Reeds.csv') r1.scenario[scen].addMaterial('silicon', file=r'..\..\baselines\SolarFutures_2021\baseline_material_silicon_Reeds.csv') r1.scenario[scen].addMaterial('silver', file=r'..\..\baselines\SolarFutures_2021\baseline_material_silver_Reeds.csv') r1.scenario[scen].addMaterial('copper', file=r'..\..\baselines\SolarFutures_2021\baseline_material_copper_Reeds.csv') r1.scenario[scen].addMaterial('aluminum', file=r'..\..\baselines\SolarFutures_2021\baseline_material_aluminium_Reeds.csv') r1.scenario[scen].material['glass'].materialdata = r1.scenario[scen].material['glass'].materialdata[8:].reset_index(drop=True) r1.scenario[scen].material['silicon'].materialdata = r1.scenario[scen].material['silicon'].materialdata[8:].reset_index(drop=True) r1.scenario[scen].material['silver'].materialdata = r1.scenario[scen].material['silver'].materialdata[8:].reset_index(drop=True) r1.scenario[scen].material['copper'].materialdata = r1.scenario[scen].material['copper'].materialdata[8:].reset_index(drop=True) r1.scenario[scen].material['aluminum'].materialdata = r1.scenario[scen].material['aluminum'].materialdata[8:].reset_index(drop=True) i = 1 r2 = PV_ICE.Simulation(name=Sims[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = sim2[jj] filetitle = os.path.join(testfolder, 'baselines', filetitle) scen = Type[jj]+'_'+STATEs[jj] r2.createScenario(name=scen, file=filetitle) r2.scenario[scen].addMaterial('glass', file=r'..\..\baselines\SolarFutures_2021\baseline_material_glass_Reeds.csv') r2.scenario[scen].addMaterial('silicon', file=r'..\..\baselines\SolarFutures_2021\baseline_material_silicon_Reeds.csv') r2.scenario[scen].addMaterial('silver', file=r'..\..\baselines\SolarFutures_2021\baseline_material_silver_Reeds.csv') r2.scenario[scen].addMaterial('copper', file=r'..\..\baselines\SolarFutures_2021\baseline_material_copper_Reeds.csv') r2.scenario[scen].addMaterial('aluminum', file=r'..\..\baselines\SolarFutures_2021\baseline_material_aluminium_Reeds.csv') r2.scenario[scen].material['glass'].materialdata = r2.scenario[scen].material['glass'].materialdata[8:].reset_index(drop=True) r2.scenario[scen].material['silicon'].materialdata = r2.scenario[scen].material['silicon'].materialdata[8:].reset_index(drop=True) r2.scenario[scen].material['silver'].materialdata = r2.scenario[scen].material['silver'].materialdata[8:].reset_index(drop=True) r2.scenario[scen].material['copper'].materialdata = r2.scenario[scen].material['copper'].materialdata[8:].reset_index(drop=True) r2.scenario[scen].material['aluminum'].materialdata = r2.scenario[scen].material['aluminum'].materialdata[8:].reset_index(drop=True) # In[33]: IRENA= False PERFECTMFG = True mats = ['glass', 'silicon','silver','copper','aluminum'] ELorRL = 'EL' if IRENA: if ELorRL == 'RL': weibullInputParams = {'alpha': 5.3759, 'beta':30} # Regular-loss scenario IRENA if ELorRL == 'EL': weibullInputParams = {'alpha': 2.49, 'beta':30} # Regular-loss scenario IRENA if PERFECTMFG: for jj in range (0, len(r1.scenario.keys())): scen = Type[jj]+'_'+STATEs[jj] r1.scenario[scen].data['mod_lifetime'] = 40 r1.scenario[scen].data['mod_MFG_eff'] = 100.0 r2.scenario[scen].data['mod_lifetime'] = 40 r2.scenario[scen].data['mod_MFG_eff'] = 100.0 for kk in range(0, len(mats)): mat = mats[kk] r1.scenario[scen].material[mat].materialdata['mat_MFG_eff'] = 100.0 r2.scenario[scen].material[mat].materialdata['mat_MFG_eff'] = 100.0 r1.calculateMassFlow(weibullInputParams=weibullInputParams) r2.calculateMassFlow(weibullInputParams=weibullInputParams) title_Method = 'Irena_'+ELorRL else: r1.calculateMassFlow() r2.calculateMassFlow() title_Method = 'PVICE' # # OPEN EI # In[34]: kk=0 SFScenarios = [r1, r2] SFScenarios[kk].name # In[35]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminum'] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, len(SFScenarios)): # Loop over Materials for zz in range (0, len(STATEs)): foo =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) 2017, Intel Research and Development Ireland Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __authors__ = '<NAME>, <NAME>' __copyright__ = "Copyright (c) 2017, Intel Research and Development Ireland Ltd." __license__ = "Apache 2.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from analytics_engine.heuristics.beans.infograph import InfoGraphNode, InfoGraphNodeType, \ InfoGraphNodeCategory, InfoGraphNodeLayer import pandas import math class Fingerprint(object): # Deprecated @staticmethod def _node_is_nic_on_management_net(node, graph, mng_net_name): node_name = InfoGraphNode.get_name(node) node_type = InfoGraphNode.get_type(node) if node_type == InfoGraphNodeType.VIRTUAL_NIC or \ node_type == InfoGraphNodeType.VIRTUAL_NIC_2: neighs = graph.neighbors(node_name) for n in neighs: neighbor = InfoGraphNode.\ get_node(graph, n) if InfoGraphNode.get_type(neighbor) == \ InfoGraphNodeType.VIRTUAL_NETWORK: network_name = \ InfoGraphNode.get_attributes( neighbor)['name'] if network_name == mng_net_name: return True return False @staticmethod def workload_capacity_usage(annotated_subgraph): """ This is a type of fingerprint """ # TODO: Validate graph categories = list() categories.append(InfoGraphNodeCategory.COMPUTE) categories.append(InfoGraphNodeCategory.NETWORK) # TODO: Add a Volume to the workloads to get HD usage categories.append(InfoGraphNodeCategory.STORAGE) # TODO: Get telemetry for Memory categories.append(InfoGraphNodeCategory.MEMORY) fingerprint = dict() counter = dict() for category in categories: fingerprint[category] = 0 counter[category] = 0 # calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() local_subgraph.filter_nodes('layer', "physical") local_subgraph.filter_nodes('layer', "service") for node in local_subgraph.nodes(data=True): # if Fingerprint._node_is_nic_on_management_net( # node, annotated_subgraph, mng_net_name): # continue category = InfoGraphNode.get_category(node) utilization = InfoGraphNode.get_utilization(node) if 'utilization' in utilization.columns.values: mean = utilization['utilization'].mean() fingerprint[category] += mean counter[category] += 1 # This is just an average # TODO: Improve the average for category in categories: if counter[category] > 0: fingerprint[category] = \ fingerprint[category] / counter[category] return fingerprint @staticmethod def machine_capacity_usage(annotated_subgraph): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph categories = list() categories.append(InfoGraphNodeCategory.COMPUTE) categories.append(InfoGraphNodeCategory.NETWORK) # TODO: Add a Volume to the workloads to get HD usage categories.append(InfoGraphNodeCategory.STORAGE) # TODO: Get telemetry for Memory categories.append(InfoGraphNodeCategory.MEMORY) fingerprint = dict() counter = dict() for category in categories: fingerprint[category] = 0 counter[category] = 0 # calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() local_subgraph.filter_nodes('layer', "virtual") local_subgraph.filter_nodes('layer', "service") local_subgraph.filter_nodes('type', 'machine') for node in local_subgraph.nodes(data=True): # if Fingerprint._node_is_nic_on_management_net( # node, annotated_subgraph, mng_net_name): # continue name = InfoGraphNode.get_name(node) category = InfoGraphNode.get_category(node) utilization = InfoGraphNode.get_utilization(node) if 'utilization' in utilization.columns.values: # LOG.info("NODE: {} - CATEGORY: {}".format(name, category)) mean = utilization['utilization'].mean() fingerprint[category] += mean counter[category] += 1 # This is just an average # TODO: Improve the average for category in categories: if counter[category] > 0: fingerprint[category] = \ fingerprint[category] / counter[category] return fingerprint @staticmethod def compute_node(annotated_subgraph, hostname=None): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph data = dict() statistics = dict() compute = InfoGraphNodeCategory.COMPUTE data[compute] = pandas.DataFrame() statistics[compute] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} network = InfoGraphNodeCategory.NETWORK data[network] = pandas.DataFrame() statistics[network] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} storage = InfoGraphNodeCategory.STORAGE data[storage] =
pandas.DataFrame()
pandas.DataFrame
import wiggum as wg from itertools import combinations import pandas as pd import sys import logging from sklearn import mixture import numpy as np import json def updateMetaData(labeled_df, meta): """ Update Meta Data Parameters ----------- labeled_df : DataFrame LabeledDataFrame meta : DataFrame data organized in a pandas dataframe Returns -------- None """ meta_list =json.loads(meta) meta_df_user = pd.DataFrame(meta_list) # set var_type from user input var_types = meta_df_user['var_type'].tolist() labeled_df.set_var_types(var_types) # set isCount from user input roles = meta_df_user['role'].tolist() labeled_df.set_roles(roles) # set roles from user input meta_df_user['isCount'] = meta_df_user['isCount'].replace({'Y': True, 'N': False}) counts = meta_df_user['isCount'].tolist() labeled_df.set_counts(counts) # set weighting_var from user input meta_df_user['weighting_var'] = meta_df_user['weighting_var'].replace('N/A', np.nan) weighting_vars = meta_df_user['weighting_var'].tolist() labeled_df.set_weighting_vars(weighting_vars) return labeled_df def checkSameMetadata(labeled_df, meta): """ Check if any metadata changes Parameters ----------- labeled_df : DataFrame LabeledDataFrame meta : DataFrame user input metadata Returns -------- checkResult : Boolean check result: if same returns True, different returns False """ meta_list =json.loads(meta) meta_df_user = pd.DataFrame(meta_list) # initial check result checkResult = True # rename meta_df_user.rename(columns={'name': 'variable'}, inplace=True) # set as index meta_df_user.set_index('variable', inplace=True) # set roles from user input meta_df_user['isCount'] = meta_df_user['isCount'].replace({'Y': True, 'N': False}) # set weighting_var from user input meta_df_user['weighting_var'] = meta_df_user['weighting_var'].replace('N/A', np.nan) # append dtype to user input metadata meta_df_user['dtype'] = labeled_df.meta_df['dtype'] # check equal after sorting the columns if meta_df_user.sort_index(axis=1).equals(labeled_df.meta_df.sort_index(axis=1)): checkResult = True else: checkResult = False return checkResult def getDistanceHeatmapDict(labeled_df, cur_result_df): """ Generate Distance Heatmap Dictitonary List for overview by grouping the results and extracting distances from result table. Parameters ----------- labeled_df : LabeledDataFrame object from which the cur_result_df was computed, used for meta information cur_result_df : DataFrame A result_df or derivative of it after filtering, detecting or ranking. Returns -------- distance_heatmap_dict_list: Distance Heatmap Dictitonary List formatted for use in visualization """ distance_heatmap_dict_list = [] for trend_type, trend_df in cur_result_df.groupby(['trend_type'], sort=False): # iterate over the GroupFeat variables for gby, gby_trend_df in trend_df.groupby('splitby'): # groupby the subgroups cgby = gby_trend_df.groupby('subgroup') # iterate over the values of the subgroups for gby_lev,df in cgby: distance_heatmap_dict = {} heatmap = df.pivot(index='dependent', columns='independent', values='distance') # replace Nan to 99 heatmap.fillna(99, inplace=True) # trend display name trend_display_name = labeled_df.get_trend_display_name(trend_type) # detail view type detail_view_type = labeled_df.get_detail_view_type(trend_type) # overview legend type overview_legend_type = labeled_df.get_overview_legend_type(trend_type) distance_heatmap_dict = {'trend_type' : trend_type, 'trend_display_name': trend_display_name, 'detail_view_type': detail_view_type, 'overview_legend_type': overview_legend_type, 'splitby': gby, 'subgroup': gby_lev, 'heatmap':heatmap.to_dict('index')} distance_heatmap_dict_list.append(distance_heatmap_dict) return distance_heatmap_dict_list def getOverviewLegendType(distance_heatmap_dict): """ Get overview legend types. Parameters ----------- distance_heatmap_dict : Dictionary Distance Heatmap Dictitonary List formatted for use in visualization. Returns -------- overview_legend_types: List Legend types for overview distance matrices """ overview_legend_types = [hd['overview_legend_type'] for hd in distance_heatmap_dict] # get unique values in overview_legend_types legend_types_unique = set(overview_legend_types) overview_legend_types = list(legend_types_unique) return overview_legend_types def replaceTrendDisplayName(cur_result_df): """ Add trend display name column to df. Parameters ----------- cur_result_df : DataFrame A result_df or derivative of it after filtering, detecting or ranking. Returns -------- cur_result_df: DataFrame input with trend_type moved to the trend_name column and the display name in the trend_type column """ # compute mapping dictionary to update tend names to diplay names name_mapper = {k:v().display_name for k,v in wg.all_trend_types.items()} # preserve trend_type short names in the trend_name column cur_result_df['trend_name'] = cur_result_df['trend_type'] # replace the trend_types with the display names cur_result_df.replace({'trend_type': name_mapper}, inplace=True) return cur_result_df def getRankTrendDetail(labeled_df, dependent, independent, splitby): """ Extract stats for rank trend detail view. Parameters ----------- labeled_df : DataFrame LabeledDataFrame independent : str a variable that will have independent information dependent : str a variable that will have dependent information splitby : str a variable that will have splitby information Returns -------- detail_df: dataframe detail stats count_df: dataframe detail counts """ # trend dictionary trend_idx_dict = {cur_trend.name: i for i, cur_trend in enumerate(labeled_df.trend_list)} # get index for rank trend rank_trend_idx = trend_idx_dict.get("rank_trend") trend_precompute = labeled_df.trend_list[rank_trend_idx].trend_precompute # aggregate' stats sel_agg_trend = '_'.join(['rank_trend', 'agg_trend', dependent, independent]) # create a new DataFrame for detail view detail_df = pd.DataFrame() # create a new DataFrame for counts count_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from __future__ import division # so that 1/3=0.333 instead of 1/3=0 from psychopy import visual, core, data, event, logging, gui from psychopy.constants import * # things like STARTED, FINISHED import pandas as pd import numpy as np # whole numpy lib is available, prepend 'np.' from numpy import sin, cos, tan, log, log10, pi, average, sqrt, std, deg2rad, rad2deg, linspace, asarray from numpy.random import random, randint, normal, shuffle import os # handy system and path functions import statsmodels.formula.api as sm import matplotlib.pyplot as plt import seaborn as sns import scipy.io # Ensure that relative paths start from the same directory as this script _thisDir = os.path.dirname(os.path.abspath(__file__)) os.chdir(_thisDir) # Store info about the experiment session expName = u'r2d4_MM' # from the Builder filename that created this script expInfo = {'participant':u'', 'session':u''} dlg = gui.DlgFromDict(dictionary=expInfo, title=expName) if dlg.OK == False: core.quit() # user pressed cancel expInfo['date'] = data.getDateStr() # add a simple timestamp expInfo['expName'] = expName # Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc filename = _thisDir + os.sep + 'data/%s_%s_%s' %(expInfo['participant'], expName, expInfo['date']) out_all_fn = _thisDir + os.sep + 'data/%s_%s_%s_responses.csv' %(expInfo['participant'], expName, expInfo['session']) data_out = pd.DataFrame(columns=('onsetTime','correctResp','keysPressed')) # An ExperimentHandler isn't essential but helps with data saving thisExp = data.ExperimentHandler(name=expName, version='', extraInfo=expInfo, runtimeInfo=None, originPath=None, savePickle=True, saveWideText=True, dataFileName=filename) #save a log file for detail verbose info logFile = logging.LogFile(filename+'.log', level=logging.EXP) logging.console.setLevel(logging.WARNING) # this outputs to the screen, not a file endExpNow = False # flag for 'escape' or other condition => quit the exp # Start Code - component code to be run before the window creation # Setup the Window win = visual.Window(size=(500, 500), fullscr=True, screen=0, allowGUI=False, allowStencil=False, monitor='testMonitor', color=[-1,-1,-1], colorSpace='rgb', blendMode='avg', useFBO=True, ) # store frame rate of monitor if we can measure it successfully expInfo['frameRate']=win.getActualFrameRate() if expInfo['frameRate']!=None: frameDur = 1.0/round(expInfo['frameRate']) else: frameDur = 1.0/60.0 # couldn't get a reliable measure so guess # Initialize components for Routine "Instructions" InstructionsClock = core.Clock() text_2 = visual.TextStim(win=win, ori=0, name='text_2', text=u'The experiment is about to begin. ', font=u'Arial', pos=[0, 0], height=0.1, wrapWidth=None, color=u'white', colorSpace='rgb', opacity=1, depth=0.0) # Initialize components for Routine "trial" trialClock = core.Clock() ISI = core.StaticPeriod(win=win, screenHz=expInfo['frameRate'], name='ISI') image = visual.ImageStim(win=win, name='image',units='pix', image='sin', mask=None, ori=0, pos=[0, 0], size=[200,200], color=[1,1,1], colorSpace='rgb', opacity=1, flipHoriz=False, flipVert=False, texRes=128, interpolate=True, depth=0.0) fixation = visual.ShapeStim(win, vertices=((0, -0.075), (0, 0.075), (0,0), (-0.05,0), (0.05, 0)), lineWidth=3, closeShape=False, lineColor='white') Wrong_1 = visual.Circle(win=win, units = 'pix', radius = 100,lineColor='red', fillColor = 'red') # Initialize components for Routine "End" EndClock = core.Clock() text = visual.TextStim(win=win, ori=0, name='text', text=u'Experiment is completed. Thank you for your participation.', font=u'Arial', pos=[0, 0], height=0.1, wrapWidth=None, color=u'white', colorSpace='rgb', opacity=1, depth=0.0) ####################### #### Set up onsets #### ####################### corr_thresh = 0.1 dfStims = pd.DataFrame sequence_img_ids = [] img_dict = {2: 'image_folder/stim_2.png', 3: 'image_folder/stim_3.png', 4: 'image_folder/stim_4.png', 5: 'image_folder/stim_5.png'} key_dict = {2:'2', 3:'3', 4:'4', 5:'5'} isDone = 0 while not isDone: trial_types = np.asarray([2, 3, 4, 5]) trial_IDs = np.asarray(range(4)) trial_freq = np.asarray([12, 12, 12, 12]) iti_range = np.asarray([2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8]) n_post = 3 t_vec = [] iti_vec = [] tid_vec = [] for tt in range(0,len(trial_types)): t_vec = np.repeat(trial_types,12) iti_vec = np.tile(iti_range,4) np.random.shuffle(t_vec) np.random.shuffle(iti_vec) vec = [0] id_vec = vec for t in range(0, len(t_vec)): vec = vec + [t_vec[t]] + np.repeat(0,iti_vec[t]).tolist() vec = vec + [0,0,0] dfStims = pd.DataFrame() X = np.zeros((len(vec),len(trial_types))) ons = np.zeros((12,4)) for c in trial_types: a = np.where(vec==c)[0] ons[:,c-2] = a*2 for indx in range(0, len(a)): name = a[indx] X[a[indx]][c-2]= 1 df=
pd.DataFrame(X)
pandas.DataFrame
import numpy as np; np.set_printoptions(precision=4, linewidth=200) import pandas as pd; pd.set_option('display.width', 200) import os import logging import scipy.stats as stats from tqdm import tqdm from polyfun import configure_logger, check_package_versions from polyfun_utils import set_snpid_index from pyarrow import ArrowIOError from pyarrow.lib import ArrowInvalid from polyfun_utils import DEFAULT_REGIONS_FILE def main(args): #read sumstats file try: df_sumstats = pd.read_parquet(args.sumstats) except (ArrowIOError, ArrowInvalid): df_sumstats = pd.read_table(args.sumstats, sep='\s+') #compute p-values if needed if args.pvalue_cutoff is not None: df_sumstats['P'] = stats.chi2(1).sf(df_sumstats['Z']**2) #read regions file df_regions =
pd.read_table(args.regions_file)
pandas.read_table
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Mike # @Contact : <EMAIL> # @Time : 2020/1/6 22:49 # @File : base.py import lightgbm as lgb import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from scipy import sparse from sklearn.model_selection import train_test_split def LR_test(train_x, train_y, test_x, test_y): from sklearn.metrics import log_loss from sklearn.linear_model import LogisticRegression lr = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=0.06, random_state=None, solver='liblinear', max_iter=100, verbose=1) lr.fit(train_x, train_y) predict = lr.predict_proba(test_x)[:, 1] print(log_loss(test_y, predict)) def LGB_test(train_x, train_y, test_x, test_y, cate_col=None): if cate_col: data = pd.concat([train_x, test_x]) for fea in cate_col: data[fea] = data[fea].fillna('-1') data[fea] = LabelEncoder().fit_transform(data[fea].apply(str)) train_x = data[:len(train_x)] test_x = data[len(train_x):] print("LGB test") clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=3000, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, # colsample_bylevel=0.7, learning_rate=0.01, min_child_weight=25, random_state=2018, n_jobs=50 ) clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (test_x, test_y)], early_stopping_rounds=100) feature_importances = sorted(zip(train_x.columns, clf.feature_importances_), key=lambda x: x[1]) return clf.best_score_['valid_1']['binary_logloss'], feature_importances def LGB_predict(data, file): import math data = data.drop(['hour48', 'hour', 'user_id', 'shop_id', 'query1', 'query', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) data['item_category_list'] = LabelEncoder().fit_transform(data['item_category_list']) train = data[data['is_trade'] > -1] predict = data[data['is_trade'] == -2] res = predict[['instance_id']] train_y = train.pop('is_trade') train_x = train.drop(['day', 'instance_id'], axis=1) test_x = predict.drop(['day', 'instance_id', 'is_trade'], axis=1) clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=3000, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, # colsample_bylevel=0.7, learning_rate=0.01, min_child_weight=25, random_state=2018, n_jobs=50 ) clf.fit(train_x, train_y, eval_set=[(train_x, train_y)]) res['predicted_score'] = clf.predict_proba(test_x)[:, 1] testb = pd.read_csv('../data/round2_ijcai_18_test_b_20180510.txt', sep=' ')[['instance_id']] res = pd.merge(testb, res, on='instance_id', how='left') res.to_csv('../submit/' + file + '.txt', sep=' ', index=False) """随机划分15%作为测试""" def off_test_split(org, cate_col=None): data = org[org.is_trade > -1] data = data.drop( ['hour48', 'hour', 'user_id', 'query1', 'query', 'instance_id', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) data['item_category_list'] = LabelEncoder().fit_transform(data['item_category_list']) y = data.pop('is_trade') train_x, test_x, train_y, test_y = train_test_split(data, y, test_size=0.15, random_state=2018) train_x.drop('day', axis=1, inplace=True) test_x.drop('day', axis=1, inplace=True) score = LGB_test(train_x, train_y, test_x, test_y, cate_col) return score """取最后2个小时作为测试""" def off_test_2hour(org, cate_col=None): data = org[org.is_trade > -1] data = data.drop( ['hour48', 'user_id', 'query1', 'query', 'instance_id', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) # data = data.drop( # ['hour48', 'shop_score_delivery', 'shop_star_level', 'user_id', 'shop_review_num_level', 'shop_id', # 'instance_id', 'item_property_list', 'context_id', 'context_timestamp', 'predict_category_property'], axis=1) data['item_category_list'] = LabelEncoder().fit_transform(data['item_category_list']) train = data[data.hour < 10] test = data[data.hour >= 10] train = train.drop(['hour', 'day'], axis=1) test = test.drop(['hour', 'day'], axis=1) train_y = train.pop('is_trade') test_y = test.pop('is_trade') train_x = train test_x = test score = LGB_test(train_x, train_y, test_x, test_y, cate_col) return score """合并多部分特征,f1为train,f2为其他特征的集合""" def add(f1, f2): for i in f2: f1 =
pd.merge(f1, i, on='instance_id', how='left')
pandas.merge
import pandas as pd import streamlit as st import folium from streamlit_folium import folium_static from folium.plugins import MarkerCluster import plotly.express as px import geopandas from PIL import Image st.set_page_config(layout='wide') @st.cache(allow_output_mutation=True) def get_data(path): data = pd.read_csv(path) return data @st.cache(allow_output_mutation=True) def get_geofile(url): geofile = geopandas.read_file(url) return geofile @st.cache(allow_output_mutation=True) def get_image(path2): imag1 = Image.open(path2) return imag1 def data_groupby(data, grou): cou = data[[grou[0], grou[1]]].groupby(grou[0]).median().reset_index() return cou def data_merge(data, df, mer): merg = pd.merge(data, df, on=mer, how='inner') return merg def data_rename(data, cols, ren): df = data.rename({cols[0]: ren[0], cols[1]: ren[1]}, axis='columns') return df def data_reset(): data = pd.read_csv('kc_house_data.csv') return data def data_aprimorate(data): df2 = pd.read_csv('kc_data.csv') return df2 def premises_plan(imag1): st.title('1. Premises and Solution Plan:') st.image(imag1, caption='Created by <NAME>') st.subheader('1.1. Premises:') st.write('This project has as premise to help the company "House Sales in King County, USA", ' 'to find good home buying opportunities and then be able to resell for a higher price ' 'and thus obtain a higher profit thanks to this.') st.write('House Rocket asked on the basis of two main questions:') st.write('1. What properties to buy and how much to sell?') st.write('2. When is the best time to sell these properties?') st.write('In this way, this project has as premises to be able to answer these questions, ' 'and also to produce other relevant insights that may be able to have an impact in ' 'decision-making and, consequently, in the business itself.') st.subheader('1.2. Solution Plan:') st.write('The planning can be said to be divided into 4 parts: good buying opportunities, ' 'increase in the price to be able to sell, best time for resale and chances to be ' 'validated or devalued. Thus, the details of each one are as follows:') st.write('Purchasing opportunities > at this point the analysis was carried out in ascending ' 'order considering the following aspects: size, price, floors, water view, number ' 'of bedrooms and bathrooms. All these aspects in ascending order, that is, the more these aspects before fulfilling (eg: 2 bathrooms, 2 bedrooms, price below the median and etc ...), the better the classification of houses, considering this order of the worst even the best rating: Bad> Good> Great> Excellent') st.write('Increase in the price of houses for resale > was carried out according to a study ' 'of the average price of houses with these conditions and their offers.') st.write('Best time for resale > was carried out according to an analysis of the average price ' 'in the seasons of the year, thus finding what would be the most ideal time.') st.write('10 hypotheses were taken, which were validated or devalued in the course of this project:') st.write('H1 - The price of houses with conditions 3 to 4 in relation to houses with condition 1 is about 41% higher.') st.write('H2 - The price of houses with 2 to 4 bedrooms in relation to houses without bedrooms is 38.27% higher or more.') st.write('H3 - The price of houses with 2 to 4 bathrooms in relation to houses without a bathroom is equal to or greater than 49.30%.') st.write('H4 - The price of houses with 2 floors in relation to houses with only 1 floor is equal to or greater than 26.10%.') st.write('H5 - Houses with a water view have a price 67.86% higher than houses without a water view.') st.write('H6 - The best opportunities are found mostly in south seattle.') st.write('H7: The north has the highest priced houses.') st.write('H8 - The annual growth in house prices is around 5%.') st.write('H9 - The monthly house price growth is somewhat linear, always maintaining price stability.') st.write('H10 - Houses before 1960 have a lower average price.') return None def data_quest(df2): f_status = st.sidebar.multiselect('Filter status:', df2['status'].unique()) st.title('2. Business Questions:') if (f_status != []): df2 = df2.loc[df2['status'].isin(f_status)] else: df2 = df2.copy() st.subheader('2.1. What properties to buy and how much to sell them: (Filter on the side)') df1 = df2.copy() st.dataframe(df1[['id', 'price', 'date', 'price_median', 'condition', 'bedrooms', 'bathrooms', 'sqft_lot', 'lot_median', 'sqft_basement', 'floors', 'status', 'exchange_upgrade']].sort_values('price', ascending=True), height=600) st.write('The table in question was built taking into account all the data in the database to detect the best offers and rank them accordingly as follows:') st.write('1. bad offer: the worst offers with overvalued prices and if resold, even at the best time, it would give little profit. (about 10% more)') st.write('2. good offer: undervalued offers that can yield a good profit due to the low purchase price. (about 20% more)') st.write('3. great offer: subvalidas offers with more bedrooms and bathrooms that can yield a great profit. (about 30% more)') st.write('4. excellent offer: undervalued property indications with all the benefits of others and more than one floor, can yield an excellent profit. (about 40% more)') st.write('') st.write('All of these increases in the resale price were calculated based on whether they were sold at the right time. (this time is indicated below)') st.subheader('2.2. When is the best time to sell these properties:') cols = ['seasons', 'price'] kc = data_groupby(df2, cols) st.dataframe(kc) st.write('The best time for sale is in the spring, as, as the table shows, at that time there is an increase in' 'the price of houses by about 4% in the other seasons.') return None def data_analysis(df2): st.title('3. Insights Obtained:') c1, c2 = st.beta_columns((1, 1)) c3, c4 = st.beta_columns((1, 1)) df2 = df2.copy() cols = ['zipcode', 'sqft_basement'] dm1 = data_groupby(df2, cols) df1 = data_merge(df2, dm1, 'zipcode') cols = ['sqft_basement_x', 'sqft_basement_y'] ren = ['sqft_basement', 'basement_median'] df1 = data_rename(df1, cols, ren) cols = ['condition', 'price'] dg1 = data_groupby(df1, cols) #percentage1 = (dg1.iloc[0, 1] / dg1.iloc[2, 1]) - 1 #percentage2 = (dg1.iloc[0, 1] / dg1.iloc[3, 1]) - 1 #percentage = -(percentage1 + percentage2) / 2 #p1 = percentage * 100 cols = ['bedrooms', 'price'] dg2 = data_groupby(df1, cols) #percentage1 = (dg2.iloc[0, 1] / dg2.iloc[2, 1]) - 1 #percentage2 = (dg2.iloc[0, 1] / dg2.iloc[5, 1]) - 1 #percentage1 * 100, percentage2 * 100 #percentage = -(percentage1 + percentage2) / 2 #p2 = percentage * 100 cols = ['bathrooms', 'price'] dg3 = data_groupby(df1, cols) #percentage1 = (dg3.iloc[0, 1] / dg3.iloc[2, 1]) - 1 #percentage2 = (dg3.iloc[0, 1] / dg3.iloc[5, 1]) - 1 #percentage1 * 100, percentage2 * 100 #percentage = -(percentage1 + percentage2) / 2 #p3 = percentage * 100 cols = ['floors', 'price'] dg4 = data_groupby(df1, cols) #percentage1 = (dg4.iloc[0, 1] / dg4.iloc[2, 1]) - 1 #p4 = -(percentage1 * 100) cols = ['waterfront', 'price'] dg5 = data_groupby(df1, cols) #percentage1 = (dg5.iloc[0, 1] / dg5.iloc[1, 1]) - 1 #p5 = -(percentage1 * 100) c1.subheader('H1 - The price of houses with conditions 3 to 4 in relation to houses with ' 'condition 1 is about 41% higher.(True)') # data plot cols = ['condition', 'price'] ren = ['Condition', 'Price Median'] dg1 = data_rename(dg1, cols, ren) fig = px.bar(dg1.head(4), x='Condition', y='Price Median', color='Price Median', title='Median Prices Per Condition') c1.plotly_chart(fig) c1.write('The graph above shows that houses with conditions 3 to 4 have a price about 41% ' 'higher than houses with conditions 1.') c2.subheader('H2 - The price of houses with 2 to 4 bedrooms in relation to houses ' 'without bedrooms is 38.27% higher or more. (True)') cols = ['bedrooms', 'price'] ren = ['Bedrooms', 'Price Median'] dg2 = data_rename(dg2, cols, ren) fig = px.bar(dg2.head(5), x='Bedrooms', y='Price Median', color='Price Median', title='Median Prices Per Bedrooms') c2.plotly_chart(fig) c2.write('The graph above shows that houses with 2 to 4 bedrooms have a price of about 38.27% higher ' 'than houses with no bedroom.') c3.subheader('H3 - The price of houses with 2 to 4 bathrooms in relation to houses without ' 'a bathroom is equal to or greater than 49.30%. (True)') cols = ['bathrooms', 'price'] ren = ['Bathrooms', 'Price Median'] dg3 = data_rename(dg3, cols, ren) fig = px.bar(dg3.head(6), x='Bathrooms', y='Price Median', color='Price Median', title='Median Prices Per Bathrooms') c3.plotly_chart(fig) c3.write('The graph above shows that houses with 2 to 4 bathrooms are priced at ' 'about 26.10% higher than houses with 1 without bathrooms.') c4.subheader('H4 - The price of houses with 2 floors in relation to houses with only 1 floor ' 'is equal to or greater than 26.10%. (True)') cols = ['floors', 'price'] ren = ['Floors', 'Price Median'] dg4 = data_rename(dg4, cols, ren) fig = px.bar(dg4.head(2), x='Floors', y='Price Median', color='Price Median', title='Median Prices Per Floors') c4.plotly_chart(fig) c4.write('The graph above shows that houses with 2 floors have a price about 26.10% higher ' 'than houses with 1 floor.') st.subheader('H5 - Houses with a water view have a price 67.86% higher than houses ' 'without a water view. (True)') cols = ['waterfront', 'price'] ren = ['Waterfront', 'Price Median'] dg5 = data_rename(dg5, cols, ren) fig = px.bar(dg5, x='Waterfront', y='Price Median', color='Price Median', title='Median Prices Per Waterfront') st.plotly_chart(fig) st.write('The graph above shows that houses with a water view have a price of about 67.86% ' 'higher than houses without.') return None def buys_map(df2, geofile): st.title('4. Best Opportunities Vision:') c1, c2 = st.beta_columns((1, 1)) c1.subheader('H6 - The best opportunities (excellent offers) se ' 'were found on general in the south of seattle. (False)') df = df2[df2['status'] == 'excellent offer'] # Base Map - Folium density_map = folium.Map(location=[data['lat'].mean(), data['long'].mean()], default_zoom_start=15) marker_cluster = MarkerCluster().add_to(density_map) for name, row in df.iterrows(): folium.Marker([row['lat'], row['long']], popup='Sold R${0} on: {1}. Features: {2} sqft, {3} bedrooms, {4}' 'bathrooms, status: {5}'.format(row['price'], row['date'], row['sqft_living'], row['bedrooms'], row['bathrooms'], row['status'])).add_to( marker_cluster) with c1: folium_static(density_map) c1.write('This hypothesis is invalidated, as it is visible on the map that the south has fewer ' 'excellent opportunities than other regions.') # Region Price Map c2.subheader('H7: The north has the highest priced houses. (False)') df = df2[['price', 'zipcode']].groupby('zipcode').mean().reset_index() df.columns = ['ZIP', 'PRICE'] df = df.sample(50) geofile = geofile[geofile['ZIP'].isin(df['ZIP'].tolist())] region_price_map = folium.Map(location=[df2['lat'].mean(), df2['long'].mean()], default_zoom_start=15) region_price_map.choropleth(data=df, geo_data=geofile, columns=['ZIP', 'PRICE'], key_on='feature.properties.ZIP', fill_color='YlOrRd', fill_opacity=0.7, line_opacity=0.2, legend_name='AVG PRICE') with c2: folium_static(region_price_map) c2.write('This hypothesis is invalidated, as it is visible that the higher price density ' '(higher price in the region) would be more located to the east and not to the north.') return None def prices_growing(df2): st.title('5. Studies of Growth:') c1, c2 = st.beta_columns((1, 1)) df2['date'] = pd.to_datetime(df2['date']).dt.strftime('%Y') cols = ['date', 'price'] dg8 = data_groupby(df2, cols) data = pd.read_csv('kc_house_data.csv') data['date'] =
pd.to_datetime(data['date'])
pandas.to_datetime
"""Xray object detection dataset class.""" from typing import Dict, Tuple import cv2 import numpy as np import os import pandas as pd import torch from albumentations.core.composition import Compose from hydra.utils import to_absolute_path from omegaconf import DictConfig, OmegaConf from sklearn.model_selection import train_test_split from torch.utils.data import Dataset from utils import load_obj, read_labels class XrayDataset(Dataset): """Xray object detection dataset class.""" def __init__( self, dataframe: pd.DataFrame = None, mode: str = "train", image_dir: str = "", cfg: DictConfig = None, transforms: Compose = None, ): """ Prepare data for object detection on chest X-ray images. Parameters ---------- dataframe : pd.DataFrame, optional dataframe with image id and bboxes, by default None mode : str, optional train/val/test, by default "train" image_dir : str, optional path to images, by default "" cfg : DictConfig, optional config with parameters, by default None transforms : Compose, optional albumentations, by default None """ self.image_dir = image_dir self.df = dataframe self.mode = mode self.cfg = cfg self.image_ids = ( os.listdir(self.image_dir) if self.df is None else self.df["image_id"].unique() ) self.transforms = transforms def __getitem__( self, idx: int ) -> Tuple[torch.tensor, Dict[str, torch.tensor], str]: """ Get dataset item. Parameters ---------- idx : int Dataset item index Returns ------- Tuple[Tensor, Dict[str, Tensor], str] (image, target, image_id) """ image_id = self.image_ids[idx] image = cv2.imread(f"{self.image_dir}/{image_id}", cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) # test dataset must have some values so that transforms work. target = { "labels": torch.as_tensor([[0]], dtype=torch.float32), "boxes": torch.as_tensor([[0, 0, 0, 0]], dtype=torch.float32), } # for train and valid test create target dict. if self.mode != "test": image_data = self.df.loc[self.df["image_id"] == image_id] boxes = image_data[["x", "y", "x1", "y1"]].values boxes = torch.as_tensor(boxes, dtype=torch.float32) areas = image_data["area"].values areas = torch.as_tensor(areas, dtype=torch.float32) label_dict = read_labels( to_absolute_path(self.cfg.data.labels_path) ) labels = [ label_dict[label] for label in image_data["label"].values ] labels = torch.as_tensor(labels, dtype=torch.int64) iscrowd = torch.zeros((image_data.shape[0],), dtype=torch.int64) target["boxes"] = boxes target["labels"] = labels target["image_id"] = torch.tensor([idx]) target["area"] = areas target["iscrowd"] = iscrowd if self.transforms: image_dict = { "image": image, "bboxes": target["boxes"], "labels": labels, } image_dict = self.transforms(**image_dict) image = image_dict["image"] target["boxes"] = torch.as_tensor( image_dict["bboxes"], dtype=torch.float32 ) else: image_dict = { "image": image, "bboxes": target["boxes"], "labels": target["labels"], } image = self.transforms(**image_dict)["image"] return image, target, image_id def __len__(self) -> int: """ Get dataset size. Returns ------- int Dataset size """ return len(self.image_ids) def get_training_dataset(cfg: DictConfig = None) -> Dict[str, Dataset]: """ Get training and validation datasets. Parameters ---------- cfg : DictConfig, optional Project configuration, by default None Returns ------- Dict[str, Dataset] {"train": train_dataset, "valid": valid_dataset} """ images_dir = to_absolute_path(cfg.data.images_folder_path) data = pd.read_csv(to_absolute_path(cfg.data.dataset_path)) data["x1"] = data["x"] + data["w"] data["y1"] = data["y"] + data["h"] data["area"] = data["w"] * data["h"] train_ids, valid_ids = train_test_split( data["image_id"].unique(), test_size=cfg.data.validation_split, random_state=cfg.training.seed, ) # for fast training if cfg.training.debug: train_ids = train_ids[:10] valid_ids = valid_ids[:10] train_df = data.loc[data["image_id"].isin(train_ids)] valid_df = data.loc[data["image_id"].isin(valid_ids)] train_augs_list = [ load_obj(i["class_name"])(**i["params"]) for i in cfg["augmentation"]["train"]["augs"] ] train_bbox_params = OmegaConf.to_container( (cfg["augmentation"]["train"]["bbox_params"]) ) train_augs = Compose(train_augs_list, bbox_params=train_bbox_params) valid_augs_list = [ load_obj(i["class_name"])(**i["params"]) for i in cfg["augmentation"]["valid"]["augs"] ] valid_bbox_params = OmegaConf.to_container( (cfg["augmentation"]["valid"]["bbox_params"]) ) valid_augs = Compose(valid_augs_list, bbox_params=valid_bbox_params) train_dataset = XrayDataset(train_df, "train", images_dir, cfg, train_augs) valid_dataset = XrayDataset(valid_df, "valid", images_dir, cfg, valid_augs) return {"train": train_dataset, "valid": valid_dataset} def get_test_dataset(cfg: DictConfig = None) -> Dataset: """ Get test dataset. Parameters ---------- cfg : DictConfig, optional Project configuration, by default None Returns ------- Dataset Pytorch dataset """ images_dir = to_absolute_path(cfg.data.images_folder_path) data_path = to_absolute_path(cfg.data.dataset_path) train_ids = set(pd.read_csv(data_path).image_id.values) all_ids = set(os.listdir(to_absolute_path(images_dir))) test_ids = all_ids.difference(train_ids) # for fast testing if cfg.testing.debug: test_ids = list(test_ids)[:100] test_df =
pd.DataFrame(test_ids, columns=["image_id"])
pandas.DataFrame
import numpy as np import pandas as pd from scipy.stats import norm import unittest import networkx as nx from context import grama as gr from context import models ## FD stepsize h = 1e-8 ## Core function tests ################################################## class TestModel(unittest.TestCase): """Test implementation of model """ def setUp(self): # Default model self.df_wrong = pd.DataFrame(data={"z": [0.0, 1.0]}) # 2D identity model with permuted df inputs domain_2d = gr.Domain(bounds={"x0": [-1.0, +1.0], "x1": [0.0, 1.0]}) marginals = {} marginals["x0"] = gr.MarginalNamed( d_name="uniform", d_param={"loc": -1, "scale": 2} ) marginals["x1"] = gr.MarginalNamed( sign=-1, d_name="uniform", d_param={"loc": 0, "scale": 1}, ) self.model_2d = gr.Model( functions=[ gr.Function( lambda x: [x[0], x[1]], ["x0", "x1"], ["y0", "y1"], "test", 0 ), ], domain=domain_2d, density=gr.Density(marginals=marginals), ) self.df_2d = pd.DataFrame(data={"x1": [0.0], "x0": [+1.0]}) self.res_2d = self.model_2d.evaluate_df(self.df_2d) self.df_median_in = pd.DataFrame({"x0": [0.5], "x1": [0.5]}) self.df_median_out = pd.DataFrame({"x0": [0.0], "x1": [0.5]}) self.model_3d = gr.Model( functions=[ gr.Function( lambda x: x[0] + x[1] + x[2], ["x", "y", "z"], ["f"], "test", 0 ) ], density=gr.Density(marginals=marginals), ) ## Timing check self.model_slow = gr.Model( functions=[ gr.Function(lambda x: x, ["x0"], ["y0"], "f0", 1), gr.Function(lambda x: x, ["x0"], ["y1"], "f1", 1), ] ) def test_prints(self): ## Invoke printpretty self.model_3d.printpretty() def test_timings(self): ## Default is zero self.assertTrue(self.model_2d.runtime(1) == 0) ## Estimation accounts for both functions self.assertTrue(np.allclose(self.model_slow.runtime(1), 2)) ## Fast function has empty message self.assertTrue(self.model_2d.runtime_message(self.df_2d) is None) ## Slow function returns string message msg = self.model_slow.runtime_message(pd.DataFrame({"x0": [0]})) self.assertTrue(isinstance(msg, str)) ## Basic functionality with default arguments def test_catch_input_mismatch(self): """Checks that proper exception is thrown if evaluate(df) passed a DataFrame without the proper columns. """ self.assertRaises(ValueError, self.model_2d.evaluate_df, self.df_wrong) def test_var_outer(self): ## Test pass-throughs df_test = pd.DataFrame(dict(x0=[0])) md_no_rand = gr.Model() >> gr.cp_function(fun=lambda x: x, var=1, out=1) md_no_rand.var_outer(pd.DataFrame(), df_det="nom") md_no_det = md_no_rand >> gr.cp_marginals( x0={"dist": "uniform", "loc": 0, "scale": 1} ) md_no_det.var_outer(df_test, df_det="nom") ## Test assertions with self.assertRaises(ValueError): self.model_3d.var_outer(self.df_2d) with self.assertRaises(ValueError): self.model_3d.var_outer(self.df_2d, df_det="foo") with self.assertRaises(ValueError): self.model_3d.var_outer(self.df_2d, df_det=self.df_2d) def test_drop_out(self): """Checks that output column names are properly dropped""" md = gr.Model() >> gr.cp_function(lambda x: x[0] + 1, var=1, out=1) df_in = gr.df_make(x0=[0, 1, 2], y0=[0, 1, 2]) df_true = gr.df_make(x0=[0, 1, 2], y0=[1, 2, 3]) df_res = md >> gr.ev_df(df=df_in) self.assertTrue(gr.df_equal(df_res, df_true, close=True)) ## Test re-ordering issues def test_2d_output_names(self): """Checks that proper output names are assigned to resulting DataFrame """ self.assertEqual( set(self.model_2d.evaluate_df(self.df_2d).columns), set(self.model_2d.out) ) def test_quantile(self): """Checks that model.sample_quantile() evaluates correctly. """ df_res = self.model_2d.density.pr2sample(self.df_median_in) self.assertTrue(gr.df_equal(df_res, self.df_median_out)) def test_empty_functions(self): md = gr.Model() >> gr.cp_bounds(x=[-1, +1]) with self.assertRaises(ValueError): gr.eval_nominal(md) def test_nominal(self): """Checks the implementation of nominal values""" md = gr.Model() >> gr.cp_bounds( x0=[-1, +1], x1=[0.1, np.Inf], x2=[-np.Inf, -0.1], ) df_true = gr.df_make(x0=0.0, x1=+0.1, x2=-0.1) df_res = gr.eval_nominal(md, df_det="nom", skip=True) self.assertTrue(gr.df_equal(df_res, df_true)) ## Test sample transforms def test_transforms(self): ## Setup df_corr = pd.DataFrame(dict(var1=["x"], var2=["y"], corr=[0.5])) Sigma_h = np.linalg.cholesky(np.array([[1.0, 0.5], [0.5, 1.0]])) md = ( gr.Model() >> gr.cp_marginals( x=dict(dist="norm", loc=0, scale=1), y=dict(dist="norm", loc=0, scale=1) ) >> gr.cp_copula_gaussian(df_corr=df_corr) ) ## Copula and marginals have same var_rand order self.assertTrue(list(md.density.marginals) == md.density.copula.var_rand) ## Transforms invariant z = np.array([0, 0]) x = md.z2x(z) zp = md.x2z(x) self.assertTrue(np.all(z == zp)) df_z = gr.df_make(x=0.0, y=0.0) df_x = md.norm2rand(df_z) df_zp = md.rand2norm(df_x) self.assertTrue(gr.df_equal(df_z, df_zp)) ## Jacobian accurate dxdz_fd = np.zeros((2, 2)) dxdz_fd[0, :] = (md.z2x(z + np.array([h, 0])) - md.z2x(z)) / h dxdz_fd[1, :] = (md.z2x(z + np.array([0, h])) - md.z2x(z)) / h dxdz_p = md.dxdz(z) self.assertTrue(np.allclose(dxdz_fd, dxdz_p)) ## Test DAG construction def test_dag(self): md = ( gr.Model("model") >> gr.cp_function(lambda x: x, var=1, out=1) >> gr.cp_function(lambda x: x[0] + x[1], var=["x0", "y0"], out=1) ) G_true = nx.DiGraph() G_true.add_edge("(var)", "f0", label="{}".format({"x0"})) G_true.add_edge("f0", "(out)", label="{}".format({"y0"})) G_true.add_edge("(var)", "f1", label="{}".format({"x0"})) G_true.add_edge("f0", "f1", label="{}".format({"y0"})) G_true.add_edge("f1", "(out)", label="{}".format({"y1"})) nx.set_node_attributes(G_true, "model", "parent") self.assertTrue( nx.is_isomorphic( md.make_dag(), G_true, node_match=lambda u, v: u == v, edge_match=lambda u, v: u == v, ) ) class TestEvalDf(unittest.TestCase): """Test implementation of eval_df() """ def setUp(self): self.model = models.make_test() def test_catch_no_df(self): """Checks that eval_df() raises when no input df is given. """ self.assertRaises(ValueError, gr.eval_df, self.model) class TestMarginal(unittest.TestCase): def setUp(self): self.marginal_named = gr.MarginalNamed( d_name="norm", d_param={"loc": 0, "scale": 1} ) def test_fcn(self): ## Invoke summary self.marginal_named.summary() ## Correct values for normal distribution self.assertTrue(self.marginal_named.l(0.5) == norm.pdf(0.5)) self.assertTrue(self.marginal_named.p(0.5) == norm.cdf(0.5)) self.assertTrue(self.marginal_named.q(0.5) == norm.ppf(0.5)) # -------------------------------------------------- class TestDomain(unittest.TestCase): def setUp(self): self.domain = gr.Domain(bounds={"x": (0, 1)}) def test_blank(self): ## Test blank domain valid gr.Domain() ## Invoke summary self.domain.bound_summary("x") ## Invoke summary; self.assertTrue(self.domain.bound_summary("y").find("unbounded") > -1) # -------------------------------------------------- class TestDensity(unittest.TestCase): def setUp(self): self.density = gr.Density( marginals=dict( x=gr.MarginalNamed(d_name="uniform", d_param={"loc": -1, "scale": 2}), y=gr.MarginalNamed(d_name="uniform", d_param={"loc": -1, "scale": 2}), ), copula=gr.CopulaGaussian( ["x", "y"], pd.DataFrame(dict(var1=["x"], var2=["y"], corr=[0.5])) ), ) def test_copula_warning(self): md = gr.Model() with self.assertRaises(ValueError): md.density.sample() def test_CopulaIndependence(self): copula = gr.CopulaIndependence(var_rand=["x", "y"]) df_res = copula.sample(seed=101) self.assertTrue(set(df_res.columns) == set(["x", "y"])) ## Transforms invariant z = np.array([0, 0]) u = copula.z2u(z) zp = copula.u2z(u) self.assertTrue(np.all(z == zp)) ## Jacobian accurate dudz_fd = np.zeros((2, 2)) dudz_fd[0, :] = (copula.z2u(z + np.array([h, 0])) - copula.z2u(z)) / h dudz_fd[1, :] = (copula.z2u(z + np.array([0, h])) - copula.z2u(z)) / h dudz_p = copula.dudz(z) self.assertTrue(np.allclose(dudz_fd, dudz_p)) def test_CopulaGaussian(self): df_corr = pd.DataFrame(dict(var1=["x"], var2=["y"], corr=[0.5])) Sigma_h = np.linalg.cholesky(np.array([[1.0, 0.5], [0.5, 1.0]])) copula = gr.CopulaGaussian(["x", "y"], df_corr=df_corr) df_res = copula.sample(seed=101) self.assertTrue(np.isclose(copula.Sigma_h, Sigma_h).all) self.assertTrue(set(df_res.columns) == set(["x", "y"])) ## Test raises df_corr_invalid = pd.DataFrame( dict(var1=["x", "x"], var2=["y", "z"], corr=[0, 0]) ) with self.assertRaises(ValueError): gr.CopulaGaussian(["x", "y"], df_corr=df_corr_invalid) ## Transforms invariant z = np.array([0, 0]) u = copula.z2u(z) zp = copula.u2z(u) self.assertTrue(np.all(z == zp)) ## Jacobian accurate dudz_fd = np.zeros((2, 2)) dudz_fd[0, :] = (copula.z2u(z + np.array([h, 0])) - copula.z2u(z)) / h dudz_fd[1, :] = (copula.z2u(z + np.array([0, h])) - copula.z2u(z)) / h dudz_p = copula.dudz(z) self.assertTrue(np.allclose(dudz_fd, dudz_p)) def test_conversion(self): df_pr_true = pd.DataFrame(dict(x=[0.5], y=[0.5])) df_sp_true = pd.DataFrame(dict(x=[0.0], y=[0.0])) df_pr_res = self.density.sample2pr(df_sp_true) df_sp_res = self.density.pr2sample(df_pr_true) self.assertTrue(gr.df_equal(df_pr_true, df_pr_res)) self.assertTrue(gr.df_equal(df_sp_true, df_sp_res)) def test_sampling(self): df_sample = self.density.sample(n=1, seed=101) self.assertTrue(set(df_sample.columns) == set(["x", "y"])) # -------------------------------------------------- class TestFunction(unittest.TestCase): def setUp(self): self.fcn = gr.Function(lambda x: x, ["x"], ["x"], "test", 0) self.fcn_vec = gr.FunctionVectorized(lambda df: df, ["x"], ["x"], "test", 0) self.df =
pd.DataFrame({"x": [0]})
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import analyze from utils import plot_collections, bin, modify, plotting """ Blue: #0C5DA5 Green: #00B945 """ plt.style.use(['science', 'ieee', 'std-colors']) fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) sciblue = '#0C5DA5' scigreen = '#00B945' # --- --- SETUP # --- files to read dataset_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/datasets/synthetic_overlap_noise-level1/' base_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/publication data/iteration 5/synthetic grid overlap random z nl1/' # test coords base_testcoords = 'test_coords/' idpt1 = 'dx-5-60-5/test_id1_coords_static_grid-overlap-random-z-nl1.xlsx' spct1 = 'dx-5-60-5/test_id11_coords_SPC_grid-overlap-random-z-nl1.xlsx' idpt2 = 'dx-7.5-57.5-5/test_id2_coords_static_grid-overlap-random-z-nl1.xlsx' spct2 = 'dx-7.5-57.5-5/test_id12_coords_SPC_grid-overlap-random-z-nl1.xlsx' # true coords true1 = dataset_dir + 'grid-random-z/calibration_input/calib_-15.0.txt' true2 = dataset_dir + 'grid-random-z/test_input_dx7.5/B0000.txt' # diameter parameters path_diameter_params = dataset_dir + 'grid/results/calibration-SPC-spct-no_noise_cal/calib_spct_pop_defocus_stats_GridOverlapSPC_calib_nll1_SPC_no_noise_cal.xlsx' # save ids save_ids = ['test_id1_coords_static', 'test_id11_coords_SPC', 'test_id2_coords_static', 'test_id12_coords_SPC', ] modifiers = [True, True, False, False] # --- --- PERCENT DIAMETER OVERLAP export_percent_diameter_overlap = False plot_percent_diameter_overlap = False if plot_percent_diameter_overlap or export_percent_diameter_overlap: # --- read each percent diameter overlap dataframe (if available) calculate_percent_overlap = False for sid, modifier in zip(save_ids, modifiers): if calculate_percent_overlap: # --- For each test coords, calculate percent diameter overlap for test_coord, true_coord, filt, sid in zip([idpt1, spct1, idpt2, spct2], [true1, true1, true2, true2], modifier, save_ids): dfo = analyze.calculate_particle_to_particle_spacing( test_coords_path=base_dir + base_testcoords + test_coord, theoretical_diameter_params_path=path_diameter_params, mag_eff=10, z_param='z_true', zf_at_zero=False, zf_param='zf_from_dia', max_n_neighbors=5, true_coords_path=true_coord, maximum_allowable_diameter=55) # filter dx 5 60 5 coords if filt: dfo = dfo[dfo['x'] < 820] # save to excel dfo.to_excel(base_dir + 'percent-overlap/{}_grid-overlap-random-z-nl1_percent_overlap.xlsx'.format(sid), index=False) else: dfo = pd.read_excel(base_dir + 'percent-overlap/test_coords_percent_overlap/' '{}_grid-overlap-random-z-nl1_percent_overlap.xlsx'.format(sid)) # --- --- EVALUATE RMSE Z # limit percent diameter overlap to -25% (not overlapping here) dfo['percent_dx_diameter'] = dfo['percent_dx_diameter'].where(dfo['percent_dx_diameter'] > -0.5, -0.5) # binning columns_to_bin = ['z_true', 'percent_dx_diameter'] bin_z = [-27.5, -15, -2.5, 10, 22.5] bin_pdo = 3 dfbicts = analyze.evaluate_2d_bin_local_rmse_z(df=dfo, columns_to_bin=columns_to_bin, bins=[bin_z, bin_pdo], round_to_decimals=[3, 4], min_cm=0.5, equal_bins=[False, True]) # --- --- PLOT RMSE Z if plot_percent_diameter_overlap: # Plot rmse z + number of particles binned as a function of percent diameter overlap for different z bins fig, [ax, ax2] = plt.subplots(nrows=2, sharex=True, figsize=(size_x_inches*1.35, size_y_inches*1.5)) for name, df in dfbicts.items(): ax.plot(df.bin, df.rmse_z, '-o', label=name) ax2.plot(df.bin, df.num_bind, '-o') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') ax.set_yscale('log') ax.legend(loc='upper left', bbox_to_anchor=(1, 1), title=r'$z_{bin}$') ax2.set_xlabel(r'$\gamma \: $(\%)') ax2.set_ylabel(r'$N_{p}$') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_rmsez_num-binned_pdo.png'.format(sid)) plt.show() # --- --- EXPORT RMSE Z TO EXCEL # dfstack = modify.stack_dficts_by_key(dfbicts, drop_filename=False) # dfstack.to_excel(base_dir + 'percent-overlap/{}_binned_rmsez_by_z_pdo.xlsx'.format(sid), index=False) # --- --- PLOT OTHER METRICS # --- calculate the local rmse_z uncertainty num_bins = 25 bin_list = np.round(np.linspace(-1.25, 1, 10), 4) min_cm = 0.5 z_range = [-40.1, 40.1] round_to_decimal = 4 df_ground_truth = None # bin by percent diameter overlap if plot_percent_diameter_overlap: dfob = bin.bin_local_rmse_z(df=dfo, column_to_bin='percent_dx_diameter', bins=bin_list, min_cm=min_cm, z_range=z_range, round_to_decimal=round_to_decimal, df_ground_truth=df_ground_truth) fig, ax = plt.subplots() ax.plot(dfob.index, dfob.rmse_z, '-o') ax.set_xlabel(r'$\gamma \: $(\%)') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_binned_rmsez_by_pdo.png'.format(sid)) plt.show() # bin by z dfobz = bin.bin_local_rmse_z(df=dfo, column_to_bin='z_true', bins=num_bins, min_cm=min_cm, z_range=z_range, round_to_decimal=round_to_decimal, df_ground_truth=df_ground_truth) fig, ax = plt.subplots() ax.plot(dfobz.index, dfobz.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \:$ ($\mu m$)') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_binned_rmsez_by_z.png'.format(sid)) plt.show() # --- --- CALCULATE RMSE BY PARTICLE TO PARTICLE SPACINGS # --- setup column_to_split = 'x' round_x_to_decimal = 0 if modifier: splits = np.array([93.0, 189.0, 284.0, 380.0, 475.0, 571.0, 666.0, 762.0, 858.0, 930]) # , 900.0 keys = [60, 5, 10, 15, 20, 25, 30, 35, 40, 50] # , 47.5 else: splits = np.array([79.0, 163.5, 254.0, 348.5, 447.0, 555.5, 665.0, 777.5, 900.0]) keys = [7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5] # --- split df into dictionary dfsplicts_gdpyt = modify.split_df_and_merge_dficts(dfo, keys, column_to_split, splits, round_x_to_decimal) # --- rmse z by binning x dfmbicts_gdpyt = analyze.calculate_bin_local_rmse_z(dfsplicts_gdpyt, column_to_split, splits, min_cm, z_range, round_x_to_decimal, dficts_ground_truth=None) # --- plot global uncertainty - gdpyt if plot_percent_diameter_overlap: xlabel_for_keys = r'$\delta x (pix)$' h = 80 scale_fig_dim = [1, 1] fig, ax, ax2 = plotting.plot_dfbicts_global(dfmbicts_gdpyt, parameters='rmse_z', xlabel=xlabel_for_keys, h=h, scale=scale_fig_dim) plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_global_binned_rmsez_by_z.png'.format(sid)) plt.show() # --- --- EXPORT GLOBAL RMSE Z TO EXCEL if export_percent_diameter_overlap: dfstack = modify.stack_dficts_by_key(dfmbicts_gdpyt, drop_filename=False) dfstack.to_excel(base_dir + 'percent-overlap/{}_global_binned_rmsez_by_particle_spacing.xlsx'.format(sid), index=False) # --- --- COMBINED PARTICLE TO PARTICLE SPACING plot_particle_spacing = False if plot_particle_spacing: # read files read_dir = base_dir + 'percent-overlap/particle-to-particle-spacing/' fn1 = 'test_id1_coords_static_global_binned_rmsez_by_particle_spacing' fn2 = 'test_id2_coords_static_global_binned_rmsez_by_particle_spacing' fn11 = 'test_id11_coords_SPC_global_binned_rmsez_by_particle_spacing' fn12 = 'test_id12_coords_SPC_global_binned_rmsez_by_particle_spacing' df1 =
pd.read_excel(read_dir + fn1 + '.xlsx')
pandas.read_excel
from django.shortcuts import render from django.http import HttpResponse from datetime import datetime import psycopg2 import math import pandas as pd from openpyxl import Workbook import csv import random def psql_pdc(query): #credenciales PostgreSQL produccion connP_P = { 'host' : '10.150.1.74', 'port' : '5432', 'user':'postgres', 'password':'<PASSWORD>', 'database' : 'postgres'} #conexion a PostgreSQL produccion conexionP_P = psycopg2.connect(**connP_P) #print('\nConexión con el servidor PostgreSQL produccion establecida!') cursorP_P = conexionP_P.cursor () #ejecucion query telefonos PostgreSQL cursorP_P.execute(query) anwr = cursorP_P.fetchall() cursorP_P.close() conexionP_P.close() return anwr def to_horiz(anwr_P,name,_id): #vertical horizontal anwr_P1 = anwr_P.pivot(index=0,columns=1) anwr_P1[_id] = anwr_P1.index col1 = [] i=0 for i in range(anwr_P1.shape[1]-1): col1.append(name+str(i+1)) col1.append(_id) anwr_P1.columns = col1 return anwr_P1 def csv_o(fn,name): response = HttpResponse(content_type = "text/csv") content = "attachment; filename = %s"%name response["Content-Disposition"] = content # for j in range(fn.shape[1]): # try: # fn.iloc[:,j] = fn.iloc[:,j].str.decode(encoding='utf-8-sig') # fn.iloc[:,j] = fn.iloc[:,j].str.encode(encoding='utf_16_le') # except: # pass fn2 = [tuple(x) for x in fn.values] writer = csv.writer(response,delimiter ='|') writer.writerow(fn.columns) writer.writerows(fn2) return response def excel(fn,name): wb = Workbook() ws = wb.active k = 0 a = pd.DataFrame(fn.columns) for k in range(a.shape[0]): ws.cell(row = 1, column = k+1).value = a.iloc[k,0] i=0 j=0 for i in range(fn.shape[0]): for j in range(0,fn.shape[1]): try: ws.cell(row = i+2, column = j+1).value = fn.iloc[i,j] except: pass response = HttpResponse(content_type = "application/ms-excel") content = "attachment; filename = %s"%name response["Content-Disposition"] = content wb.save(response) return response def excel_CV_COL(request): today = datetime.now() tablename = "CV_Col"+today.strftime("%Y%m%d%H") + ".xlsx" with open("./hello/Plantillas/Colp/QueryTel_COL.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Colp/QueryCor_COL.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Colp/QueryDir_COL.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Colp/QueryCV_COL.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Colp/QueryCiu_COL.txt","r") as f6: queryP_Ciu = f6.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") df = df.rename(columns={0:'rownumber', 1:'obligacion_id', 2:'deudor_id', 3:'unico', 4:'estado', 5:'tipo_cliente', 6:'nombre', 7:'producto', 8:'initial_bucket', 9:'ciudad', 10:'sucursal', 11:'tipo_prod', 12:'dias_mora_inicial', 13:'dias_mora_actual', 14:'rango_mora_inicial', 15:'rango_mora_final', 16:'rango', 17:'suma_pareto', 18:'rango_pareto', 19:'fcast', 20:'fdesem', 21:'vrdesem', 22:'saldo_total_inicial', 23:'saldo_total_actual', 24:'saldo_capital_inicial', 25:'saldo_capital_actual', 26:'saldo_vencido_inicial', 27:'saldo_vencido_actual', 28:'pagomin', 29:'fultpago', 30:'vrultpago', 31:'agencia', 32:'tasainter', 33:'feultref', 34:'ultcond', 35:'fasigna', 36:'eqasicampana', 37:'diferencia_pago', 38:'pago_preliminar', 39:'pago_cliente', 40:'min', 41:'tarifa', 42:'honorarios', 43:'perfil_mes_4', 44:'perfil_mes_3', 45:'perfil_mes_2', 46:'perfil_mes_1', 47:'fecha_primer_gestion', 48:'fecha_ultima_gestion', 49:'perfil_mes_actual', 50:'contactabilidad', 51:'ultimo_alo', 52:'descod1', 53:'descod2', 54:'asesor', 55:'fecha_gestion', 56:'telefono_mejor_gestion', 57:'mejorgestionhoy', 58:'asesor_indicador_hoy', 59:'repeticion', 60:'llamadas', 61:'sms', 62:'correos', 63:'gescall', 64:'visitas', 65:'whatsapp', 66:'no_contacto', 67:'total_gestiones', 68:'telefono_positivo', 69:'marcaciones_telefono_positivo', 70:'ultima_marcacion_telefono_positivo', 71:'fec_creacion_ult_compromiso', 72:'fec_pactada_ult_compromiso', 73:'valor_acordado_ult_compromiso', 74:'asesor_ult_compromiso', 75:'cantidad_acuerdos_mes', 76:'estado_acuerdo',}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) return excel(fn,tablename) def csv_CV_Claro(request): today = datetime.now() tablename = "CV_Claro" + today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Claro/QueryTel_Claro.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Claro/QueryCor_Claro.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Claro/QueryCV_Claro.txt","r") as f4: queryP_cons = f4.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) yanwr = psql_pdc(queryP_cons) #dataframes anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) df = pd.DataFrame(yanwr) anwr_P1 = to_horiz(anwr_P,'phone','deudor_id') #renombrar campos correos anwr_C = anwr_C.rename(columns={ 0:'deudor_id', 1:'mail0', 2:'mail1'}) anwr_C1 = anwr_C.drop_duplicates(subset=['deudor_id']) #renombrar campos CV df = df.rename(columns={0:'rownumber', 1:'deudor_id', 2:'obligacion_id', 3:'nombredelcliente', 4:'estado', 5:'tipo_cliente', 6:'unico', 7:'crmorigen', 8:'potencialmark', 9:'prepotencialmark', 10:'writeoffmark', 11:'dias_mora', 12:'segmento_bpo', 13:'rango_bpo', 14:'tipo', 15:'fecha_de_vencimiento', 16:'min_cliente', 17:'valorscoring', 18:'numeroreferenciadepago', 19:'monto_inicial', 20:'monto_ini_cuenta', 21:'porcentaje_descuento', 22:'valor_descuento', 23:'valor_a_pagar', 24:'deuda_real', 25:'valor_pago', 26:'saldo_pendiente', 27:'fecha_pago', 28:'fecha_compromiso', 29:'fecha_pago_compromiso', 30:'valor_compromiso', 31:'estado_acuerdo', 32:'ind_m4', 33:'ind_m3', 34:'ind_m2', 35:'ind_m1', 36:'fecha_primer_gestion', 37:'fecha_ultima_gestion', 38:'indicador', 39:'phone', 40:'asesor', 41:'fecha_gestion', 42:'contactabilidad', 43:'indicador_hoy', 44:'repeticion', 45:'llamadas', 46:'sms', 47:'correos', 48:'gescall', 49:'whatsapp', 50:'visitas', 51:'no_contacto', 52:'total_gestiones', 53:'telefono_positivo', 54:'fec_ultima_marcacion'}) #a = fn[fn.obligacion_id == '9876510000211227'] #i=0 #lin = ['no_contacto_mes_actual','gescall_mes_actual','tel_mes_actual','tel_positivo'] #for i in lin: # df[i].fillna(0,inplace=True) # df[i] = df[i].apply(lambda x: round(x)) # df[i] = df[i].astype('str') fn = pd.merge(df,anwr_P1,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,anwr_C1,on = ["deudor_id"]\ ,how = "left",indicator = False) return csv_o(fn,tablename) def csv_CV_CarP(request): today = datetime.now() tablename = "CV_CarP" + today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/CarP/QueryTel_CarP.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/CarP/QueryCor_CarP.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/CarP/QueryDir_CarP.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/CarP/QueryCV_CarP.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/CarP/QueryCiu_CarP.txt","r") as f5: queryP_Ciu = f5.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") #renombrar campos CV df = df.rename(columns={0:'deudor_id', 1:'unico', 2:'nombre', 3:'obligacion', 4:'obligacion_17', 5:'tipo_cliente', 6:'sucursal_final', 7:'zona', 8:'ano_castigo', 9:'saldo_k_pareto_mes_vigente', 10:'intereses', 11:'honorarios_20', 12:'saldo_total_mes_vigente', 13:'saldo_total_pareto_mes_vigente_', 14:'saldokpareto', 15:'rango_k_pareto', 16:'interesespareto', 17:'honorariospareto', 18:'porcentaje_k_del_total', 19:'porcentaje_intereses_del_total', 20:'porcentaje_honorarios_del_total', 21:'rango_k_porcentaje', 22:'capital_20_porciento', 23:'dias_mora_acumulado', 24:'marca_juridica_cliente', 25:'focos', 26:'valor_pago', 27:'ultima_fecha_pago', 28:'estado_cliente_mes_anterior', 29:'valor_compromiso', 30:'fecha_compromiso', 31:'fecha_pactada_compromiso', 32:'asesor_compromiso', 33:'ind_m4', 34:'ind_m3', 35:'ind_m2', 36:'ind_m1', 37:'fecha_primer_gestion', 38:'fecha_ultima_gestion', 39:'indicador', 40:'telefono_mejor_gestion', 41:'asesor_mejor_gestion', 42:'fecha_gestion', 43:'contactabilidad', 44:'indicador_hoy', 45:'repeticion', 46:'llamadas', 47:'sms', 48:'correos', 49:'gescall', 50:'whatsapp', 51:'visitas', 52:'no_contacto', 53:'total_gestiones', 54:'telefono_positivo', 55:'fec_ultima_marcacion', 56:'investigacion_de_bienes'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) return csv_o(fn,tablename) def csv_CV_FalaJ(request): today = datetime.now() tablename = "CV_FalJ"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Fala/QueryTel_Fal.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Fala/QueryCor_Fal.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Fala/QueryDir_Fal.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Fala/QueryCV_FalJ.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Fala/QueryPa_Fal.txt","r") as f5: queryP_Pa = f5.read() with open("./hello/Plantillas/Fala/QueryRe_Fal.txt","r") as f6: queryP_PR = f6.read() with open("./hello/Plantillas/Fala/QueryCiu_Fal.txt","r") as f7: queryP_Ciu = f7.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrPa = psql_pdc(queryP_Pa) anwrR = psql_pdc(queryP_PR) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Pa = pd.DataFrame(anwrPa) anwr_R = pd.DataFrame(anwrR) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infR = to_horiz(anwr_R,'referencia',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") try: infP = to_horiz(anwr_Pa,'pago','obligacion_id') if infP.shape[1] > 4: tipos = infP.dtypes.to_frame() tipos['index'] = range(len(tipos)) tipos = tipos.set_index('index') su = [] for n in range(len(tipos)): if str(tipos.iloc[n,0]) == 'float64': su.append(n) else: pass infP1 = infP[['pago1','pago2']] infP1['pago3'] = infP.iloc[:,2:max(su)+1].sum(axis = 1) infP1['obligacion_id'] = infP.index infP = infP1 i=0 lin = ['pago1','pago2','pago3'] for i in lin: infP[i].fillna(0,inplace=True) infP[i] = infP[i].apply(lambda x: round(x)) infP[i] = '$' + infP[i].astype('str') except: pass #renombrar campos CV df = df.rename(columns={0:'idcbpo', 1:'tipo_producto_asignacion', 2:'grupo', 3:'cartera', 4:'tipo_cliente', 5:'unico', 6:'unico_pro', 7:'obligacion_id', 8:'deudor_id', 9:'nombre', 10:'producto', 11:'saldototal', 12:'saldo_pareto', 13:'segmentacion', 14:'peso', 15:'alturamora_hoy', 16:'rango', 17:'dias_mora', 18:'vencto', 19:'indicador_mejor_gestion', 20:'total_gestiones', 21:'fecha_ultima_gestion', 22:'asesor_mejor_gestion', 23:'fecha_compromiso', 24:'fecha_pago_compromiso', 25:'valor_compromiso', 26:'asesor', 27:'estado_acuerdo', 28:'dias_mora_pagos', 29:'valor_pago', 30:'fecha_pago', 31:'pendiente', 32:'pago_total', 33:'nvo_status', 34:'status_refresque', 35:'nvo_status_refresque', 36:'dias_mora_refresque', 37:'pendiente_mas_gastos', 38:'vencida_mas_gastos', 39:'gastos_mora', 40:'gastos_cv', 41:'porcentaje_gasto', 42:'valor_a_mantener_sin_gxc', 43:'cv8', 44:'cv9', 45:'cv10', 46:'cv11', 47:'cv12', 48:'restructuracion', 49:'valor_restruc', 50:'pagominimo_actual', 51:'pagominimo_anterior', 52:'periodo_actual', 53:'periodo_anterior', 54:'cuota36', 55:'cuota48', 56:'cuota60', 57:'cuota72', 58:'proyectada_cargue', 59:'aplica_ajuste', 60:'fecha', 61:'diferencia', 62:'porcentaje_saldo_total', 63:'x', 64:'valor', 65:'porcentaje_participacion', 66:'ind_m4', 67:'ind_m3', 68:'ind_m2', 69:'ind_m1', 70:'fecha_primer_gestion', 71:'telefono_mejor_gestion', 72:'fecha_gestion', 73:'contactabilidad', 74:'indicador_hoy', 75:'repeticion', 76:'llamadas', 77:'sms', 78:'correos', 79:'gescall', 80:'whatsapp', 81:'visitas', 82:'no_contacto', 83:'telefono_positivo', 84:'fec_ultima_marcacion', 85:'lista_robinson'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infR,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) if 'infP' in locals(): # Cruce pagos fn = pd.merge(fn,infP,on = ["obligacion_id"]\ ,how = "left",indicator = False) # ordenamiento lt = fn.columns.tolist() lt = lt[:29] + lt[(infP.shape[1]-1)*-1:] + lt[29:fn.shape[1]-(infP.shape[1]-1)] fn = fn[lt] return csv_o(fn,tablename) def csv_CV_FalaC(request): today = datetime.now() tablename = "CV_FalC"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Fala/QueryTel_Fal.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Fala/QueryCor_Fal.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Fala/QueryDir_Fal.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Fala/QueryCV_FalC.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Fala/QueryPa_Fal.txt","r") as f5: queryP_Pa = f5.read() with open("./hello/Plantillas/Fala/QueryRe_Fal.txt","r") as f6: queryP_PR = f6.read() with open("./hello/Plantillas/Fala/QueryCiu_Fal.txt","r") as f7: queryP_Ciu = f7.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrPa = psql_pdc(queryP_Pa) anwrR = psql_pdc(queryP_PR) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D =
pd.DataFrame(anwrD)
pandas.DataFrame
from __future__ import print_function, division """ .. note:: These are the spectral modeling functions for SPLAT """ # imports: internal import bz2 import copy import glob import gzip import os import requests import shutil import sys import time # imports: external #import corner import matplotlib; matplotlib.use('agg') from matplotlib import cm import matplotlib.pyplot as plt import numpy import pandas from scipy import stats, signal from scipy.integrate import trapz # for numerical integration from scipy.interpolate import griddata, interp1d import scipy.optimize as op from astropy.io import ascii,fits # for reading in spreadsheet from astropy.table import Table from astropy.table import unique as tunique import astropy.units as u import astropy.constants as const #from splat._initialize import * import splat.triangle as triangle # will want to move this to corner from splat.initialize import * from splat.utilities import * from splat.citations import shortRef import splat.plot as splot import splat.photometry as spphot import splat.empirical as spemp import splat.evolve as spev from .core import Spectrum, classifyByIndex, compareSpectra, generateMask # structure to store models that have been read in MODELS_READIN = {} ####################################################### ####################################################### ################## MODEL LOADING ################### ####################################################### ####################################################### def info(model=None): if model == None: model = list(SPECTRAL_MODELS.keys()) elif isinstance(model,str): model = [model] for m in model: mdl = checkSpectralModelName(m) if mdl == False: print('\nNew model named {} is currently loaded'.format(m)) print('\nModel {}:'.format(mdl)) if SPECTRAL_MODELS[mdl]['bibcode'] != '': print('\tReference: {}'.format(shortRef(SPECTRAL_MODELS[mdl]['bibcode']))) print('\tBibcode: {}'.format(SPECTRAL_MODELS[mdl]['bibcode'])) instr = numpy.array(list(SPECTRAL_MODELS[mdl]['instruments'].keys())) numpy.sort(instr) f = instr[0] for i in instr[1:]: f=f+', {}'.format(i) print('\tComputed for instruments {}'.format(f)) print('\tParameters:') p = _loadModelParameters(mdl) for m in SPECTRAL_MODEL_PARAMETERS_INORDER: if m in list(p.keys()): if SPECTRAL_MODEL_PARAMETERS[m]['type'] == 'continuous': print('\t\t{}: {} {} to {} {}'.format(m,numpy.nanmin(p[m]),SPECTRAL_MODEL_PARAMETERS[m]['unit'],numpy.nanmax(p[m]),SPECTRAL_MODEL_PARAMETERS[m]['unit'])) else: pval = numpy.array(list(set(p[m]))) numpy.sort(pval) f = pval[0] for i in pval[1:]: f=f+', {}'.format(i) print('\t\t{}: {} {}'.format(m,f,SPECTRAL_MODEL_PARAMETERS[m]['unit'])) return def addUserModels(folders=[],default_info={},verbose=True): ''' :Purpose: Reads in list of folders with properly processed model sets, checks them, and adds them to the SPECTRAL_MODELS global variable :Required Inputs: None :Optional Inputs: * :param folders = []: By default model folders are set in the .splat_spectral_models file; alternately (or in addition) folders of models can be included as an input list. * :param default_info = {}: default parameter set to use for models; superceded by 'info.txt' file if present in model folder * :param verbose = False: provide verbose feedback :Outputs: None, simply adds new model sets to SPECTRAL_MODELS global variable ''' # default information dictionary if len(default_info.keys()) == 0: default_info = { 'folder': '', 'name': '', 'citation': '', 'bibcode': '', 'altname': [], 'default': {'teff': 1500, 'logg': 5.0, 'z': 0.}} # read in folders specified in .splat_spectral_models if os.path.exists(HOME_FOLDER+'/'+EXTERNAL_SPECTRAL_MODELS_FILE): with open(HOME_FOLDER+'/'+EXTERNAL_SPECTRAL_MODELS_FILE, 'r') as frd: x = frd.read() folders.extend(x.split('\n')) if '' in folders: folders.remove('') # check and read in the new folders in the SPECTRAL_MODELS dictionary if len(folders) > 0: for i,f in enumerate(folders): flag = 0 minfo = copy.deepcopy(default_info) if minfo['folder'] == '': minfo['folder'] = f if minfo['name'] == '': minfo['name'] = os.path.normpath(f).split('/')[-1] subfiles = os.listdir(minfo['folder']) # no duplicate models (for now) if minfo['name'] in list(SPECTRAL_MODELS.keys()): print('\nWarning: spectral model set {} already exists in SPECTRAL_MODELS library; ignoring this one'.format(minfo['name'])) flag = 1 # make sure RAW directory exists (indicates models have been processed) if 'RAW' not in subfiles: print('\nWarning: did not find a RAW directory in {}; please process this model set using splat.model._processModels()'.format(minfo['folder'])) flag = 1 # check for additional information file if 'info.txt' not in subfiles: print('\nWarning: did not find info.txt file in {}; using default values for model information'.format(minfo['folder'])) else: # try: f = minfo['folder'] with open(f+'/info.txt', 'r') as frd: x = frd.read() lines = x.split('\n') if '' in lines: lines.remove('') lines = [x.split('\t') for x in lines] minfo = dict(lines) minfo['folder'] = f for k in list(default_info.keys()): if k not in list(minfo.keys()): minfo[k] = default_info[k] for k in list(SPECTRAL_MODEL_PARAMETERS.keys()): if k in list(minfo.keys()): minfo['default'][k] = minfo[k] if 'default_'+k in list(minfo.keys()): minfo['default'][k] = minfo['default_'+k] minfo['altnames'] = minfo['altnames'].split(',') # except: # print('\nWarning: problem reading info.txt file in {}; using default values for model information'.format(minfo['folder'])) if flag == 0: if verbose == True: print('Adding {} models to SPLAT model set'.format(minfo['name'])) SPECTRAL_MODELS[minfo['name']] = copy.deepcopy(minfo) del minfo return def _initializeModels(verbose=False): ''' :Purpose: Initializes the spectral model set by adding folders to splat.SPECTRAL_MODELS global variable :Required Inputs: None :Optional Inputs: * :param verbose = False: provide verbose feedback :Outputs: None ''' # default information for a new model # if len(default_info.keys()) == 0: default_info = { 'instruments': {}, 'name': '', 'citation': '', 'bibcode': '', 'altname': [], 'default': {'teff': 1500, 'logg': 5.0, 'z': 0.}} # folders from which models are to be found mfolders = [SPLAT_PATH+SPECTRAL_MODEL_FOLDER] # specified in .splat_spectral_models if os.path.exists(EXTERNAL_SPECTRAL_MODELS_FILE): with open(EXTERNAL_SPECTRAL_MODELS_FILE, 'r') as frd: x = frd.read() mfolders.extend(x.split('\n')) if os.path.exists(HOME_FOLDER+'/'+EXTERNAL_SPECTRAL_MODELS_FILE): with open(HOME_FOLDER+'/'+EXTERNAL_SPECTRAL_MODELS_FILE, 'r') as frd: x = frd.read() mfolders.extend(x.split('\n')) # specified in environmental variable SPLAT_SPECTRAL_MODELS if os.environ.get('SPLAT_SPECTRAL_MODELS') != None: mfolders.extend(str(os.environ['SPLAT_SPECTRAL_MODELS']).split(':')) # check the model folders if '' in mfolders: mfolders.remove('') rm = [] for m in mfolders: if os.path.exists(m) == False: rm.append(m) if len(rm) > 0: for m in rm: mfolders.remove(m) if len(mfolders) == 0: print('\nNo folders containing spectral models were found to be present') return mfolders = list(set(mfolders)) if verbose == True: print('Spectral model folders:') for m in mfolders: print('\t{}'.format(m)) # go through each model folder and check model names for i,f in enumerate(mfolders): mnames = os.listdir(f) rm = [] for m in mnames: if os.path.isdir(os.path.join(f,m))==False: rm.append(m) if len(rm) > 0: for m in rm: mnames.remove(m) if len(mnames) > 0: for nm in mnames: fnm = os.path.join(f,nm) instruments = os.listdir(fnm) name = checkSpectralModelName(nm) # new model name, add to global variable # using info.txt data if available if name == False: name = nm adddict = {'name': name} definfo = copy.deepcopy(default_info) if 'info.txt' in instruments: with open(os.path.join(fnm,'info.txt'), 'r') as frd: x = frd.read() lines = x.split('\n') if '' in lines: lines.remove('') lines = [x.split('\t') for x in lines] adddict = dict(lines) if 'altnames' in list(adddict.keys()): adddict['altnames'] = adddict['altnames'].split(',') # for k in list(SPECTRAL_MODELS[list(SPECTRAL_MODELS.keys())[0]].keys()): # if k not in list(adddict.keys()): # if k in list(default_info.keys()): adddict[k] = definfo[k] # else: adddict[k] = '' # for k in list(default_info.keys()): # if k not in list(minfo.keys()): minfo[k] = default_info[k] # this sets the default values - it would be better to just grab one file and set the defaults that way if 'default' not in list(adddict.keys()): adddict['default'] = {} for k in list(SPECTRAL_MODEL_PARAMETERS.keys()): if k in list(adddict.keys()): adddict['default'][k] = adddict[k] if 'default_'+k in list(adddict.keys()): adddict['default'][k] = adddict['default_'+k] # if k in list(adddict['default'].keys()): print(k,adddict['default'][k]) # print('\nWarning: did not find info.txt file in {}; using default values for model information'.format(minfo['folder'])) # adddict['name'] = nm if 'name' not in list(adddict.keys()): adddict['name'] = name if 'instruments' not in list(adddict.keys()): adddict['instruments'] = {} if 'bibcode' not in list(adddict.keys()): adddict['bibcode'] = '' SPECTRAL_MODELS[name] = adddict if verbose==True: print('\nAdded a new model {} with parameters {}'.format(name,adddict)) del adddict, definfo # go through instruments rm = [] for m in instruments: if os.path.isdir(os.path.join(fnm,m))==False: rm.append(m) if len(rm) > 0: for m in rm: instruments.remove(m) if len(instruments) > 0: for inst in instruments: # make sure there are files in this folder fnmi = os.path.join(fnm,inst) mfiles = os.listdir(fnmi) if len(mfiles) > 0: instrument = checkInstrument(inst) # unknown instrument; just add for now if instrument == False: instrument = (inst.replace(' ','-').replace('_','-')).upper() if instrument not in list(SPECTRAL_MODELS[name]['instruments'].keys()): SPECTRAL_MODELS[name]['instruments'][instrument] = fnmi if verbose == True: print('\nAdding model {} and instrument {} from {}'.format(name,instrument,fnmi)) else: if verbose == True: print('\nModel {} and instrument {}: ignoring {} as these already exists in {}'.format(name,instrument,fnmi,SPECTRAL_MODELS[name]['instruments'][instrument])) return _initializeModels() # helper functions to read in raw models def _readBurrows06(file): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = ascii.read(os.path.normpath(file),data_start=2) if isinstance(data['LAMBDA(mic)'][0],str): wave = numpy.array([float(l.replace('D','e')) for l in data['LAMBDA(mic)']])*u.micron fnu = numpy.array([float(l.replace('D','e')) for l in data['FNU']])*(u.erg/u.s/u.cm/u.cm/u.Hz) else: wave = numpy.array(data['LAMBDA(mic)'])*u.micron fnu = numpy.array(data['FNU'])*(u.erg/u.s/u.cm/u.cm/u.Hz) wave = wave.to(DEFAULT_WAVE_UNIT) flux = fnu.to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) # print(wave[50],fnu[50],flux[50]) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT def _readVeyette(file,skip=0): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = [] if file[-3:] == '.gz': with gzip.open(os.path.normpath(file),'rt') as f: for line in f: data.append(line.replace('\n','')) else: with open(os.path.normpath(file),'rt') as f: for line in f: data.append(line.replace('\n','')) if skip > 0: data = data[skip:] wave = numpy.array([float(d.split()[0]) for d in data])*u.Angstrom wave = wave.to(DEFAULT_WAVE_UNIT) flux = numpy.array([10.**(float(d.split()[1])) for d in data])*u.erg/u.s/u.Angstrom/u.cm/u.cm flux = flux.to(DEFAULT_FLUX_UNIT) return wave, flux def _readBtsettl08(file,expon=-8.): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = [] if file[-3:] == '.gz': with gzip.open(os.path.normpath(file),'rt') as f: for line in f: if line[0] != '#': data.append(line.replace('- ','-').replace('-',' -').replace('D -','D-').replace('e -','e-')) elif file[-4:] == '.bz2': with bz2.open(os.path.normpath(file),'rt') as f: for line in f: if line[0] != '#': data.append(line.replace('- ','-').replace('-',' -').replace('D -','D-')) else: with open(os.path.normpath(file),'rt') as f: for line in f: if line[0] != '#': data.append(line) wave = numpy.array([float((d.split()[0]).replace('D','e'))/1.e4 for d in data])*u.micron wave = wave.to(DEFAULT_WAVE_UNIT) flux = numpy.array([10.**(float(d.split()[1].replace('D','e'))+expon) for d in data])*u.erg/(u.s*u.Angstrom*u.cm**2) flux = flux.to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT def _readAtmos(file): try: from netCDF4 import Dataset except: raise ValueError('\nYou must have the netCDF4 package installed, which is part of the Anaconda installation') if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) d = Dataset(file) nu = d.variables['nu'][:]/u.cm fnu = d.variables['fnu'][:]*u.erg/u.s/u.cm wave = (1./nu).to(DEFAULT_WAVE_UNIT) flux = (fnu*nu**2).to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT def _readMorley14(file): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = ascii.read(os.path.normpath(file),data_start=4) freq = numpy.array(data['col1'])*u.Hz wave = freq.to(DEFAULT_WAVE_UNIT,equivalencies=u.spectral()) flux = numpy.array(data['col2'])*u.erg/(u.s*u.Hz*u.cm**2) flux = flux.to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT # this also reads in Morley et al. 2012 models def _readSaumon12(file): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = ascii.read(os.path.normpath(file),data_start=2) wave = numpy.array(data['col1'])*u.micron wave = wave.to(DEFAULT_WAVE_UNIT) flux = numpy.array(data['col2'])*u.erg/(u.s*u.Hz*u.cm**2) flux = flux.to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT # Tremblin def _readTremblin16(file): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = ascii.read(os.path.normpath(file),data_start=2) nu = numpy.array(data['col1'])/u.cm fnu = numpy.array(data['col2'])*u.erg/(u.s*u.cm) wave = (1./nu).to(u.DEFAULT_WAVE_UNIT) flux = (fnu*nu**2).to(splat.DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) flux = flux*((((10.*u.pc)/(0.1*u.Rsun)).to(u.m/u.m))**2) # scale to surface flux fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT # this also reads in old Drift models def _readDrift(file): if not os.access(file, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) data = ascii.read(os.path.normpath(file)) wave = numpy.array(data['col1'])*u.micron wave = wave.to(DEFAULT_WAVE_UNIT) flux = numpy.array(data['col2'])*u.erg/(u.s*u.cm**3) flux = flux.to(DEFAULT_FLUX_UNIT,equivalencies=u.spectral_density(wave)) fluxsort = [x for (y,x) in sorted(zip(wave.value,flux.value))] wavesort = sorted(wave.value) return wavesort*DEFAULT_WAVE_UNIT, fluxsort*DEFAULT_FLUX_UNIT # NOTE: THIS FUNCTION IS NO LONGER IN USE def _modelName(modelset,instrument,param): # check modelset name mset = checkSpectralModelName(modelset) if mset == False: raise ValueError('\nInvalid model name {} passed to splat.model._modelName()'.format(modelset)) # set defaults for parameters not included in param filename = mset for k in SPECTRAL_MODEL_PARAMETERS_INORDER: if k in list(SPECTRAL_MODELS[mset]['default'].keys()): if k in list(param.keys()): val = param[k] else: val = SPECTRAL_MODELS[mset]['default'][k] kstr = '_{}{}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],val) if k == 'teff': kstr = '_{}{}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],int(val)) elif k == 'logg': kstr = '_{}{:.1f}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],float(val)) elif k == 'z': kstr = '_{}{:.1f}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],float(val)-0.0001) filename=filename+kstr if modeltype != '': filename=filename+'_{}.txt'.format(modeltype) return filename def _processOriginalModels(sedres=100,instruments=['SED','SPEX-PRISM'],verbose=True,skipraw=True,*args,**kwargs): default_info = { 'instruments': {}, 'name': '', 'bibcode': '', 'altnames': [], 'default': {'teff': 1500, 'logg': 5.0, 'z': 0.}} # name of model mset = False if len(args) >= 1: mset = args[0] mset = kwargs.get('set',mset) mset = kwargs.get('modelset',mset) mset = kwargs.get('model',mset) # input folder folder = './' if len(args) >=2: folder = args[1] folder = kwargs.get('folder',folder) folder = kwargs.get('infolder',folder) folder = kwargs.get('input_folder',folder) # output folder outputfolder = '' if len(args) >=3: outputfolder = args[2] outputfolder = kwargs.get('outfolder',outputfolder) outputfolder = kwargs.get('output_folder',outputfolder) if outputfolder == '': outputfolder = folder # check folders if not os.path.exists(folder): raise ValueError('\nCould not find input folder {}'.format(folder)) if not os.path.exists(outputfolder): os.makedirs(outputfolder) modelset = checkSpectralModelName(mset) # generate a new modelset key in SPECTRAL_MODELS if modelset == False: modelset = mset adddict = {'name': modelset,'instruments': {},'bibcode': '','altnames': [],'default': {'teff': 1500, 'logg': 5.0, 'z': 0.}} files = os.listdir(folder) if 'info.txt' in files: with open(os.path.join(folder,'info.txt'), 'r') as frd: x = frd.read() lines = x.split('\n') if '' in lines: lines.remove('') lines = [x.split('\t') for x in lines] adddict = dict(lines) if 'altnames' in list(adddict.keys()): adddict['altnames'] = adddict['altnames'].split(',') for k in list(SPECTRAL_MODELS[list(SPECTRAL_MODELS.keys())[0]].keys()): if k not in list(adddict.keys()): if k in list(default_info.keys()): adddict[k] = definfo[k] else: adddict[k] = '' for k in list(SPECTRAL_MODEL_PARAMETERS.keys()): if k in list(adddict.keys()): adddict['default'][k] = adddict[k] if 'default_'+k in list(adddict.keys()): adddict['default'][k] = adddict['default_'+k] files = os.listdir(outputfolder) if 'info.txt' not in files: shutil.copy(os.path.join(folder,'info.txt'),os.path.join(outputfolder,'info.txt')) SPECTRAL_MODELS[modelset] = adddict if verbose==True: print('\nAdded a new model {} with parameters {}'.format(modelset,adddict)) del adddict # special 'ORIGINAL' folder files = os.listdir(folder) if 'ORIGINAL' in files: folder = os.path.join(folder,'ORIGINAL') # only do instruments if RAW models already exist skipraw = skipraw and os.path.exists(outputfolder+'/RAW/') try: skipraw = skipraw and len(os.listdir(outputfolder+'/RAW/')) > 0 except: skipraw = skipraw and False if skipraw == False: # presets for various models - these are based on how they are downloaded if 'burrows' in modelset.lower(): readfxn = _readBurrows06 files = glob.glob(os.path.join(folder,'*.txt')) mparam = {} mparam['teff'] = [float(f.split('_')[0].split('T')[-1]) for f in files] mparam['logg'] = [float(f.split('_')[1][1:]) for f in files] mparam['z'] = [numpy.round(numpy.log10(float(f.split('_')[-1][:3]))*10.)/10. for f in files] mparam['cld'] = [f.split('_')[2].replace('cf','nc') for f in files] elif 'madhu' in modelset.lower(): readfxn = _readBurrows06 files = glob.glob(os.path.join(folder,'*')) mparam = {} mparam['teff'] = [float(f.split('_')[1].split('t')[-1]) for f in files] mparam['logg'] = [float(f.split('_')[2].split('g')[-1]) for f in files] mparam['z'] = [numpy.round(numpy.log10(float(f.split('_')[3].split('z')[-1]))*10.)/10. for f in files] mparam['fsed'] = [f.split('_')[-1].lower() for f in files] mparam['cld'] = [(f.split('/')[-1]).split('_')[0].lower() for f in files] mparam['kzz'] = [f.split('_')[-2].lower() for f in files] elif 'atmos' in modelset.lower(): readfxn = _readAtmos files = glob.glob(os.path.join(folder,'*.ncdf')) mparam = {} mparam['teff'] = [float((f.split('/')[-1]).split('_')[1][1:]) for f in files] mparam['logg'] = [float((f.split('/')[-1]).split('_')[2][2:]) for f in files] mparam['z'] = [0. for f in files] mparam['ad'] = [float((f.split('/')[-1]).split('_')[3][1:]) for f in files] mparam['logpmin'] = [float((f.split('/')[-1]).split('_')[4][2:]) for f in files] mparam['logpmax'] = [float((f.split('/')[-1]).split('_')[5][2:]) for f in files] mparam['kzz'] = [(f.split('/')[-1]).split('_')[6][3:] for f in files] mparam['broad'] = [(f.split('/')[-1]).split('_')[7] for f in files] mparam['cld'] = [(f.split('/')[-1]).split('_')[8] for f in files] elif modelset == 'btsettl08': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'*spec.7.gz')) mparam = {} mparam['teff'] = [float((f.split('/'))[-1][3:6])*100. for f in files] mparam['logg'] = [float((f.split('/'))[-1][7:10]) for f in files] mparam['z'] = [float((f.split('/'))[-1][10:14]) for f in files] mparam['enrich'] = [float(((f.split('/'))[-1].split('a+'))[-1][0:3]) for f in files] elif modelset == 'nextgen99': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'lte*.gz')) mparam = {} mparam['teff'] = [float((f.split('/'))[-1][3:6])*100. for f in files] mparam['logg'] = [float((f.split('/'))[-1][7:10]) for f in files] mparam['z'] = [float((f.split('/'))[-1][10:14]) for f in files] elif modelset == 'btnextgen' or modelset == 'btcond' or modelset == 'btdusty': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'lte*.bz2')) mparam = {} mparam['teff'] = [float((f.split('/'))[-1][3:6])*100. for f in files] mparam['logg'] = [float((f.split('/'))[-1][7:10]) for f in files] mparam['z'] = [float((f.split('/'))[-1][10:14]) for f in files] if 'enrich' in list(SPECTRAL_MODELS[modelset]['default'].keys()): mparam['enrich'] = [float(((f.split('/'))[-1].split('a+'))[-1][0:3]) for f in files] elif modelset == 'cond01' or modelset == 'dusty01': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'*7.gz')) mparam = {} mparam['teff'] = [float((f.split('/'))[-1][3:5])*100. for f in files] mparam['logg'] = [float((f.split('/'))[-1][6:9]) for f in files] mparam['z'] = [float((f.split('/'))[-1][10:13]) for f in files] elif modelset == 'btsettl15': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'*spec.7.gz')) mparam = {} mparam['teff'] = [float((f.split('/'))[-1][3:8])*100. for f in files] mparam['logg'] = [float((f.split('/'))[-1][9:12]) for f in files] mparam['z'] = [float((f.split('/'))[-1][12:16]) for f in files] # Morley et al. 2012: no metallicity, fsed, kzz or clouds elif modelset == 'morley12': readfxn = _readSaumon12 files = glob.glob(os.path.join(folder,'sp*')) mparam = {} mparam['teff'] = [float((((f.split('/'))[-1].split('_'))[-2].split('g'))[0][1:]) for f in files] mparam['logg'] = [2.+numpy.log10(float((((((f.split('/'))[-1].split('_'))[-2].split('g'))[1]).split('f'))[0])) for f in files] mparam['z'] = [SPECTRAL_MODELS[modelset]['default']['z'] for f in files] mparam['fsed'] = ['f'+((((f.split('/'))[-1].split('_'))[-2].split('g'))[1]).split('f')[-1] for f in files] # Morley et al. 2014: no metallicity, fsed, kzz or clouds elif modelset == 'morley14': readfxn = _readMorley14 files = glob.glob(os.path.join(folder,'sp*')) mparam = {} mparam['teff'] = [float((((f.split('/'))[-1].split('_'))[-2].split('g'))[0][1:]) for f in files] mparam['logg'] = [2.+numpy.log10(float((((((f.split('/'))[-1].split('_'))[-2].split('g'))[1]).split('f'))[0])) for f in files] mparam['z'] = [SPECTRAL_MODELS[modelset]['default']['z'] for f in files] mparam['fsed'] = ['f'+(((((f.split('/'))[-1].split('_'))[-2].split('g'))[1]).split('f')[-1]).split('h')[0] for f in files] mparam['cld'] = ['h'+(((((f.split('/'))[-1].split('_'))[-2].split('g'))[1]).split('f')[-1]).split('h')[-1] for f in files] # Saumon & Marley 2012: no metallicity, fsed, kzz or clouds elif modelset == 'saumon12': readfxn = _readSaumon12 files = glob.glob(os.path.join(folder,'sp*')) mparam = {} mparam['teff'] = [float((((f.split('/'))[-1].split('_'))[-1].split('g'))[0][1:]) for f in files] mparam['logg'] = [2.+numpy.log10(float((((f.split('/'))[-1].split('_'))[-1].split('g'))[1].split('nc')[0])) for f in files] mparam['z'] = [SPECTRAL_MODELS[modelset]['default']['z'] for f in files] elif modelset == 'drift': readfxn = _readBtsettl08 files = glob.glob(os.path.join(folder,'lte_*')) mparam['teff'] = [float((f.split('/')[-1]).split('_')[1]) for f in files] mparam['logg'] = [float((f.split('/')[-1]).split('_')[2][:3]) for f in files] mparam['z'] = [float((f.split('/')[-1]).split('_')[2][3:7]) for f in files] mparam = {} elif modelset == 'tremblin16': readfxn = _readTremblin16 files = glob.glob(os.path.join(folder,'*.dat')) mparam = {} mparam['teff'] = [float((f.split('/')[-1]).split('_')[1][1:]) for f in files] mparam['logg'] = [float((f.split('/')[-1]).split('_')[2][1:]) for f in files] mparam['z'] = [SPECTRAL_MODELS[modelset]['default']['z'] for f in files] mparam['kzz'] = [float((f.split('/')[-1]).split('_')[3][1:]) for f in files] mparam['ad'] = [float((f.split('/')[-1]).split('_')[5][1:5]) for f in files] elif 'veyette' in modelset.lower(): readfxn = _readVeyette files = glob.glob(os.path.join(folder,'*.gz')) mparam = {} mparam['teff'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[0][3:]) for f in files] mparam['logg'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[1]) for f in files] mparam['z'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[2][1:].replace('+','')) for f in files] mparam['enrich'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[3][1:].replace('+','')) for f in files] mparam['carbon'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[4][1:].replace('+','')) for f in files] mparam['oxygen'] = [float((f.replace('.BT-Settl','').replace('.txt.gz','').split('/')[-1]).split('_')[5][1:].replace('+','')) for f in files] else: raise ValueError('\nHave not yet gotten model set {} into _processModels'.format(modelset)) if len(files) == 0: raise ValueError('Could not find spectral model files in {}'.format(folder)) # create folders if they don't exist if not os.path.exists(outputfolder+'/RAW/'): os.makedirs(outputfolder+'/RAW/') # generate photometry - skipping for now since this takes a while # if kwargs.get('make_photometry',False) == True: # phot_data = {} # for p in SPECTRAL_MODEL_PARAMETERS_INORDER: phot_data[p] = [] # for f in list(FILTERS.keys()): phot_data[f] = [] # read in files if verbose == True: print('\nIntegrating {} models into SPLAT'.format(modelset)) for i,f in enumerate(files): try: wv,flx = readfxn(f) # spmodel = Spectrum(wave=wv,flux=flx) except: print('\nError reading in file {}; skipping'.format(f)) else: if verbose == True: line = '' for k in list(mparam.keys()): line=line+'{}: {}, '.format(k,mparam[k][i]) print('Processing {}for model {}'.format(line,modelset)) # generate raw model outputfile = outputfolder+'/RAW/'+modelset for k in SPECTRAL_MODEL_PARAMETERS_INORDER: if k in list(mparam.keys()): if SPECTRAL_MODEL_PARAMETERS[k]['type'] == 'continuous': kstr = '_{}{:.2f}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],float(mparam[k][i])) else: kstr = '_{}{}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],mparam[k][i]) if k == 'teff': kstr = '_{}{}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],int(mparam[k][i])) elif k == 'z': kstr = '_{}{:.2f}'.format(SPECTRAL_MODEL_PARAMETERS[k]['prefix'],mparam[k][i]-0.0001) outputfile=outputfile+kstr outputfile=outputfile+'_RAW.txt' # old way - make table and output it t = Table([wv,flx],names=['#wavelength','surface_flux']) t.write(outputfile,format='ascii.tab') # now gzip it with open(outputfile, 'rb') as f_in, gzip.open(outputfile+'.gz', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(outputfile) # if successful, add 'RAW' to instruments list in SPECTRAL_MODELS global variable SPECTRAL_MODELS[modelset]['instruments']['RAW'] = outputfolder+'/RAW/' # generate SED model # if make_sed == True: # noutputfile = outputfile.replace('RAW','SED') # # first smooth relevant piece of spectrum # # interpret onto observed wavelength grid # npix = numpy.floor(numpy.log(numpy.nanmax(wv.value)/numpy.nanmin(wv.value))/numpy.log(1.+1./sedres)) # wvref = [numpy.nanmin(wv.value)*(1.+1./sedres)**i for i in numpy.arange(npix)] # # either smooth and remap if SED is higher res than original data, # # or integral resample if original data is higher resolution than SED # if len(wv) <= len(wvref): # flxsm = _smooth2resolution(wv.value,flx.value,sedres) # f = interp1d(wv.value,flxsm,bounds_error=False,fill_value=0.) # flxout = f(wvref) # else: # flxout = integralResample(wv.value,flx.value,wvref) # t = Table([wvref,flxout],names=['#wavelength','surface_flux']) # t.write(noutputfile,format='ascii.tab') # generate instruments if len(instruments) > 0: wv = getModel(set=modelset,instrument='RAW').wave for inst in instruments: ins = checkInstrument(inst) if ins != False: inst = ins # if not os.path.exists(outputfolder+'/{}/'.format(inst)): os.makedirs(outputfolder+'/{}/'.format(inst)) if verbose == True: print('Processing models for instrument {}'.format(inst)) if inst=='SPEX-PRISM': spref = Spectrum(10001) processModelsToInstrument(modelset=modelset,wave=spref.wave,instrument=inst) elif inst=='SED': INSTRUMENTS['SED']['wave_range'] = [numpy.nanmin(wv),numpy.nanmax(wv)] INSTRUMENTS['SED']['resolution'] = sedres processModelsToInstrument(modelset=modelset,instrument=inst) elif ins != False: processModelsToInstrument(modelset=modelset,instrument=inst) else: print('\nDo not have enough information to generate model set for instrument {}; run this separate with processModelsToInstrument()'.format(inst)) return def processModelsToInstrument(instrument_parameters={},wunit=DEFAULT_WAVE_UNIT,funit=DEFAULT_FLUX_UNIT,pixel_resolution=4.,wave=[],wave_range=[],resolution=None,template=None,verbose=False,overwrite=False,*args,**kwargs): ''' :Purpose: Converts raw spectral models into instrument-specific model sets, based on pre-defined or supplied information on wavelength range and resolution or a template spectrum :Required Inputs: * `modelset` or `set`: name of the model set to convert, (for now) must be included in SPLAT distribution; may also be passed as a first argument * `instrument` or `instr`: name of the instrument to convert, either a predefined one (splat.INSTRUMENTS.keys()) or place holder for user-specified parameters; may also be passed as a second argument :Optional Inputs: If a predefined instrument is not used, user must supply one of the following combinations either as keywords or in an `instrument_parameters` dictionary parameter: * `wave`: an array containing the wavelengths to sample to; resolution is assumed 2 pixels per resolution element * `wave_range` and `resolution`: the first is a two-element array (assumed in microns if not specified), the second the effective resolution, assuming 2 pixels per resolution element * `wunit`: the unit for the wavelength axis * `funit`: the unit for the flux density axis * `template`: a template spectrum object, from which the `wave` array is selected * `pixel_resolution` = 4: the number of pixels per resolution element * `oversample` = 5: by what factor to oversample the spectral data when smoothing * `overscan` = 0.05: percentage of total wavelength range to overextend in order to deal with edge effects in smoothing * `method` = 'hanning': filter design for smoothing :Outputs: If necessary, creates a folder in the splat.SPECTRAL_MODEL_FOLDER/[modelset]/[instrument] and outputs the model files ''' method = kwargs.get('method','hamming') oversample = kwargs.get('oversample',5.) overscan = kwargs.get('overscan',0.05) # model set modelset = False if len(args) >= 1: modelset = args[0] modelset = kwargs.get('modelset',modelset) modelset = kwargs.get('model',modelset) modelset = kwargs.get('set',modelset) mset = checkSpectralModelName(modelset) if mset == False: raise ValueError('\nInvalid model set {}'.format(modelset)) # instrument instrument = 'SPEX-PRISM' if len(args) >= 2: instrument = args[1] instrument = kwargs.get('instrument',instrument) instrument = kwargs.get('instr',instrument) instr = checkInstrument(instrument) # set up parameters for making model if instr != False: for r in ['resolution','wave_range','wunit','funit']: instrument_parameters[r] = INSTRUMENTS[instr][r] else: instr = instrument.upper() instr = instr.replace(' ','-') # check if instrument is already set up for this model if instr in list(SPECTRAL_MODELS[mset]['instruments'].keys()) and overwrite == False: print('\nInstrument {} is already computed for modelset {}; set overwrite = True to overwrite these'.format(instr,mset)) return # use a template if isinstance(template,splat.core.Spectrum): instrument_parameters['wave'] = template.wave instrument_parameters['wunit'] = template.wave.unit instrument_parameters['funit'] = template.flux.unit instrument_parameters['wave_range'] = [numpy.nanmin(template.wave.value),numpy.nanmax(template.wave.value)] # set wavelength unit if 'wunit' not in list(instrument_parameters.keys()): instrument_parameters['wunit'] = wunit if not isUnit(instrument_parameters['wunit']): if verbose == True: print('\nWarning: could not interpet unit {} which is type {}; setting wavelength unit to {}'.format(instrument_parameters['wunit'],type(instrument_parameters['wunit'],DEFAULT_WAVE_UNIT))) instrument_parameters['wunit'] = DEFAULT_WAVE_UNIT # set wavelength unit if 'funit' not in list(instrument_parameters.keys()): instrument_parameters['funit'] = funit if not isUnit(instrument_parameters['funit']): instrument_parameters['funit'] = DEFAULT_FLUX_UNIT # set wave scale if 'wave' not in list(instrument_parameters.keys()): instrument_parameters['wave'] = wave if len(instrument_parameters['wave']) > 1: if isUnit(instrument_parameters['wave']): instrument_parameters['wave'] = instrument_parameters['wave'].to(instrument_parameters['wunit']).value if isUnit(instrument_parameters['wave'][0]): instrument_parameters['wave'] = [w.to(instrument_parameters['wunit']).value for w in instrument_parameters['wave']] instrument_parameters['wave_range'] = [numpy.nanmin(instrument_parameters['wave']),numpy.nanmax(instrument_parameters['wave'])] # set wavelength range if 'wave_range' not in list(instrument_parameters.keys()): instrument_parameters['wave_range'] = wave_range if len(instrument_parameters['wave_range']) > 1: if isUnit(instrument_parameters['wave_range']): instrument_parameters['wave_range'] = instrument_parameters['wave_range'].to(instrument_parameters['wunit']).value if isUnit(instrument_parameters['wave_range'][0]): instrument_parameters['wave_range'] = [w.to(instrument_parameters['wunit']).value for w in instrument_parameters['wave_range']] # set resolution if 'resolution' not in list(instrument_parameters.keys()): instrument_parameters['resolution'] = resolution # generate wavelength vector if just range and resolution given if len(instrument_parameters['wave']) <= 1 and instrument_parameters['resolution'] != None and len(instrument_parameters['wave_range']) >= 2: effres = instrument_parameters['resolution']*pixel_resolution npix = numpy.floor(numpy.log(numpy.nanmax(instrument_parameters['wave_range'])/numpy.nanmin(instrument_parameters['wave_range']))/numpy.log(1.+1./effres)) # print(instr,npix) instrument_parameters['wave'] = [numpy.nanmin(instrument_parameters['wave_range'])*(1.+1./effres)**i for i in numpy.arange(npix)] # final error check if len(instrument_parameters['wave']) <= 1: raise ValueError('\nCould not set up instrument parameters {}'.format(instrument_parameters)) # generate smoothing wavelength vector a = numpy.linspace(0.,len(instrument_parameters['wave'])-1,len(instrument_parameters['wave'])) b = numpy.linspace(0.,len(instrument_parameters['wave'])-1.,oversample*len(instrument_parameters['wave'])) f = interp1d(a,instrument_parameters['wave']) wave_oversample = f(b) # grab the raw files inputfolder = kwargs.get('inputfolder',os.path.normpath(SPECTRAL_MODELS[mset]['instruments']['RAW'])) files = glob.glob(os.path.normpath(inputfolder+'/*.txt')) if len(files) == 0: files = glob.glob(os.path.normpath(inputfolder+'/*.gz')) if len(files) == 0: raise ValueError('\nCould not find model files in {}'.format(inputfolder)) # set and create folder if it don't exist outputfolder = kwargs.get('outputfolder',inputfolder.replace('RAW',instr)) # if os.path.exists(outputfolder) == True and overwrite==False: # raise ValueError('\nModel output folder {} already exists; set overwrite=True to overwrite'.format(outputfolder)) if not os.path.exists(outputfolder): try: os.makedirs(outputfolder) except: raise OSError('\nCould not create output folder {}'.format(outputfolder)) if verbose == True: print('Processing model set {} to instrument {}'.format(mset,instr)) for i,f in enumerate(files): if verbose == True: print('{}: Processing model {}'.format(i,f)) noutputfile = f.replace('RAW',instr).replace('.gz','') if not os.path.exists(noutputfile) or (os.path.exists(noutputfile) and overwrite==True): # read in the model spmodel = Spectrum(f,ismodel=True) # NOTE THAT THE FOLLOWING COULD BE REPLACED BY spmodel.toInstrument() spmodel.toWaveUnit(instrument_parameters['wunit']) spmodel.toFluxUnit(instrument_parameters['funit']) # trim relevant piece of spectrum dw = overscan*(numpy.nanmax(instrument_parameters['wave'])-numpy.nanmin(instrument_parameters['wave'])) wrng = [numpy.nanmax([numpy.nanmin(instrument_parameters['wave']-dw),numpy.nanmin(spmodel.wave.value)])*instrument_parameters['wunit'],\ numpy.nanmin([numpy.nanmax(instrument_parameters['wave']+dw),numpy.nanmax(spmodel.wave.value)])*instrument_parameters['wunit']] spmodel.trim(wrng) # print(instrument_parameters['wave']) # map onto oversampled grid and smooth; if model is lower resolution, interpolate; otherwise integrate & resample if len(spmodel.wave) <= len(wave_oversample): fflux = interp1d(spmodel.wave.value,spmodel.flux.value,bounds_error=False,fill_value=0.) flux_oversample = fflux(wave_oversample) else: flux_oversample = integralResample(spmodel.wave.value,spmodel.flux.value,wave_oversample) spmodel.wave = wave_oversample*instrument_parameters['wunit'] spmodel.flux = flux_oversample*spmodel.funit spmodel.noise = [numpy.nan for x in spmodel.wave]*spmodel.funit spmodel.variance = [numpy.nan for x in spmodel.wave]*(spmodel.funit**2) # smooth this in pixel space including oversample spmodel._smoothToSlitPixelWidth(pixel_resolution*oversample,method=method) # resample down to final wavelength scale fluxsm = integralResample(spmodel.wave.value,spmodel.flux.value,instrument_parameters['wave']) # output t = Table([instrument_parameters['wave'],fluxsm],names=['#wavelength ({})'.format(spmodel.wave.unit),'surface_flux ({})'.format(spmodel.flux.unit)]) t.write(noutputfile,format='ascii.tab') else: if verbose == True: print('\tfile {} already exists; skipping'.format(noutputfile)) # if successful, add this instrument to SPECTRAL_MODELS global variable SPECTRAL_MODELS[mset]['instruments'][instr] = outputfolder return def loadOriginalModel(model='btsettl08',instrument='UNKNOWN',file='',**kwargs): ''' :Purpose: Loads up an original model spectrum at full resolution/spectral range, based on filename or model parameters. :Required Inputs: None :Optional Inputs: :param: **model**: The model set to use; may be one of the following: - *btsettl08*: (default) model set from `Allard et al. (2012) <http://adsabs.harvard.edu/abs/2012RSPTA.370.2765A>`_ with effective temperatures of 400 to 2900 K (steps of 100 K); surface gravities of 3.5 to 5.5 in units of cm/s^2 (steps of 0.5 dex); and metallicity of -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.3, and 0.5 for temperatures greater than 2000 K only; cloud opacity is fixed in this model, and equilibrium chemistry is assumed. Note that this grid is not completely filled and some gaps have been interpolated (alternate designations: `btsettled`, `btsettl`, `allard`, `allard12`) - *burrows06*: model set from `Burrows et al. (2006) <http://adsabs.harvard.edu/abs/2006ApJ...640.1063B>`_ with effective temperatures of 700 to 2000 K (steps of 50 K); surface gravities of 4.5 to 5.5 in units of cm/s^2 (steps of 0.1 dex); metallicity of -0.5, 0.0 and 0.5; and either no clouds or grain size 100 microns (fsed = 'nc' or 'f100'). equilibrium chemistry is assumed. Note that this grid is not completely filled and some gaps have been interpolated (alternate designations: `burrows`, `burrows2006`) - *morley12*: model set from `Morley et al. (2012) <http://adsabs.harvard.edu/abs/2012ApJ...756..172M>`_ with effective temperatures of 400 to 1300 K (steps of 50 K); surface gravities of 4.0 to 5.5 in units of cm/s^2 (steps of 0.5 dex); and sedimentation efficiency (fsed) of 2, 3, 4 or 5; metallicity is fixed to solar, equilibrium chemistry is assumed, and there are no clouds associated with this model (alternate designations: `morley2012`) - *morley14*: model set from `Morley et al. (2014) <http://adsabs.harvard.edu/abs/2014ApJ...787...78M>`_ with effective temperatures of 200 to 450 K (steps of 25 K) and surface gravities of 3.0 to 5.0 in units of cm/s^2 (steps of 0.5 dex); metallicity is fixed to solar, equilibrium chemistry is assumed, sedimentation efficiency is fixed at fsed = 5, and cloud coverage fixed at 50% (alternate designations: `morley2014`) - *saumon12*: model set from `Saumon et al. (2012) <http://adsabs.harvard.edu/abs/2012ApJ...750...74S>`_ with effective temperatures of 400 to 1500 K (steps of 50 K); and surface gravities of 3.0 to 5.5 in units of cm/s^2 (steps of 0.5 dex); metallicity is fixed to solar, equilibrium chemistry is assumed, and no clouds are associated with these models (alternate designations: `saumon`, `saumon2012`) - *drift*: model set from `Witte et al. (2011) <http://adsabs.harvard.edu/abs/2011A%26A...529A..44W>`_ with effective temperatures of 1700 to 3000 K (steps of 50 K); surface gravities of 5.0 and 5.5 in units of cm/s^2; and metallicities of -3.0 to 0.0 (in steps of 0.5 dex); cloud opacity is fixed in this model, equilibrium chemistry is assumed (alternate designations: `witte`, `witte2011`, `helling`) - *madhusudhan*: model set from `Madhusudhan et al. (2011) <http://adsabs.harvard.edu/abs/2011ApJ...737...34M>`_ with effective temperatures of 600 K to 1700 K (steps of 50-100 K); surface gravities of 3.5 and 5.0 in units of cm/s^2; and metallicities of 0.0 to 1.0 (in steps of 0.5 dex); there are multiple cloud prescriptions for this model, equilibrium chemistry is assumed (alternate designations: `madhusudhan`) :param: **teff**: effective temperature of the model in K (e.g. `teff` = 1000) :param: **logg**: log10 of the surface gravity of the model in cm/s^2 units (e.g. `logg` = 5.0) :param: **z**: log10 of metallicity of the model relative to solar metallicity (e.g. `z` = -0.5) :param: **fsed**: sedimentation efficiency of the model (e.g. `fsed` = 'f2') :param: **cld**: cloud shape function of the model (e.g. `cld` = 'f50') :param: **kzz**: vertical eddy diffusion coefficient of the model (e.g. `kzz` = 2) :param: **instrument**: instrument the model should be converted to (default = 'raw') :param: **file**: file name for model (default = '' or generated from parameters) :param: **folder**: folder containing file (default = '' or default folder for model set) :param: **verbose**: give lots of feedback :Output: A SPLAT Spectrum object of the model with wavelength in microns and surface fluxes in F_lambda units of erg/cm^2/s/micron. :Example: >>> import splat >>> mdl = splat.loadOriginalModel(model='btsettl',teff=2600,logg=4.5) >>> mdl.info() btsettl08 Teff=2600 logg=4.5 [M/H]=0.0 atmosphere model with the following parmeters: Teff = 2600 K logg = 4.5 dex z = 0.0 dex fsed = nc cld = nc kzz = eq If you use this model, please cite <NAME>. et al. (2012, Philosophical Transactions of the Royal Society A, 370, 2765-2777) bibcode = 2012RSPTA.370.2765A ''' mkwargs = {} mkwargs['ismodel'] = True # check modelset name mset = checkSpectralModelName(model) if mset == False: raise ValueError('\{} is not a valid model set name'.format(model)) mkwargs['model'] = mset # if not a specific file, generate it if file == '': for k in list(SPECTRAL_MODEL_PARAMETERS.keys()): mkwargs[k] = kwargs.get(k,SPECTRAL_MODEL_PARAMETERS[k]['default']) if mset == 'btsettl08': readfxn = _readBtsettl08 file = os.path.normpath(SPECTRAL_MODELS[mset]['rawfolder']+'lte{:s}-{:.1f}{:.1f}a+0.0.BT-Settl.spec.7.gz'.format(str((float(mkwargs['teff'])+0.01)/1.e5)[2:5],mkwargs['logg'],mkwargs['z']-0.0001)) elif mset == 'madhusudhan11': readfxn = _readBurrows06 file = os.path.normpath(SPECTRAL_MODELS[mset]['rawfolder']+'{:s}_t{:.0f}_g{:.2f}_z{:.0f}_{:s}_{:s}'.format(mkwargs['cld'].upper(),int(mkwargs['teff']),float(mkwargs['logg']),10.**float(mkwargs['z']),mkwargs['kzz'].lower(),mkwargs['fsed'].lower())) elif mset == 'saumon12': readfxn = _readSaumon12 file = os.path.normpath(SPECTRAL_MODELS[mset]['rawfolder']+'sp_t{:.0f}g{:.0f}{:s}'.format(int(mkwargs['teff']),10.**(float(mkwargs['logg'])-2.),mkwargs['cld'].lower())) else: raise ValueError('\nDo not yet have {} models in loadOriginalModel'.format(mset)) # check file name if not os.access(file, os.R_OK): # filetmp = SPECTRAL_MODELS[mset]['rawfolder']+file # if not os.access(filetmp, os.R_OK): raise ValueError('Could not find model file {}'.format(file)) # else: file=filetmp mkwargs['filename'] = os.path.basename(file) # read in data wave,flux = readfxn(file) mkwargs['wave'] = wave mkwargs['flux'] = flux # convert to instrument - TBD mkwargs['instrument'] = instrument return Spectrum(**mkwargs) def loadOriginalInterpolatedModel(model='btsettl08',teff=2000,logg=5.0,**kwargs): ''' :Purpose: Loads up an original model spectrum at full resolution/spectral range, interpolated by temperature and surface gravity :Required Inputs: None :Optional Inputs: same as .. `loadOriginalModel()`_ .. _`loadOriginalModel()` : api.html#splat.model.loadOriginalModel :Output: A SPLAT Spectrum object of the model with wavelength in microns and surface fluxes in F_lambda units of erg/cm^2/s/micron. :Example: >>> import splat >>> mdl = splat.loadOriginalInterpolatedModel(model='btsettl',teff=2632,logg=4.6) >>> mdl.info() BT-Settl (2008) Teff=2632 logg=4.6 atmosphere model with the following parmeters: Teff = 2632 K logg = 4.6 dex z = 0.0 dex fsed = nc cld = nc kzz = eq If you use this model, please cite <NAME>. et al. (2012, Philosophical Transactions of the Royal Society A, 370, 2765-2777) bibcode = 2012RSPTA.370.2765A ''' teffs = [100*numpy.floor(teff/100.),100*numpy.ceil(teff/100.)] loggs = [0.5*numpy.floor(logg*2.),0.5*numpy.ceil(logg*2.)] wt = numpy.log10(teffs[1]/teff)/numpy.log10(teffs[1]/teffs[0]) wg = (loggs[1]-logg)/(loggs[1]-loggs[0]) weights = numpy.array([wt*wg,(1.-wt)*wg,wt*(1.-wg),(1.-wt)*(1.-wg)]) weights/=numpy.sum(weights) models = [] models.append(loadOriginalModel(model=model,teff=teffs[0],logg=loggs[0],**kwargs)) if teffs[1]==teffs[0]: models.append(models[-1]) else: models.append(loadOriginalModel(model=model,teff=teffs[1],logg=loggs[0],**kwargs)) if loggs[1]==loggs[0]: models.extend(models[0:1]) else: models.append(loadOriginalModel(model=model,teff=teffs[0],logg=loggs[1],**kwargs)) models.append(loadOriginalModel(model=model,teff=teffs[1],logg=loggs[1],**kwargs)) flx = [] for i in range(len(models[0].flux)): val = numpy.array([numpy.log10(m.flux.value[i]) for m in models]) flx.append(10.**(numpy.sum(val*weights))) mdl_return = models[0] mdl_return.flux = flx*models[0].flux.unit mdl_return.teff = teff mdl_return.logg = logg mdl_return.name = '{} Teff={} logg={}'.format(splat.SPECTRAL_MODELS[checkSpectralModelName(model)]['name'],teff,logg) return mdl_return # make model function def makeForwardModel(parameters,data,atm=None,binary=False,duplicate=False,model=None,model1=None,model2=None,instkern=None,contfitdeg=5,return_nontelluric=False,checkplots=False,checkprefix='tmp',verbose=True,timecheck=False): ''' parameters may contain any of the following: - **modelparam** or **modelparam1**: dictionary of model parameters for primary if model not provided in model or model1: {modelset,teff,logg,z,fsed,kzz,cld,instrument} - **modelparam2**: dictionary of model parameters for secondary if model not provided in model2: {modelset,teff,logg,z,fsed,kzz,cld,instrument} - **rv** or **rv1**: radial velocity of primary - **rv2**: radial velocity of secondary - **vsini** or **vsini1**: rotational velocity of primary - **vsini2**: rotational velocity of secondary - **f21**: relative brightness of secondary to primary (f21 <= 1) - **alpha**: exponent to scale telluric absorption - **vinst**: instrument velocity broadening profile if instrkern not provided - **vshift**: instrument velocity shift - **continuum**: polynomial coefficients for continuum correction; if not provided, a smooth continuum will be fit out - **offset**: additive flux offset, useful if there may be residual background continuum - **offset_fraction**: additive flux offset as a fraction of the median flux, useful if there may be residual background continuum ''' # check inputs # timing check timing = [time.time()] if 'modelset' in list(parameters.keys()) and 'modelset1' not in list(parameters.keys()): parameters['modelset1'] = parameters['modelset'] if 'set' in list(parameters.keys()) and 'modelset1' not in list(parameters.keys()): parameters['modelset1'] = parameters['set'] if 'set1' in list(parameters.keys()) and 'modelset1' not in list(parameters.keys()): parameters['modelset1'] = parameters['set1'] if 'set2' in list(parameters.keys()) and 'modelset2' not in list(parameters.keys()): parameters['modelset2'] = parameters['set2'] # data if data != None: if isinstance(data,splat.Spectrum) == False: raise ValueError('\nData {} must be a Spectrum object'.format(data)) # model / model parameters if model1 == None and model != None: model1 = copy.deepcopy(model) if model1 != None: if isinstance(model1,splat.Spectrum) == False: raise ValueError('\nModel for primary source {} must be a Spectrum object'.format(model1)) else: if 'modelset1' not in list(parameters.keys()): raise ValueError('\nMust provide model parameters for primary') if binary == True and model2 == None and 'modelset2' not in list(parameters.keys()): parameters['modelset2'] = parameters['modelset1'] if binary == True: if model2 != None: if isinstance(model2,splat.Spectrum) == False: raise ValueError('\nModel for secondary source {} must be a Spectrum object'.format(model2)) elif 'modelset2' not in list(parameters.keys()): raise ValueError('\nMust provide model parameters for secondary') if 'modelset1' in list(parameters.keys()): mset1 = checkSpectralModelName(parameters['modelset1']) if mset1 != False: parameters['modelset1'] = mset1 else: raise ValueError('Unknown model set {} for primary'.format(parameters['modelset1'])) if 'modelset2' in list(parameters.keys()): mset2 = checkSpectralModelName(parameters['modelset2']) if mset2 != False: parameters['modelset2'] = mset2 else: raise ValueError('Unknown model set {} for primary'.format(parameters['modelset2'])) if 'instrument' not in list(parameters.keys()): parameters['instrument'] = 'RAW' if parameters['instrument'] not in list(splat.SPECTRAL_MODELS[parameters['modelset1']]['instruments'].keys()): raise ValueError('Instrument {} has not been established for model {}'.format(parameters['instrument'],parameters['modelset1'])) # timing check timing.append(time.time()) # telluric absorption if atm != None: if isinstance(atm,splat.Spectrum) == False: raise ValueError('\nModel for atmosphere {} must be a Spectrum object'.format(atm)) # print(numpy.nanmin(atm.wave.value),numpy.nanmax(atm.wave.value)) # timing check timing.append(time.time()) # establish model spectrum if model1 != None: mdl1 = copy.deepcopy(model1) else: # read in new model mparam = {'modelset': parameters['modelset1'], 'instrument': parameters['instrument']} for m in list(splat.SPECTRAL_MODELS[parameters['modelset1']]['default'].keys()): if m in list(parameters.keys()): mparam[m] = parameters[m] if '{}1'.format(m) in list(parameters.keys()): mparam[m] = parameters['{}1'.format(m)] try: mdl1 = getModel(**mparam) except: raise ValueError('\nError in creating primary model with parameters {}'.format(mparam)) # print(mparam) # mdl1.info() # timing check timing.append(time.time()) # print('Reading',numpy.nanmin(mdl1.wave.value),numpy.nanmax(mdl1.wave.value)) # add in secondary if desired if binary==True: if duplicate == True: mdl2 = copy.deepcopy(mdl1) elif model2 != None: mdl2 = copy.deepcopy(model2) else: mparam = {'modelset': parameters['modelset2'], 'instrument': parameters['instrument']} for m in list(splat.SPECTRAL_MODELS[parameters['modelset2']]['default'].keys()): if '{}2'.format(m) in list(parameters.keys()): mparam[m] = parameters['{}2'.format(m)] if len(list(mparam.keys())) == 2: print('Warning: no parameters provided for secondary; assuming a duplicate model') mdl2 = copy.deepcopy(mdl1) else: try: mdl2 = getModel(**mparam) # print(mparam) print('Model 2 original',numpy.nanmin(mdl2.wave.value),numpy.nanmax(mdl2.wave.value)) except: raise ValueError('\nError in creating secondary model with parameters {}'.format(mparam)) # mdl2.info() # timing check timing.append(time.time()) # make sure everything is on the same wavelength range if atm != None: atm.toWaveUnit(data.wave.unit) mdl1.toWaveUnit(data.wave.unit) if binary == True: mdl2.toWaveUnit(data.wave.unit) # visualize spectra for error checking if checkplots==True: splot.plotSpectrum(mdl1,mdl2,colors=['k','r'],legend=['Model 1','Model 2'],file=checkprefix+'_model.pdf') else: if checkplots==True: splot.plotSpectrum(mdl1,colors=['k'],legend=['Model 1'],file=checkprefix+'_model.pdf') # timing check timing.append(time.time()) # apply rv shift and vsini broadening the model spectrum if 'rv' in list(parameters.keys()): mdl1.rvShift(parameters['rv']) elif 'rv1' in list(parameters.keys()): mdl1.rvShift(parameters['rv1']) if 'vshift' in list(parameters.keys()): mdl1.rvShift(parameters['vshift']) if 'vsini' in list(parameters.keys()): mdl1.broaden(parameters['vsini'],method='rotation') elif 'vsini1' in list(parameters.keys()): mdl1.broaden(parameters['vsini1'],method='rotation') # print('Shifted',numpy.nanmin(mdl1.wave.value),numpy.nanmax(mdl1.wave.value)) # timing check timing.append(time.time()) if binary==True: # print('Model 2 original',numpy.nanmin(mdl2.wave.value),numpy.nanmax(mdl2.wave.value)) if 'f2' in list(parameters.keys()): mdl2.scale(parameters['f2']) if 'rv2' in list(parameters.keys()): mdl2.rvShift(parameters['rv2']) if 'vshift' in list(parameters.keys()): mdl2.rvShift(parameters['vshift']) if 'vsini2' in list(parameters.keys()): mdl2.broaden(parameters['vsini2'],method='rotation') else: if 'vsini' in list(parameters.keys()): mdl2.broaden(parameters['vsini'],method='rotation') elif 'vsini1' in list(parameters.keys()): mdl2.broaden(parameters['vsini1'],method='rotation') # print('Model 2 shifted',numpy.nanmin(mdl2.wave.value),numpy.nanmax(mdl2.wave.value)) # add primary and secondary back together mdl = mdl1+mdl2 # print('Combined',numpy.nanmin(mdl.wave.value),numpy.nanmax(mdl.wave.value)) else: mdl = mdl1 # timing check timing.append(time.time()) # read in telluric, scale & apply if atm != None: # integral resample telluric profile onto mdl flux range atmapp = copy.deepcopy(atm) if 'vshift' in list(parameters.keys()): atmapp.rvShift(parameters['vshift']) if len(atmapp.flux) != len(mdl.flux): funit = atmapp.flux.unit # atmapp.flux = splat.integralResample(atmapp.wave.value,atmapp.flux.value,mdl.wave.value) # print(numpy.nanmin(atmapp.wave.value),numpy.nanmax(atmapp.wave.value),numpy.nanmin(mdl.wave.value),numpy.nanmax(mdl.wave.value),) atmapp.flux = splat.reMap(atmapp.wave.value,atmapp.flux.value,mdl.wave.value) atmapp.flux = atmapp.flux*funit atmapp.wave = mdl.wave atmapp.noise = [numpy.nan for f in atmapp.flux]*funit atmapp.variance = [numpy.nan for f in atmapp.flux]*(funit**2) if 'alpha' in list(parameters.keys()): atmapp.flux = [t**parameters['alpha'] for t in atmapp.flux.value]*atmapp.flux.unit mdlt = mdl*atmapp if checkplots==True: splot.plotSpectrum(mdlt,mdl,colors=['r','k'],legend=['Model x Atmosphere','Model'],file=checkprefix+'_modelatm.pdf') else: mdlt = copy.deepcopy(mdl) # timing check timing.append(time.time()) # correct for velocity shift from wavelength error # if 'vshift' in list(parameters.keys()): # mdl.rvShift(parameters['vshift']) # mdlt.rvShift(parameters['vshift']) # timing check timing.append(time.time()) # resample original and telluric corrected models onto data wavelength range funit = mdl.flux.unit mdlsamp = copy.deepcopy(mdl) # print(numpy.nanmin(data.wave.value),numpy.nanmax(data.wave.value)) # print(numpy.nanmin(mdl.wave.value),numpy.nanmax(mdl.wave.value)) mdlsamp.flux = splat.reMap(mdl.wave.value,mdl.flux.value,data.wave.value) mdlsamp.flux = mdlsamp.flux*funit mdlsamp.wave = data.wave mdlsamp.noise = [numpy.nan for f in mdlsamp.flux]*funit mdlsamp.variance = [numpy.nan for f in mdlsamp.flux]*(funit**2) funit = mdlt.flux.unit mdltsamp = copy.deepcopy(mdlt) # mdltsamp.flux = splat.integralResample(mdlt.wave.value,mdlt.flux.value,data.wave.value) mdltsamp.flux = splat.reMap(mdlt.wave.value,mdlt.flux.value,data.wave.value) mdltsamp.flux = mdltsamp.flux*funit mdltsamp.wave = data.wave mdltsamp.noise = [numpy.nan for f in mdltsamp.flux]*funit mdltsamp.variance = [numpy.nan for f in mdltsamp.flux]*(funit**2) # timing check timing.append(time.time()) if checkplots==True: splot.plotSpectrum(mdltsamp,mdlsamp,colors=['r','k'],legend=['Model x Atmosphere','Model'],file=checkprefix+'_modelatmsamp.pdf') # broaden by instrumental profile if instkern != None: mdlsamp.broaden(parameters['vinst'],kern=instkern) mdltsamp.broaden(parameters['vinst'],kern=instkern) elif 'vinst' in list(parameters.keys()): mdlsamp.broaden(parameters['vinst'],method='gaussian') mdltsamp.broaden(parameters['vinst'],method='gaussian') if checkplots==True: splot.plotSpectrum(mdltsamp,mdlsamp,colors=['r','k'],legend=['Model x Atmosphere','Model'],file=checkprefix+'_modelatmsampbroad.pdf') # timing check timing.append(time.time()) # apply flux offset (e.g. poor background subtraction) if 'offset' in list(parameters.keys()): funit = mdlsamp.flux.unit mdlsamp.flux = [m+parameters['offset'] for m in mdlsamp.flux.value]*funit funit = mdltsamp.flux.unit mdltsamp.flux = [m+parameters['offset'] for m in mdltsamp.flux.value]*funit if 'offset_fraction' in list(parameters.keys()): funit = mdlsamp.flux.unit mdlsamp.flux = [m+parameters['offset_fraction']*numpy.median(mdlsamp.flux.value) for m in mdlsamp.flux.value]*funit funit = mdltsamp.flux.unit mdltsamp.flux = [m+parameters['offset_fraction']*numpy.median(mdltsamp.flux.value) for m in mdltsamp.flux.value]*funit # timing check timing.append(time.time()) # correct for continuum mdlcont = copy.deepcopy(mdlsamp) mdltcont = copy.deepcopy(mdltsamp) if 'continuum' in list(parameters.keys()): mdlcont.flux = mdlcont.flux*numpy.polyval(parameters['continuum'],mdlcont.wave.value) mdltcont.flux = mdlcont.flux*numpy.polyval(parameters['continuum'],mdltcont.wave.value) else: mdldiv = data/mdltsamp mdldiv.smooth(pixels=20) # NOTE: this fails if there are any nans around pcont = numpy.polyfit(mdldiv.wave.value,mdldiv.flux.value,contfitdeg) # f = interp1d(data.wave.value,data.flux.value) # pcont = numpy.polyfit(mdltfinal.wave.value,f(mdltfinal.wave.value)/mdltfinal.flux.value,contfitdeg) mdlcont.flux = mdlcont.flux*numpy.polyval(pcont,mdlcont.wave.value) mdltcont.flux = mdltcont.flux*numpy.polyval(pcont,mdltcont.wave.value) if checkplots==True: mdltmp = copy.deepcopy(mdlsamp) mdldiv = data/mdltsamp mdltmp.scale(numpy.nanmedian(mdldiv.flux.value)) splot.plotSpectrum(mdltcont,mdlcont,data,colors=['r','k','b'],legend=['Model x Atmosphere x Continuum','Model','Data'],file=checkprefix+'_modelatmsampbroadcont.pdf') # timing check timing.append(time.time()) # correct for velocity shift (wavelength calibration error) mdlfinal = copy.deepcopy(mdlcont) mdltfinal = copy.deepcopy(mdltcont) # if 'vshift' in list(parameters.keys()): # mdlfinal.rvShift(parameters['vshift']) # mdltfinal.rvShift(parameters['vshift']) # timing check timing.append(time.time()) # return model mdlfinal.name = '{} model'.format(parameters['modelset1']) mdltfinal.name = '{} model x Atmosphere'.format(parameters['modelset1']) # print timing if timecheck==True: print('\n\n') for i in range(len(timing)-1): print('Time for step {} = {} s'.format(i,timing[i+1]-timing[i])) print('\n\n') if return_nontelluric == True: return mdltfinal,mdlfinal else: return mdltfinal # MCMC loop def mcmcForwardModelFit(data,param0,param_var,model=None,limits={},nwalkers=1,nsteps=100,method='standard',return_threshold=0.9,dof=0.,binary=False,duplicate=False,secondary_model=None,atm=None,report=True,report_index=10,report_each=False,file='tmp',output='all',verbose=True,**kwargs): ''' :Purpose: Conducts and Markov Chain Monte Carlo (MCMC) forward modeling fit of a spectrum. This routine assumes the spectral data have already been wavelength calibrated THIS ROUTINE IS CURRENTLY IN DEVELOPMENT :Required Inputs: :param data: Spectrum object containing the data to be modeled :param param0: dictionary containing the initial parameters; allowed parameters are the same as those defined in `makeForwardModel()`_ :param param_var: dictionary containing the scales (gaussian sigmas) over which the parameters are varied at each iteration; should contain the same elements as param0. If a parameter var is set to 0, then that parameter is held fixed :Optional Inputs: :param: limits = {}: dictionary containing the limits of the parameters; each parameter that is limited should be matched to a two-element list defining the upper and lower bounds :param: nwalkers = 1: number of MCMC walkers :param: nsteps = 100: number of MCMC steps taken by each walker; the actual number of fits is nsteps x # parameters :param: dof: degrees of freedom; if not provided, assumed to be the number of datapoints minus the number of varied parameters :param: binary = False: set to True to do a binary model fit :param: secondary_model = None: if binary = True, use this parameter to specify the model of the secondary :param: model = None: Spectrum object containing the spectral model to use if assumed fixed; should be of higher resolution and wider wavelength range than the data :param: atm = None: Spectrum object containing the atmospheric/instrumental transmission profile (e.g., `loadTelluric()`_); should be of higher resolution and wider wavelength range than the data :param: report = True: set to True to iteratively report the progress of the fit :param: report_index = 10: if report = True, the number of steps to provide an interim report :param: report_each = False: set to True to save all reports separately (useful for movie making) :param: file = 'tmp': file prefix for outputs; should include full path unless in operating in desired folder :param: output = 'all': what to return on completion; options include: * 'all': (default) return a list of all parameter dictionaries and chi-square values * 'best': return only a single dictionary of the best fit parameters and the best fit chi-square value :param: verbose = False: provide extra feedback mcmcForwardModelFit() will also take as inputs the plotting parameters for `mcmcForwardModelReport()`_ and `plotSpectrum()`_ :Outputs: Depending on what is set for the `output` parameter, a list or single dictionary containing model parameters, and a list or single best chi-square values. These outputs can be fed into `mcmcForwardModelReport()`_ to visualize the best fitting model and parameters :Example: >>> import splat >>> import splat.model as spmdl >>> import astropy.units as u >>> # read in spectrum >>> sp = splat.Spectrum('nirspec_spectrum.txt') >>> # read in and trim model >>> mdl = spmdl.loadModel(model='btsettl',teff=2600,logg=5.0,raw=True) >>> mdl.trim([numpy.min(sp.wave)-0.01*u.micron,numpy.max(sp.wave)+0.01*u.micron]) >>> # read in and trim atmospheric absorption >>> atm = spmdl.loadTelluric(wave_range=[numpy.min(mdl.wave.value)-0.02,numpy.max(mdl.wave.value)+0.02],output='spec') >>> # inital parameters >>> mpar = {'rv': 0., 'vsini': 10., 'vinst': 5., 'alpha': 0.6} >>> mvar = {'rv': 1., 'vsini': 1., 'vinst': 0.2, 'alpha': 0.05} >>> mlim = {'vsini': [0.,500.], 'alpha': [0.,100.]} >>> # do fit >>> pars,chis = spmdl.mcmcForwardModelFit(sp,mdl,mpar,mvar,limits=mlim,atm=atm,nsteps=100,file='fit'') >>> # visualize results >>> spmdl.mcmcForwardModelReport(sp,mdl,pars,chis,file='fit',chiweights=True,plotParameters=['rv','vsini']) ''' # check method if method not in ['standard','best','return']: method = 'standard' # generate first fit if dof == 0.: dof = int(len(data.wave)-len(list(param0.keys()))) mdl = makeForwardModel(param0,data,binary=binary,duplicate=duplicate,atm=atm,model=model,model2=secondary_model) chi0,scale = splat.compareSpectra(data,mdl) parameters = [param0] chis = [chi0] acceptance = [1] if verbose == True: l = 'Initial guess: chi={:.0f}, dof={}'.format(chis[-1],dof) for k in list(param_var.keys()): if param_var[k] != 0.: l+=' , {}={:.2f}'.format(k,parameters[-1][k]) print(l) for i in range(nsteps): for k in list(param_var.keys()): if param_var[k] != 0.: param = copy.deepcopy(param0) param[k] = numpy.random.normal(param[k],param_var[k]) # force within range with soft bounce if k in list(limits.keys()): if param[k] < numpy.min(limits[k]): param[k] = numpy.min(limits[k])+numpy.random.uniform()*(numpy.min(limits[k])-param[k]) if param[k] > numpy.max(limits[k]): param[k] = numpy.max(limits[k])-numpy.random.uniform()*(param[k]-numpy.max(limits[k])) # print(numpy.nanmin(data.wave.value),numpy.nanmax(data.wave.value)) # if atm != None: print(numpy.nanmin(atm.wave.value),numpy.nanmax(atm.wave.value)) mdl = makeForwardModel(param,data,binary=binary,duplicate=duplicate,atm=atm,model=model,model2=secondary_model) # print(numpy.nanmin(mdl.wave.value),numpy.nanmax(mdl.wave.value)) chi,scale = splat.compareSpectra(data,mdl) # different methods test = 2.*(stats.f.cdf(chi/chi0, dof, dof)-0.5) if method == 'best': test = 2.*(stats.f.cdf(chi/numpy.nanmin(chis), dof, dof)-0.5) if verbose==True: print(chi,chi0,test) if test < numpy.random.uniform(0,1): param0 = copy.deepcopy(param) chi0 = chi acceptance.append(1) else: acceptance.append(0) if method == 'return': test = 2.*(stats.f.cdf(chi0/numpy.nanmin(chis), dof, dof)-0.5) if verbose==True: print(chi0,numpy.nanmin(chis),test) if test > return_threshold: param0 = copy.deepcopy(parameters[numpy.argmin(chis)]) chi0 = numpy.min(chis) if verbose == True: print('Jump made back to chi = {}'.format(chi0)) parameters.append(param0) chis.append(chi0) if verbose == True: l = 'Step {}: varied {}, chi={:.0f}, dof={}'.format(i,k,chis[-1],dof) for k in list(param_var.keys()): if param_var[k] != 0.: l+=' , {}={:.2f}'.format(k,parameters[-1][k]) print(l) # report where we are if report == True and i % int(report_index) == 0 and i > 0: # l = 'Step {}: chi={:.0f}, dof={}'.format(i,chis[-1],dof) # for k in list(param0.keys()): # if isinstance(parameters[-1][k],float): l+=' , {}={:.2f}'.format(k,parameters[-1][k]) # else: l+=' , {}={}'.format(k,parameters[-1][k]) # print(l) ibest = numpy.argmin(chis) best_parameters = parameters[ibest] l = '\nBest chi={:.0f}, dof={}'.format(chis[ibest],dof) for k in list(param0.keys()): if isinstance(best_parameters[k],float): l+=' , {}={:.2f}'.format(k,best_parameters[k]) else: l+=' , {}={}'.format(k,best_parameters[k]) l = '\nCumulative acceptance = {:.2f}%, Recent acceptance = {:.2f}%'.format(100.*numpy.sum(acceptance)/len(acceptance),100.*numpy.sum(acceptance[-1*report_index:])/len(acceptance[-1*report_index:])) print(l) # mdl,mdlnt = makeForwardModel(parameters[-1],data,binary=binary,atm=atm,model=model,return_nontelluric=True) # chi,scale = splat.compareSpectra(data,mdl) # mdl.scale(scale) # mdlnt.scale(scale) # splot.plotSpectrum(data,mdlnt,mdl,data-mdl,colors=['k','g','r','b'],legend=['Data','Model','Model+Telluric','Difference\nChi2={:.0f}'.format(chi)],figsize=kwargs.get('figsize',[15,5]),file=file+'_interimComparison.pdf') # mdl,mdlnt = makeForwardModel(best_parameters,data,binary=binary,atm=atm,model=model,return_nontelluric=True) # chi,scale = splat.compareSpectra(data,mdl) # mdl.scale(scale) # mdlnt.scale(scale) # splot.plotSpectrum(data,mdlnt,mdl,data-mdl,colors=['k','g','r','b'],legend=['Data','Model-Telluric','Best Model\nChi2={:.0f}'.format(chi),'Difference'],figsize=kwargs.get('figsize',[15,5]),file=file+'_bestModel.pdf') # f = open(file+'_report.txt','w') # f.write('steps completed = {}\n'.format(i)) # f.write('best chi^2 = {:.0f}\n'.format(chis[i])) # f.write('degrees of freedom = {:.0f}\n'.format(dof)) # for k in list(param0.keys()): f.write('{} = {:.2f}\n'.format(k,best_parameters[k])) # f.close() final_parameters = {} for k in list(param0.keys()): vals = [] for i in range(len(parameters)): vals.append(parameters[i][k]) final_parameters[k] = vals mcmcForwardModelReport(data,final_parameters,chis,dof=dof,atm=atm,file=file,binary=binary,duplicate=duplicate,verbose=verbose,**kwargs) # identify best model ibest = numpy.argmin(chis) best_chi = chis[ibest] best_parameters = parameters[ibest] # reformat parameters final_parameters = {} for k in list(param0.keys()): vals = [] for i in range(len(parameters)): vals.append(parameters[i][k]) final_parameters[k] = vals if report == True: l = 'Best chi={:.0f}, dof={}'.format(best_chi,dof) for k in list(best_parameters.keys()): if isinstance(best_parameters[k],float): l+=' , {}={:.2f}'.format(k,best_parameters[k]) else: l+=' , {}={}'.format(k,best_parameters[k]) print(l) mcmcForwardModelReport(data,final_parameters,chis,dof=dof,atm=atm,file=file,binary=binary,duplicate=duplicate,verbose=verbose,**kwargs) # mdl,mdlnt = makeForwardModel(best_parameters,data,binary=binary,atm=atm,model=model,return_nontelluric=True) # chi0,scale = splat.compareSpectra(data,mdl) # mdl.scale(scale) # mdlnt.scale(scale) # splot.plotSpectrum(data,mdlnt,mdl,data-mdl,colors=['k','g','r','b'],legend=['Data','Model-Telluric','Best Model\nChi2={:.0f}'.format(best_chi),'Difference'],figsize=figsize,file=file+'_bestModel.pdf') # burn off beginning of chain # burned_parameters = parameters[int(burn*len(parameters)):] # burned_chis = chis[int(burn*len(chis)):] # if 'burn' in output.lower(): # parameters = burned_parameters # chis = burned_chis # correct for barycentric motion # if isinstance(vbary,u.quantity.Quantity): # vb = vbary.to(u.km/u.s).value # else: # vb = copy.deepcopy(vbary) # if 'rv' in list(param0.keys()): # final_parameters['rv'] = [r+vb for r in final_parameters['rv']] # best_parameters['rv']+=vb # if 'rv1' in list(param0.keys()): # final_parameters['rv1'] = [r+vb for r in final_parameters['rv1']] # best_parameters['rv1']+=vb # if 'rv2' in list(param0.keys()): # final_parameters['rv2'] = [r+vb for r in final_parameters['rv2']] # best_parameters['rv2']+=vb # return values if 'best' in output.lower(): return best_parameters, best_chi else: return final_parameters, chis def mcmcForwardModelReport(data,parameters,chis,burn=0.25,dof=0,plotChains=True,plotBest=True,plotMean=True,plotCorner=True,plotParameters=None,writeReport=True,vbary=0.,file='tmp',atm=None,model=None,model2=None,chiweights=False,binary=False,duplicate=False,verbose=True): ''' :Purpose: Plotting and fit analysis routine for `mcmcForwardModelFit()`_ :Required Inputs: :param data: Spectrum object containing the data modeled :param parameters: dictionary containing the parameters from the fit; each parameter should be linked to a array :param chis: list of the chi-square values (or equivalent statistic) that match the parameter arrays :Optional Inputs: :param: atm = None: Spectrum object containing the atmospheric/instrumental transmission profile (e.g., `loadTelluric()`_) :param: burn = 0.25: initial fraction of parameters to throw out ("burn-in") :param: dof = 0: degrees of freedom; if not provided, assumed to be the number of datapoints minus the number of varied parameters :param: binary = False: set to True if a binary model fit was done :param: duplicate = False: set to True if the secondary spectrum has same model parameters as primary :param: vbary = 0.: set to a velocity (assumed barycentric) to add to rv values :param: model = None: Spectrum object containing the primary spectral model; should be of higher resolution and wider wavelength range than the data :param: model2 = None: Spectrum object containing the secondary spectral model; should be of higher resolution and wider wavelength range than the data :param: plotParameters = None: array of the parameters to plot, which should be keys in teh parameters input dictionary; if None, all of the parameters are plot :param: plotChains = True: set to True to plot the parameter & chi-square value chains :param: plotBest = True: set to True to plot the best fit model :param: plotMean = True: set to True to plot the mean parameter model :param: plotCorner = True: set to True to plot a corner plot of parameters (requires corner.py package) :param: writeReport = True: set to True to write out best and average parameters to a file :param: chiweights = False: apply chi-square weighting for determining mean parameter values :param: file = 'tmp': file prefix for outputs; should include full path unless in operating in desired folder :param: verbose = False: provide extra feedback mcmcForwardModelReport() will also take as inputs the plotting parameters for `plotSpectrum()`_ :Outputs: Depending on the flags set, various plots showing the derived parameters and best fit model for `mcmcForwardModelFit()`_ :Example: >>> import splat >>> import splat.model as spmdl >>> import astropy.units as u >>> # read in spectrum >>> sp = splat.Spectrum('nirspec_spectrum.txt') >>> # read in and trim model >>> mdl = spmdl.loadModel(model='btsettl',teff=2600,logg=5.0,raw=True) >>> mdl.trim([numpy.min(sp.wave)-0.01*u.micron,numpy.max(sp.wave)+0.01*u.micron]) >>> # read in and trim atmospheric absorption >>> atm = spmdl.loadTelluric(wave_range=[numpy.min(mdl.wave.value)-0.02,numpy.max(mdl.wave.value)+0.02],output='spec') >>> # inital parameters >>> mpar = {'rv': 0., 'vsini': 10., 'vinst': 5., 'alpha': 0.6} >>> mvar = {'rv': 1., 'vsini': 1., 'vinst': 0.2, 'alpha': 0.05} >>> mlim = {'vsini': [0.,500.], 'alpha': [0.,100.]} >>> # do fit >>> pars,chis = spmdl.mcmcForwardModelFit(sp,mdl,mpar,mvar,limits=mlim,atm=atm,nsteps=100,file='fit'') >>> # visualize results >>> spmdl.mcmcForwardModelReport(sp,mdl,pars,chis,file='fit',chiweights=True,plotParameters=['rv','vsini']) ''' par = copy.deepcopy(parameters) chi = copy.deepcopy(chis) nval = len(chis) ns = copy.deepcopy(data) ns.flux = ns.noise ns2 = copy.deepcopy(data) ns2.flux = -1.*ns.noise # burn first X% of chains if burn != 0. and burn < 1.: for k in list(par.keys()): par[k] = par[k][int(nval*burn):] chi = chi[int(nval*burn):] nval = len(chi) # apply weighting function weights = numpy.ones(nval) if chiweights==True: if dof == 0: dof = int(len(data.wave)-len(list(par.keys()))) weights = [stats.f.sf(c/numpy.nanmin(chi),dof,dof) for c in chi] weights = numpy.array(weights) weights=weights/numpy.nansum(weights) # correct velocities for barycentric motion if isUnit(vbary): vb = vbary.to(u.km/u.s).value else: vb = copy.deepcopy(vbary) if 'rv' in list(par.keys()): par['rv'] = [r+vb for r in par['rv']] if 'rv1' in list(par.keys()): par['rv1'] = [r+vb for r in par['rv1']] if 'rv2' in list(par.keys()): par['rv2'] = [r+vb for r in par['rv2']] par['rv1-rv2'] = numpy.array(par['rv1'])-numpy.array(par['rv2']) par['rv2-rv1'] = numpy.array(par['rv2'])-numpy.array(par['rv1']) # best parameters i = numpy.argmin(chi) best_parameters = {} for k in list(par.keys()): best_parameters[k] = par[k][i] if verbose == True: print('\nBest Parameter Values:') for k in list(par.keys()): print('\t{} = {}'.format(k,best_parameters[k])) print('\tMinimum chi^2 = {}'.format(numpy.nanmin(chi))) # plot best model if plotBest==True: plt.clf() mdl,mdlnt = makeForwardModel(best_parameters,data,binary=binary,atm=atm,model=model,model2=model2,duplicate=duplicate,return_nontelluric=True) chi0,scale = splat.compareSpectra(data,mdl) mdl.scale(scale) mdlnt.scale(scale) if atm == None: splot.plotSpectrum(data,mdl,data-mdl,ns,ns2,colors=['k','r','b','grey','grey'],linestyles=['-','-','-','--','--'],legend=['Data','Model',r'Difference $\chi^2$='+'{:.0f}'.format(chi0),'Noise'],figsize=[15,5],yrange=[-2.*numpy.nanmedian(ns.flux.value),1.5*numpy.nanmax(mdl.flux.value)],file=file+'_bestModel.pdf') else: splot.plotSpectrum(data,mdl,mdlnt,data-mdl,ns,ns2,colors=['k','r','r','b','grey','grey'],linestyles=['-','-','--','-','--','--'],legend=['Data','Model x Telluric','Model',r'Difference $\chi^2$='+'{:.0f}'.format(chi0),'Noise'],figsize=[15,5],yrange=[-3.*numpy.nanmedian(ns.flux.value),1.5*numpy.nanmax(mdl.flux.value)],file=file+'_bestModel.pdf') # mean parameters mean_parameters = {} mean_parameters_unc = {} for k in list(par.keys()): try: mean_parameters[k] = numpy.nansum(numpy.array(par[k])*weights) mean_parameters_unc[k] = numpy.sqrt(numpy.nansum((numpy.array(par[k])**2)*weights)-mean_parameters[k]**2) except: pass if verbose == True: print('\nMean Parameter Values:') for k in list(mean_parameters.keys()): print('\t{} = {}+/-{}'.format(k,mean_parameters[k],mean_parameters_unc[k])) # plot mean model if plotMean==True: plt.clf() mdl,mdlnt = makeForwardModel(mean_parameters,data,binary=binary,atm=atm,model=model,model2=model2,duplicate=duplicate,return_nontelluric=True) chi0,scale = splat.compareSpectra(data,mdl) mdl.scale(scale) mdlnt.scale(scale) if atm == None: splot.plotSpectrum(data,mdl,data-mdl,ns,ns2,colors=['k','r','b','grey','grey'],linestyles=['-','-','-','--','--'],legend=['Data','Model',r'Difference $\chi^2$='+'{:.0f}'.format(chi0),'Noise'],figsize=[15,5],yrange=[-2.*numpy.nanmedian(ns.flux.value),1.5*numpy.nanmax(mdl.flux.value)],file=file+'_meanModel.pdf') else: splot.plotSpectrum(data,mdl,mdlnt,data-mdl,ns,ns2,colors=['k','r','r','b','grey','grey'],linestyles=['-','-','--','-','--','--'],legend=['Data','Model x Telluric','Model',r'Difference $\chi^2$='+'{:.0f}'.format(chi0),'Noise'],figsize=[15,5],yrange=[-3.*numpy.nanmedian(ns.flux.value),1.5*numpy.nanmax(mdl.flux.value)],file=file+'_meanModel.pdf') # print(plotParameters,toplot.keys(),best_parameters.keys(),mean_parameters.keys()) # summarize results to a text file if writeReport==True: f = open(file+'_report.txt','w') f.write('Last Parameter Values (step {}):'.format(len(chi))) for k in list(par.keys()): f.write('\n\t{} = {}'.format(k,par[k][-1])) f.write('\n\tchi^2 = {}'.format(chi[-1])) f.write('\n\nBest Parameter Values:') for k in list(best_parameters.keys()): f.write('\n\t{} = {}'.format(k,best_parameters[k])) f.write('\n\tchi^2 = {}'.format(numpy.nanmin(chi))) f.write('\n\nMean Parameter Values:') for k in list(mean_parameters.keys()): f.write('\n\t{} = {}+/-{}'.format(k,mean_parameters[k],mean_parameters_unc[k])) f.close() # prep plotting if plotParameters == None: plotParameters = list(mean_parameters.keys()) toplot = {} for k in plotParameters: if k in list(par.keys()): if numpy.nanstd(par[k]) > 0.: if k in list(mean_parameters.keys()): if numpy.isfinite(mean_parameters_unc[k]): toplot[k] = par[k] else: print('\nWarning: parameter {} not in MCMC parameter list; ignoring'.format(k)) # plot chains if plotChains==True: plt.clf() plt.figure(figsize=(15,3*(len(list(toplot.keys()))+1))) for i,k in enumerate(list(toplot.keys())): # f,(ax1,ax2) = plt.subplots(1,2,sharey=True) # ax1.plot(range(len(toplot[k])),toplot[k],'k-') # ax1.plot([0,len(toplot[k])],[best_parameters[k],best_parameters[k]],'b-') # ax1.plot([0,len(toplot[k])],[mean_parameters[k],mean_parameters[k]],'g--') # ax1.set_ylabel(str(k)) # ax1.set_xlim([0,len(toplot[k])]) # ax1.legend(['Best Value = {:.3f}'.format(best_parameters[k]),'Mean Value = {}'.format(mean_parameters[k])]) # ax2.hist(toplot[k], bins=numpy.min([20,int(numpy.sqrt(len(toplot[k])))]), orientation="horizontal") # f.subplots_adjust(hspace=0) # plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False) cplt = plt.subplot(len(list(toplot.keys()))+1,2,2*i+1) plt.plot([0,len(toplot[k])],[best_parameters[k],best_parameters[k]],'b-') plt.plot([0,len(toplot[k])],[mean_parameters[k],mean_parameters[k]],'g--') plt.plot(range(len(toplot[k])),toplot[k],'k-') plt.ylabel(str(k)) plt.xlim([0,len(toplot[k])]) plt.legend(['Best Value = {:.3f}'.format(best_parameters[k]),'Mean Value = {:.3f}'.format(mean_parameters[k])+r'$\pm$'+'{:.3f}'.format(mean_parameters_unc[k])]) hplt = plt.subplot(len(list(toplot.keys()))+1,2,2*i+2) n,bins,patches = hplt.hist(toplot[k], bins=20, orientation="horizontal") plt.plot([0,numpy.max(n)],[mean_parameters[k],mean_parameters[k]],'k-') plt.plot([0,numpy.max(n)],[mean_parameters[k]-mean_parameters_unc[k],mean_parameters[k]-mean_parameters_unc[k]],'k--') plt.plot([0,numpy.max(n)],[mean_parameters[k]+mean_parameters_unc[k],mean_parameters[k]+mean_parameters_unc[k]],'k--') plt.subplot(len(list(toplot.keys()))+1,1,i+2) plt.plot([0,len(toplot[k])],[numpy.nanmin(chi),numpy.nanmin(chi)],'b--') plt.plot(range(len(toplot[k])),chi,'k-') plt.ylabel(r'$\chi^2$') plt.xlim([0,len(toplot[k])]) plt.legend(['Minimum chi2 = {:.1f}'.format(numpy.nanmin(chi))]) plt.savefig(file+'_chains.pdf') # plot corner if plotCorner==True: try: import corner except: print('\n\n*** You must install corner to make corner plots: https://github.com/dfm/corner.py ***\n\n') else: plt.clf() pd =
pandas.DataFrame(toplot)
pandas.DataFrame
import xgboost as xgb import graphviz import numpy as np import pandas as pd import random import matplotlib import textwrap import scipy.spatial.distance as ssd from scipy.stats import ks_2samp from scipy.stats import entropy import warnings from sklearn import tree from sklearn.manifold import TSNE from sklearn.ensemble import RandomForestClassifier from sklearn.tree import export_graphviz from sklearn.cluster import KMeans from scipy.cluster.hierarchy import dendrogram, linkage from sklearn.preprocessing import LabelEncoder, OneHotEncoder, label_binarize from sklearn.tree import export_graphviz from sklearn.metrics import precision_score, precision_recall_curve, average_precision_score from matplotlib import pyplot as plt import re import math from os import listdir from bokeh.layouts import gridplot from bokeh.models import LinearAxis,FactorRange,Range1d,LabelSet,Label,ColumnDataSource,HoverTool,WheelZoomTool,PanTool,BoxZoomTool,ResetTool,SaveTool,BasicTicker,ColorBar,LinearColorMapper,PrintfTickFormatter,DataSource from bokeh.palettes import brewer,inferno,magma,viridis,grey,Category10 from bokeh.plotting import figure, show, output_file from bokeh.transform import transform,factor_cmap from bokeh.io import export_png from graphviz import Source from itertools import cycle from sklearn.decomposition import PCA import rpy2.robjects.packages as rpackages import rpy2.robjects as robjects import statsmodels.api as sm import re from PIL import Image Image.warnings.simplefilter('ignore', Image.DecompressionBombWarning) warnings.filterwarnings('ignore', category=PendingDeprecationWarning) warnings.filterwarnings('ignore', category=ResourceWarning) warnings.filterwarnings('ignore', category=FutureWarning) rstats = rpackages.importr('stats') warnings.simplefilter("error") #####print table##### def ppt(table,lines=30,maxWidth = 18,minWidth=10,keepDecimal=2,lineWidth=170): if table.shape[0]<1000: lines=table.shape[0] if(minWidth<5): minWidth=5 if(maxWidth<minWidth): print("minWidth cannot large than maxWidth") if(lines == -1): lines = table.shape[0] dicType = generateTypeDic(table) dictWidth = generateWidthDic(table,lines,maxWidth,keepDecimal,minWidth) strTemp='|' for col in table: if(dictWidth[col]<minWidth): strTemp = strTemp + truncateString(str(col).upper(),minWidth) else: strTemp = strTemp + truncateString(str(col).upper(),dictWidth[col]) string = textwrap.fill(text=strTemp,width=lineWidth) print(string) count = 0 for index in range(0,table.shape[0]): if(count<lines): strTemp='|' for col in table: if(dicType[col] is 'str'): strTemp = strTemp + truncateString(str(table[col].iloc[index]),dictWidth[col]) else: strTemp = strTemp + truncateNumber(decimalIdentical(table[col].iloc[index],keepDecimal),dictWidth[col]) string = textwrap.fill(text=strTemp,width=lineWidth) print(string) else: break count +=1 def generateTypeDic(table): dicType={} for col in table: if(type(table[col].iloc[0]) is np.float64):#if type is np.float64 and the element is NaN, the type is defined as np.float64 dicType[col]='float' elif(type(table[col].iloc[0]) is np.int32): dicType[col]='int' else: dicType[col]='str' #if type is str and the element is NaN, the type is defined as float, so that it will be asigned value as str. return dicType def generateWidthDic(table,lines,maxWidth,keepDecimal=2,minWidth=5): dicWidth={} for col in table: width = minWidth colType = generateTypeDic(table)[col] if(colType is 'str'): for index in range(0,lines): lenth = len(str(table[col].iloc[index])) if(lenth > width): width = lenth if(width > maxWidth): width = maxWidth elif(colType is 'float' or colType is 'int'): for index in range(0,lines): lenth = len(decimalIdentical(table[col].iloc[index],keepDecimal)) if(lenth > width): width = lenth if(width > max(9,minWidth)): width = max(9,minWidth) dicWidth[col] = width return dicWidth def decimalIdentical(flt,kd): if(np.isnan(flt)): return str(flt) flStr = str(round(flt,kd)) try: dotIndex = len(flStr)-flStr.index('.')-1 except ValueError as ve: flStr = flStr+'.' dotIndex = 0 for i in range(dotIndex,kd): flStr = flStr + '0' return flStr def truncateNumber(string, length): strTemp='' if(len(string)<9): strTemp=string for _ in range(len(string),length+2): strTemp=" "+strTemp strTemp=strTemp else: scientificNotation='%.2E' % Decimal(string) strTemp=str(scientificNotation) for _ in range(len(strTemp),length+2): strTemp=" "+strTemp if(len(strTemp)!=length+2): print('truncateNumber is wrong!'+str(strTemp)+' '+str(length)) else: return strTemp+'| ' def truncateString(string, length): strTemp='' if(len(string)<=length): strTemp=string for _ in range(len(string),length+2): strTemp=" "+strTemp strTemp=strTemp else: strTemp=string[0:length] strTemp=strTemp+".." if(len(strTemp)!=length+2): print('truncateString is wrong!'+str(strTemp)) else: return strTemp+'| ' def generate_reordered_features(megadata_validation,numeric_features_validation,basic_info_features,simple_scale): clustering_data_validation = megadata_validation.copy() clustering_data_validation = scale_matrix(clustering_data_validation[numeric_features_validation],isrow=False,simple_scale=simple_scale) corr_validation_DF = pd.DataFrame(clustering_data_validation,columns=numeric_features_validation).corr('spearman') distance_validation_Matrix = corr_validation_DF.values for i in range(0,len(distance_validation_Matrix)): distance_validation_Matrix[i]=1-distance_validation_Matrix[i] distance_validation_Matrix = ssd.squareform(distance_validation_Matrix) linked = linkage(distance_validation_Matrix,'ward','euclidean',True) labelList = corr_validation_DF.index featureDict= {i:[corr_validation_DF.index[i]] for i in range(0,len(corr_validation_DF.index))} for i in range(0,len(linked)): index = i+linked.shape[0]+1 firstList = featureDict[linked[i][0]] for j in featureDict[linked[i][1]]: firstList.append(j) if(len(firstList)!=linked[i][3]): print("the length is not equal") featureDict[index]=firstList featureList=featureDict[linked.shape[0]*2] for i in range(len(basic_info_features)): featureList.append(basic_info_features[i]) return featureList def prepare_scaled_data(layer1_df,layer2_df,layer3_df,reordered_feature_list,simple_scale=False): layer1_mx = layer1_df.copy() layer1_mx = layer1_mx.replace(0,1E-7) layer1_mx = layer1_mx.fillna(1E-8)[reordered_feature_list] layer2_mx = layer2_df.copy() layer2_mx = layer2_mx.replace(0,1E-7) layer2_mx = layer2_mx.fillna(1E-8)[reordered_feature_list] layer3_mx = layer3_df.copy() layer3_mx = layer3_mx.replace(0,1E-7) layer3_mx = layer3_mx.fillna(1E-8)[reordered_feature_list] layer3_mx = layer3_mx.to_numpy() layer2_mx = layer2_mx.to_numpy() layer1_mx = layer1_mx.to_numpy() layer1_mx = scale_matrix(layer1_mx,isrow=False,simple_scale=simple_scale) layer2_mx = scale_matrix(layer2_mx,isrow=False,simple_scale=simple_scale) layer3_mx = scale_matrix(layer3_mx,isrow=False,simple_scale=simple_scale) return layer1_mx,layer2_mx,layer3_mx def insert_values_between_original_data(for_image_data_matrix): new_matrix = [] new_matrix.append(for_image_data_matrix[0]) for i in range(1,len(for_image_data_matrix)): new_matrix.append((for_image_data_matrix[i-1]+for_image_data_matrix[i])/2) new_matrix.append(for_image_data_matrix[i]) return np.array(new_matrix) def plot_colorful_CNN_images(layer1_mx,layer2_mx,layer3_mx,cate,path,interpolation_row=0,interpolation_col=0): for i in list(set(cate)): ll=[j for j in range(len(cate)) if cate[j] == i] for_image_data_matrix1 = layer1_mx[ll] for_image_data_matrix2 = layer2_mx[ll] for_image_data_matrix3 = layer3_mx[ll] category = i for i in range(interpolation_row): for_image_data_matrix1 = insert_values_between_original_data(for_image_data_matrix1) for_image_data_matrix2 = insert_values_between_original_data(for_image_data_matrix2) for_image_data_matrix3 = insert_values_between_original_data(for_image_data_matrix3) for i in range(interpolation_col): for_image_data_matrix1 = insert_values_between_original_data(for_image_data_matrix1.T).T for_image_data_matrix2 = insert_values_between_original_data(for_image_data_matrix2.T).T for_image_data_matrix3 = insert_values_between_original_data(for_image_data_matrix3.T).T colorful = [[[for_image_data_matrix1[j][l],for_image_data_matrix2[j][l],for_image_data_matrix3[j][l]] for l in range(0,len(for_image_data_matrix1[j]))] for j in range(0,len(for_image_data_matrix1))] matplotlib.image.imsave(path+'/combined_'+category+'.png',colorful) matplotlib.image.imsave(path+'/layer3_'+category+'.png',for_image_data_matrix3) matplotlib.image.imsave(path+'/layer2_'+category+'.png',for_image_data_matrix2) matplotlib.image.imsave(path+'/layer1_'+category+'.png',for_image_data_matrix1) def plot_colorful_images_wrapper(megadata_temp1,megadata_temp2,megadata_temp3,numeric_cols,image_col,interpolation_row,interpolation_col,path,generate_reordered_indices,simple_scale=True): reordered_features = generate_reordered_features(megadata_temp1,numeric_cols,[],simple_scale) reordered_indices = generate_reordered_indices(megadata_temp1,reordered_features) reordered_df1 = pd.DataFrame(megadata_temp1, index=reordered_indices)[reordered_features+[image_col]] reordered_df2 = pd.DataFrame(megadata_temp2, index=reordered_indices)[reordered_features+[image_col]] reordered_df3 = pd.DataFrame(megadata_temp3, index=reordered_indices)[reordered_features+[image_col]] mx1,mx2,mx3 = prepare_scaled_data(reordered_df1,reordered_df2,reordered_df3,reordered_features,simple_scale) plot_colorful_CNN_images(mx1,mx2,mx3,reordered_df1[image_col].values.tolist(),path,interpolation_row,interpolation_col) #####Select certain rows from dataFrame based on the combined conditions related to index1 and index2##### def combined_conditions_filter(condition_map,data_frame,index1,index2): dataFrame=data_frame.copy() dataFrame[index1] = dataFrame[index1].astype(str) dataFrame[index2] = dataFrame[index2].astype(str) dataFrame['filter'] = dataFrame[index1] + '***' + dataFrame[index2] lst = list(str(key)+'***'+str(value) for key,value in condition_map.items()) subComLevData = dataFrame[dataFrame['filter'].isin(lst)] del subComLevData['filter'] return subComLevData #Unit vectors transformation of a Matrix. def generate_unit_modules(mx, isrow=True, is_scale=True, simple_scale=True): test = mx.copy() if(mx.min()<0): is_scale=True print('there is a negative value, the matrix is auto scaled') if(is_scale): test=scale_matrix(test,isrow=isrow,simple_scale=simple_scale) if(isrow): for i in range(0,len(test)): if(test[i].sum()!=0): test[i] = test[i]/test[i].sum() else: test_t = np.transpose(test) for i in range(0,len(test_t)): if(test_t[i].sum()!=0): test_t[i] = test_t[i]/test_t[i].sum() test = np.transpose(test_t) return test #return the top or bottom n indices of a list def topOrBottomN(lst,n,isabs=False,isbottom=False): if (isabs): sortList = [] for i in range(0,len(lst)): sortList.append(abs(lst[i])) else: sortList = lst sortDF = pd.DataFrame({'sort':sortList}) sortDF['index'] = sortDF.index sortDF = sortDF.sort_values(by='sort', ascending=isbottom) indexList = sortDF['index'].tolist() return indexList[0:n] #scale matrix based on row or col by simple method or median_transform def scale_matrix(tst,isrow=True,simple_scale=True): test=np.copy(tst) if(simple_scale): if(isrow): for i in range(0,len(test)): if(test[i].max()==test[i].min()): if(test[i].max()==0): test[i]=np.zeros(len(test[i])) else: test[i]=np.ones(len(test[i])) else: test[i] = (test[i]-test[i].min())/(test[i].max() - test[i].min()) else: test_t = np.transpose(test) for i in range(0,len(test_t)): if(test[i].max()==test[i].min()): if(test[i].max()==0): test[i]=np.zeros(len(test[i])) else: test[i]=np.ones(len(test[i])) else: test_t[i] = (test_t[i]-test_t[i].min())/(test_t[i].max() - test_t[i].min()) test = np.transpose(test_t) else: if(isrow): for i in range(0,len(test)): test[i] = median_transform(test[i],1,0) else: test_t = np.transpose(test) for i in range(0,len(test_t)): test_t[i] = median_transform(test[:,i],1,0) test = np.transpose(test_t) return test #sort data frame def rrd(DF,sort_column='ID',asc=True,reidx=True): new_DF=DF.copy() new_DF=DF.sort_values(by=sort_column, ascending=True) if(reidx): new_DF=new_DF.reset_index(drop=True) return new_DF # dataframe to matrix def dtm(data_frame,matrix_features,sort_column='ID',asc=True): data_frame_copy = data_frame.copy() data_frame_copy = data_frame_copy.sort_values(by=sort_column, ascending=asc) mtx = data_frame_copy[matrix_features].values return mtx # matrix to dataframe def mtd(mtx,numeric_features, data_frame=pd.DataFrame(),basic_info_feautes=[], sort_column='ID',asc=True): DF = pd.DataFrame(mtx,columns=numeric_features) if((data_frame.size>0)&(len(basic_info_feautes)>0)): DF[basic_info_feautes] = rrd(data_frame,sort_column,asc).reset_index(drop=True)[basic_info_feautes] return rrd(DF,sort_column) def scale_transform1(lst1,lst2,scale,lowerbound): if(len(lst1)!=len(lst2)): print('lst1 and lst2 are not in the same size') return None if(lst2.min()==lst2.max()): if(lst2.min()==0): return [0 for _ in range(len(lst))] else: return [1 for _ in range(len(lst))] return ((lst1-lst2.min())/(lst2.max()-lst2.min()))*scale+lowerbound def scale_transform2(lst1,lst2,scale,lowerbound): if(len(lst1)!=len(lst2)): print('lst1 and lst2 are not in the same size') return None if(min(lst1.min(),lst2.min())<0): print('warning: there is a negative value') return None if(lst2.max()==0): print('error: the max value is equal to zero') return None return (lst1/lst2.max())*scale+lowerbound #scale list def median_transform(lst,scale,lowerbound): if(len(set(lst))<2): return np.full(len(lst), (scale+lowerbound)/2) if(lst.min()==lst.max()): if(lst.min()==0): return [0 for _ in range(len(lst))] else: return [1 for _ in range(len(lst))] else: scaled_list=scale_transform1(lst,lst,scale,lowerbound) scaled_list = scaled_list/np.median(scaled_list) lower_list=np.array([i for i in scaled_list if i<=1]).copy() upper_list=np.array([i for i in scaled_list if i>1]).copy() for i in range(len(scaled_list)): if(scaled_list[i]<=1): if(np.ptp(lower_list)==0): scaled_list[i]=0 else: scaled_list[i]=scale_transform1(scaled_list[i],lower_list,0.5*(scale+lowerbound),lowerbound) else: scaled_list[i]=scale_transform2(scaled_list[i],upper_list,0.5*(scale+lowerbound),0.5*(scale+lowerbound)) return scaled_list def unify_df(rna_df,numeric_features,id_col,other_categorical_features): rna_scaled_df=rna_df.copy() rna_scaled_df['temp_indices_within_this_function']=rna_scaled_df[id_col] temp_mx = dtm(rna_scaled_df,numeric_features,sort_column='temp_indices_within_this_function') temp_mx = generate_unit_modules(temp_mx, isrow=True, is_scale=True, simple_scale=True) rna_scaled_df = mtd(temp_mx,numeric_features,rna_scaled_df,other_categorical_features+['temp_indices_within_this_function'], sort_column='temp_indices_within_this_function',asc=True) rna_scaled_df.index=rna_scaled_df['temp_indices_within_this_function'] rna_scaled_df[id_col]=rna_scaled_df['temp_indices_within_this_function'] del rna_scaled_df['temp_indices_within_this_function'] temp_df=rna_df.copy() temp_df.index=temp_df[id_col] #control the scale of the mean by dividing by len(numeric_features) temp_df = pd.DataFrame(scale_transform1(temp_df[numeric_features].T.describe().T['mean'],temp_df[numeric_features].T.describe().T['mean'],1,0)/len(numeric_features)) temp_df.columns=['mean_from_unify_df'] rna_scaled_df=pd.merge(rna_scaled_df,temp_df,left_index=True,right_index=True) rna_scaled_df=rna_scaled_df.reset_index(drop=True) new_numeric_features=numeric_features+['mean_from_unify_df'] return rna_scaled_df,new_numeric_features #####find distict items in two lists##### def findDistinct(ind1,ind2): return (list(np.setdiff1d(ind1, ind2)),list(np.setdiff1d(ind2, ind1))) def handle_unbalanced_dataset(df,numeric_features,label,id_column): max_count = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).iloc(0)[0][1] iter_list = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).values add_sample_size_dict={i[0]:max_count-i[1] for i in iter_list} new_DF=df.copy() num=0 for k,v in add_sample_size_dict.items(): sample_size = df[df[label]==k].shape[0] sample_matrix = df[df[label]==k][numeric_features].values new_matrix=[] for i in range(v): two_samples_list = random.sample(range(sample_size),2) new_sample=(sample_matrix[two_samples_list[0]]+sample_matrix[two_samples_list[1]])/2 new_matrix.append(new_sample) new_matrix = np.array(new_matrix) if(len(new_matrix)==0): continue temp_DF=pd.DataFrame(new_matrix,columns=numeric_features) temp_DF[id_column]=np.array(['fakeid'+str(j) for j in range(num,num+temp_DF.shape[0])]) temp_DF[label]=k num=num+temp_DF.shape[0] new_DF = new_DF.append(temp_DF, sort=False) new_DF.index = new_DF[id_column] return new_DF def cross_validation_split_with_unbalance_data(df,numeric_features,label='Category',id_column='PlateID',test_size=0.2,handle_unbalance=True): iter_list = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).values select_size_dict={i[0]:int(test_size*i[1]) for i in iter_list} sample_size_dict={i[0]:i[1] for i in iter_list} columns_list=df.columns train_matrix=[] test_matrix=[] train_index=[] test_index=[] for k,v in select_size_dict.items(): sample_matrix = df[df[label]==k].values selected_list = random.sample(range(sample_size_dict[k]),v) unselected_list = findDistinct(selected_list,list(range(sample_size_dict[k])))[1] for idx in selected_list: test_matrix.append(sample_matrix[idx]) test_index.append(df[df[label]==k].iloc[idx][id_column]) for idx in unselected_list: train_matrix.append(sample_matrix[idx]) train_index.append(df[df[label]==k].iloc[idx][id_column]) train_DF=pd.DataFrame(train_matrix,columns=columns_list) test_DF=pd.DataFrame(test_matrix,columns=columns_list) train_DF.index=np.array(train_index) test_DF.index=np.array(test_index) if(handle_unbalance): train_DF=handle_unbalanced_dataset(train_DF,numeric_features,label,id_column) return train_DF[numeric_features],test_DF[numeric_features],train_DF[label],test_DF[label] def DT_RF_models(dataSet,numeric_features,path,isDT = True,iteration=10,testSize =0.2,readList = ['Compound Name'], label = 'Category',DTdenotion='test',DT_maxdepth=2,numberOfTrees = 50,RF_maxdepth=6,isplot=False,id_column='id',handle_unbalance=True): if(isDT): model=tree.DecisionTreeClassifier(max_depth=DT_maxdepth) else: model=RandomForestClassifier(n_estimators=numberOfTrees,max_depth=RF_maxdepth) readableDF = dataSet.copy() X = readableDF[numeric_features] Y = readableDF[label] readableDF[id_column]=readableDF[id_column].astype(str) accuracy = [] fullWrongList=[] fullTest=np.array([]) fullPredict=[] for j in range(0,iteration): X_train, X_test, Y_train, Y_test = cross_validation_split_with_unbalance_data(readableDF,numeric_features,label=label,id_column=id_column,test_size=testSize,handle_unbalance=handle_unbalance) model = model.fit(X_train,Y_train) pre_Y = model.predict(X_test) pre_Y_pro= model.predict_proba(X_test) Y_test = pd.DataFrame(Y_test) Y_test[id_column]=X_test.index # Y_test['index']=np.array([i for i in range(0,Y_test.shape[0])]) # Only for RF if(not isDT): for i in range(0,numberOfTrees): single_tree = model.estimators_[i] export_graphviz(single_tree,out_file=path+str(j)+'---tree---'+str(i)+'.dot', feature_names = X.columns,rounded = True, precision = 1) if(isplot): (graph, ) = pydot.graph_from_dot_file(path+str(j)+'---tree---'+str(i)+'.dot') graph.write_png(path+str(j)+'---tree---'+str(i)+'.png') count=0 for i in range(0,len(pre_Y)): fullTest=np.append(fullTest,Y_test.iloc[i][label]) fullPredict.append(pre_Y_pro[i]) if(pre_Y[i] != Y_test.iloc[i][label]): count = count+1 string='' for l in range(0,len(readList)): string = string + str(readableDF[readableDF[id_column]==Y_test.iloc[i][id_column]][readList[l]].values[0])+'---' best_preds = np.argmax(pre_Y_pro[i]) singleWrongList = [pre_Y[i],string+Y_test.iloc[i][label],best_preds,pre_Y_pro[i],str(j)] fullWrongList.append(singleWrongList) print('------------------accuracy = '+str(1-count/len(pre_Y))+'------------------') accuracy.append(1-count/len(pre_Y)) #Only for DT, plot DT if(isDT & isplot): newData=handle_unbalanced_dataset(dataSet,numeric_features,label=label,id_column=id_column) model = model.fit(newData[numeric_features],newData[label]) dot_data = tree.export_graphviz(model,out_file=None,feature_names=X.columns,class_names=dataSet.groupby([label],as_index=False).count()[label].tolist(),filled=True,rounded=True,special_characters=True) graph = graphviz.Source(dot_data) graph.render(DTdenotion,view=True) print(np.array(accuracy).mean(),np.array(accuracy).std()) labelList = list(set(fullTest)) labelList.sort() labelMap= {labelList[i]:i for i in range(len(labelList))} newfullTest=[labelMap[fullTest[i]] for i in range(len(fullTest))] return accuracy,fullWrongList,newfullTest,np.array(fullPredict),labelList def print_full_wrong_list(full_wrong_list): s = set() for i in full_wrong_list: strings = 'Pre-Label: '+i[0]+' Details: '+i[1]+' Probabilities: '+str(i[3]) s.add(strings) for i in s: print(i) def generate_features_values_dict(file): f=open(file) text = f.readline() edges_dict={} values_dict={} features_dict={} while(text): regex = re.match(r"(\d+)\ ->\ (\d+)", text) if regex: if regex.groups()[0] in edges_dict: edges_dict[regex.groups()[0]].append(regex.groups()[1]) else: edges_dict[regex.groups()[0]] = [regex.groups()[1]] regex2 = re.match(r"(\d+)\ \[label=\".+\[(.+)\]\"\]", text) if regex2: values_dict[regex2.groups()[0]] = regex2.groups()[1].split(', ') regex3 = re.match(r"(\d+)\ \[label=\"(?!gini)(.+)\ <=*", text) if regex3: features_dict[regex3.groups()[1]]=regex3.groups()[0] # print(text) text = f.readline() features_values_dict={key:[ values_dict[edges_dict[value][0]],values_dict[edges_dict[value][1]] ] for (key,value) in features_dict.items() } f.close() return features_values_dict def generate_RF_feature_importance(path,df,numeric_features,label): dfc=df.copy() categories=len(dfc[label].unique()) regex = re.compile(r"\ +", re.IGNORECASE) files = [path+f for f in listdir(path) if f.endswith('.dot') if not f.startswith('.')] all_features_dict = {feature:list(np.zeros(categories+1)) for feature in numeric_features} for file in files: features_values_dict = generate_features_values_dict(file) for (key,value) in features_values_dict.items(): key = regex.sub(' ',key.strip(" ")) tempList=[] count=0 for i in range(0,len(all_features_dict[key])-1): tempList.append(all_features_dict[key][i]+int(value[1][i])-int(value[0][i])) count=count+int(value[1][i])+int(value[0][i]) tempList.append(count+all_features_dict[key][len(all_features_dict[key])-1]) all_features_dict[key]=tempList matrix = [] for (key,value) in all_features_dict.items(): abscount=0 list_temp=[key] for i in range(0,len(value)-1): abscount=abscount+abs(value[i]) for i in range(0,len(value)-1): if(abscount>0): list_temp.append(value[i]/abscount) else: list_temp.append(0) list_temp.append(abscount) matrix.append(list_temp) DF = pd.DataFrame(matrix) DF.columns = ['Features']+dfc.groupby([label],as_index=False).count()[label].tolist()+['Sample Size'] DF.fillna(0) return DF def transform_feature_importance(fullFeatureImportanceDF,label_list): feature_importance_DF = fullFeatureImportanceDF.copy() for i in label_list: feature_importance_DF[i] = round(feature_importance_DF[i],3) feature_importance_DF['abs_'+i] = abs(feature_importance_DF[i]) feature_importance_DF['max_value'] = feature_importance_DF[['abs_'+i for i in label_list]].T.max() feature_importance_DF['median_value'] = feature_importance_DF[['abs_'+i for i in label_list]].T.median() feature_importance_DF['sampleSize_value']=pow(feature_importance_DF['Sample Size'],0.25) feature_importance_DF['Ability']=feature_importance_DF['max_value']*feature_importance_DF['median_value']*feature_importance_DF['sampleSize_value']*10+5 feature_importance_DF = feature_importance_DF.sort_values(by='Ability', ascending=False) return feature_importance_DF[['Features']+label_list+['Sample Size','Ability']] #####plot histogram based on a list of values##### def plot_histogram(title, measured,outputFilePath, bins_number = 1000): output_file(outputFilePath) hist, edges = np.histogram(measured, density=True, bins=bins_number) p = figure(title=title, plot_width = 750, plot_height = 750,tools='', background_fill_color="#fafafa") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], fill_color="navy", line_color="white", alpha=0.5) p.y_range.start = 0 p.legend.location = "center_right" p.legend.background_fill_color = "#fefefe" p.xaxis.axis_label = 'x' p.yaxis.axis_label = 'Pr(x)' p.grid.grid_line_color="white" p.x_range = Range1d(0,1.01) show(p) return p def plotBWScatter(DataFrame ,xvalue,yvalue, sizevalue, outputFilePath, readList,plotWidth = 1200, plotHeight = 900, titleName='features importance'): hover = HoverTool() tooltipString = "" for ele in readList: readTuple = (ele.lower(),ele) tooltipString = tooltipString + """<br><font face="Arial" size="4">%s: @%s<font>""" % readTuple hover.tooltips = tooltipString tools= [hover,WheelZoomTool(),PanTool(),BoxZoomTool(),ResetTool(),SaveTool()] source= ColumnDataSource(DataFrame) p = figure(plot_width = plotWidth, plot_height = plotHeight, tools=tools,title=titleName,toolbar_location='right',x_axis_label=xvalue.lower(),y_axis_label=yvalue.lower(),background_fill_color='white',title_location = 'above') p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' p.x_range = Range1d(DataFrame[xvalue].min()*1.1,DataFrame[xvalue].max()*1.1) p.y_range = Range1d(DataFrame[yvalue].min()*1.1,DataFrame[yvalue].max()*1.1) p.circle(x = xvalue,y = yvalue,size=sizevalue,source=source,color='grey') p.toolbar.active_scroll=p.select_one(WheelZoomTool)#set default active to scroll tool if outputFilePath.endswith('png'): export_png(p, filename=outputFilePath) else: output_file(outputFilePath) show(p) #k-means clustering method def k_means_DF(data_frame,numeric_features,clusters=8,is_row=True): clustering_data_validation = data_frame[numeric_features].copy() if(is_row): corr_validation_DF = clustering_data_validation.T.corr() else: corr_validation_DF = clustering_data_validation.corr() kmeans = KMeans(n_clusters=clusters,random_state=100).fit(corr_validation_DF) clusterDic = {corr_validation_DF.columns[i]:kmeans.labels_[i] for i in range(0,len(kmeans.labels_))} npArray = np.array([[key,value] for (key,value) in clusterDic.items() ]) DF = pd.DataFrame(npArray) DF.columns = ['element','group'] return DF def plotHeatMap(corrDF , featureList,path_file): output_file(path_file) corrDF.columns.name = 'Features' df = pd.DataFrame(corrDF[featureList].stack(), columns=['Distance']).reset_index() df.columns=['level_0','Features','Distance'] source = ColumnDataSource(df) colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.Distance.min(), high=df.Distance.max()) p = figure(plot_width=3500, plot_height=3500, title="HeatMap", x_range=featureList, y_range=featureList, toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Features", y="level_0", width=1, height=1, source=source,line_color=None, fill_color=transform('Distance', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%d%%")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "30pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 show(p) def heatMap(DF , path_file, x_size=3500, y_size=3500,font_size="15pt"): featureList=DF.columns.tolist() indexList=DF.index.tolist() DF.columns.name = 'Features' df = pd.DataFrame(DF[featureList].stack(), columns=['Distance']).reset_index() df.columns=['level_0','Features','Distance'] source = ColumnDataSource(df) colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.Distance.min(), high=df.Distance.max()) p = figure(plot_width=x_size, plot_height=y_size, title="HeatMap", x_range=featureList, y_range=indexList, toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Features", y="level_0", width=1, height=1, source=source,line_color=None, fill_color=transform('Distance', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%.2f")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 p.axis.major_label_text_font_size = font_size if path_file.endswith('png'): export_png(p, filename=path_file) else: output_file(path_file) show(p) def plot_heatmap_for_kmeans_groups(data_frame,numeric_features,path,clusters=8,is_row=True): result_DF = k_means_DF(data_frame,numeric_features,clusters,is_row) for k in range(0,clusters): group_filter = result_DF['group'].astype(str)==str(k) subFeatureList = result_DF[group_filter]['element'].values if(is_row): subNormalData = data_frame[numeric_features].T[subFeatureList].copy() else: subNormalData = data_frame[subFeatureList].copy() if(subNormalData.shape[1]<2): continue subcorrDF = subNormalData.corr() subcorrDF.columns=[str(i) for i in subcorrDF.columns.tolist()] assert len(subFeatureList) == subcorrDF.shape[0] subDistMatrix = subcorrDF.values for i in range(0,len(subDistMatrix)): subDistMatrix[i]=1-subDistMatrix[i] subDistMatrix = ssd.squareform(subDistMatrix) sublinked = linkage(subDistMatrix,'ward','euclidean',True) subFeatureDict= {i:[subcorrDF.columns[i]] for i in range(0,len(subcorrDF.columns))} for i in range(0,len(sublinked)): index = i+sublinked.shape[0]+1 firstList = subFeatureDict[sublinked[i][0]] for j in subFeatureDict[sublinked[i][1]]: firstList.append(j) if(len(firstList)!=sublinked[i][3]): print("the length is not equal") subFeatureDict[index]=firstList subFeatureList=subFeatureDict[sublinked.shape[0]*2] strFeatureList = [str(i) for i in subFeatureList] subcorrDF.index=subcorrDF.columns subcorrDF=subcorrDF.T[subFeatureList].T plotHeatMap(subcorrDF[subFeatureList].reset_index(drop=True),strFeatureList,path+'/heatmap-'+str(k)+'.html') if clusters==1: return strFeatureList def plot_precision_recall_curve(full_test,full_predict,label_list,class_num=4,title='ROC curve'): if(class_num==2): full_test=label_binarize(full_test,classes=list(range(0,3))) full_test=np.array([np.array([i[0],i[1]]) for i in full_test]) else: full_test=label_binarize(full_test,classes=list(range(0,class_num))) precision = dict() recall = dict() average_precision=dict() for i in range(0,class_num): precision[i],recall[i],_ = precision_recall_curve(full_test[:,i],full_predict[:,i]) average_precision[i] = average_precision_score(full_test[:,i],full_predict[:,i]) precision['micro'],recall['micro'],_=precision_recall_curve(full_test.ravel(),full_predict.ravel()) colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) labels = [] lines = [] for i, color in zip(range(class_num), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (AUC = {1:0.2f})' ''.format(label_list[i], average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title(title) plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) plt.show() def print_precision_recall_accuracy(full_test,full_predict,label_list,class_num=4): right=0 wrong=0 for i in range(len(full_test)): if(np.argmax(full_predict[i]) == int(full_test[i])): right =right+1 else: wrong=wrong+1 print("Overall Accuray: ",right/(right+wrong)) for n in range(class_num): tp=0 fp=0 fn=0 for i in range(len(full_test)): if(np.argmax(full_predict[i])==n): if(np.argmax(full_predict[i]) == int(full_test[i])): tp=tp+1 else: fp=fp+1 elif(int(full_test[i])==n): fn=fn+1 print(label_list[n],"label size:",tp+fn) print(label_list[n],"Recall: ",tp/(tp+fn)) if((tp+fp)==0): print(label_list[n],"Precision: ",0) else: print(label_list[n],"Precision: ",tp/(tp+fp)) ##########Venn-Abers Predictor########## ### This part of codes is taken from https://github.com/ptocca/VennABERS, All credit of this part goes to the author of this repository.### # Some elementary functions to speak the same language as the paper # (at some point we'll just replace the occurrence of the calls with the function body itself) def push(x,stack): stack.append(x) def pop(stack): return stack.pop() def top(stack): return stack[-1] def nextToTop(stack): return stack[-2] # perhaps inefficient but clear implementation def nonleftTurn(a,b,c): d1 = b-a d2 = c-b return np.cross(d1,d2)<=0 def nonrightTurn(a,b,c): d1 = b-a d2 = c-b return np.cross(d1,d2)>=0 def slope(a,b): ax,ay = a bx,by = b return (by-ay)/(bx-ax) def notBelow(t,p1,p2): p1x,p1y = p1 p2x,p2y = p2 tx,ty = t m = (p2y-p1y)/(p2x-p1x) b = (p2x*p1y - p1x*p2y)/(p2x-p1x) return (ty >= tx*m+b) kPrime = None # Because we cannot have negative indices in Python (they have another meaning), I use a dictionary def algorithm1(P): global kPrime S = [] P[-1] = np.array((-1,-1)) push(P[-1],S) push(P[0],S) #put P[0] at the end of S for i in range(1,kPrime+1): #nextToTop(S):S[len(S)-2] top(S):S[len(S)-1] pop(S):drop the last element #cross product for 2 dimension vector return the value of axis z #cross product vector of vec1 and vec2 is the perpendicular vector with the plane consist by vec1 and vec2 while len(S)>1 and nonleftTurn(nextToTop(S),top(S),P[i]): pop(S) push(P[i],S) return S def algorithm2(P,S): global kPrime Sprime = S[::-1] # reverse the stack F1 = np.zeros((kPrime+1,)) for i in range(1,kPrime+1): F1[i] = slope(top(Sprime),nextToTop(Sprime)) P[i-1] = P[i-2]+P[i]-P[i-1] if notBelow(P[i-1],top(Sprime),nextToTop(Sprime)): continue pop(Sprime) while len(Sprime)>1 and nonleftTurn(P[i-1],top(Sprime),nextToTop(Sprime)): pop(Sprime) push(P[i-1],Sprime) return F1 def algorithm3(P): global kPrime P[kPrime+1] = P[kPrime]+np.array((1.0,0.0)) S = [] push(P[kPrime+1],S) push(P[kPrime],S) for i in range(kPrime-1,0-1,-1): # k'-1,k'-2,...,0 while len(S)>1 and nonrightTurn(nextToTop(S),top(S),P[i]): pop(S) push(P[i],S) return S def algorithm4(P,S): global kPrime Sprime = S[::-1] # reverse the stack F0 = np.zeros((kPrime+1,)) for i in range(kPrime,1-1,-1): # k',k'-1,...,1 F0[i] = slope(top(Sprime),nextToTop(Sprime)) P[i] = P[i-1]+P[i+1]-P[i] if notBelow(P[i],top(Sprime),nextToTop(Sprime)): continue pop(Sprime) while len(Sprime)>1 and nonrightTurn(P[i],top(Sprime),nextToTop(Sprime)): pop(Sprime) push(P[i],Sprime) return F0[1:] def prepareData(calibrPoints): global kPrime #sort score_label_list based on ascending score ptsSorted = sorted(calibrPoints) #xs score np.array, ys, label np.array, both sorted xs = np.fromiter((p[0] for p in ptsSorted),float) ys = np.fromiter((p[1] for p in ptsSorted),float) ptsUnique,ptsIndex,ptsInverse,ptsCounts = np.unique(xs, return_index=True, return_counts=True, return_inverse=True) a = np.zeros(ptsUnique.shape) #a: for a unique score, how many items labeled 1. np.add.at(a,ptsInverse,ys) # now a contains the sums of ys for each unique value of the objects w = ptsCounts yPrime = a/w #yPrime: the purity of label for each unique score yCsd = np.cumsum(w*yPrime) # Might as well do just np.cumsum(a) #yCsd accumulation of label1 through unique score list xPrime = np.cumsum(w) #xPrime: accumulation of observations through unique score list kPrime = len(xPrime) #kPrime: the number of unique scores return yPrime,yCsd,xPrime,ptsUnique def computeF(xPrime,yCsd): P = {0:np.array((0,0))} P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) #P is (i->(xPrime[i],yCsd[i])) S = algorithm1(P) F1 = algorithm2(P,S) # P = {} # P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) S = algorithm3(P) F0 = algorithm4(P,S) return F0,F1 def getFVal(F0,F1,ptsUnique,testObjects): pos0 = np.searchsorted(ptsUnique[1:],testObjects,side='right') pos1 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 return F0[pos0],F1[pos1] def ScoresToMultiProbs(calibrPoints,testObjects): # sort the points, transform into unique objects, with weights and updated values yPrime,yCsd,xPrime,ptsUnique = prepareData(calibrPoints) # compute the F0 and F1 functions from the CSD F0,F1 = computeF(xPrime,yCsd) # compute the values for the given test objects p0,p1 = getFVal(F0,F1,ptsUnique,testObjects) return p0,p1 def computeF1(yCsd,xPrime): global kPrime P = {0:np.array((0,0))} P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) S = algorithm1(P) F1 = algorithm2(P,S) return F1 def ScoresToMultiProbsV2(calibrPoints,testObjects): # sort the points, transform into unique objects, with weights and updated values yPrime,yCsd,xPrime,ptsUnique = prepareData(calibrPoints) # compute the F0 and F1 functions from the CSD F1 = computeF1(yCsd,xPrime) pos1 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 p1 = F1[pos1] yPrime,yCsd,xPrime,ptsUnique = prepareData((-x,1-y) for x,y in calibrPoints) F0 = 1 - computeF1(yCsd,xPrime) pos0 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 p0 = F0[pos0] return p0,p1 def generate_label_from_probability(p0,p1,testScores,isprint=True): p = p1/(1-p0+p1) full_test=np.array([np.array([1-i,i]) for i in p]) t_p=[(int(round(testScores[i])),int(round(p[i])),testScores[i],p[i]) for i in range(0,len(p))] #label from score, label from probability, score, probability count=0 for i in range(0,len(t_p)): if (t_p[i][0]!=t_p[i][1]): count = count+1 if(isprint): print("differ",count,t_p[i]) return t_p,full_test ##########End of Venn-Abers Predictor########## def xgboostModel_for_venn(train,test,selectedData_Indices,n_vap=10,label = 'Control',category = 'Category',num_round = 100): train_temp=train.copy() test_temp=test.copy() train_temp['cv_id']=train_temp.index labelList = [label,'ZZZZZZZ'] train_temp.loc[train_temp[category]!=label,category]='ZZZZZZZ' test_temp.loc[test_temp[category]!=label,category]='ZZZZZZZ' score_and_label_list=[] test_score=[] regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':2,'eta':0.3,'silent':1,'objective':'binary:logistic','learningrate':0.1} #'binary:logistic' 'multi:softprob' 'num_class':2, train_temp.columns = [regex.sub('_',col) for col in train_temp.columns.values] test_temp.columns = [regex.sub('_',col) for col in test_temp.columns.values] selectedData_Indices = [regex.sub('_',col) for col in selectedData_Indices] labelEncoder = LabelEncoder() for _ in range(n_vap): X_train,X_test,Y_train,Y_test = cross_validation_split_with_unbalance_data(train_temp.reset_index(drop=True).copy(),selectedData_Indices,label=category,id_column='cv_id',test_size=0.2,handle_unbalance=False) Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) best_preds = np.asarray([round(value) for value in preds]) Y_test = pd.DataFrame(Y_test).reset_index() for i in range(0,len(best_preds)): score_and_label_list.append((preds[i],Y_test.iloc[i][0])) count=0 X_train=train_temp[selectedData_Indices] X_test=test_temp[selectedData_Indices] Y_train=train_temp[category] Y_test=test_temp[category] Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) best_preds = np.asarray([round(value) for value in preds]) Y_test = pd.DataFrame(Y_test).reset_index() for i in range(0,len(best_preds)): test_score.append(preds[i]) if(best_preds[i] != Y_test.iloc[i][0]): count=count+1 fullPredict=[np.array([1-i,i]) for i in list(preds)] p0,p1 = ScoresToMultiProbs(score_and_label_list,test_score) label_from_probability,full_predic_venn = generate_label_from_probability(p0,p1,test_score,False) readable_pre=[i[0] for i in full_predic_venn] test[label]=readable_pre return test,Y_test[0].to_numpy(),np.array(fullPredict),labelList def tSNEPlot(oriData,data_Indices,read_list,color_col,storing_loc,size_col = 5, iters=1000, perp=2, title='tSNE',num_components=2): tsne = TSNE(n_components=num_components,random_state=0,n_iter=iters,perplexity=perp) tSNE_DF = oriData.copy() tSNE_DF=tSNE_DF.reset_index(drop=True) tSNE_DF_2d = (tSNE_DF[data_Indices] - tSNE_DF[data_Indices].mean()) / (tSNE_DF[data_Indices].max() - tSNE_DF[data_Indices].min()).fillna(0) tSNE_DF_2d = tsne.fit_transform(tSNE_DF_2d.to_numpy()) tSNE_DF_2d = pd.DataFrame(tSNE_DF_2d).reset_index(drop=True) tSNE_DF_2d.columns=[str(i) for i in range(1,1+num_components)] for i in read_list+[color_col]: tSNE_DF_2d[i] = tSNE_DF[i] tSNE_DF_2d[color_col]=tSNE_DF_2d[color_col].astype(str) plotColorScatter(tSNE_DF_2d ,xvalue = '1',yvalue = '2', sizevalue = size_col, outputFilePath=storing_loc,plotWidth = 750, plotHeight = 750, readList = read_list,titleName=title,colorColumn=color_col,colorPattern=viridis) return tSNE_DF_2d def plotColorScatter(DataFrame ,xvalue = '0',yvalue = '1', sizevalue = 'size', outputFilePath='/abc/test.html',plotWidth = 750, plotHeight = 750, readList = ['1','2'],titleName='tSNE', colorColumn="Category", colorPattern=viridis): factors = DataFrame[colorColumn].unique() if len(factors)<8: color_map = factor_cmap(colorColumn,factors=factors,palette=['#f03b20','#feb24c','#ffeda0','#636363','#a1d99b','#31a354','#3182bd']) else: color_map = factor_cmap(colorColumn,factors=factors,palette=colorPattern(len(factors))) hover = HoverTool() tooltipString = "" for ele in readList: ele=str(ele) readTuple = (ele.lower(),ele) tooltipString = tooltipString + """<br><font face="Arial" size="4">%s: @%s<font>""" % readTuple hover.tooltips = tooltipString tools= [hover,WheelZoomTool(),PanTool(),BoxZoomTool(),ResetTool(),SaveTool()] source= ColumnDataSource(DataFrame) output_file(outputFilePath) p = figure(plot_width = plotWidth, plot_height = plotHeight, tools=tools,title=titleName,toolbar_location='right',x_axis_label=xvalue.lower(),y_axis_label=yvalue.lower(),background_fill_color='white',title_location = 'above') p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' p.x_range = Range1d(DataFrame[xvalue].min()*1.1,DataFrame[xvalue].max()*1.1) p.y_range = Range1d(DataFrame[yvalue].min()*1.1,DataFrame[yvalue].max()*1.1) p.circle(x = xvalue,y = yvalue,size=sizevalue,source=source,color=color_map,legend=colorColumn) p.legend.location = "top_left" p.toolbar.active_scroll=p.select_one(WheelZoomTool) if outputFilePath.endswith('png'): export_png(p, filename=outputFilePath) else: output_file(outputFilePath) show(p) def print_full_wrong_list(full_wrong_list): s = set() for i in full_wrong_list: strings = 'Pre-Label: '+i[0]+' Original_data: '+i[1]+' Probability: '+str(i[3]) s.add(strings) for i in s: print(i) def xgboost_multi_classification(input_df,numeric_features_validation,iteration=10,test_size=0.2,max_depth=2,num_trees=50,label_column='Category',id_column='PlateID',handle_unbalance=True,readList=['PlateID','Compound Name']): XGBData = input_df.copy() selectedData_Indices = numeric_features_validation.copy() # data_Indices num_class=len(XGBData[label_column].unique().tolist()) regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':max_depth,'eta':0.3,'silent':1,'objective':'multi:softprob','num_class':num_class,'learningrate':0.1} num_round = num_trees labelList = XGBData.groupby([label_column],as_index=False).mean()[label_column].tolist() label = 0 accuracy = [] X = XGBData.reset_index()[selectedData_Indices] Y = XGBData.reset_index()[label_column] X.columns = [regex.sub('_',col) for col in X.columns.values] XGBData.columns = [regex.sub('_',col) for col in XGBData.columns.values] selectedData_Indices = [regex.sub('_',col) for col in selectedData_Indices] labelEncoder = LabelEncoder() labelEncoded = labelEncoder.fit_transform(XGBData.reset_index()[label_column].values) fullWrongList=[] fullTest=np.array([]) fullPredict=[] for j in range(0,iteration): X_train, X_test, Y_train, Y_test = cross_validation_split_with_unbalance_data(XGBData,selectedData_Indices,label=label_column,id_column=id_column,test_size=test_size,handle_unbalance=handle_unbalance) Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) fullTest=np.concatenate((fullTest,Y_test),axis=0) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) fullPredict=fullPredict+list(preds) best_preds = np.asarray([np.argmax(line) for line in preds]) precision = precision_score(Y_test,best_preds,average='macro') Y_test = pd.DataFrame(Y_test).reset_index() count=0 for i in range(0,len(best_preds)): if(best_preds[i] != Y_test.iloc[i][label]): count=count+1 string='' for l in range(0,len(readList)): string = string + str(XGBData.reset_index().iloc[X_test.reset_index(drop=True).index[i]][readList[l]])+'---' singleWrongList = [labelList[best_preds[i]],string+labelList[Y_test.iloc[i][label]],str(j),preds[i]] fullWrongList.append(singleWrongList) print('------------------accuracy = '+str(1-count/len(best_preds))+'------------------') accuracy.append(1-count/len(best_preds)) #bst.dump_model(storePath) pArray = np.array(accuracy) print(pArray.mean(),pArray.std()) return pArray,fullWrongList,fullTest,np.array(fullPredict),labelList def combined_eXGBT_classifier(training_set,numeric_features_validation,testing_set,n_vap=10,label_column = 'Category',max_depth=2,num_trees=50): num_class=len(training_set[label_column].unique().tolist()) df_te = testing_set.copy() for i in training_set[label_column].unique().tolist(): df_te,full_test,full_predict,label_list =xgboostModel_for_venn(training_set,df_te,numeric_features_validation,n_vap,label =i,category = label_column,num_round = num_trees) XGBData = training_set.copy() selectedData_Indices = numeric_features_validation # data_Indices regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':max_depth,'eta':0.3,'silent':1,'objective':'multi:softprob','num_class':num_class,'learningrate':0.1} labelList = XGBData.groupby([label_column],as_index=False).mean()[label_column].tolist() X = XGBData.reset_index()[selectedData_Indices] Y = XGBData.reset_index()[label_column] Z = df_te[selectedData_Indices] X.columns = [regex.sub('_',col) for col in X.columns.values] Z.columns = [regex.sub('_',col) for col in Z.columns.values] labelEncoder = LabelEncoder() labelEncoded = labelEncoder.fit_transform(Y.values) dtrain = xgb.DMatrix(X,label=labelEncoded) bst = xgb.train(param,dtrain,num_trees,feval='map5eval',maximize=True) dtest = xgb.DMatrix(Z) preds = bst.predict(dtest) best_preds = np.asarray([np.argmax(line) for line in preds]) readable_pre=[labelList[i] for i in best_preds] df_te['multi_eXGBT_pre_label']=readable_pre return df_te def transform_predict_result_DF(predict_result_DF,label_col,threshold=0.1): id_col='predict_result_DF_indices' predict_result_DF[id_col]=predict_result_DF.index #This is for specific purposes. try: label_list = predict_result_DF[label_col].unique().tolist() predict_result_DF['max']=predict_result_DF[label_list].T.max() except KeyError as keyE: label_list = predict_result_DF['multi_eXGBT_pre_label'].unique().tolist() predict_result_DF['max']=predict_result_DF[label_list].T.max() print('Notice: The predicted labels were used instead of full labels') min_Filter = predict_result_DF['max']<threshold predict_result_DF.loc[min_Filter,'F_label']=predict_result_DF.loc[min_Filter,'multi_eXGBT_pre_label'] max_Filter = predict_result_DF['max']>=threshold for i in label_list: analogue_filter = predict_result_DF['max']==predict_result_DF[i] predict_result_DF.loc[analogue_filter&max_Filter,'F_label']=i predict_result_DF = predict_result_DF.rename({'max': 'probability'}, axis='columns') temp1= predict_result_DF.groupby([id_col,'F_label'], as_index=False).mean()[[id_col,'F_label','probability']] temp1['ID']=temp1[id_col].astype(str)+temp1['probability'].astype(str) temp2= temp1.groupby([id_col], as_index=False).max()[[id_col,'probability']] temp2['ID']=temp2[id_col].astype(str)+temp2['probability'].astype(str) temp3=temp2.merge(temp1, on='ID', how='left')[[id_col+'_x','probability_x','F_label']] temp3.columns=[id_col,'confidence','predicted_label'] temp3.groupby(['predicted_label'], as_index=False).count()[['predicted_label','confidence']] temp3=temp3.merge(predict_result_DF, on=id_col, how='left')[[id_col,'confidence','predicted_label',label_col]] fake_filter = temp3[id_col].astype(str).str.startswith('fake') return predict_result_DF,temp3[~fake_filter] def generate_expressed_matrix(gene_dfc,select_gene ,group_col = 'group',id_col='cell'): np_temp = gene_dfc[select_gene].to_numpy() lst=[] for i in np_temp: lst_t=[] for j in i: if j==0: lst_t.append(0) else: lst_t.append(1) lst.append(lst_t) lst=np.array(lst) zero_test_df = pd.DataFrame(lst,columns=select_gene) zero_test_df[[id_col,group_col]]=gene_dfc[[id_col,group_col]] return zero_test_df def Drode_DE_gene_detection(gene_dfc,select_gene,feature='gene',id_col='cell',group_col='group',is_unify=True): if(is_unify): gene_dfc_unify,_ = unify_df(gene_dfc,select_gene,id_col,[group_col]) else: gene_dfc_unify=gene_dfc.copy() gene_dfc_unify= gene_dfc_unify.reset_index(drop=True) zero_test_df = generate_expressed_matrix(gene_dfc = gene_dfc_unify,select_gene = select_gene,group_col = group_col,id_col=id_col) differentiated_df = pd.DataFrame() for gene in select_gene: print(gene) temp = zero_test_df.groupby(by=[group_col,gene],as_index=False)[[id_col]].count().copy() temp = pd.pivot_table(temp, index=group_col, columns=gene, values=id_col) if zero_test_df[zero_test_df[gene]==0].shape[0]==0: temp[0]=np.zeros(temp.shape[0]) temp['non_0_rate']=np.ones(temp.shape[0]) elif zero_test_df[zero_test_df[gene]==1].shape[0]==0: temp[1]=np.zeros(temp.shape[0]) temp['non_0_rate']=np.zeros(temp.shape[0]) else: temp=temp.fillna(0) temp['non_0_rate']=temp[1]/(temp[0]+temp[1]) temp['size']=temp[0]+temp[1] temp[group_col]=temp.index temp_np = temp.to_numpy() lst=[] for i in range(len(temp_np)): for j in range(i+1,len(temp_np)): x = gene_dfc_unify[(gene_dfc_unify[group_col]==str(temp_np[i][4])) & (gene_dfc_unify[gene]!=0)][gene].to_numpy() y = gene_dfc_unify[(gene_dfc_unify[group_col]==str(temp_np[j][4])) & (gene_dfc_unify[gene]!=0)][gene].to_numpy() true_mean_x = gene_dfc[(gene_dfc[group_col]==str(temp_np[i][4])) & (gene_dfc[gene]!=0)][gene].to_numpy() true_mean_y = gene_dfc[(gene_dfc[group_col]==str(temp_np[j][4])) & (gene_dfc[gene]!=0)][gene].to_numpy() if((len(x)<3) & (len(y)<3)): continue elif len(x)<3: mean_x=0 mean_y=y.mean() same_distribution_pval = 1 elif len(y)<3: mean_x=x.mean() mean_y=0 same_distribution_pval = 1 else: mean_x=x.mean() mean_y=y.mean() same_distribution_pval = (ks_2samp(x, y)[1]) if(len(true_mean_x)>0): true_mean_x=true_mean_x.mean() else: true_mean_x=0 if(len(true_mean_y)>0): true_mean_y=true_mean_y.mean() else: true_mean_y=0 if temp_np[i][0]+temp_np[j][0]==0: #all zeros same_0rate_pval=1 elif temp_np[i][0]+temp_np[j][0]==temp_np[i][3]+temp_np[j][3]: #all ones same_0rate_pval=1 else: zscore, same_0rate_pval = sm.stats.proportions_ztest([temp_np[i][0], temp_np[j][0]], [temp_np[i][3], temp_np[j][3]], alternative='two-sided') if same_0rate_pval<=0.05: differentiated_pval=1-same_0rate_pval elif same_distribution_pval<=0.05: differentiated_pval=0.95-same_distribution_pval else: differentiated_pval=0.9-same_0rate_pval*same_distribution_pval lst.append([gene,temp_np[i][4],temp_np[j][4],differentiated_pval,1-same_0rate_pval,1-same_distribution_pval,temp_np[i][2],temp_np[j][2],temp_np[i][1],temp_np[j][1],true_mean_x,true_mean_y]) temp_df = pd.DataFrame(lst,columns=[feature,'group_1','group_2','deprob','d0prob','d1prob','posrate_1','posrate_2','pos_1','pos_2','posmean_1','posmean_2']) differentiated_df=differentiated_df.append(temp_df) return differentiated_df def select_de_gene(drode_de_gene_df,score_col='deprob',feature='gene',num=20): drode_de_gene_df = drode_de_gene_df[drode_de_gene_df[score_col]>0.9].copy() drode_de_gene_df['group']=drode_de_gene_df['group_1']+'***'+drode_de_gene_df['group_2'] groups=drode_de_gene_df['group'].unique().tolist() group_df=pd.DataFrame() for group in groups: temp_df = drode_de_gene_df[drode_de_gene_df['group']==group][['gene',score_col,'group']].copy() temp_df = temp_df.sort_values(by=score_col,ascending=False).reset_index(drop=True) group_df = group_df.append(temp_df.iloc[0:num]) de_gene_dWT4 = group_df[feature].unique().tolist() return de_gene_dWT4 def cluster_cells(gene_dfc,select_gene,group='CD4SP',group_col='group',id_col='cell',path='/home/ivan/Desktop/Project2/MyData/pipeline'): cluster_df = gene_dfc[gene_dfc[group_col]==group][select_gene+[id_col,group_col]] cluster_df = cluster_df.reset_index(drop=True) cluster_df = rrd(cluster_df,id_col,True,False) cluster_df = cluster_df.replace(0,1e-7) mx=cluster_df[select_gene].to_numpy() scaled_matrix = generate_unit_modules(mx, isrow=True, is_scale=False, simple_scale=True) dis_mx=[] for i in range(len(scaled_matrix)): lst=[] for j in range(len(scaled_matrix)): lst.append(entropy(scaled_matrix[i], scaled_matrix[j], base=None)) dis_mx.append(lst) dis_mx = np.array(dis_mx) dis_df = pd.DataFrame(dis_mx,columns=cluster_df[id_col].tolist()) dis_df.index = cluster_df[id_col].tolist() lst = plot_heatmap_for_kmeans_groups(data_frame=dis_df,numeric_features=cluster_df[id_col].tolist(),path=path, clusters=1, is_row=True) return lst def de_gene_description(drode_de_gene_df): drode_de_gene_df_2=drode_de_gene_df.copy() drode_de_gene_df_2['group_1']=drode_de_gene_df['group_2'] drode_de_gene_df_2['group_2']=drode_de_gene_df['group_1'] drode_de_gene_df_2['posmean_1']=drode_de_gene_df['posmean_2'] drode_de_gene_df_2['posmean_2']=drode_de_gene_df['posmean_1'] drode_de_gene_df_2['posrate_1']=drode_de_gene_df['posrate_2'] drode_de_gene_df_2['posrate_2']=drode_de_gene_df['posrate_1'] drode_de_gene_df_2=drode_de_gene_df_2.append(drode_de_gene_df) cate_lst = drode_de_gene_df_2['group_1'].unique().tolist() temp_mean_df = pd.pivot_table(drode_de_gene_df_2, index='gene', columns='group_2', values='posmean_2') temp_mean_df = temp_mean_df[cate_lst] temp_mean_df['name']=temp_mean_df.index+'_PELs' temp_mean_df.index=temp_mean_df['name'] temp_mean_df=temp_mean_df.reset_index(drop=True) temp_mean_df = temp_mean_df.T temp_mean_df.columns = temp_mean_df.loc['name'] temp_mean_df = temp_mean_df.loc[cate_lst] temp_mean_df.index = cate_lst temp_rate_df= pd.pivot_table(drode_de_gene_df_2, index='gene', columns='group_2', values='posrate_2') temp_rate_df = temp_rate_df[cate_lst] temp_rate_df['name']=temp_rate_df.index+'_1-RUEs' temp_rate_df.index=temp_rate_df['name'] temp_rate_df=temp_rate_df.reset_index(drop=True) temp_rate_df = temp_rate_df.T temp_rate_df.columns = temp_rate_df.loc['name'] temp_rate_df = temp_rate_df.loc[cate_lst] temp_rate_df.index = cate_lst return temp_mean_df,temp_rate_df def plot_line_charts(df1,df2=None,width=1200,height=900,titleName='title',xlabel='subpopulations',ylabel='expression_level',ylabel_sec='expression_rate',outputFilePath = "/home/ivan/Desktop/Project2/twin_axis.html"): df = df1.copy() tools= [WheelZoomTool(),PanTool(),BoxZoomTool(),ResetTool(),SaveTool()] p = figure(x_range=df.index.tolist(),plot_width = width, plot_height = height, \ tools=tools,title=titleName,toolbar_location='right',x_axis_label=xlabel,\ y_axis_label=ylabel,background_fill_color='white',title_location = 'above') if len(df.columns.tolist())<6: palette=['#f03b20','#feb24c','#3182bd','#636363','#31a354'] else: palette=viridis(len(df.columns.tolist())) p.y_range = Range1d(min(0,df.values.min()-abs(df.values.min()*0.05)), df.values.max()+abs(df.values.max()*0.05)) col_lst=df.columns.tolist() df['index']=df.index for i in range(0,len(col_lst)): col = col_lst[i] p.line(df.index, df[col], legend=col, line_width=3, color=palette[i]) p.circle(df.index, df[col], size=7,color=palette[i]) if df2 is not None: df = df2.copy() y_column2_range = 'expression_rate' + "_range" p.extra_y_ranges = {y_column2_range: Range1d(start=min(0,df.values.min()-abs(df.values.min()*0.05)),end=df.values.max()+abs(df.values.max()*0.05))} p.add_layout(LinearAxis(y_range_name=y_column2_range,axis_label=ylabel_sec), "right") col_lst=df.columns.tolist() df['index']=df.index source= ColumnDataSource(df) for i in range(0,len(col_lst)): col = col_lst[i] p.line(df.index,df[col],legend=col,line_width=3,y_range_name=y_column2_range,color=palette[i],line_dash="dashed") p.circle('index', col, size=7,color=palette[i],y_range_name=y_column2_range,source=source) p.legend.location = "top_left" p.toolbar.active_scroll=p.select_one(WheelZoomTool) p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' if outputFilePath.endswith('png'): export_png(p, filename=outputFilePath) else: output_file(outputFilePath) show(p) def h_bar_plot(bar_df,cat_col,num_col,sort_col,bottom_up=False,height=600,title='test',file_path='test.html'): bar_df = bar_df.sort_values(by=sort_col,ascending=bottom_up) cate=bar_df[cat_col].tolist() num=bar_df[num_col].tolist() p = figure(y_range=cate, plot_height=height, x_range=(min(num)-abs(min(num)*0.1), max(num)+abs(max(num)*0.1)), title=title,toolbar_location='right') source = ColumnDataSource(data=dict(num=num, cate=cate)) color_map = LinearColorMapper(palette=viridis(len(set(num))), low=min(num), high=max(num)) p.hbar(y='cate', right='num', height=0.9,fill_color={'field': 'num', 'transform': color_map}, legend=None, source=source) p.y_range.range_padding = 0.1 p.ygrid.grid_line_color = None p.axis.minor_tick_line_color = None p.outline_line_color = None p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' if file_path.endswith('png'): export_png(p, filename=file_path) else: output_file(file_path) show(p) def pca_transformation(gene_df_full,drode_de_gene): pca_df = gene_df_full.copy() pca_df['indices']=pca_df.index temp_mx = dtm(pca_df,drode_de_gene,sort_column='indices') temp_mx = scale_matrix(temp_mx,isrow=False,simple_scale=True) pca_df = mtd(temp_mx,drode_de_gene,pca_df,['group','indices'], sort_column='indices',asc=True) pca_df.index = pca_df['indices'] del pca_df['indices'] pca_df['cell']=pca_df.index pca = PCA(n_components=5,random_state=0) principalComponents = pca.fit_transform(pca_df[drode_de_gene]) principalDf =
pd.DataFrame(data = principalComponents, columns = ['pc1', 'pc2','pc3','pc4','pc5'])
pandas.DataFrame
import pandas as pd import numpy as np import math import os from scipy.interpolate import interp1d import time from sklearn.ensemble import RandomForestRegressor import xgboost as xgb from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from information_measures import * from joblib import Parallel, delayed #from arch import arch_model def rmspe(y_true, y_pred): return (np.sqrt(np.mean(np.square((y_true - y_pred) / y_true)))) def log_return(list_stock_prices): # Stock prices are estimated through wap values return np.log(list_stock_prices).diff() def realized_volatility(series_log_return): return np.sqrt(np.sum(series_log_return**2)) def compute_wap(book_pd): wap = (book_pd['bid_price1'] * book_pd['ask_size1'] + book_pd['ask_price1'] * book_pd['bid_size1']) / (book_pd['bid_size1']+ book_pd['ask_size1']) return wap def realized_volatility_from_book_pd(book_stock_time): wap = compute_wap(book_stock_time) returns = log_return(wap) volatility = realized_volatility(returns) return volatility def realized_volatility_per_time_id(file_path, prediction_column_name): df_book_data = pd.read_parquet(file_path) # Estimate stock price per time point df_book_data['wap'] = compute_wap(df_book_data) # Compute log return from wap values per time_id df_book_data['log_return'] = df_book_data.groupby(['time_id'])['wap'].apply(log_return) df_book_data = df_book_data[~df_book_data['log_return'].isnull()] # Compute the square root of the sum of log return squared to get realized volatility df_realized_vol_per_stock = pd.DataFrame(df_book_data.groupby(['time_id'])['log_return'].agg(realized_volatility)).reset_index() # Formatting df_realized_vol_per_stock = df_realized_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) stock_id = file_path.split('=')[1] df_realized_vol_per_stock['row_id'] = df_realized_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') return df_realized_vol_per_stock[['row_id',prediction_column_name]] def past_realized_volatility_per_stock(list_file,prediction_column_name): df_past_realized = pd.DataFrame() for file in list_file: df_past_realized = pd.concat([df_past_realized, realized_volatility_per_time_id(file,prediction_column_name)]) return df_past_realized def stupidForestPrediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test): naive_predictions_train = past_realized_volatility_per_stock(list_file=book_path_train,prediction_column_name=prediction_column_name) df_joined_train = train_targets_pd.merge(naive_predictions_train[['row_id','pred']], on = ['row_id'], how = 'left') X = np.array(df_joined_train['pred']).reshape(-1,1) y = np.array(df_joined_train['target']).reshape(-1,) regr = RandomForestRegressor(random_state=0) regr.fit(X, y) naive_predictions_test = past_realized_volatility_per_stock(list_file=book_path_test,prediction_column_name='target') yhat = regr.predict(np.array(naive_predictions_test['target']).reshape(-1,1)) updated_predictions = naive_predictions_test.copy() updated_predictions['target'] = yhat return updated_predictions def garch_fit_predict_volatility(returns_series, N=10000): model = arch_model(returns_series * N, p=1, q=1) model_fit = model.fit(update_freq=0, disp='off') yhat = model_fit.forecast(horizon=600, reindex=False) pred_volatility = np.sqrt(np.sum(yhat.variance.values)) / N return pred_volatility def garch_volatility_per_time_id(file_path, prediction_column_name): # read the data df_book_data = pd.read_parquet(file_path) # calculate the midprice (not the WAP) df_book_data['midprice'] =(df_book_data['bid_price1'] + df_book_data['ask_price1'])/2 # leave only WAP for now df_book_data = df_book_data[['time_id', 'seconds_in_bucket', 'midprice']] df_book_data = df_book_data.sort_values('seconds_in_bucket') # make the book updates evenly spaced df_book_data_evenly = pd.DataFrame({'time_id':np.repeat(df_book_data['time_id'].unique(), 600), 'second':np.tile(range(0,600), df_book_data['time_id'].nunique())}) df_book_data_evenly['second'] = df_book_data_evenly['second'].astype(np.int16) df_book_data_evenly = df_book_data_evenly.sort_values('second') df_book_data_evenly = pd.merge_asof(df_book_data_evenly, df_book_data, left_on='second',right_on='seconds_in_bucket', by = 'time_id') # Ordering for easier use df_book_data_evenly = df_book_data_evenly[['time_id', 'second', 'midprice']] df_book_data_evenly = df_book_data_evenly.sort_values(['time_id','second']).reset_index(drop=True) # calculate log returns df_book_data_evenly['log_return'] = df_book_data_evenly.groupby(['time_id'])['midprice'].apply(log_return) df_book_data_evenly = df_book_data_evenly[~df_book_data_evenly['log_return'].isnull()] # fit GARCH(1, 1) and predict the volatility of returns df_garch_vol_per_stock = \ pd.DataFrame(df_book_data_evenly.groupby(['time_id'])['log_return'].agg(garch_fit_predict_volatility)).reset_index() df_garch_vol_per_stock = df_garch_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) # add row_id column to the data stock_id = file_path.split('=')[1] df_garch_vol_per_stock['row_id'] = df_garch_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') # return the result return df_garch_vol_per_stock[['row_id', prediction_column_name]] def garch_volatility_per_stock(list_file, prediction_column_name): df_garch_predicted = pd.DataFrame() for file in list_file: df_garch_predicted = pd.concat([df_garch_predicted, garch_volatility_per_time_id(file, prediction_column_name)]) return df_garch_predicted def entropy_from_book(book_stock_time,last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 3: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_wap(wap,seconds,last_seconds): if last_seconds < 600: idx = np.where(seconds >= last_seconds)[0] if len(idx) < 3: return 0 else: wap = wap[idx] seconds = seconds[idx] # Closest neighbour interpolation (no changes in wap between lines) t_new = np.arange(np.min(seconds),np.max(seconds)) nearest = interp1d(seconds, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) # sampleEntropy = ApEn_new(resampled_wap,3,0.001) return sampleEntropy def linearFit(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = np.array(compute_wap(book_stock_time)) t_init = book_stock_time['seconds_in_bucket'] return (wap[-1] - wap[0])/(np.max(t_init) - np.min(t_init)) def wapStat(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) return np.std(resampled_wap) def entropy_Prediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test,all_stocks_ids,test_file): # Compute features book_features_encoded_test = computeFeatures_1(book_path_test,'test',test_file,all_stocks_ids) book_features_encoded_train = computeFeatures_1(book_path_train,'train',train_targets_pd,all_stocks_ids) X = book_features_encoded_train.drop(['row_id','target','stock_id'],axis=1) y = book_features_encoded_train['target'] # Modeling catboost_default = CatBoostRegressor(verbose=0) catboost_default.fit(X,y) # Predict X_test = book_features_encoded_test.drop(['row_id','stock_id'],axis=1) yhat = catboost_default.predict(X_test) # Formatting yhat_pd = pd.DataFrame(yhat,columns=['target']) predictions = pd.concat([test_file,yhat_pd],axis=1) return predictions def computeFeatures_1(book_path,prediction_column_name,train_targets_pd,all_stocks_ids): book_all_features = pd.DataFrame() encoder = np.eye(len(all_stocks_ids)) stocks_id_list, row_id_list = [], [] volatility_list, entropy2_list = [], [] linearFit_list, linearFit5_list, linearFit2_list = [], [], [] wap_std_list, wap_std5_list, wap_std2_list = [], [], [] for file in book_path: start = time.time() book_stock = pd.read_parquet(file) stock_id = file.split('=')[1] print('stock id computing = ' + str(stock_id)) stock_time_ids = book_stock['time_id'].unique() for time_id in stock_time_ids: # Access book data at this time + stock book_stock_time = book_stock[book_stock['time_id'] == time_id] # Create feature matrix stocks_id_list.append(stock_id) row_id_list.append(str(f'{stock_id}-{time_id}')) volatility_list.append(realized_volatility_from_book_pd(book_stock_time=book_stock_time)) entropy2_list.append(entropy_from_book(book_stock_time=book_stock_time,last_min=2)) linearFit_list.append(linearFit(book_stock_time=book_stock_time,last_min=10)) linearFit5_list.append(linearFit(book_stock_time=book_stock_time,last_min=5)) linearFit2_list.append(linearFit(book_stock_time=book_stock_time,last_min=2)) wap_std_list.append(wapStat(book_stock_time=book_stock_time,last_min=10)) wap_std5_list.append(wapStat(book_stock_time=book_stock_time,last_min=5)) wap_std2_list.append(wapStat(book_stock_time=book_stock_time,last_min=2)) print('Computing one stock entropy took', time.time() - start, 'seconds for stock ', stock_id) # Merge targets stocks_id_pd = pd.DataFrame(stocks_id_list,columns=['stock_id']) row_id_pd = pd.DataFrame(row_id_list,columns=['row_id']) volatility_pd = pd.DataFrame(volatility_list,columns=['volatility']) entropy2_pd = pd.DataFrame(entropy2_list,columns=['entropy2']) linearFit_pd = pd.DataFrame(linearFit_list,columns=['linearFit_coef']) linearFit5_pd = pd.DataFrame(linearFit5_list,columns=['linearFit_coef5']) linearFit2_pd = pd.DataFrame(linearFit2_list,columns=['linearFit_coef2']) wap_std_pd = pd.DataFrame(wap_std_list,columns=['wap_std']) wap_std5_pd = pd.DataFrame(wap_std5_list,columns=['wap_std5']) wap_std2_pd = pd.DataFrame(wap_std2_list,columns=['wap_std2']) book_all_features = pd.concat([stocks_id_pd,row_id_pd,volatility_pd,entropy2_pd,linearFit_pd,linearFit5_pd,linearFit2_pd, wap_std_pd,wap_std5_pd,wap_std2_pd],axis=1) # This line makes sure the predictions are aligned with the row_id in the submission file book_all_features = train_targets_pd.merge(book_all_features, on = ['row_id']) # Add encoded stock encoded = list() for i in range(book_all_features.shape[0]): stock_id = book_all_features['stock_id'][i] encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(book_all_features.shape[0],np.array(all_stocks_ids).shape[0])) book_all_features_encoded = pd.concat([book_all_features, encoded_pd],axis=1) return book_all_features_encoded def calc_wap(df): return (df['bid_price1'] * df['ask_size1'] + df['ask_price1'] * df['bid_size1']) / (df['bid_size1'] + df['ask_size1']) def calc_wap2(df): return (df['bid_price2'] * df['ask_size2'] + df['ask_price2'] * df['bid_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap3(df): return (df['bid_price2'] * df['bid_size2'] + df['ask_price2'] * df['ask_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap4(df): return (df['bid_price1'] * df['bid_size1'] + df['ask_price1'] * df['ask_size1']) / (df['bid_size1'] + df['ask_size1']) def mid_price(df): return df['bid_price1'] /2 + df['ask_price1'] / 2 def calc_rv_from_wap_numba(values, index): log_return = np.diff(np.log(values)) realized_vol = np.sqrt(np.sum(np.square(log_return[1:]))) return realized_vol def load_book_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'book_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def load_trades_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'trade_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def entropy_from_df(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df2(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap2'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df3(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap3'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy sampleEntropy = sampen(resampled_wap) return sampleEntropy def financial_metrics(df): wap_imbalance = np.mean(df['wap'] - df['wap2']) price_spread = np.mean((df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2)) bid_spread = np.mean(df['bid_price1'] - df['bid_price2']) ask_spread = np.mean(df['ask_price1'] - df['ask_price2']) # Abs to take total_volume = np.mean((df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2'])) volume_imbalance = np.mean(abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2']))) return [wap_imbalance,price_spread,bid_spread,ask_spread,total_volume,volume_imbalance] def financial_metrics_2(df): wap_imbalance = df['wap'] - df['wap2'] price_spread = (df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2) bid_spread = df['bid_price1'] - df['bid_price2'] ask_spread = df['ask_price1'] - df['ask_price2'] # Abs to take total_volume = (df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2']) volume_imbalance = abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2'])) # New features here wap_imbalance_mean = np.mean(wap_imbalance) wap_imbalance_sum = np.sum(wap_imbalance) wap_imbalance_std = np.std(wap_imbalance) wap_imbalance_max = np.max(wap_imbalance) wap_imbalance_min = np.min(wap_imbalance) price_spread_mean = np.mean(price_spread) price_spread_sum = np.sum(price_spread) price_spread_std = np.std(price_spread) price_spread_max = np.max(price_spread) price_spread_min = np.min(price_spread) bid_spread_mean = np.mean(bid_spread) bid_spread_sum = np.sum(bid_spread) bid_spread_std = np.std(bid_spread) bid_spread_max = np.max(bid_spread) bid_spread_min = np.min(bid_spread) ask_spread_mean = np.mean(ask_spread) ask_spread_sum = np.sum(ask_spread) ask_spread_std = np.std(ask_spread) ask_spread_max = np.max(ask_spread) ask_spread_min = np.min(ask_spread) total_volume_mean = np.mean(total_volume) total_volume_sum = np.sum(total_volume) total_volume_std = np.std(total_volume) total_volume_max = np.max(total_volume) total_volume_min = np.min(total_volume) volume_imbalance_mean = np.mean(volume_imbalance) volume_imbalance_sum = np.sum(volume_imbalance) volume_imbalance_std = np.std(volume_imbalance) volume_imbalance_max = np.max(volume_imbalance) volume_imbalance_min = np.min(volume_imbalance) return [wap_imbalance_mean,price_spread_mean,bid_spread_mean,ask_spread_mean,total_volume_mean,volume_imbalance_mean, wap_imbalance_sum,price_spread_sum,bid_spread_sum,ask_spread_sum,total_volume_sum,volume_imbalance_sum, wap_imbalance_std,price_spread_std,bid_spread_std,ask_spread_std,total_volume_std,volume_imbalance_std, wap_imbalance_max,price_spread_max,bid_spread_max,ask_spread_max,total_volume_max,volume_imbalance_max, wap_imbalance_min,price_spread_min,bid_spread_min,ask_spread_min,total_volume_min,volume_imbalance_min] def other_metrics(df): if df.shape[0] < 2: linearFit = 0 linearFit2 = 0 linearFit3 = 0 std_1 = 0 std_2 = 0 std_3 = 0 else: linearFit = (df['wap'].iloc[-1] - df['wap'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit2 = (df['wap2'].iloc[-1] - df['wap2'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit3 = (df['wap3'].iloc[-1] - df['wap3'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) # Resampling t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') nearest2 = interp1d(t_init, df['wap2'], kind='nearest') nearest3 = interp1d(t_init, df['wap3'], kind='nearest') std_1 = np.std(nearest(t_new)) std_2 = np.std(nearest2(t_new)) std_3 = np.std(nearest3(t_new)) return [linearFit, linearFit2, linearFit3, std_1, std_2, std_3] def load_book_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/book_{train_test}.parquet/stock_id={stock_id}') return df def load_trades_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/trade_{train_test}.parquet/stock_id={stock_id}') return df def computeFeatures_wEntropy(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute entropy isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_ent = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df).to_frame().reset_index().fillna(0) df_ent2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df2).to_frame().reset_index().fillna(0) df_ent3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df3).to_frame().reset_index().fillna(0) df_ent['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_ent['time_id']] df_ent = df_ent.rename(columns={'time_id':'row_id',0:'entropy'}) df_ent2 = df_ent2.rename(columns={0:'entropy2'}).drop(['time_id'],axis=1) df_ent3 = df_ent3.rename(columns={0:'entropy3'}).drop(['time_id'],axis=1) df_ent = pd.concat([df_ent,df_ent2,df_ent3],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['entropy']) temp2 = pd.DataFrame([0],columns=['entropy2']) temp3 = pd.DataFrame([0],columns=['entropy3']) df_ent = pd.concat([times_pd,temp,temp2,temp3],axis=1) list_ent.append(df_ent) # Compute other metrics df_others = book_stock.groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others = df_others.rename(columns={0:'embedding'}) df_others[['linearFit1_1','linearFit1_2','linearFit1_3','wap_std1_1','wap_std1_2','wap_std1_3']] = pd.DataFrame(df_others.embedding.tolist(), index=df_others.index) df_others['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others['time_id']] df_others = df_others.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_others.append(df_others) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_others2 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others2 = df_others2.rename(columns={0:'embedding'}) df_others2[['linearFit2_1','linearFit2_2','linearFit2_3','wap_std2_1','wap_std2_2','wap_std2_3']] = pd.DataFrame(df_others2.embedding.tolist(), index=df_others2.index) df_others2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others2['time_id']] df_others2 = df_others2.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit2_1']) temp2 = pd.DataFrame([0],columns=['linearFit2_2']) temp3 = pd.DataFrame([0],columns=['linearFit2_3']) temp4 =
pd.DataFrame([0],columns=['wap_std2_1'])
pandas.DataFrame
import numpy as np import pandas as pd from ..mean_characters_per_word import MeanCharactersPerWord from ..utils import PrimitiveT, find_applicable_primitives, valid_dfs class TestMeanCharactersPerWord(PrimitiveT): primitive = MeanCharactersPerWord def test_sentences(self): x = pd.Series(['This is a test file', 'This is second line', 'third line $1,000', 'and subsequent lines', 'and more']) primitive_func = self.primitive().get_function() answers = pd.Series([3.0, 4.0, 5.0, 6.0, 3.5]) pd.testing.assert_series_equal(primitive_func(x), answers, check_names=False) def test_punctuation(self): x = pd.Series(['This: is a test file', 'This, is second line?', 'third/line $1,000;', 'and--subsequen\'t lines...', '*and, more..']) primitive_func = self.primitive().get_function() answers =
pd.Series([3.0, 4.0, 8.0, 10.5, 4.0])
pandas.Series
'''This module implements the word2vec model service that is responsible for training the model as well as a backend interface for the API. ''' from datetime import datetime import json import logging import pandas as pd from gensim.models.ldamulticore import LdaMulticore import numpy as np from wb_nlp.interfaces.milvus import ( get_milvus_client, get_embedding_dsl ) from wb_nlp.interfaces import mongodb, elasticsearch from wb_nlp.types.models import LDAModelConfig, ModelTypes from wb_nlp.models.base import BaseModel class LDAModel(BaseModel): def __init__( self, model_config_id, cleaning_config_id, model_class=LdaMulticore, model_config_type=LDAModelConfig, expected_model_name=ModelTypes.lda.value, model_run_info_description="", model_run_info_id=None, raise_empty_doc_status=True, log_level=logging.INFO, ): super().__init__( model_config_id=model_config_id, cleaning_config_id=cleaning_config_id, model_class=model_class, model_config_type=model_config_type, expected_model_name=expected_model_name, model_run_info_description=model_run_info_description, model_run_info_id=model_run_info_id, raise_empty_doc_status=raise_empty_doc_status, log_level=log_level, ) self.topic_composition_ranges = None try: self.logger.info("Initializing topic composition") self.get_topic_composition_ranges() self.logger.info("Finished initializing topic composition") except ValueError: self.logger.info("Skipping initialization of topic composition") def set_model_specific_attributes(self): self.num_topics = self.dim def transform_doc(self, document, normalize=True, tolist=False): # This function is the primary method of converting a document # into its vector representation based on the model. # This should be implemented in the respective models. # The expected output is a dictionary with keys: # - doc_vec # numpy array of shape (1, self.dim) # - success # Whether the transformation went successfully self.check_model() success = True document = document.lower() try: doc_topics = self.infer_topics(document) doc_vec = np.array([dt["score"] for dt in sorted( doc_topics, key=lambda x: x["topic"])]).reshape(1, -1) if normalize: doc_vec /= np.linalg.norm(doc_vec, ord=2) except Exception as e: success = False if self.raise_empty_doc_status: raise(e) else: doc_vec = np.zeros(self.dim).reshape(1, -1) if tolist: doc_vec = doc_vec.ravel().tolist() return dict(doc_vec=doc_vec, success=success) def infer_topics(self, text, topn_topics=None, total_topic_score=None, serialize=False): if isinstance(text, str): text = text.split() if len(text) == 1: doc_topics = self.model.get_term_topics( self.g_dict.token2id[text[0]]) else: doc = self.g_dict.doc2bow(text) doc_topics = self.model[doc] found_topics = {i for i, v in doc_topics} # print(found_topics) for i in range(self.model.num_topics): if i not in found_topics: doc_topics.append((i, 0)) doc_topics = pd.DataFrame(doc_topics, columns=['topic', 'score']) doc_topics = doc_topics.sort_values('score', ascending=False) if total_topic_score is not None: tdoc_topics = doc_topics[doc_topics.score.cumsum( ) <= total_topic_score] if tdoc_topics.empty: doc_topics = doc_topics.head(1) else: doc_topics = tdoc_topics if topn_topics is not None and doc_topics.shape[0] > topn_topics: doc_topics = doc_topics.head(topn_topics) # doc_topics['topic'] = doc_topics['topic'].astype(int) doc_topics = doc_topics.to_dict('records') if serialize: doc_topics = json.dumps(doc_topics) return doc_topics def get_model_topic_words(self, topn_words=5, total_word_score=None, serialize=False): payload = [] for topic_id in range(self.model.num_topics): topic_words = self.get_topic_words( topic_id, topn_words=topn_words, total_word_score=total_word_score ) payload.append({'topic_id': topic_id, 'topic_words': topic_words}) if serialize: payload = json.dumps(payload) return payload def get_topic_words(self, topic_id, topn_words=10, total_word_score=None, serialize=False): topic_id = int(topic_id) topic_words = pd.DataFrame(self.model.show_topic( topic_id, topn=topn_words), columns=['word', 'score']) topic_words = topic_words.sort_values('score', ascending=False) if total_word_score is not None: ttopic_words = topic_words[topic_words.score.cumsum( ) <= total_word_score] if ttopic_words.empty: topic_words = topic_words.head(1) else: topic_words = ttopic_words if topn_words is not None and topic_words.shape[0] > topn_words: topic_words = topic_words.head(topn_words) topic_words = topic_words.to_dict('records') if serialize: topic_words = json.dumps(topic_words) return topic_words def get_doc_topic_words(self, text, topn_topics=10, topn_words=10, total_topic_score=1, total_word_score=1, serialize=False): doc_topics = self.infer_topics( text, topn_topics=topn_topics, total_topic_score=total_topic_score) doc_topic_words = [] for dt in doc_topics: topic = dt['topic'] topic_score = dt['score'] topic_words = self.get_topic_words( topic, topn_words=topn_words, total_word_score=total_word_score) topic_data = {'topic': topic, 'score': topic_score} topic_data['words'] = topic_words doc_topic_words.append(topic_data) doc_topic_words = pd.DataFrame(doc_topic_words).to_dict('records') if serialize: doc_topic_words = json.dumps(doc_topic_words) return doc_topic_words # def get_doc_topic_words_by_id(self, doc_id, topn_topics=10, topn_words=10, total_topic_score=1, total_word_score=1, serialize=False): # doc_topics = self.get_doc_topic_by_id( # doc_id, topn=topn_topics, serialize=False) # doc_topic_words = [] # for dt in doc_topics: # topic = dt['topic'] # topic_score = dt['score'] # topic_words = self.get_topic_words( # topic, topn_words=topn_words, total_word_score=total_word_score) # topic_data = {'topic': topic, 'score': topic_score} # topic_data['words'] = topic_words # doc_topic_words.append(topic_data) # doc_topic_words = pd.DataFrame(doc_topic_words).to_dict('records') # if serialize: # doc_topic_words = json.dumps(doc_topic_words) # return doc_topic_words def get_combined_doc_topic_words(self, text, topn_topics=None, topn_words=None, total_topic_score=0.8, total_word_score=0.2, serialize=False): doc_topics = self.infer_topics( text, topn_topics=topn_topics, total_topic_score=total_topic_score) doc_topic_words = [] for dt in doc_topics: topic = dt['topic'] topic_score = dt['score'] topic_words = self.get_topic_words( topic, topn_words=topn_words, total_word_score=total_word_score) for tw in topic_words: word = tw['word'] word_score = tw['score'] doc_topic_words.append({ 'topic': topic, 'word': word, 'topic_score': topic_score, 'word_score': word_score, 'score': topic_score * word_score }) doc_topic_words = pd.DataFrame(doc_topic_words).sort_values( 'score', ascending=False).to_dict('records') if serialize: doc_topic_words = json.dumps(doc_topic_words) return doc_topic_words # def get_doc_topic_by_id(self, doc_id, topn=None, serialize=False): # doc = self.documents_topics.loc[doc_id] # if doc.empty: # return [] # # Just call is score for consistency # doc.name = 'score' # doc.index.name = 'topic' # doc = doc.sort_values(ascending=False) / doc.sum() # doc.index = doc.index.astype(int) # doc = doc.reset_index() # if topn is not None: # doc = doc.head(topn) # doc = doc.to_dict('records') # if serialize: # doc = json.dumps(doc) # return doc # def get_similar_documents(self, document, topn=10, return_data='id', return_similarity=False, duplicate_threshold=0.01, show_duplicates=True, serialize=False): # doc_topics = self.infer_topics(document) # doc_topics = pd.DataFrame(doc_topics).sort_values( # 'topic').set_index('topic') # e_distance = euclidean_distances(doc_topics.score.values.reshape( # 1, -1), self.normalized_documents_topics.values).flatten() # if not show_duplicates: # e_distance[e_distance <= duplicate_threshold] = np.inf # payload = [] # for rank, top_sim_ix in enumerate(e_distance.argsort()[:topn], 1): # payload.append( # {'id': self.normalized_documents_topics.iloc[top_sim_ix].name, 'score': e_distance[top_sim_ix], 'rank': rank}) # if serialize: # payload = pd.DataFrame(payload).to_json() # return payload # def get_similar_docs_by_id(self, doc_id, topn=10, return_data='id', return_similarity=False, duplicate_threshold=0.01, show_duplicates=True, serialize=False): # doc_topics = self.normalized_documents_topics.loc[doc_id].values.reshape( # 1, -1) # e_distance = euclidean_distances( # doc_topics, self.normalized_documents_topics.values).flatten() # if not show_duplicates: # e_distance[e_distance <= duplicate_threshold] = pd.np.inf # payload = [] # for rank, top_sim_ix in enumerate(e_distance.argsort()[:topn], 1): # payload.append( # {'id': self.normalized_documents_topics.iloc[top_sim_ix].name, 'score': e_distance[top_sim_ix], 'rank': rank}) # if serialize: # payload = pd.DataFrame(payload).to_json() # return payload def _mdb_get_docs_by_topic_composition(self, topic_percentage, return_all_topics=False): self.check_wvecs() model_run_info_id = self.model_run_info["model_run_info_id"] doc_topic_collection = mongodb.get_document_topics_collection() topic_cols = [f"topic_{id}" for id in sorted(topic_percentage)] topic_filters = {f"topics.topic_{id}": {"$gte": val} for id, val in sorted(topic_percentage.items())} topic_filters = { "model_run_info_id": model_run_info_id, **topic_filters} cands = doc_topic_collection.find(topic_filters) doc_df = pd.DataFrame(cands) if doc_df.empty: return doc_df doc_df = doc_df.set_index( "id")["topics"].apply(pd.Series) if not return_all_topics: doc_df = doc_df[topic_cols] doc_df = doc_df.round(5) return doc_df def _get_docs_by_topic_composition_search(self, topic_percentage): model_run_info_id = self.model_run_info["model_run_info_id"] search = elasticsearch.DocTopic.search() topic_filters = [dict(range={f"topics.topic_{id}": {"gte": val}}) for id, val in sorted(topic_percentage.items())] search = search.query( dict( bool=dict( must=[ {"term": {"model_run_info_id": model_run_info_id}}] + topic_filters ) ) ) return search def _get_docs_by_topic_composition(self, topic_percentage, return_all_topics=False): self.check_wvecs() search = self._get_docs_by_topic_composition_search(topic_percentage) topic_cols = [f"topic_{id}" for id in sorted(topic_percentage)] search = search[0: search.count()] response = search.execute() doc_df = pd.DataFrame([h.to_dict() for h in response.hits]) if doc_df.empty: return doc_df doc_df = doc_df.set_index( "id")["topics"].apply(pd.Series) if not return_all_topics: doc_df = doc_df[topic_cols] doc_df = doc_df.round(5) return doc_df def get_docs_by_topic_composition_count(self, topic_percentage): search = self._get_docs_by_topic_composition_search(topic_percentage) return search.count() # return len(self._get_docs_by_topic_composition(topic_percentage)) def get_docs_by_topic_composition(self, topic_percentage, serialize=False, from_result=0, size=10, return_all_topics=False): ''' topic_percentage (dict): key (int) corresponds to topic id and value (float [0, 1]) corresponds to the expected topic percentage. ''' # topic_percentage = {6: 0.1, 42: 0.1} doc_df = self._get_docs_by_topic_composition( topic_percentage, return_all_topics=return_all_topics) doc_count = len(doc_df) payload = [] if doc_count > 0: doc_rank = (-1 * doc_df ).rank().mean(axis=1).rank().sort_values() doc_rank.name = "rank" doc_rank = doc_rank.reset_index().to_dict("records") doc_topic = doc_df.T.to_dict() for rank, ent in enumerate(doc_rank): if from_result > rank: continue payload.append( {'id': ent["id"], 'topic': doc_topic[ent["id"]], 'rank': rank + 1}) if len(payload) == size: break payload = sorted(payload, key=lambda x: x['rank']) if serialize: payload = pd.DataFrame(payload).to_json() return dict(total=doc_count, hits=payload) def mdb_get_topic_composition_ranges(self, serialize=False): self.check_wvecs() if self.topic_composition_ranges is None: model_run_info_id = self.model_run_info["model_run_info_id"] doc_topic_collection = mongodb.get_document_topics_collection() self.topic_composition_ranges = pd.DataFrame([ list(doc_topic_collection.aggregate([ {"$match": {"model_run_info_id": model_run_info_id}}, {"$group": { "_id": f"topic_{i}", "min": {"$min": f"$topics.topic_{i}"}, "max": {"$max": f"$topics.topic_{i}"}}}]))[0] for i in range(self.dim) ]).rename(columns={"_id": "topic"}).set_index("topic").T.to_dict() # "records") # Data structure: {topic_id: {min: <min_val>, max: <max_val>}} payload = self.topic_composition_ranges if serialize: payload =
pd.DataFrame(payload)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from hypothesis import given, settings from pandas.testing import assert_frame_equal from janitor.testing_utils.strategies import ( conditional_df, conditional_right, conditional_series, ) @pytest.mark.xfail(reason="empty object will pass thru") @given(s=conditional_series()) def test_df_empty(s): """Raise ValueError if `df` is empty.""" df = pd.DataFrame([], dtype="int", columns=["A"]) with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @pytest.mark.xfail(reason="empty object will pass thru") @given(df=conditional_df()) def test_right_empty(df): """Raise ValueError if `right` is empty.""" s = pd.Series([], dtype="int", name="A") with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @given(df=conditional_df()) def test_right_df(df): """Raise TypeError if `right` is not a Series/DataFrame.""" with pytest.raises(TypeError): df.conditional_join({"non": [2, 3, 4]}, ("A", "non", "==")) @given(df=conditional_df(), s=conditional_series()) def test_right_series(df, s): """Raise ValueError if `right` is not a named Series.""" with pytest.raises(ValueError): df.conditional_join(s, ("A", "non", "==")) @given(df=conditional_df()) def test_df_MultiIndex(df): """Raise ValueError if `df` columns is a MultiIndex.""" with pytest.raises(ValueError): df.columns = [list("ABCDE"), list("FGHIJ")] df.conditional_join( pd.Series([2, 3, 4], name="A"), (("A", "F"), "non", "==") ) @given(df=conditional_df()) def test_right_MultiIndex(df): """Raise ValueError if `right` columns is a MultiIndex.""" with pytest.raises(ValueError): right = df.copy() right.columns = [list("ABCDE"), list("FGHIJ")] df.conditional_join(right, (("A", "F"), "non", ">=")) @given(df=conditional_df(), s=conditional_series()) def test_check_conditions_exist(df, s): """Raise ValueError if no condition is provided.""" with pytest.raises(ValueError): s.name = "B" df.conditional_join(s) @given(df=conditional_df(), s=conditional_series()) def test_check_condition_type(df, s): """Raise TypeError if any condition in conditions is not a tuple.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("A", "B", ""), ["A", "B"]) @given(df=conditional_df(), s=conditional_series()) def test_check_condition_length(df, s): """Raise ValueError if any condition is not length 3.""" with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("A", "B", "C", "<")) df.conditional_join(s, ("A", "B", ""), ("A", "B")) @given(df=conditional_df(), s=conditional_series()) def test_check_left_on_type(df, s): """Raise TypeError if left_on is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, (1, "B", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_right_on_type(df, s): """Raise TypeError if right_on is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", 1, "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_op_type(df, s): """Raise TypeError if the operator is not a string.""" with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", 1)) @given(df=conditional_df(), s=conditional_series()) def test_check_column_exists_df(df, s): """ Raise ValueError if `left_on` can not be found in `df`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("C", "B", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_column_exists_right(df, s): """ Raise ValueError if `right_on` can not be found in `right`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "A", ">=")) @given(df=conditional_df(), s=conditional_series()) def test_check_op_correct(df, s): """ Raise ValueError if `op` is not any of `!=`, `<`, `>`, `>=`, `<=`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "B", "=!")) @given(df=conditional_df(), s=conditional_series()) def test_check_how_type(df, s): """ Raise TypeError if `how` is not a string. """ with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), how=1) @given(df=conditional_df(), s=conditional_series()) def test_check_how_value(df, s): """ Raise ValueError if `how` is not one of `inner`, `left`, or `right`. """ with pytest.raises(ValueError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), how="INNER") @given(df=conditional_df(), right=conditional_right()) def test_dtype_strings_non_equi(df, right): """ Raise ValueError if the dtypes are both strings on a non-equi operator. """ with pytest.raises(ValueError): df.conditional_join(right, ("C", "Strings", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_not_permitted(df, s): """ Raise ValueError if dtype of column in `df` is not an acceptable type. """ df["F"] = pd.Timedelta("1 days") with pytest.raises(ValueError): s.name = "A" df.conditional_join(s, ("F", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_str(df, s): """ Raise ValueError if dtype of column in `df` does not match the dtype of column from `right`. """ with pytest.raises(ValueError): s.name = "A" df.conditional_join(s, ("C", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_dtype_category_non_equi(df, s): """ Raise ValueError if dtype is category, and op is non-equi. """ with pytest.raises(ValueError): s.name = "A" s = s.astype("category") df["C"] = df["C"].astype("category") df.conditional_join(s, ("C", "A", "<")) @given(df=conditional_df(), s=conditional_series()) def test_check_sort_by_appearance_type(df, s): """ Raise TypeError if `sort_by_appearance` is not a boolean. """ with pytest.raises(TypeError): s.name = "B" df.conditional_join(s, ("B", "B", "<"), sort_by_appearance="True") @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_floats(df, right): """Test output for a single condition. "<".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_ints(df, right): """Test output for a single condition. "<".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1, C="2"), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_ints_extension_array(df, right): """Test output for a single condition. "<".""" df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_equal(df, right): """Test output for a single condition. "<=". DateTimes""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_less_than_date(df, right): """Test output for a single condition. "<". Dates""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "<"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_datetime(df, right): """Test output for a single condition. ">". Datetimes""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_ints(df, right): """Test output for a single condition. ">=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} >= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_floats_floats(df, right): """Test output for a single condition. ">".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_greater_than_ints_extension_array(df, right): """Test output for a single condition. ">=".""" left_on, right_on = ["A", "Integers"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} > {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, ">"), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_numeric(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["A", "Integers"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_ints_only(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["A", "Integers"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_floats_only(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["B", "Numeric"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_not_equal_datetime(df, right): """Test output for a single condition. "!=".""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .dropna(subset=["E", "Dates"]) .query(f"{left_on} != {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "!="), how="inner", sort_by_appearance=True ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_string(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["C", "Strings"] expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @pytest.mark.xfail( reason="""sometimes, categories are coerced to objects; might be a pandas version issue. """ ) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_category(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["C", "Strings"] df = df.assign(C=df["C"].astype("category")) right = right.assign(Strings=right["Strings"].astype("category")) expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_numeric(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["A", "Integers"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) df.loc[0, "A"] = pd.NA right.loc[0, "Integers"] = pd.NA expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_single_condition_equality_datetime(df, right): """Test output for a single condition. "==".""" left_on, right_on = ["E", "Dates"] expected = df.dropna(subset=[left_on]).merge( right.dropna(subset=[right_on]), left_on=left_on, right_on=right_on ) expected = expected.reset_index(drop=True) expected = expected.filter([left_on, right_on]) actual = df.conditional_join( right, (left_on, right_on, "=="), how="inner", sort_by_appearance=False ) actual = actual.filter([left_on, right_on]) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_how_left(df, right): """Test output when `how==left`. "<=".""" left_on, right_on = ["A", "Integers"] expected = ( df.assign(t=1, index=np.arange(len(df))) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {right_on}") ) expected = expected.set_index("index") expected.index.name = None expected = df.join( expected.filter(right.columns), how="left", sort=False ).reset_index(drop=True) actual = df.conditional_join( right, (left_on, right_on, "<="), how="left", sort_by_appearance=True ) assert_frame_equal(expected, actual) @given(df=conditional_df(), right=conditional_right()) def test_how_right(df, right): """Test output when `how==right`. ">".""" left_on, right_on = ["E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1, index=np.arange(len(right))), on="t") .query(f"{left_on} > {right_on}") ) expected = expected.set_index("index") expected.index.name = None expected = ( expected.filter(df.columns) .join(right, how="right", sort=False) .reset_index(drop=True) ) actual = df.conditional_join( right, (left_on, right_on, ">"), how="right", sort_by_appearance=True ) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {middle} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">"), (middle, right_on, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ge_and_le_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">="), (middle, right_on, "<="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_le_and_ge_dates(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("E", "Dates", "Dates_Right") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, right_on, "<="), (middle, left_on, ">="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ge_and_le_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">="), (middle, right_on, "<="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_le_and_ge_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} <= {middle} <= {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, right_on, "<="), (middle, left_on, ">="), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers(df, right): """Test output for interval conditions.""" middle, left_on, right_on = ("B", "Numeric", "Floats") expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query(f"{left_on} < {middle} < {right_on}") .reset_index(drop=True) ) expected = expected.filter([left_on, middle, right_on]) actual = df.conditional_join( right, (middle, left_on, ">"), (middle, right_on, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([left_on, middle, right_on]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_(df, right): """ Test output for multiple conditions. """ first, second, third = ("Numeric", "Floats", "B") expected = ( right.assign(t=1) .merge(df.assign(t=1), on="t") .query(f"{first} > {third} and {second} < {third}") .reset_index(drop=True) ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter([first, second, third]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_left_join(df, right): """ Test output for multiple conditions, and how is `left`. """ first, second, third = ("Numeric", "Floats", "B") right = right.assign(t=1, check=range(len(right))) df = df.assign(t=1) expected = right.merge(df, on="t").query( f"{first} > {third} and {second} < {third}" ) drop = right.columns.difference(["check"]) expected = right.merge( expected.drop(columns=[*drop]), on="check", how="left", sort=False ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="left", sort_by_appearance=True, ) actual = actual.droplevel(0, 1) actual = actual.loc[:, [first, second, third]] assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_gt_and_lt_numbers_right_join(df, right): """ Test output for multiple conditions, and how is `right`. """ first, second, third = ("Numeric", "Floats", "B") df = df.assign(t=1, check=range(len(df))) right = right.assign(t=1) expected = right.merge(df, on="t").query( f"{first} > {third} and {second} < {third}" ) drop = df.columns.difference(["check"]) expected = expected.drop(columns=[*drop]).merge( df, on="check", how="right", sort=False ) expected = expected.filter([first, second, third]) actual = right.conditional_join( df, (first, third, ">"), (second, third, "<"), how="right", sort_by_appearance=True, ) actual = actual.droplevel(0, 1) actual = actual.loc[:, [first, second, third]] assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_extension(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] df = df.assign(A=df["A"].astype("Int64")) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_extension_right(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "B", "Numeric"] right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ne_dates(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("E", "Dates", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_multiple_ne_dates(df, right): """ Test output for multiple conditions. `!=` """ filters = ["A", "Integers", "E", "Dates", "B", "Numeric"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and E != Dates and B != Numeric") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", "!="), ("E", "Dates", "!="), ("B", "Numeric", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_eq_and_ne(df, right): """Test output for equal and not equal conditions.""" A, B, C, D = ("B", "Numeric", "E", "Dates") expected = ( df.merge(right, left_on=A, right_on=B) .dropna(subset=[A, B]) .query(f"{C} != {D}") .reset_index(drop=True) ) expected = expected.filter([A, B, C, D]) actual = df.conditional_join( right, (A, B, "=="), (C, D, "!="), how="inner", sort_by_appearance=False, ) actual = actual.filter([A, B, C, D]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_conditions_ne_and_eq(df, right): """Test output for equal and not equal conditions.""" A, B, C, D = ("A", "Integers", "E", "Dates") expected = ( df.merge(right, left_on=C, right_on=D) .dropna(subset=[C, D]) .query(f"{A} != {B}") .reset_index(drop=True) ) expected = expected.filter([A, B, C, D]) actual = df.conditional_join( right, (A, B, "!="), (C, D, "=="), how="inner", sort_by_appearance=False, ) actual = actual.filter([A, B, C, D]) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_gt_lt_ne_conditions(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A > Integers and B < Numeric and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("A", "Integers", ">"), ("B", "Numeric", "<"), ("E", "Dates", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_gt_lt_ne_start(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1, C="C"), on="t") .query("A > Integers and B < Numeric and E != Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", "!="), ("A", "Integers", ">"), ("B", "Numeric", "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_le_ne_extension_array(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query("A != Integers and B < Numeric and E >= Dates") .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", ">="), ("A", "Integers", "!="), ("B", "Numeric", "<"), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_lt_ne_extension(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(pd.Int64Dtype())) expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t") .query( "A < Integers and B != Numeric and E >= Dates and E != Dates_Right" ) .reset_index(drop=True) ) expected = expected.filter(filters) actual = df.conditional_join( right, ("E", "Dates", ">="), ("B", "Numeric", "!="), ("A", "Integers", "<"), ("E", "Dates_Right", "!="), how="inner", sort_by_appearance=True, ) actual = actual.filter(filters) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_eq_ge_and_le_numbers(df, right): """Test output for multiple conditions.""" l_eq, l_ge, l_le = ["B", "A", "E"] r_eq, r_ge, r_le = ["Floats", "Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.merge(right, left_on=l_eq, right_on=r_eq, how="inner", sort=False) .dropna(subset=[l_eq, r_eq]) .query(f"{l_ge} >= {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_eq, r_eq, "=="), (l_ge, r_ge, ">="), (l_le, r_le, "<="), how="inner", sort_by_appearance=False, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_dual_ge_and_le_diff_numbers(df, right): """Test output for multiple conditions.""" l_ge, l_le = ["A", "E"] r_ge, r_le = ["Integers", "Dates"] columns = ["B", "A", "E", "Floats", "Integers", "Dates"] expected = ( df.assign(t=1) .merge(right.assign(t=1), on="t", how="inner", sort=False) .query(f"{l_ge} > {r_ge} and {l_le} <= {r_le}") .reset_index(drop=True) ) expected = expected.filter(columns) actual = df.conditional_join( right, (l_le, r_le, "<="), (l_ge, r_ge, ">"), how="inner", sort_by_appearance=True, ) actual = actual.filter(columns) assert_frame_equal(expected, actual) @settings(deadline=None) @given(df=conditional_df(), right=conditional_right()) def test_ge_lt_ne_extension_variant(df, right): """ Test output for multiple conditions. """ filters = ["A", "Integers", "B", "Numeric", "E", "Dates"] df = df.assign(A=df["A"].astype("Int64")) right = right.assign(Integers=right["Integers"].astype(
pd.Int64Dtype()
pandas.Int64Dtype
# -*- coding: utf-8 -*- """ Created on Thu Jun 14 12:04:33 2018 @author: gurunath.lv """ try : import base64 import datetime import io import dash from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import plotly.graph_objs as go import numpy as np import pandas as pd import json # from tf_universal_sent_emb import get_similar_records # from spacy_text_classifier_cnn import train_cnn_for_given_label,predict import glob import os # from custom_classifier import customKNN,ParagraphVectors # from dashboard import Dashboard from flask import Flask import flask #import glob from sklearn.pipeline import Pipeline import pickle from lime.lime_text import LimeTextExplainer from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer except ImportError as e: print("some packages are not installed -to use this textclf Annotator \ ! please install relevant libraries",e) server = Flask(__name__) app=dash.Dash(name = __name__, server = server) if not os.path.exists('tmp'): os.mkdir('tmp') DIRECTORY_PATH=r'tmp\\' #app = dash.Dash() app.scripts.config.serve_locally = True app.config['suppress_callback_exceptions']=True # custom_dush=Dashboard() #prodapt=html.Div(html.Img(src='http://www.prodapt.com/wp-content/uploads/logo_prodapt.png')), #vs=html.H1('vs') #reinfer=html.Div(html.Img(src='https://d1qb2nb5cznatu.cloudfront.net/startups/i/703763-82fa920eed7d56e7cdcee1b1d9a30b14-medium_jpg.jpg?buster=1440002957')), #logo=custom_dush.three_columns_grid(prodapt,vs,reinfer) def transform_using_tfidf(text_series): tfidf=TfidfVectorizer(stop_words='english') array=tfidf.fit_transform(text_series.tolist()).toarray() return array,tfidf def similarity_measure(inp_sent,array,tfidf,top_n): inp_vec=tfidf.transform([inp_sent]).toarray() cs=cosine_similarity(inp_vec,array) top_match_index=np.flip(np.argsort(cs,axis=1)[:,-top_n:],axis=1) return top_match_index def get_similar_records(inp_sent,total_text,top_n=10): array,tfidf=transform_using_tfidf(total_text) top_match_index=similarity_measure(inp_sent,array,tfidf,top_n) return total_text.iloc[top_match_index.ravel()] app.layout = html.Div([ # logo, dcc.Upload( id='upload-data', children=html.Div([ 'Drag and Drop or ', html.A('Select Files') ]), style={ 'width': '100%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px' }, # Allow multiple files to be uploaded multiple=True ), html.Div(id='output-data-upload'), html.Div(dt.DataTable(rows=[{}]), style={'display': 'none'}), dcc.Input(id='user-input-for-similarity', value='Enter the sentence', type='text', style={'width': '49%','align':'center'}), html.Div(id='similar-docs'), html.Br(), html.H3('Training dataset'), html.Div(id='output'), html.Button('Train',id='train-button'), html.Br(), dcc.Input(id='user-input-for-prediction', value='Enter the sentence to predict', type='text', style={'width': '49%','align':'center'}), html.H1(id='train-output'), # html.Button('Del data',id='delete-button'), html.H1(id='del-output'), dcc.Graph(id='predict-output'), html.Br(), dcc.Link('Why ML made this Prediction !!!!', href='/explain'), # html.Div([ # html.Pre(id='output', className='two columns'), # html.Div( # dcc.Graph( # id='graph', # style={ # 'overflow-x': 'wordwrap' # } # ), # className='ten columns' # ) # ], className='row') ]) def parse_contents(contents, file_name, date): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) global df global filename try: if 'csv' in file_name: # Assume that the user uploaded a CSV file df = pd.read_csv( io.StringIO(decoded.decode('utf8'))) elif 'xls' in file_name: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) """ pass similar contents df not file uploaded df To be filled """ # df.to_csv(r'{}'.format(filename),index=False) filename=file_name return html.Div([ html.H5(filename), html.H6(datetime.datetime.fromtimestamp(date)), # Use the DataTable prototype component: # github.com/plotly/dash-table-experiments dt.DataTable(rows=df.to_dict('records'),id='edit-table'), html.Hr(), # horizontal line # For debugging, display the raw contents provided by the web browser # html.Div('Raw Content'), # html.Pre(contents[0:200] + '...', style={ # 'whiteSpace': 'pre-wrap', # 'wordBreak': 'break-all' # }) ]) @app.callback( Output(component_id='similar-docs', component_property='children'), [Input(component_id='user-input-for-similarity', component_property='value')]) def get_similar_docs(sent): print('similar docs called ',sent) # path=glob.glob(r'*.csv') # df=pd.read_csv(path[0],encoding='ISO-8859-1') global similar_df similar_series=get_similar_records(sent,df[df.columns[0]]) similar_df=pd.DataFrame(columns=['Similar_sentences','labels']) similar_df['Similar_sentences']=similar_series print('check',similar_df.head()) # similar_df.to_csv return html.Div(dt.DataTable(rows=similar_df.to_dict('records'),id='edit-table-similar'),) def train_custom_classifier(similar_df,filename): texts, labels =similar_df.iloc[:,0].values,similar_df.iloc[:,1].values print(type(labels),type(texts),labels) if glob.glob(r'{}{}_knn_centroid.pkl'.format(DIRECTORY_PATH,filename)): dict_=pickle.load(open(glob.glob(r'{}*{}_knn_centroid.pkl'.format(DIRECTORY_PATH,filename))[0],'rb')) pipe=Pipeline(steps=[('pv',ParagraphVectors(filename=filename)),('knn',customKNN(label_to_vect_dict=dict_))]) label_encoding=pickle.load(open(glob.glob(r'{}*{}_label_encoding.pkl'.format(DIRECTORY_PATH,filename))[0],'rb')) for idx,lab in enumerate(set(labels)): label_encoding[idx+len(label_encoding)]=lab else: label_encoding=dict() pipe=Pipeline(steps=[('pv',ParagraphVectors(filename=filename)),('knn',customKNN())]) for idx,lab in enumerate(set(labels)): label_encoding[idx]=lab look_up=dict() for k,v in label_encoding.items(): look_up[v]=k pipe.fit(texts,
pd.Series(labels)
pandas.Series
# -*- coding: utf-8 -*- """ Calculate isotopic interference and standard ratios. """ import pandas as pd import itertools from interference_calculator.molecule import Molecule, mass_electron, periodic_table """xmin = 0.0 xmax = 0.0""" def interference(atoms, target, targetrange=0.3, maxsize=5, charge=[1], chargesign='-', style='plain'): """ For a list of atoms (the composition of the sample), calculate all molecules that can be formed from a combination of those atoms (the interferences), including all stable isotopes, up to maxsize atoms, that have a mass-to-charge ratio within target ± targetrange. The target can be given as a mass-to-charge ratio or as a molecular formula. Molecular formulas are interpreted by Molecule(). See Molecule() docstring for a detailed explanation on how to enter molecular formulas. If target is None, no filtering will be done and all possible combinations of all atoms and isotopes up to maxsize length will be calculated. Target information will be added to the output, unless target is None. Charge is usually 1, irrespective of sign. Give charge = [1, 2, 3] to also include interferences with higher charges. Masses are adjusted for missing electrons (+ charge), extra electrons (- charge), or not adjusted (o charge, lower-case letter O). Setting charge=0 has the same effect as setting chargesign='o'. The charge for the target ion, if target is specified as molecule instead of a number, can be different from the charge on the interferences. If no charge is specified for the target, the first charge and the chargesign of the interferences are used for the target. Molecular formulas are formatted in style (default is 'plain'). See Molecule() for more options. Returns a pandas.DataFrame with a column 'molecule' with molecular formula, a column 'charge', a column 'mass/charge' for the mass-to-charge ratio, a column 'mass/charge diff' for the mass/charge difference between this ion and the target mass/charge, a column 'MRP' which gives the mass-resolving power (mz/Δmz) needed to resolve this ion from the target ion, a column 'target', which indicates whether this row was specified as the target, and a column 'probability', which gives the combinatorial probability of encoutering this combination of isotopes, given the composition of the sample and the natural abundances of the isotopes. """ if isinstance(charge, (int, float, str)): charge = tuple(int(charge)) elif isinstance(charge, (tuple, list)): charge = tuple(int(c) for c in charge) else: raise ValueError('charge must be given as a number or a list of numbers.') if chargesign not in ('+', '-', 'o', '0'): raise ValueError('chargesign must be either "+", "-", "o", or "0".') # How to handle charge? # 1. charge for interferences # - can be multiple values # - specified by parameter # 2. charge for target # - only one value # - can be different from 1 # - must be specified in target formula # - if unspecified, take sign and first value from 1 if target: try: target_mz = float(target) target = str(target) target_charge = 0 target_chargesign = 'o' target_abun = 1 except ValueError: m = Molecule(target) inferred_charge = False if m.chargesign: target_chargesign = m.chargesign else: target_chargesign = chargesign inferred_charge = True if m.charge: target_charge = m.charge else: target_charge = charge[0] inferred_charge = True # If no charge was specified on target, # push the inferred charge back to target if inferred_charge: if target_charge == 0: pass elif target_charge == 1: target += ' {}'.format(target_chargesign) else: target += ' {}{}'.format(target_charge, target_chargesign) target_mz = m.mass target_abun = m.abundance if m.charge > 0: # mass correction done in Molecule.parse() target_mz /= m.charge else: target_mz = 0 target_charge = 0 target_chargesign = '0' target_abun = 0 # Retrieve info from perioic table for all atoms in sample. # Create a list with all possible combinations up to maxsize atoms. # Create same list for masses, combos are created in same order. picked_atoms = periodic_table[periodic_table['element'].isin(atoms)] isotope_combos = [] mass_combos = [] for size in range(1, maxsize + 1): i = itertools.combinations_with_replacement(picked_atoms['isotope'], size) m = itertools.combinations_with_replacement(picked_atoms['mass'], size) isotope_combos.extend(list(i)) mass_combos.extend(list(m)) masses = pd.DataFrame(mass_combos).sum(axis=1) molecules = [' '.join(m) for m in isotope_combos] data = pd.DataFrame({'molecule': molecules, 'mass/charge': masses}) # ignore charge(s) for sign o if chargesign in ('o', '0'): data['charge'] = 0 else: data_w_charge = [] for ch in charge: d = data.copy() d['charge'] = ch if ch == 0: data_w_charge.append(d) continue elif ch == 1: charge_str = ' {}'.format(chargesign) else: charge_str = ' {}{}'.format(ch, chargesign) d['molecule'] += charge_str d['mass/charge'] /= ch if chargesign == '+': d['mass/charge'] -= mass_electron else: d['mass/charge'] += mass_electron data_w_charge.append(d) data =
pd.concat(data_w_charge)
pandas.concat
import string from typing import Any, Dict, List, Optional, Tuple, Mapping, Callable, Union import pandas as pd import numpy as np import pytest def _resolve_random_state(random_state: Union[int, np.random.RandomState]) -> np.random.RandomState: """ Return a RandomState based on Input Integer (as seed) or RandomState""" if isinstance(random_state, int): return np.random.RandomState(random_state) elif isinstance(random_state, np.random.RandomState): return random_state else: raise NotImplementedError( f"The random_state must be an integer or np.random.RandomState, " f"current type: {type(random_state)}" ) def _gen_random_int_series( size: int, low: int = -100, high: int = 100, random_state: Union[int, np.random.RandomState] = 0 ) -> pd.Series: """Return a randonly generated int Series, where the value is in [low, high]""" rand = _resolve_random_state(random_state) arr = rand.randint(low=low, high=high, size=size) return pd.Series(arr) def _gen_random_float_series( size: int, random_state: Union[int, np.random.RandomState] = 0 ) -> pd.Series: """Return a randonly generated float Series, with normal distribution""" rand = _resolve_random_state(random_state) arr = rand.normal(size=size) return pd.Series(arr) def _gen_random_bool_series( size: int, random_state: Union[int, np.random.RandomState] = 0 ) -> pd.Series: """Return a randonly generated boolean Series""" rand = _resolve_random_state(random_state) arr = rand.choice([True, False], size=size) return pd.Series(arr) def _gen_random_datatime_series( size: int, start: str = "1/1/2018", end: str = "1/1/2019", random_state: Union[int, np.random.RandomState] = 0, ) -> pd.Series: """Return a randonly generated datetime Series, where time in [start, end]""" rand = _resolve_random_state(random_state) population = pd.date_range(start, end) arr = rand.choice(population, size=size) return pd.Series(arr) def _gen_random_string_series( size: int, min_len: int = 1, max_len: int = 100, random_state: Union[int, np.random.RandomState] = 0, ) -> pd.Series: """Return a randonly generated string Series, where string length is in [min_len, max_len]""" rand = _resolve_random_state(random_state) population = list(string.printable) lst = [] for _ in range(size): curr_len = rand.randint(min_len, max_len) randstr = "".join(rand.choice(population, size=curr_len)) lst.append(randstr) return pd.Series(lst) def gen_constant_series(size: int, value: Any) -> pd.Series: """Return a constant pd.Series with given size and fill in given value""" return pd.Series(value, index=range(size)) def gen_random_series( size: int, dtype: str = "object", na_ratio: float = 0.0, str_max_len: int = 100, random_state: Union[int, np.random.RandomState] = 0, ) -> pd.Series: """ Return a randomly generated Pandas Series. Parameters ---------- size: int The size of the generated series dtype: string The type of the generated series. Chosen from 'int', 'float', 'boolean', 'datetime', 'string' and 'object'. na_ratio: float The ratio of NA values in the series. Should be in [0.0, 1.0] str_max_len: int The max len of random string seed: int generator seed """ gen_func: Mapping[str, Callable[..., pd.Series]] = { "int": _gen_random_int_series, "float": _gen_random_float_series, "boolean": _gen_random_bool_series, "datetime": _gen_random_datatime_series, "string": _gen_random_string_series, } if (dtype not in gen_func) and dtype != "object": raise NotImplementedError(f"dtype {dtype} generator is not implemented.") rand = _resolve_random_state(random_state) # Generate non-NA series then replace some with NA. # This can keep the type as the original type rather than object. population_list = [] for curr_type in gen_func: if dtype in [curr_type, "object"]: if curr_type != "string": rand_series = gen_func[curr_type](size, random_state=rand) else: rand_series = gen_func[curr_type](size, max_len=str_max_len, random_state=rand) population_list.append(rand_series) object_population = pd.concat(population_list, ignore_index=True) object_series = pd.Series(rand.choice(object_population, size=size)) # Replace some values with NA. na_pos = object_series.sample(frac=na_ratio, random_state=rand).index if not na_pos.empty: object_series[na_pos] = np.nan return object_series def gen_random_dataframe( nrows: int = 30, ncols: int = 30, na_ratio: float = 0.0, str_col_name_max_len: int = 100, random_state: Union[int, np.random.RandomState] = 0, ) -> pd.DataFrame: """ Return a randomly generated dataframe. The column name, data types are both randomly generated. Note that if na_ratio is not 0.0, then the column type may not contain all types, since there is a type transform when add NA to some series, e.g., boolean. Parameters ---------- nrows: int Number of rows of the generated dataframe. na_ratio: Ratio of NA values. str_col_name_max_len: max length of string column name ncols: int Number of columns of the generated dataframe. seed: int Random Seed """ rand = _resolve_random_state(random_state) dtypes = ["int", "float", "boolean", "datetime", "string", "object"] # Generate random columns col_types = rand.choice(dtypes, size=ncols) series_list = {} for i in range(ncols): series = gen_random_series(nrows, dtype=col_types[i], na_ratio=na_ratio, random_state=rand) series_list[i] = series df = pd.DataFrame(series_list) # Generate random column names and index. col_names = gen_random_series( size=ncols, dtype="object", na_ratio=0.1, str_max_len=str_col_name_max_len, random_state=rand, ) df.columns = col_names df.index = gen_random_series( df.index.shape[0], na_ratio=0.1, str_max_len=str_col_name_max_len, random_state=rand ) return df def gen_test_df() -> pd.DataFrame: rand = np.random.RandomState(0) nrows = 30 data = {} data[0] = gen_random_dataframe(nrows=nrows, ncols=10, random_state=rand).reset_index(drop=True) data[1] = gen_random_dataframe( nrows=nrows, ncols=10, na_ratio=0.1, random_state=rand ).reset_index(drop=True) data[2] = pd.Series([np.nan] * nrows, name="const_na") data[3] = pd.Series(["s"] * nrows, name="const_str") data[4] = pd.Series([0] * nrows, name="const_zero") data[5] = pd.Series([-1] * nrows, name="const_neg") data[6] = pd.Series([1] * nrows, name="const_pos") data[7] = pd.Series([0, 1, np.nan] * (nrows // 3), name="small_distinct_miss") data[8] = gen_random_series(size=nrows, dtype="string", random_state=rand).rename("str_no_miss") data[9] = gen_random_series(size=nrows, dtype="string", na_ratio=0.1, random_state=rand).rename( "str_miss" ) data[10] = gen_random_series(size=nrows, dtype="float", random_state=rand).rename("num_no_miss") data[11] = gen_random_series(size=nrows, dtype="float", na_ratio=0.1, random_state=rand).rename( "num_miss" ) data[12] =
pd.Series(["a", "b"] * (nrows // 2), name="category_no_miss", dtype="category")
pandas.Series
# Preparation for Theme3 Cell of Origin using Panoptes import pandas as pd # train = pd.read_csv('../Theme3/train.csv', header=0) # validation = pd.read_csv('../Theme3/val.csv', header=0) # test = pd.read_csv('../Theme3/test.csv', header=0) # # cancer_dict = {'HNSCC': 0, 'CCRCC': 1, 'CO': 2, 'BRCA': 3, 'LUAD': 4, 'LSCC': 5, 'PDA': 6, 'UCEC': 7, 'GBM': 8, 'OV': 9} # # train['set'] = 'train' # validation['set'] = 'validation' # test['set'] = 'test' # # origin = pd.concat([train, validation, test]) # origin.columns = ['Tumor', 'Patient_ID', 'Slide_ID', 'set'] # origin['label'] = origin['Tumor'].replace(cancer_dict) # pathls = [] # for idx, row in origin.iterrows(): # pathls.append("../tiles/{}/{}/{}/".format(str(row['Tumor']), str(row['Patient_ID']), # row['Slide_ID'].split('-')[-1])) # origin['path'] = pathls # # origin.to_csv('../Theme3_split.csv', index=False) # # DLCCA secondary prep train = pd.read_csv('../DLCCA/train.csv', header=0) validation = pd.read_csv('../DLCCA/val.csv', header=0) test =
pd.read_csv('../DLCCA/test.csv', header=0)
pandas.read_csv
from src.network import Network import src.VisualizeNN as VisNN import pandas as pd import numpy as np from matplotlib import pyplot as plt def split_dataset(train_df: pd.DataFrame, fraction: float = 0.2): """ Split train data into train and validation. """ #permute all samples train_df = train_df.sample(frac=1.0) #set validation fraction fraction = 0.2 split_index = int(fraction*len(train_df)) valid_df = train_df.iloc[:split_index] train_df = train_df.iloc[split_index:] return train_df, valid_df def get_normalisation_scale(df: pd.DataFrame, regression: bool = False): """ Get normalization scales. Used later in normalize_dataset(). """ if regression: without_last_column = df else: # don't scale last column (class label) without_last_column = df.iloc[:, :-1] return (without_last_column.min(), without_last_column.max()) def normalized_dataset(df: pd.DataFrame, df_min: pd.Series, df_max: pd.Series, regression: bool = False): """ Normalize dataset using calculated min and max values from get_normalisation_scale(). """ # don't modify last column (class label) if regression is False: tmp_df = 2.0*((df.iloc[:,:-1]-df_min)/(df_max - df_min))-1.0 tmp_df['cls'] = df['cls'] else: tmp_df = 2.0*((df-df_min)/(df_max - df_min))-1.0 return tmp_df def train_classification( net: Network, dataset: pd.DataFrame, max_epochs: int, learning_rate: float, batch_size: int = 1, multiclass: bool = False): """ Train net for a classification task. The dataset consists of features and class label (in the last column). If the multiclass is True, uses one-hot encoding. """ train_df, valid_df = split_dataset(dataset, 0.2) train_y_df = pd.get_dummies(train_df['cls'], dtype=float) if multiclass else train_df['cls'] - 1.0 valid_y_df =
pd.get_dummies(valid_df['cls'], dtype=float)
pandas.get_dummies
import os import re import pandas as pd import metis_cut as metis import kahip_cut as kahip import inertialflow_cut as inertialflow import flowcutter_cut as flowcutter import inertialflowcutter_cut as ifc experiments_folder = "" graphs = ["col", "cal", "europe", "usa"] partitioners = ["metis", "kahip_v2_11", "inertial_flow", "flowcutter3", "flowcutter20", "inertialflowcutter4", "inertialflowcutter8", "inertialflowcutter12", "inertialflowcutter16"] imbalances = [0.0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9] binary_path = "./../build/" console = binary_path + "console" metis_path = "./" + experiments_folder + "gpmetis" def graph_path(G): return experiments_folder + G + "/" def output_file(G, P): return experiments_folder + G + "." + P + ".cut" def compute_cuts(G, P): if P == "metis": return compute_metis_cuts(G) elif P == "kahip_v2_11": return compute_kahip_cuts(G, P, old=False) elif P.startswith("flowcutter"): cutters = int(re.match(r"flowcutter([0-9]+)", P).group(1)) return compute_flow_cutter_cuts(G, cutters) elif P == 'inertial_flow': return compute_inertial_flow_cuts(G) elif P.startswith("inertialflowcutter"): cutters = int(re.match(r"inertialflowcutter([0-9]+)", P).group(1)) return compute_inertial_flow_cutter_cuts(G, cutters) else: assert(false) def compute_metis_cuts(G): rows = [] for epsilon in imbalances: row_dict = {} metrics = metis.metis_cut(metis_path, console, graph_path(G), epsilon) row_dict["epsilon"] = epsilon row_dict["achieved_epsilon"] = metrics["epsilon"] row_dict["cut_size"] = metrics["cut_size"] row_dict["running_time"] = metrics["running_time"] row_dict["connected"] = metrics["left_components"] == 1 and metrics["right_components"] == 1 rows.append(row_dict) results = pd.DataFrame(rows) return results.set_index("epsilon").sort_index() def compute_kahip_cuts(G, P, old): rows = [] for epsilon in imbalances: row_dict = {} metrics = kahip.kahip_cut(console, graph_path(G), epsilon) row_dict["epsilon"] = epsilon row_dict["achieved_epsilon"] = metrics["epsilon"] row_dict["cut_size"] = metrics["cut_size"] row_dict["running_time"] = metrics["running_time"] row_dict["connected"] = metrics["left_components"] == 1 and metrics["right_components"] == 1 rows.append(row_dict) results =
pd.DataFrame(rows)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import operator as op import seaborn as sns # http://data8.org/datascience/_modules/datascience/tables.html ##################### # Frame Manipulation def relabel(df, OriginalName, NewName): return df.rename(index=str, columns={OriginalName: NewName}) # https://docs.python.org/3.4/library/operator.html def where(df, column, value, operation=op.eq): return pd.DataFrame( df.loc[operation(df.loc[:,column], value) ,:] ) def select(df, *column_or_columns): table = pd.DataFrame() for column in column_or_columns: table[column] = df.loc[:, column].values return table def column(df, index_or_label): """Return the values of a column as an array. Args: label (int or str): The index or label of a column Returns: An instance of ``numpy.array``. Raises: ``ValueError``: When the ``index_or_label`` is not in the table. """ if (isinstance(index_or_label, str)): if (index_or_label not in df.columns): raise ValueError( 'The column "{}" is not in the table. The table contains ' 'these columns: {}' .format(index_or_label, ', '.join(df.labels)) ) else: return df.loc[:, index_or_label].values if (isinstance(index_or_label, int)): if (not 0 <= index_or_label < len(df.columns)): raise ValueError( 'The index {} is not in the table. Only indices between ' '0 and {} are valid' .format(index_or_label, len(df.labels) - 1) ) else: return df.iloc[:,index_or_label].values def drop(df, index_or_label): if (isinstance(index_or_label, str)): if (index_or_label not in df.columns): raise ValueError( 'The column "{}" is not in the table. The table contains ' 'these columns: {}' .format(index_or_label, ', '.join(df.labels)) ) else: return df.drop(index_or_label, axis=1) if (isinstance(index_or_label, int)): if (not 0 <= index_or_label < len(df.columns)): raise ValueError( 'The index {} is not in the table. Only indices between ' '0 and {} are valid' .format(index_or_label, len(df.labels) - 1) ) else: return df.drop(index_or_label, axis=0) return def row(df, index): """Return the values of a row as an array. Args: label (int): The index or label of a column Returns: An instance of ``numpy.array``. Raises: ``ValueError``: When the ``index_or_label`` is not in the table. """ return df.iloc[index,:].values def cell(df, row, column): return df.iloc[column, row] def exclude(df, toexclude_df, column): the_join = pd.merge(df, toexclude_df, on=[column], how="outer", indicator=True) return ( pd.DataFrame(the_join).where('_merge', "left_only") ) def format(df, num_format=lambda x: '{:,.1f}'.format(x)): """Returns a better number formated table. Is Slow Args: label (int or str): The index or label of a column Returns: pandas dataframe """ #TODO: this looks inefficient def build_formatters_ints(df): return { column:lambda x: '{:,}'.format(x) for column, dtype in df.dtypes.items() if dtype in [ np.dtype('int64') ] } def build_formatters_floats(df): return { column:lambda x: '{:.1f}'.format(x) for column, dtype in df.dtypes.items() if dtype in [ np.dtype('float64') ] } format_int = build_formatters_ints(df) format_float = build_formatters_floats(df) style = '<style>.dataframe td { text-align: right; }</style>' return df.style.set_table_styles(style).format(format_int).format(format_float) def group(df, column, rename=""): df_gp = pd.DataFrame(df[column].value_counts()) if rename != "": return relabel(df_gp,column,rename) else: return relabel(df_gp,column,column + "_count") def count(df, column): return len( np.unique( df[column] )) def showna(df): return sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis') def sort(df, col, ascending=True): return pd.DataFrame(df.sort_values(col, ascending=ascending)) ## def variance(df, column1): return np.var( pd.DataFrame(df)[column1] ) def median(df, column1): return np.median( pd.DataFrame(df)[column1] ) def avg(df, column1): return np.mean(
pd.DataFrame(df)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jun 4 20:48:37 2018 @author: elcok """ import os import sys import numpy as np import geopandas as gpd import pandas as pd sys.path.append(os.path.join( '..')) from scripts.functions import region_exposure,region_losses,poly_files,load_sample from scripts.utils import load_config,download_osm_file import country_converter as coco cc = coco.CountryConverter() import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) pd.set_option('chained_assignment',None) from multiprocessing import Pool,cpu_count def all_countries_risk(): """Function to estimate the risk for all countries consecutively. """ # specify country countries = ['LU','CZ','CH','EE','LV','LT','PT','ES','AT','BE','DK','IE','NL','NO','SE','UK','PL','IT','FI','FR','DE'] for country in countries: losses(country, parallel = False, event_set = True) def all_countries_losses(): """Function to estimate the losses for all countries consecutively. """ # specify country countries = ['LU','CZ','CH','EE','LV','LT','PT','ES','AT','BE','DK','IE','NL','NO','SE','UK','PL','IT','FI','FR','DE'] for country in countries: losses(country, parallel = True) def all_countries_exposure(): """Function to estimate the exposure for all countries consecutively. """ # specify country countries = ['LU','CZ','CH','EE','LV','LT','PT','ES','AT','BE','DK','IE','NL','NO','SE','UK','PL','IT','FI','FR','DE'] for country in countries: exposure(country, include_storms = True, parallel = False) def exposure(country, include_storms = True, parallel = True,save=True): """ Creation of exposure table of the specified country. Arguments: *country* (string) -- ISO2 code of country to consider. *include_storms* (bool) -- if set to False, it will only return a list of buildings and their characteristics (default: **True**). *parallel* (bool) -- calculates all regions within a country parallel. Set to False if you have little capacity on the machine (default: **True**). *save* (bool) -- boolean to decide whether you want to save the output to a csv file (default: **True**). Returns: *GeoDataframe* -- Geopandas dataframe with all buildings of the country and potential exposure to wind """ #make sure the country inserted is an ISO2 country name for he remainder of the analysis #country = coco.convert(names=country, to='ISO2') # get data path data_path = load_config()['paths']['data'] # create country poly files poly_files(data_path,country) #download OSM file if it is not there yet: download_osm_file(country) #get list of regions for which we have poly files (should be all) regions = os.listdir(os.path.join(data_path,country,'NUTS3_POLY')) regions = [x.split('.')[0] for x in regions] if include_storms == True: storms = len(regions)*[True] country_list = len(regions)*[country] if parallel == True: with Pool(cpu_count()-2) as pool: country_table = pool.starmap(region_exposure,zip(regions,country_list,storms),chunksize=1) else: country_table = [] for region in regions: country_table.append(region_exposure(region,country,True)) else: storms = len(regions)*[False] country_list = len(regions)*[country] if parallel == True: with Pool(cpu_count()-2) as pool: country_table = pool.starmap(region_exposure,zip(regions,country_list,storms),chunksize=1) else: country_table = [] for region in regions: country_table.append(region_exposure(region,country,True)) if save == True: gdf_table = gpd.GeoDataFrame(pd.concat(country_table),crs='epsg:4326') gdf_table.drop(['centroid'],axis='columns',inplace=True) gdf_table.to_file(os.path.join(data_path,'exposure_country',country,'{}_exposure.shp'.format(country))) return gpd.GeoDataFrame(pd.concat(country_table),crs='epsg:4326') def losses(country, parallel = True, event_set = False,save=True): """ Creation of exposure table of the specified country Arguments: *country* (string) -- ISO2 code of country to consider. *parallel* (bool) -- calculates all regions within a country parallel. Set to False if you have little capacity on the machine (default: **True**). *event_set* (bool) -- if set to True, we will calculate the losses for the event set instead of the historical storms (default: **True**). *save* (bool) -- boolean to decide whether you want to save the output to a csv file (default: **True**). Returns: *GeoDataframe* -- Geopandas dataframe with all buildings of the country and their **losses** for each wind storm. """ #make sure the country inserted is an ISO2 country name for he remainder of the analysis #country = coco.convert(names=country, to='ISO2') # get data path data_path = load_config()['paths']['data'] # create country poly files poly_files(data_path,country) #download OSM file if it is not there yet: download_osm_file(country) #load sample sample = load_sample(country) #get list of regions for which we have poly files (should be all) regions = os.listdir(os.path.join(data_path,country,'NUTS3_POLY')) regions = [x.split('.')[0] for x in regions] if event_set == False: event_set = len(regions)*[False] samples = len(regions)*[sample] if parallel == True: with Pool(cpu_count()-2) as pool: country_table = pool.starmap(region_losses,zip(regions,event_set,samples),chunksize=1) else: country_table = [] for region in regions: country_table.append(region_losses(region,False,sample)) elif event_set == True: event_set = len(regions)*[True] samples = len(regions)*[sample] if parallel == True: with Pool(cpu_count()-2) as pool: country_table = pool.starmap(region_losses,zip(regions,event_set,samples),chunksize=1) else: country_table = [] for region in regions: country_table.append(region_losses(region,True)) if (save == True) & (event_set == False): gdf_table = gpd.GeoDataFrame(
pd.concat(country_table)
pandas.concat
import numpy as np import random from flask import Flask, request, render_template from model.simple_recommender_model import simple_recommend import pandas as pd from tensorflow import keras from rake_nltk import Rake from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer app = Flask(__name__) #<EMAIL>('/') #def homepage(): # return render_template('homepage.html') #<EMAIL>('/watchtrailer') #def watch(): # return render_template('fresh_tomatoes.html') @app.route('/', methods=['GET', 'POST']) def form_example(): if request.method == 'POST': moviesall=[] movies=[] def xstr(s): if s is None: return "" else: return str(s) Movie1 = request.form.get('chk1') Movie1 = xstr(Movie1) moviesall.append(Movie1) Movie2 = request.form.get('chk2') Movie2 = xstr(Movie2) moviesall.append(Movie2) Movie3 = request.form.get('chk3') Movie3 = xstr(Movie3) moviesall.append(Movie3) Movie4 = request.form.get('chk4') Movie4 = xstr(Movie4) moviesall.append(Movie4) Movie5 = request.form.get('chk5') Movie5 = xstr(Movie5) moviesall.append(Movie5) Movie6 = request.form.get('chk6') Movie6 = xstr(Movie6) moviesall.append(Movie6) Movie7 = request.form.get('chk7') Movie7 = xstr(Movie7) moviesall.append(Movie7) Movie8 = request.form.get('chk8') Movie8 = xstr(Movie8) moviesall.append(Movie8) Movie9 = request.form.get('chk9') Movie9 = xstr(Movie9) moviesall.append(Movie9) Movie10 = request.form.get('chk10') Movie10 = xstr(Movie10) moviesall.append(Movie10) Movie11 = request.form.get('chk11') Movie11 = xstr(Movie11) moviesall.append(Movie11) Movie12 = request.form.get('chk12') Movie12 = xstr(Movie12) moviesall.append(Movie12) Movie13 = request.form.get('chk13') Movie13 = xstr(Movie13) moviesall.append(Movie13) Movie14 = request.form.get('chk14') Movie14 = xstr(Movie14) moviesall.append(Movie14) Movie15 = request.form.get('chk15') Movie15 = xstr(Movie15) moviesall.append(Movie15) Movie16 = request.form.get('chk16') Movie16 = xstr(Movie16) moviesall.append(Movie16) Movie17 = request.form.get('chk17') Movie17 = xstr(Movie17) moviesall.append(Movie17) Movie18 = request.form.get('chk18') Movie18 = xstr(Movie18) moviesall.append(Movie18) Movie19 = request.form.get('chk19') Movie19 = xstr(Movie19) moviesall.append(Movie19) Movie20 = request.form.get('chk20') Movie20 = xstr(Movie20) moviesall.append(Movie20) Movie21 = request.form.get('chk21') Movie21 = xstr(Movie21) moviesall.append(Movie21) Movie22 = request.form.get('chk22') Movie22 = xstr(Movie22) moviesall.append(Movie22) Movie23 = request.form.get('chk23') Movie23 = xstr(Movie23) moviesall.append(Movie23) Movie24 = request.form.get('chk24') Movie24 = xstr(Movie24) moviesall.append(Movie24) Movie25 = request.form.get('chk25') Movie25 = xstr(Movie25) moviesall.append(Movie25) Movie26 = request.form.get('chk26') Movie26 = xstr(Movie26) moviesall.append(Movie26) Movie27 = request.form.get('chk27') Movie27 = xstr(Movie27) moviesall.append(Movie27) Movie28 = request.form.get('chk28') Movie28 = xstr(Movie28) moviesall.append(Movie28) Movie29 = request.form.get('chk29') Movie29 = xstr(Movie29) moviesall.append(Movie29) Movie30 = request.form.get('chk30') Movie30 = xstr(Movie30) moviesall.append(Movie30) Movie31 = request.form.get('chk31') Movie31 = xstr(Movie31) moviesall.append(Movie31) Movie32 = request.form.get('chk32') Movie32 = xstr(Movie32) moviesall.append(Movie32) Movie33 = request.form.get('chk33') Movie33 = xstr(Movie33) moviesall.append(Movie33) Movie34 = request.form.get('chk34') Movie34 = xstr(Movie34) moviesall.append(Movie34) Movie35 = request.form.get('chk35') Movie35 = xstr(Movie35) moviesall.append(Movie35) Movie36 = request.form.get('chk36') Movie36 = xstr(Movie36) moviesall.append(Movie36) for item in moviesall: if item: movies.append(item) else: continue dataset = pd.read_csv(r'C:\Users\Lenovo PC\Downloads\ml-latest-small\ratings.csv') M =
pd.read_csv(r'C:\Users\Lenovo PC\Desktop\Summary Work - Sheet1.csv', encoding='latin-1')
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt import scipy.stats from sklearn import linear_model import statsmodels.api as sm from scipy import stats ################### yaara="723" daniel = "957" hilla="355" generic_path = "/tmp/pycharm_project_"+hilla+"/" #Full data dfOp = pd.read_csv("/mnt/nadavrap-students/STS/data/Shapira_1st-Op_6_9_20_.csv") groupOp = dfOp.groupby("SiteID")["SiteID"].count().reset_index(name='countFirst') #draw a plot x = groupOp["countFirst"] plt.hist(x, bins=40) plt.title("Histogram of count Operation") plt.xlabel('number of Operations') plt.ylabel('count of SiteId') plt.show() plt.savefig('Histogram of count Operation.png') #ReOp data dfReOp = pd.read_csv("/mnt/nadavrap-students/STS/data/Shapira_reOp_6_9_20_.csv") groupReOp = dfReOp.groupby("SiteID")["SiteID"].count().reset_index(name='countReOp') #draw a plot y = groupReOp['countReOp'] plt.hist(y, bins=20) plt.title("Histogram of count ReOperation") plt.xlabel('number of ReOperations') plt.ylabel('count of SiteId') plt.show() plt.savefig('Histogram of count ReOperation.png') ##merge two dataframes into one and gets the ratio between them result = pd.merge(groupOp, groupReOp, on='SiteID', how='left') result['countReOp'].fillna(0, inplace=True) result["countReOp/countFirst+countReOp"] = (result["countReOp"] /(result["countReOp"]+ result["countFirst"])) *100 result['countReOp/countFirst+countReOp'].fillna(0, inplace=True) result.to_csv(generic_path+"result.csv") #draw a plot z = result['countReOp/countFirst+countReOp'] plt.hist(z, bins=40) plt.title("Histogram of ReOperation vs Operation") plt.xlabel('% of ReOperation of Operation') plt.ylabel('count of SiteId') plt.show() plt.savefig('Histogram of ReOperation vs Operation.png') ########### nadav recomend ############### # import feather # feather.write_dataframe(dfOp, "/tmp/pycharm_project_723/dfOp.feather") # feather.write_dataframe(dfReOp, "/tmp/pycharm_project_723/dfReOp.feather") # dfop1 = feather.read_dataframe("/tmp/pycharm_project_723/dfOp.feather") # dfReOp1 = feather.read_dataframe("/tmp/pycharm_project_723/dfReOp.feather") ######mortality MortaltyOp = dfOp.groupby('SiteID')['Mortalty'].apply(lambda x: (x== 1 ).sum()).reset_index(name='Mortalty_SiteID_op') MortaltyReOp = dfReOp.groupby('SiteID')['Mortalty'].apply(lambda x: (x== 1 ).sum()).reset_index(name='Mortalty_SiteID_reOp') result2 = pd.merge(MortaltyOp, MortaltyReOp, on='SiteID', how='left') # result.merge(result2, on='SiteID') df=pd.merge(result, result2, on='SiteID') df["countOpr"] = result["countReOp"]+ result["countFirst"] countOpr=df['countOpr'] df.to_csv(generic_path+"mortalty.csv") ####AGE ageOp = dfOp.groupby("SiteID")["Age"].mean().reset_index(name='Mean_Age_op') ageReOp = dfReOp.groupby("SiteID")["Age"].mean().reset_index(name='Mean_Age_reOp') resultAge = pd.merge(ageOp, ageReOp, on='SiteID', how='left') dfAge=pd.merge(result, resultAge, on='SiteID') genderOp =
pd.get_dummies(dfOp["Gender"])
pandas.get_dummies
import urllib import pytest import pandas as pd from pandas import testing as pdt from anonympy import __version__ from anonympy.pandas import dfAnonymizer from anonympy.pandas.utils_pandas import load_dataset @pytest.fixture(scope="module") def anonym_small(): df = load_dataset('small') anonym = dfAnonymizer(df) return anonym @pytest.fixture(scope="module") def anonym_big(): try: df = load_dataset('big') anonym = dfAnonymizer(df) except urllib.error.HTTPError: anonym = None return anonym def test_anonym_obj(anonym_small, anonym_big): assert isinstance(anonym_small, dfAnonymizer), "should have\ returned `dfAnonymizer` object" if anonym_big is None: assert False, "Failed to fetch the DataFrame" assert isinstance(anonym_big, dfAnonymizer), "should have returned\ `dfAnonymizer` object" def test_numeric_noise(anonym_small): output = anonym_small.numeric_noise('age', seed=42, inplace=False) expected = pd.Series([38, 47], dtype='int64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_noise(['age', 'salary'], seed=42, inplace=False) expected = pd.DataFrame({'age': [38, 47], 'salary': [59239.79912097112, 49323.30756879504]}) pdt.assert_frame_equal(expected, output) def test_numeric_binning(anonym_small): output = anonym_small.numeric_binning('salary', bins=2, inplace=False) dtype = pd.CategoricalDtype([ pd.Interval(49315.0, 54279.0, closed='right'), pd.Interval(54279.0, 59234.0, closed='right')], ordered=True) expected = pd.Series([ pd.Interval(54279.0, 59234.0, closed='right'), pd.Interval(49315.0, 54279.0, closed='right')], dtype=dtype) pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_binning(['age', 'salary'], bins=2, inplace=False) dtype2 = pd.CategoricalDtype([ pd.Interval(33.0, 40.0, closed='right'), pd.Interval(40.0, 48.0, closed='right')], ordered=True) ser2 = pd.Series([ pd.Interval(33.0, 40.0, closed='right'), pd.Interval(40.0, 48.0, closed='right')], dtype=dtype2) expected = pd.DataFrame({'age': ser2, 'salary': expected}) pdt.assert_frame_equal(expected, output) def test_numeric_masking(anonym_small): output = anonym_small.numeric_masking('age', inplace=False) expected = pd.Series([7.5, -7.5], dtype='float64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_masking(['age', 'salary'], inplace=False) expected = pd.DataFrame({'age': [-4954.900676201789, 4954.900676201798], 'salary': [5.840670901327418e-15, 5.840670901327409e-15]}) pdt.assert_frame_equal(expected, output) def test_numeric_rounding(anonym_small): output = anonym_small.numeric_rounding('salary', inplace=False) expected = pd.Series([60000.0, 50000.0], dtype='float64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_rounding(['age', 'salary'], inplace=False) expected = pd.DataFrame({'age': {0: 30, 1: 50}, 'salary': {0: 60000.0, 1: 50000.0}})
pdt.assert_frame_equal(expected, output)
pandas.testing.assert_frame_equal
# %%%% import pandas as pd import numpy as np import re # %%%% functions ## Fill missing values def fillmissing(x,col,index,benchmark): for i in range(index,len(x)): # find missing value if x.loc[i,col] == benchmark: # if first is missing, fill using the value next to it if i == index: x.loc[i,col] = x.loc[i+1,col] # if the last one is missing, fill using the value preceeds it elif i == len(x)-1: x.loc[i,col] = x.loc[i-1,col] # otherwise, fill using the average of the two not null values above and after else: j = i-1 k = i+1 while x.loc[j,col] == benchmark: j -= 1 while x.loc[k,col] == benchmark: k += 1 x.loc[i,col] = np.mean([x.loc[j,col],x.loc[k,col]]) return x ## Data Preprocess def preprocess(x,name,Date,column,index,benchmark,q): # select the valid starting day x = x[x['Date'] > Date].copy() x = x.reset_index().copy() x = x.drop('index',axis = 1).copy() # fill na with benchmark we chose x[column] = x[column].fillna(benchmark).copy() # fill missing values x = fillmissing(x,column,index,benchmark).copy() # calculate daily return x['lag_'+column] = x[column].shift(1) x = x.iloc[1:,:].copy().reset_index() x = x.drop('index',axis = 1).copy() x['log_ret'] = np.log(x[column])-np.log(x['lag_'+column]) retm = np.mean(x['log_ret']) x['retv'] = np.square(x['log_ret']-retm)*100 # estimate volatility x[name+'_20day_vol'] = np.sqrt(x['retv'].rolling(window=20,win_type="boxcar").mean())/10 # estimate quantiles of the distribution of log-returns x[name+'_quant_ret'] = np.nan for r in range(len(x)-20): R_quant = np.quantile(x['log_ret'][r:r+20],q) x.loc[r+19,name+'_quant_ret'] = R_quant return x # %%%% Main Dataset: csi300 csi = pd.read_csv('/Users/msstark/Desktop/project/Shanghai Shenzhen CSI 300 Historical Data.csv') # setting date format csi['Date'] = csi['Date'].apply(lambda x: re.sub(r',',r'',x)) csi['Day'] = csi['Date'].apply(lambda x: x.split(' ')[1]).astype(int) csi['Month'] = csi['Date'].apply(lambda x: x.split(' ')[0]) csi['Month'].unique() csi['Month'] = csi['Month'].map({'Jan':1,'Feb':2,'Mar':3,'Apr':4,'May':5,'Jun':6, 'Jul':7,'Aug':8,'Sep':9,'Oct':10,'Nov':11,'Dec':12}) csi['Year'] = csi['Date'].apply(lambda x: x.split(' ')[2]).astype(int) csi['Date'] = csi['Year'].astype(str) +'-'+csi['Month'].astype(str)+'-'+csi['Day'].astype(str) csi['Date'] = pd.to_datetime(csi['Date'], format='%Y-%m-%d') csi = csi.rename(columns = {'Price':'Close'}).copy() # convert object type to float col = ['Close','Open','High','Low'] for c in col: csi[c] = csi[c].apply(lambda x: re.sub(r',',r'',x)).astype('float') csi['log_dsprd'] = np.log(csi['High'] - csi['Low']) csi.columns # apply preprocess function csi = preprocess(csi,'csi','2005-01-03','Close',0,0,0.025).copy() # %%%% spot exchange rate xr = pd.read_csv('/Users/msstark/Desktop/project/DEXCHUS.csv') # setting date format xr['DATE'] =
pd.to_datetime(xr['DATE'], format='%Y-%m-%d')
pandas.to_datetime
import pymortar import pandas as pd import pendulum import toml from flask import Flask from flask import jsonify, send_from_directory from flask import request from flask import current_app from flask import make_response from flask import render_template from collections import defaultdict from functools import update_wrapper import pytz import json import glob import os from datetime import datetime, timedelta from dashutil import get_start, generate_months, prevmonday, get_today from datetime import timezone import xsg config = toml.load('config.toml') TZ = pytz.timezone('US/Pacific') app = Flask(__name__, static_url_path='/static') client = pymortar.Client({ 'mortar_address':config['Mortar']['url'], 'username': config['Mortar']['username'], 'password': config['<PASSWORD>']['password'], }) sites = [config['Dashboard']['sitename']] def crossdomain(origin=None, methods=None, headers=None, max_age=21600, attach_to_all=True, automatic_options=True): if methods is not None: methods = ', '.join(sorted(x.upper() for x in methods)) if headers is not None and not isinstance(headers, str): headers = ', '.join(x.upper() for x in headers) if not isinstance(origin, str): origin = ', '.join(origin) if isinstance(max_age, timedelta): max_age = max_age.total_seconds() def get_methods(): if methods is not None: return methods options_resp = current_app.make_default_options_response() return options_resp.headers['allow'] def decorator(f): def wrapped_function(*args, **kwargs): if automatic_options and request.method == 'OPTIONS': resp = current_app.make_default_options_response() else: resp = make_response(f(*args, **kwargs)) if not attach_to_all and request.method != 'OPTIONS': return resp h = resp.headers h['Access-Control-Allow-Origin'] = origin h['Access-Control-Allow-Methods'] = get_methods() h['Access-Control-Max-Age'] = str(max_age) if headers is not None: h['Access-Control-Allow-Headers'] = headers return resp f.provide_automatic_options = False return update_wrapper(wrapped_function, f) return decorator def state_to_string(state): if state == 0: return 'off' elif state == 1: return 'heat stage 1' elif state == 2: return 'cool stage 1' elif state == 4: return 'heat stage 2' elif state == 5: return 'cool stage 2' else: return 'unknown' def dofetch(views, dataframes, start=None, end=None): timeparams = None if start is not None and end is not None: timeparams=pymortar.TimeParams( start=start.isoformat(), end=end.isoformat(), ) req = pymortar.FetchRequest( sites=sites, views=views, dataFrames=dataframes, time=timeparams ) return client.fetch(req) meter_view = pymortar.View( name="meters", definition="""SELECT ?meter WHERE { ?meter rdf:type brick:Building_Electric_Meter };""", ) meter_df = pymortar.DataFrame( name="meters", aggregation=pymortar.MEAN, timeseries=[ pymortar.Timeseries( view="meters", dataVars=['?meter'], ) ] ) tstats_view = pymortar.View( name="tstats", definition="""SELECT ?rtu ?zone ?tstat ?csp ?hsp ?temp ?state WHERE { ?rtu rdf:type brick:RTU . ?tstat bf:controls ?rtu . ?rtu bf:feeds ?zone . ?tstat bf:hasPoint ?temp . ?temp rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?tstat bf:hasPoint ?csp . ?csp rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Heating_Setpoint . ?tstat bf:hasPoint ?hsp . ?hsp rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Cooling_Setpoint . ?tstat bf:hasPoint ?state . ?state rdf:type brick:Thermostat_Status . };""", ) tstats_df = pymortar.DataFrame( name="tstats", aggregation=pymortar.MAX, timeseries=[ pymortar.Timeseries( view="tstats", dataVars=['?csp','?hsp','?temp','?state'], ), ] ) room_temp_view = pymortar.View( name="room_temp", definition="""SELECT ?zone ?room ?sensor WHERE { ?zone rdf:type brick:HVAC_Zone . ?zone bf:hasPart ?room . ?sensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?room bf:hasPoint ?sensor . };""", ) weather_view = pymortar.View( name="weather_temp", definition="""SELECT ?sensor WHERE { ?sensor rdf:type/rdfs:subClassOf* brick:Weather_Temperature_Sensor . };""", ) weather_df = pymortar.DataFrame( name="weather_temp", aggregation=pymortar.MEAN, window='15m', timeseries=[ pymortar.Timeseries( view="weather_temp", dataVars=['?sensor'], ) ], ) @app.route('/api/power/<last>/in/<bucketsize>') @crossdomain(origin='*') def power_summary(last, bucketsize): # first, determine the start date from the 'last' argument start_date = get_start(last) if last == 'year' and bucketsize == 'month': ranges = generate_months(get_today().month - 1) readings = [] times = [] for t0,t1 in ranges: meter_df.window = '{0}d'.format((t0-t1).days) res=dofetch([meter_view], [meter_df], t1, t0) times.append(t1.tz_convert(TZ).timestamp()*1000) readings.append(res['meters'].fillna('myNullVal').values[0][0]) return jsonify({'readings': dict(zip(times,readings))}) # otherwise, meter_df.window=bucketsize print('start_date',start_date) res=dofetch([meter_view], [meter_df], start_date, datetime.now(TZ)) res['meters'].columns=['readings'] return res['meters'].tz_convert(TZ).fillna('myNullVal').to_json() @app.route('/api/energy/<last>/in/<bucketsize>') @crossdomain(origin='*') def energy_summary(last, bucketsize): start_date = get_start(last) if last == 'year' and bucketsize == 'month': ranges = generate_months(get_today().month - 1) readings = [] times = [] for t0,t1 in ranges: meter_df.window = '15m' res=dofetch([meter_view], [meter_df], t1, t0) df = res['meters'].copy() df.columns = ['readings'] df /= 4. # divide by 4 to get 15min (kW) -> kWh times.append(pd.to_datetime(t1.isoformat())) readings.append(df['readings'].sum()) df =
pd.DataFrame(readings,index=times,columns=['readings'])
pandas.DataFrame
""" test get/set & misc """ from datetime import timedelta import re import numpy as np import pytest from pandas import ( DataFrame, IndexSlice, MultiIndex, Series, Timedelta, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm def test_basic_indexing(): s = Series(np.random.randn(5), index=["a", "b", "a", "a", "b"]) msg = "index 5 is out of bounds for axis 0 with size 5" with pytest.raises(IndexError, match=msg): s[5] with pytest.raises(IndexError, match=msg): s[5] = 0 with pytest.raises(KeyError, match=r"^'c'$"): s["c"] s = s.sort_index() with pytest.raises(IndexError, match=msg): s[5] msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" with pytest.raises(IndexError, match=msg): s[5] = 0 def test_basic_getitem_with_labels(datetime_series): indices = datetime_series.index[[5, 10, 15]] result = datetime_series[indices] expected = datetime_series.reindex(indices) tm.assert_series_equal(result, expected) result = datetime_series[indices[0] : indices[2]] expected = datetime_series.loc[indices[0] : indices[2]] tm.assert_series_equal(result, expected) def test_basic_getitem_dt64tz_values(): # GH12089 # with tz for values ser = Series( date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] ) expected = Timestamp("2011-01-01", tz="US/Eastern") result = ser.loc["a"] assert result == expected result = ser.iloc[0] assert result == expected result = ser["a"] assert result == expected def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] tm.assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() @pytest.mark.parametrize( "result_1, duplicate_item, expected_1", [ [ Series({1: 12, 2: [1, 2, 2, 3]}), Series({1: 313}), Series({1: 12}, dtype=object), ], [
Series({1: [1, 2, 3], 2: [1, 2, 2, 3]})
pandas.Series
from time import sleep from os import getcwd, makedirs from datetime import datetime from pandas import DataFrame, concat from config.config import CONFIG from thread_runner.runner import ThreadRunner from models.house import House from models.room import Room from models.datetime import Datetime COLUMNS = [ 'timestamp', 'currentTemperature', 'targetTemperature', 'backyardTemperature', 'heaterPower', 'maxHeaterPower', 'numberOfPeople' ] class CSVLogger(ThreadRunner): def __init__(self, logging_interval: float, house: House, datetime_: Datetime): super().__init__() self.enabled = CONFIG.get('csvLoggerEnabled', False) root_path = f'{getcwd()}' self.logs_path = f'{root_path}/logs' self.logging_interval = logging_interval self.house = house self.datetime = datetime_ self.room_dataframes = self.__get_prepared_room_dataframes() self.__create_directory(self.logs_path) def _run(self): log_directory = self.__init_logging_process() while self.is_running: for room_id, dataframe in self.room_dataframes.items(): room = self.house.get_room_by_id(room_id) latest_data = self.__get_latest_data(room) self.room_dataframes[room_id] =
concat((self.room_dataframes[room_id], latest_data), ignore_index=True)
pandas.concat
# import pandas and numpy, and load the nls data import pandas as pd pd.set_option('display.width', 80)
pd.set_option('display.max_columns', 7)
pandas.set_option
import ast import os import pandas as pd data_folder = "../../data" num_of_workpiece = 20 workpiece_list = [f"wp_{idx + 1}" for idx in range(num_of_workpiece)] workcell_list = [f"wc_{idx + 1}" for idx in range(17)] input_filename = "input_3" score_type = "independent_qc" threshold = 0.9 input_folder = f"{data_folder}/raw/{input_filename}/independent_qc/{score_type}/{num_of_workpiece}_workpiece" output_folder = f"{data_folder}/postprocessed/independent_qc/{score_type}/{num_of_workpiece}_workpiece/per_input" if not os.path.exists(output_folder): # Create target Directory os.makedirs(output_folder) print("Directory ", output_folder, " Created ") else: print("Directory ", output_folder, " already exists") writer = pd.ExcelWriter(f"{output_folder}/independent_qc_{score_type}_{num_of_workpiece}_workpiece_{input_filename}.xlsx", mode="w") for idx, folder in enumerate(os.listdir(f"{input_folder}")): # Each datetime folder print(folder) data = { "threshold": [], "qc_iteration": [], # 1 iteration = start of inspection until reach consent "workpiece": [], "num_of_winner_qc": [], "MSE": [], } for i in range(17): data[f"wc_{i + 1}_score"] = [] data[f"wc_{i + 1}_capability"] = [] compiled_df = pd.DataFrame(data) # Fill in score and capability of first row filename = os.listdir(f"{input_folder}/{folder}")[0] # Using first filename df = pd.read_csv(f"{input_folder}/{folder}/{filename}") capability_dict = dict() for workcell in workcell_list: data[f"{workcell}_score"] = 0.1 data[f"{workcell}_capability"] = df[df["qc"] == workcell].qc_capability.iloc[0] # Concatenate consent_df and reset index to get iteration number df_list = list() for workpiece in workpiece_list: for filename in os.listdir(f"{input_folder}/{folder}"): # Each results if f"{workpiece}_" in filename: # print(filename) suffix = f"_{threshold}.csv" if filename.endswith(suffix): df =
pd.read_csv(f"{input_folder}/{folder}/{filename}")
pandas.read_csv
#!/usr/bin/env python import os import logging import argparse import numpy as np import pandas as pd import logging.handlers from .__init__ import __version__ from .plot import make_color_dict, plot_legend, plot_passages, plot_appearance from .colorlog import ColorFormatter logger = logging.getLogger('evol') def set_logging(v): logger.propagate = True logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() if v == 0: ch.setLevel(logging.INFO) elif v >= 1: ch.setLevel(logging.DEBUG) formatter = ColorFormatter('%(asctime)s - %(name)s - $COLOR%(message)s$RESET','%H:%M:%S') ch.setFormatter(formatter) logger.addHandler(ch) def get_options(): description = 'Plot OD600 values for an evolution experiment' parser = argparse.ArgumentParser(description=description) parser.add_argument('data', nargs='+', help='Input reading from plate reader; ' 'should contain the following columns: ' '"row", "column", ' '"plate", "passage", "strain", "treatment", ' '"concentration", ' '"experiment", "od600"') parser.add_argument('output', help='Output directory') parser.add_argument('--threshold', type=float, default=0.5, help='OD600 threshold to call growth ' '(default: %(default).2f)') parser.add_argument('--format', choices=('png', 'tiff', 'pdf', 'svg'), default='png', help='Output format (default: %(default)s)') parser.add_argument('-v', action='count', default=0, help='Increase verbosity level') parser.add_argument('--version', action='version', version='%(prog)s '+__version__) return parser.parse_args() def main(): options = get_options() set_logging(options.v) df = [] for filename in options.data: logger.info(f'reading data from {filename}') df.append(pd.read_csv(filename, sep='\t')) df = pd.concat(df) # make sure we don't group replicates together df['id'] = [f'{e}{p}{x}{y}' for e, p, x, y in df[['experiment', 'plate', 'row', 'column']].values] # drop data with no treatment df = df.loc[df['treatment'].dropna().index].copy() logger.info(f'plotting strains legend') strains = sorted(set(df['strain'].dropna().unique() ).difference(['Media Control'])) strains_colors = make_color_dict(strains, cmap='hsv') fname = os.path.join(options.output, f'strain_legend.{options.format}') plot_legend(strains_colors, fname) df['treatment-id'] = [f'{treatment}-{conc}' if treatment != 'GC' else 'GC' for treatment, conc in df[['treatment', 'concentration']].values] logger.info(f'plotting treatments legend') treatments = sorted(set(df['treatment-id'].dropna().unique())) treatments_colors = make_color_dict(treatments, cmap='tab10') fname = os.path.join(options.output, f'treatment_legend.{options.format}') plot_legend(treatments_colors, fname) # pivot the tables op = df.pivot_table(index=['treatment-id', 'strain', 'id'], columns=['passage'], values='od600') logger.info(f'plotting all passages') fname = os.path.join(options.output, f'passages.{options.format}') plot_passages(op, treatments_colors, strains_colors, fname, 'OD600') # pivot the tables (average) op = df.pivot_table(index=['treatment-id', 'strain'], columns=['passage'], values='od600') logger.info(f'plotting all passages (average)') fname = os.path.join(options.output, f'passages_average.{options.format}') plot_passages(op, treatments_colors, strains_colors, fname, 'OD600 (average)') # first appearance logger.info(f'computing the first appearance of resistance') # might fail, deal with errors gracefully try: df = df[df['passage'] > 0].copy() appearance = [] for _, x in df.iterrows(): if x['od600'] < options.threshold: v = 0 else: if x['passage'] == df[df['treatment-id'] == df['treatment-id']]['passage'].max(): v = 1 elif df[(df['id'] == x['id']) & (df['treatment'] == x['treatment']) & (df['strain'] == x['strain']) & (df['passage'] == x['passage'] + 1)]['od600'].values[0] >= options.threshold: v = 1 else: v = 0 appearance.append(v) df['appearance'] = appearance app = df[df['appearance'] > 0].groupby([ 'treatment-id', 'strain', 'id'])['passage'].min().reset_index() no_app = df[df['appearance'] == 0].groupby([ 'treatment-id', 'strain', 'id'])['passage'].max().reset_index() no_app = no_app[no_app['passage'] == df['passage'].max()].copy() no_app['passage'] = df['passage'].max() + 1 app =
pd.concat([app, no_app])
pandas.concat
import hydra from ncmw import community from omegaconf import DictConfig, OmegaConf import cobra import logging import socket import time import random import numpy as np import pandas as pd from copy import deepcopy import sys, os import json, pickle file_dir = os.path.dirname(os.path.dirname(__file__)) sys.path.append(file_dir) from ncmw.utils.utils_io import ( get_models, get_result_path, SEPERATOR, save_model, get_model_paths, ) from ncmw.visualization import ( plot_pairwise_growth_relation_per_weight, plot_community_interaction, plot_posterior_samples_for_observation, plot_community_uptake_graph, plot_species_interaction, plot_community_summary, plot_weight_growth_pairplot, ) from ncmw.utils.utils_io import ( get_models, get_result_path, SEPERATOR, save_model, get_model_paths, get_mediums, ) from ncmw.community import ( BagOfReactionsModel, ShuttleCommunityModel, compute_fair_weights, compute_community_summary, compute_dominant_weights, community_weight_posterior, ) from ncmw.utils import ( get_models, get_result_path, check_for_substring_in_folder, SEPERATOR, ) @hydra.main(config_path="../../data/hydra", config_name="config.yaml") def run_community_hydra(cfg: DictConfig) -> None: run_community(cfg) def create_community_folder_backbone(community_folder:str, project_folder:str) -> None: """Creates the backbone folder system used by the script Args: community_folder: Path to the community folder, here contents is placed project_folder: Path to the parent directory """ try: if not os.path.exists(project_folder): os.mkdir(project_folder) if not os.path.exists(community_folder): os.mkdir(community_folder) if not os.path.exists(community_folder + SEPERATOR + "community_models"): os.mkdir(community_folder + SEPERATOR + "community_models") if not os.path.exists(community_folder + SEPERATOR + "medium"): os.mkdir(community_folder + SEPERATOR + "medium") if not os.path.exists(community_folder + SEPERATOR + "weight_inference"): os.mkdir(community_folder + SEPERATOR + "weight_inference") if not os.path.exists(community_folder + SEPERATOR + "experiments_BagOfReactionsModel"): os.mkdir(community_folder + SEPERATOR + "experiments_BagOfReactionsModel") if not os.path.exists(community_folder + SEPERATOR + "experiments_ShuttleCommunityModel"): os.mkdir(community_folder + SEPERATOR + "experiments_ShuttleCommunityModel") except: raise ValueError("Could not generate output directory, maybe we do not have permission's to do so?") def load_old_configs(community_folder:str, cfg:str) -> DictConfig: """This will load the old config file to avoid recomputation. Args: community_folder: Folder in which the community results are placed. cfg: Current config file to dump (is after this run the new old_config). Returns: DictConfig: Old configurations. """ if os.path.exists(community_folder + SEPERATOR + ".configs"): with open(community_folder + SEPERATOR + ".configs", "rb") as f: old_cfg = pickle.load(f) else: old_cfg = cfg with open(community_folder + SEPERATOR + ".configs", "wb") as f: pickle.dump(cfg, f) return old_cfg def set_solver_disable_functionalities_if_needed(cfg:DictConfig, log:logging.Logger) -> DictConfig: """This will set the solver to cplex, the default we recommend for this task. Otherwise it will disable some functionality, which we encountered to be not supported/hard for other solvers Args: cfg: Config file log: Logger to return logs. Returns: DictConfig: Updated configs """ cobra_config = cobra.Configuration() try: cobra_config.solver = "cplex" except Exception as e: log.warn(f"We recommend cplex as solver, but it seems to be not installed on your system. We disable, cooperative tradeoff and community fva for other solvers. The error was {e}") cfg.community.compute_community_fva = False cfg.community.cooperative_tradeoff = False return cfg def generate_community_models(models, cfg, old_cfg, log, community_path): log.info("Generating community models") community_models = [] if cfg.community.bag_of_reactions_model: path = ( community_path + SEPERATOR + "community_models" + SEPERATOR + "BagOfReactionsModel.pkl" ) # Either loading or reinitializing the community model if ( check_for_substring_in_folder( community_path + SEPERATOR + "community_models", "BagOfReactionsModel.pkl" ) and old_cfg.community.models_folder == cfg.community.models_folder ): log.info("Loading BagOfReactions community model") m = BagOfReactionsModel.load(path) ids = [mod.id for mod in m.models] correct = True for model in models: correct = correct and (model.id in ids) if correct: community_models += [m] else: community_models += [BagOfReactionsModel(models)] else: log.info("Building BagOfReactions Community model") community_models += [BagOfReactionsModel(models)] if cfg.community.shuttle_reactions_model: path = ( community_path + SEPERATOR + "community_models" + SEPERATOR + "ShuttleCommunityModel.pkl" ) kwargs = cfg.community.shuttle_reaction_params if not isinstance(kwargs["shared_reactions"], list): kwargs["shared_reactions"] = None old_cfg.community.shuttle_reaction_params["shared_reactions"] = None if ( check_for_substring_in_folder( community_path + SEPERATOR + "community_models", "ShuttleCommunityModel.pkl" ) and old_cfg.community.models_folder == cfg.community.models_folder and all( [ old_cfg.community.shuttle_reaction_params[key] == cfg.community.shuttle_reaction_params[key] for key in cfg.community.shuttle_reaction_params ] ) ): log.info("Loading shuttle reactions model") m = ShuttleCommunityModel.load(path) ids = [mod.id for mod in models] correct = True for model in models: correct = correct and (model.id in ids) if correct: community_models += [m] else: community_models += [ShuttleCommunityModel(models, **kwargs)] else: log.info("Building shuttle reactions model") community_models += [ShuttleCommunityModel(models, **kwargs)] log.info(f"Set correct weights: {cfg.community.main_weights}") for m in community_models: if cfg.community.main_weights == "ones": weights = np.ones(len(m.models)) elif cfg.community.main_weights == "fair": weights = compute_fair_weights(m) else: weights = cfg.community.main_weights assert len(weights) == len( m.models ), "The custom main weights must be a iterable of floats for each member of the community!" m.weights = weights return community_models def reset(old_community_model, PATH): new_model = type(old_community_model).load(PATH + SEPERATOR + "community_models" + SEPERATOR + str(type(old_community_model).__name__) + ".pkl") new_model.medium = old_community_model.medium new_model.weights = old_community_model.weights return new_model def generate_medias(community_model, cfg:DictConfig, log, community_path, result_path): all_medias = {} default = set(get_mediums("medium")[cfg.setup.medium].keys()) if cfg.community.medium["default"]: log.info("Computing default for community") # Also save default medium medium = community_model.medium if cfg.community.medium_strict_subset_of_default: medium = dict([(k,v) for k,v in medium.items() if k in default]) all_medias["default"] = medium path = community_path + SEPERATOR + "medium" + SEPERATOR + "DEFAULT" + ".json" with open(path, "w+") as f: json.dump(community_model.medium, f) log.info(f"Saving default: {path}") if cfg.community.medium["compm"] or cfg.community.medium["coopm"]: log.info("Computing COMPM for community") medium_prefix = result_path + SEPERATOR + "analysis" + SEPERATOR mediums = get_mediums("medium", medium_prefix) COMPM = dict() for medium in mediums.values(): for key, val in medium.items(): COMPM[key] = float(abs(val)) all_medias["compm"] = COMPM if cfg.community.medium_strict_subset_of_default: COMPM = dict([(k,v) for k,v in COMPM.items() if k in default]) if cfg.community.medium["compm"]: path = community_path + SEPERATOR + "medium" + SEPERATOR + "COMPM" + ".json" with open(path, "w+") as f: json.dump(COMPM, f) log.info(f"Saving COMPMs: {path}") return all_medias def generate_coopm_medium(community_model, all_medias, cfg, log:logging.Logger, community_path): log.info("Computing COOPM medium") # COOPM computed using COMPM as base medium! community_model.medium = all_medias["compm"] mbr = community_model.slim_optimize() if cfg.community.coopm_params["enforce_survival"] > 0: for i in range(len(community_model.models)): if community_model.single_optimize(i) == 0: cfg.community.coopm_params["enforce_survival"] = 0 log.warning( "We set enforce survival = 0, as not all models within the community can grow!" ) log.info(f"Growth on COMPM: {mbr}") coopm = community_model.compute_COOPM(mbr, **cfg.community.coopm_params) all_medias["coopm"] = coopm path = community_path + SEPERATOR + "medium" + SEPERATOR + f"{type(community_model).__name__}_COOPM" + ".json" with open(path, "w+") as f: json.dump(coopm, f) log.info(f"Saving COOPMS: {path}") return coopm def flux_analysis(community_model, models, medium_name, cfg, log, PATH, path_to_save): log.info(f"Community FBA/FVA results on medium: {medium_name}") df_growth_summary =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python from . import net_feature_extract, snp_feature_extract, trace_feature_extract, utils import podspy.log as logpkg import podspy.petrinet as petripkg import os, sys import pandas as pd import numpy as np __all__ = [ 'extract_feature_df' ] @utils.timeit(on=True, verbose=False) def extract_net_feature_ss(net): net_feature_dict = net_feature_extract.extract_features(net) net_feature_ss = pd.Series(net_feature_dict) col_order = [ # net_feature_extract.N_TRAN, # net_feature_extract.N_INV_TRAN, # net_feature_extract.N_DUP_TRAN, # net_feature_extract.N_UNIQ_TRAN, # net_feature_extract.INV_TRAN_IN_DEG_MEAN, # net_feature_extract.INV_TRAN_IN_DEG_STD, # net_feature_extract.INV_TRAN_OUT_DEG_MEAN, # net_feature_extract.INV_TRAN_OUT_DEG_STD, # net_feature_extract.UNIQ_TRAN_IN_DEG_MEAN, # net_feature_extract.UNIQ_TRAN_IN_DEG_STD, # net_feature_extract.UNIQ_TRAN_OUT_DEG_MEAN, # net_feature_extract.UNIQ_TRAN_OUT_DEG_STD, # net_feature_extract.DUP_TRAN_IN_DEG_MEAN, # net_feature_extract.DUP_TRAN_IN_DEG_STD, # net_feature_extract.DUP_TRAN_OUT_DEG_MEAN, # net_feature_extract.DUP_TRAN_OUT_DEG_STD, # net_feature_extract.PLACE_IN_DEG_MEAN, # net_feature_extract.PLACE_IN_DEG_STD, # net_feature_extract.PLACE_OUT_DEG_MEAN, # net_feature_extract.PLACE_OUT_DEG_STD, # net_feature_extract.N_PLACE, # net_feature_extract.N_ARC, # net_feature_extract.N_AND_SPLIT, # net_feature_extract.N_XOR_SPLIT, # net_feature_extract.N_BICONNECTED_COMPONENT net_feature_extract.PLACE_IN_DEG_MIN, net_feature_extract.PLACE_IN_DEG_MAX, net_feature_extract.PLACE_OUT_DEG_MIN, net_feature_extract.PLACE_OUT_DEG_MAX, net_feature_extract.INV_TRAN_IN_DEG_MIN, net_feature_extract.INV_TRAN_IN_DEG_MAX, net_feature_extract.INV_TRAN_OUT_DEG_MIN, net_feature_extract.INV_TRAN_OUT_DEG_MAX, net_feature_extract.DUP_TRAN_IN_DEG_MIN, net_feature_extract.DUP_TRAN_IN_DEG_MAX, net_feature_extract.DUP_TRAN_OUT_DEG_MIN, net_feature_extract.DUP_TRAN_OUT_DEG_MAX, net_feature_extract.UNIQ_TRAN_IN_DEG_MIN, net_feature_extract.UNIQ_TRAN_IN_DEG_MAX, net_feature_extract.UNIQ_TRAN_OUT_DEG_MIN, net_feature_extract.UNIQ_TRAN_OUT_DEG_MAX, net_feature_extract.N_PLACE_ONE_IN_DEG, net_feature_extract.N_PLACE_ONE_OUT_DEG, net_feature_extract.N_PLACE_TWO_IN_DEG, net_feature_extract.N_PLACE_TWO_OUT_DEG, net_feature_extract.N_PLACE_THREE_IN_DEG, net_feature_extract.N_PLACE_THREE_OUT_DEG, net_feature_extract.N_PLACE_MORE_THAN_FIVE_IN_DEG, net_feature_extract.N_PLACE_MORE_THAN_FIVE_OUT_DEG, net_feature_extract.N_INV_TRAN_ONE_IN_DEG, net_feature_extract.N_INV_TRAN_ONE_OUT_DEG, net_feature_extract.N_INV_TRAN_TWO_IN_DEG, net_feature_extract.N_INV_TRAN_TWO_OUT_DEG, net_feature_extract.N_INV_TRAN_THREE_IN_DEG, net_feature_extract.N_INV_TRAN_THREE_OUT_DEG, net_feature_extract.N_INV_TRAN_MORE_THAN_FIVE_IN_DEG, net_feature_extract.N_INV_TRAN_MORE_THAN_FIVE_OUT_DEG, net_feature_extract.N_DUP_TRAN_ONE_IN_DEG, net_feature_extract.N_DUP_TRAN_ONE_OUT_DEG, net_feature_extract.N_DUP_TRAN_TWO_IN_DEG, net_feature_extract.N_DUP_TRAN_TWO_OUT_DEG, net_feature_extract.N_DUP_TRAN_THREE_IN_DEG, net_feature_extract.N_DUP_TRAN_THREE_OUT_DEG, net_feature_extract.N_DUP_TRAN_MORE_THAN_FIVE_IN_DEG, net_feature_extract.N_DUP_TRAN_MORE_THAN_FIVE_OUT_DEG, net_feature_extract.N_UNIQ_TRAN_ONE_IN_DEG, net_feature_extract.N_UNIQ_TRAN_ONE_OUT_DEG, net_feature_extract.N_UNIQ_TRAN_TWO_IN_DEG, net_feature_extract.N_UNIQ_TRAN_TWO_OUT_DEG, net_feature_extract.N_UNIQ_TRAN_THREE_IN_DEG, net_feature_extract.N_UNIQ_TRAN_THREE_OUT_DEG, net_feature_extract.N_UNIQ_TRAN_MORE_THAN_FIVE_IN_DEG, net_feature_extract.N_UNIQ_TRAN_MORE_THAN_FIVE_OUT_DEG ] net_feature_ss = net_feature_ss[col_order] return net_feature_ss def extract_decomposition_feature_ss(decomposition): feature_dict = net_feature_extract.extract_features_from_decomposition(decomposition) feature_ss =
pd.Series(feature_dict)
pandas.Series
"""Integer optimization of livestock and water services.""" import os import sys import shutil from osgeo import gdal import re import pandas import numpy as np import pygeoprocessing.geoprocessing import marginal_value as mv def integer_optim_Peru(objective_list, suf): """Calculate optimal intervention portfolio for a set of objective weights. Parameters: objective_list (list): list of objective objects containing info about each objective used to construct the optimization problem including objective weight, target, and whether it should be maximized or not suf (string): results suffix that will be appended to the filename of solution Side effects: creates or modifies a csv file containing the solution, the optimal intervention set creates or modifies a csv file containing scores, objective scores for the optimal intervention set Returns: solution_filename, path to csv file where solution was saved """ intervention_list = [ 'camelid_high', 'camelid_high_rot', 'camelid_low', 'camelid_low_rot', 'cow_high', 'cow_high_rot', 'cow_low', 'cow_lot_rot', 'sheep_high', 'sheep_high_rot', 'sheep_low', 'sheep_low_rot'] pdict = { u'outerdir': os.path.join( _DATA_INPUT_DIR, 'animal_weights_literature_default_beta'), u'rau_shp': os.path.join(_DATA_INPUT_DIR, 'canete_basin.shp'), u'lulc': os.path.join(_DATA_INPUT_DIR, 'Final_cobertura_Canete.tif')} intermediate_dir = os.path.join(pdict[u'outerdir'], 'intermediate') if not os.path.exists(intermediate_dir): os.makedirs(intermediate_dir) pdict[u'intermediate'] = intermediate_dir output_dir = os.path.join(pdict[u'outerdir'], 'output') if not os.path.exists(output_dir): os.makedirs(output_dir) pdict[u'output'] = output_dir rau = 0 csv_folder = os.path.join(pdict['outerdir'], 'marginal_value_csvs') tables_folder = 'integer_optimizer_data' def generate_ll_input_data(): tables_list = mv.margv_tables_from_csv( pdict, objective_list, csv_folder, tables_folder) # move marginal value tables just generated for obj in objective_list: int_folder = os.path.join(intermediate_dir, 'rau_%s' % obj.name) if not os.path.exists(int_folder): os.makedirs(int_folder) copyfrom = os.path.join( intermediate_dir, tables_folder, '%s_rau0.npy' % obj.name) copyto = os.path.join(int_folder, '%s_rau0.npy' % obj.name) shutil.copyfile(copyfrom, copyto) copyto = os.path.join(int_folder, 'rau0.npy') shutil.copyfile(copyfrom, copyto) # normalize values for objective in objective_list: if objective.name == 'cost' or objective.name == 'Cost': continue folder = os.path.join( pdict[u'intermediate'], 'rau_' + objective.name) mv.normalize_values(folder, objective.maximize) # rename normalized arrays for obj in objective_list: copyfrom = os.path.join( pdict[u'intermediate'], 'rau_%s' % obj.name, 'norm', '%s_rau0.npy' % obj.name) copyto = os.path.join( pdict[u'intermediate'], 'rau_%s' % obj.name, 'norm', 'rau0.npy') shutil.move(copyfrom, copyto) generate_ll_input_data() ll_problem = { 'weights': {}, 'targets': {}, 'targettypes': {}} for objective in objective_list: ll_problem['weights'][objective.name] = objective.weight if objective.l_target is not None: ll_problem['targets'][objective.name] = objective.l_target if objective.target_type is not None: ll_problem['targettypes'][objective.name] = objective.target_type ll_data = {'factornames': []} for objective in objective_list: ll_data['factornames'].append(objective.name) if objective.name == 'cost' or objective.name == 'Cost': rau_dir = os.path.join( pdict[u'intermediate'], 'rau_' + objective.name) else: rau_dir = os.path.join( pdict[u'intermediate'], 'rau_' + objective.name, 'norm') file = os.path.join(rau_dir, 'rau' + str(rau) + '.npy') if not os.path.isfile(file): raise Exception("file %s not found" % file) ll_data[objective.name] = np.load(file) # get un-normalized objective data ll_marg_data = ll_data.copy() for objective in objective_list: rau_dir = os.path.join( pdict[u'intermediate'], 'rau_' + objective.name) file = os.path.join(rau_dir, 'rau' + str(rau) + '.npy') if not os.path.isfile(file): raise Exception("file %s not found" % file) ll_marg_data[objective.name] = np.load(file) solution, scores = mv.integer_optimization( ll_data, ll_problem, rau, marg_data=ll_marg_data, tiebreaker_intervention=0) solution_filename = os.path.join( pdict['outerdir'], 'output', 'solution%s.csv' % suf) scores_filename = os.path.join( pdict['outerdir'], 'output', 'scores%s.csv' % suf) solution_df = pandas.DataFrame({'solution': solution}) solution_df.to_csv(solution_filename) scores_df = pandas.DataFrame(scores, index=[0]) scores_df.to_csv(scores_filename) return solution_filename def translate_soln_to_lulc(solution_table, out_name): """Generate landcover raster from one optimal solution. Parameters: solution_table (string): path to csv table containing optimal intervention portfolio according to one set of objective weights out_name (string): file location where landcover raster should be saved Side effects: creates or modifies a geotiff at the location `out_name` Returns: None """ hru_lulc_table = os.path.join(_DATA_INPUT_DIR, 'hru_definition_table.csv') HRU_raster = os.path.join(_DATA_INPUT_DIR, 'HRU_all.tif') HRU_codes = os.path.join(_DATA_INPUT_DIR, 'HRU_codes_11.8.16.csv') sol_df = pandas.read_csv(solution_table) HRU_df = pandas.read_csv(HRU_codes) sol_joined = pandas.concat([sol_df, HRU_df], axis=1) out_datatype = gdal.GDT_Int32 source_dataset = gdal.Open(HRU_raster) band = source_dataset.GetRasterBand(1) out_nodata = band.GetNoDataValue() lulc_df = pandas.read_csv(hru_lulc_table) merged_df = pandas.merge(sol_joined, lulc_df, on='HRU', how='outer') merged_df['soln_int'] = merged_df['solution'].astype(float) merged_df['sb_lu'] = merged_df['sb_lu'].astype(float) merged_df.loc[ merged_df['solution'].notnull(), 'new_lulc'] = merged_df[ 'sb_lu'] * 100 + merged_df['soln_int'] merged_df.loc[merged_df['solution'].isnull(), 'new_lulc'] = merged_df[ 'sb_lu'] value_map = {row[3]: row[9] for row in merged_df.itertuples()} pygeoprocessing.geoprocessing.reclassify_dataset_uri( HRU_raster, value_map, out_name, out_datatype, out_nodata) band = None del source_dataset def translate_solution(solution_csv, HRU_codes, HRU_raster, raster_out_uri): """Create raster showing optimal intervention for each HRU. Parameters: solution_csv (string): path to csv file containing the optimal intervention portfolio according to one set of objective weights HRU_codes (string): path to csv file containing HRU codes in a single column. This file can be created by copying the 'zone' column from one of the marginal value rasters (e.g., livestock_mv_by_HRU_9.29.16.csv). HRU_raster (string): path to geotiff containing hydrologic response units (HRUs) indexed to the integer codes in `HRU_codes` raster_out_uri (string): path to location on disk where optimal intervention geotiff should be saved Side effects: Creates or modifies the geotiff located at `raster_out_uri` Returns: None """ HRU_list = pygeoprocessing.geoprocessing.unique_raster_values_uri( HRU_raster) sol_df = pandas.read_csv(solution_csv) HRU_df = pandas.read_csv(HRU_codes) assert len(set(HRU_list) - set(HRU_df.HRU)) == 0, """Error: HRU raster does not match HRU codes""" sol_joined = pandas.concat([sol_df, HRU_df], axis=1) out_datatype = 3 source_dataset = gdal.Open(HRU_raster) band = source_dataset.GetRasterBand(1) out_nodata = band.GetNoDataValue() value_map = {row[3]: row[2] for row in sol_joined.itertuples()} pygeoprocessing.geoprocessing.reclassify_dataset_uri( HRU_raster, value_map, raster_out_uri, out_datatype, out_nodata) band = None del source_dataset def integer_optim_wrapper(): """Run integer optimization at series of objective weight combinations. This function calls `integer_optim_Peru`, `translate_solution`, and `translate_soln_to_lulc` to calculate optimal interventions for a series of objective weights and generate tables and maps from that solution. Side effects: creates or modifies files located at hard-coded locations on disk Returns: None """ weight_range = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1] for livestock_weight in weight_range: for sdr_weight in weight_range: for swy_weight in weight_range: if (livestock_weight == sdr_weight and sdr_weight == swy_weight): if swy_weight < 1: # only run once with equal weights continue if (livestock_weight == 0 and sdr_weight == 0 and swy_weight == 0): continue sed_obj = mv.Objective( 'sdr', sdr_weight, None, None, None, maximize=False) swy_obj = mv.Objective( 'swy', swy_weight, None, None, None, maximize=True) livestock_obj = mv.Objective( 'livestock', livestock_weight, None, None, None, maximize=True) objective_list = [sed_obj, swy_obj, livestock_obj] suf = 'livestock_{}_sdr_{}_swy_{}'.format( livestock_obj.weight, sed_obj.weight, swy_obj.weight) raster_out_uri = os.path.join( _DATA_INPUT_DIR, 'animal_weights_literature_default_beta', 'output', 'solution_map{}'.format(suf)) if not os.path.exists(raster_out_uri): solution_csv = integer_optim_Peru(objective_list, suf) HRU_codes = os.path.join( _DATA_INPUT_DIR, 'HRU_codes_11.8.16.csv') HRU_raster = os.path.join( _DATA_INPUT_DIR, 'HRU_priority_FESC_RYEG.tif') translate_solution( solution_csv, HRU_codes, HRU_raster, raster_out_uri) lulc_out_name = os.path.join( _DATA_INPUT_DIR, 'animal_weights_literature_default_beta', 'output', 'solution_lulc{}.tif'.format(suf)) translate_soln_to_lulc(solution_csv, lulc_out_name) def collate_scores(output_folder, save_as): """Collect scores into a file for plotting frontiers. Parameters: output_folder (string): path to local file folder containing a series of csv tables, one for each objective weight combination, indicating objective scores for the optimal solution save_as (string): path to location where summary of objective scores across objective weights should be saved Side effects: creates or modifies the csv table indicated by the path `save_as` Returns: None """ scores_files = [ f for f in os.listdir(output_folder) if f.startswith('scores')] f = scores_files[0] sol_df = pandas.read_csv(os.path.join(output_folder, f)) objectives = sol_df.columns.values.tolist() objectives.remove('objective') objectives.remove('Unnamed: 0') sum_dict = {} for obj in objectives: sum_dict['{}_weight'.format(obj)] = [] sum_dict['{}_score'.format(obj)] = [] for f in scores_files: sol_df = pandas.read_csv(os.path.join(output_folder, f)) for obj in objectives: score = sol_df.get_value(0, obj) try: pattern = '{}_(.+?)_'.format(obj) weight = re.search(pattern, f).group(1) except IndexError: pattern = '{}_(.+?).csv'.format(obj) weight = re.search(pattern, f).group(1) sum_dict['{}_weight'.format(obj)].append(weight) sum_dict['{}_score'.format(obj)].append(score) sum_df = pandas.DataFrame(sum_dict) sum_df.to_csv(save_as) def collate_solutions(output_folder, objective_list): """Collect solutions from several portfolios. Parameters: output_folder (string): path to directory on disk that contains solution summaries objective_list (list): list of strings identifying the order of objectives Side effects: creates or modifies the following files in `output_folder`: 'solution_summary.csv' 'solution_index.csv' Returns: None """ solutions_files = [ f for f in os.listdir(output_folder) if f.startswith('solution') and f.endswith('.csv')] df_list = [] weight_dict = {obj: [] for obj in objective_list} weight_dict['soln_index'] = [] for idx in xrange(len(solutions_files)): f = solutions_files[idx] weight_dict['soln_index'].append(idx) for obj in objective_list: try: pattern = '{}_(.+?)_'.format(obj) weight = re.search(pattern, f).group(1) except IndexError: pattern = '{}_(.+?).csv'.format(obj) weight = re.search(pattern, f).group(1) weight_dict[obj].append(weight) df = pandas.read_csv(os.path.join(output_folder, f)) del df['Unnamed: 0'] df.columns = [idx] df_list.append(df) result_df = pandas.concat(df_list, axis=1) weight_df = pandas.DataFrame(weight_dict) result_df.to_csv(os.path.join(output_folder, "solution_summary.csv"), index=False) weight_df.to_csv(os.path.join(output_folder, "solution_index.csv"), index=False) def solution_agreement(HRU_codes, solution_summary, save_as): """Calculate agreement metrics from a set of portfolios. Parameters: HRU_codes (string): path to csv file containing HRU codes in a single column of integers solution_summary (string): path to csv file containing summary of solutions among objective weight combinations save_as (string): path to location on disk where agreement metrics should be saved Side effects: creates or modifies the csv file indicated by `save_as` Returns: None """ sol_df = pandas.read_csv(solution_summary) stat_df = pandas.read_csv(HRU_codes) # proportion of runs where each HRU was selected for intervention stat_df['prop_selected'] = ( sol_df.astype(bool).sum(axis=1) / sol_df.shape[1]) # most often chosen intervention: mode stat_df['mode'] = stats.mode(sol_df, axis=1)[0] stat_df.set_index("HRU") stat_df.to_csv(save_as, index=False) def create_agreement_rasters(agreement_summary, HRU_raster, raster_out_dir): """Make rasters of agreement metrics. Parameters: agreement_summary (string): path to csv containing portfolio agreement metrics HRU_raster (string): path to geotiff containing HRUs raster_out_dir (string): path to location on disk where agreement rasters should be saved Side effects: creates or modifies the following files in `raster_out_dir`: 'proportion_selected.tif' '"most_often_chosen.tif' Returns: None """ HRU_list = pygeoprocessing.geoprocessing.unique_raster_values_uri( HRU_raster) agreement_df =
pandas.read_csv(agreement_summary)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : Feb-03-20 23:44 # @Author : <NAME> (<EMAIL>) # @Link : http://example.org import time import os import json import random import pickle import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler, ModelCheckpoint, ReduceLROnPlateau, CSVLogger from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img from tensorflow.keras.metrics import AUC, BinaryAccuracy from resnet.resnet import model_depth, resnet_v2, lr_schedule # Parameters we care exper_name = "ResNet56v2_origin" test_on_train = True START_EPOCH = 150 # 已经完成的训练数 ALPHA = 0.99 # label 1 sample's weight BATCH_SIZE = 32 # 16 for Mac, 64, 128 for server IF_FAST_RUN = True # False # Training parameters TRAINING_EPOCHS = 150 TOTAL_TRAIN = 30000 * 0.8 TOTAL_VALIDATE = 30000 * 0.2 # constants IF_DATA_AUGMENTATION = True NUM_CLASSES = 2 IMAGE_WIDTH = IMAGE_HEIGHT = 224 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 1 INPUT_SHAPE = [IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS] METRICS = [ BinaryAccuracy(name='accuracy'), # 整体的 accuracy AUC(name='auc_good_0') # 以 good 为 positive 的 AUC ] print("If in eager mode: ", tf.executing_eagerly()) print("Use tensorflow version 2.") assert tf.__version__[0] == "2" print("Load config ...") with open('./config/config_win.json', 'r') as f: CONFIG = json.load(f) ROOT_PATH = CONFIG["ROOT_PATH"] print(f"ROOT_PATH: {ROOT_PATH}") ROOT_PATH = os.path.expanduser(ROOT_PATH) print(f"ROOT_PATH: {ROOT_PATH}") TRAIN_DATA_DIR = os.path.join(ROOT_PATH, CONFIG["TRAIN_DATA_DIR"]) print(f"TRAIN_DATA_DIR: {TRAIN_DATA_DIR}") TEST_DATA_DIR = os.path.join(ROOT_PATH, CONFIG["TEST_DATA_DIR"]) print(f"TEST_DATA_DIR: {TEST_DATA_DIR}") print("Prepare testing data...") if test_on_train: num_samples = num_train = 30000 label_names = os.listdir(TRAIN_DATA_DIR) filenames, labels = [], [] for i, label in enumerate(label_names): files = os.listdir(os.path.join(TRAIN_DATA_DIR, label)) for f in files: filenames.append(label+"/"+f) labels.append(i) # 0 or 1 table = np.asarray([filenames, labels]) table = table.T columns = ["filename", "label"] # test on train dataset test_df =
pd.DataFrame(data=table, columns=columns)
pandas.DataFrame
import logging from unittest.mock import Mock import pandas as pd import pytest from numpy import nan from pdlog.logging import log_change_index from pdlog.logging import log_fillna from pdlog.logging import log_filter from pdlog.logging import log_rename from pdlog.logging import log_reshape @pytest.fixture def caplog(caplog): caplog.set_level(logging.INFO) return caplog def _test_log_function( log_fn, caplog, before_df, after_df, expected_level, expected_msg ): fn_args = Mock() fn_kwargs = Mock() before_df.fn = Mock(return_value=after_df) log_fn(before_df, "fn", fn_args, fn_kwargs) before_df.fn.assert_called_once_with(fn_args, fn_kwargs) assert len(caplog.records) == 1 record = caplog.records[0] assert record.levelno == expected_level assert record.message == expected_msg @pytest.mark.parametrize( ("before", "after", "expected_level", "expected_msg"), ( pytest.param([], [], logging.INFO, "fn: empty input dataframe", id="empty_df"), pytest.param( [0, 1, 2], [], logging.CRITICAL, "fn: dropped all rows", id="all_rows" ), pytest.param( {"x": [1, 2, 3], "y": [4, 5, 6], "z": [7, 8, 9]}, {"x": [1]}, logging.INFO, "fn: dropped 2 columns (67%) and 2 rows (67%), 1 row remaining", id="some_rows_and_cols", ), pytest.param( [0, 1, 2], [0, 1], logging.INFO, "fn: dropped 1 row (33%), 2 rows remaining", id="some_rows", ), pytest.param( {"x": [1, 2, 3], "y": [4, 5, 6], "z": [7, 8, 9]}, {"x": [1, 2, 3]}, logging.INFO, "fn: dropped 2 columns (67%): ['y', 'z']", id="some_cols", ), pytest.param( [0, 1, 2], [0, 1, 2], logging.INFO, "fn: dropped no rows", id="no_rows" ), ), ) def test_log_filter(caplog, before, after, expected_level, expected_msg): before_df = pd.DataFrame(before) after_df = pd.DataFrame(after) _test_log_function( log_filter, caplog, before_df, after_df, expected_level, expected_msg ) @pytest.mark.parametrize( ("before", "after", "error", "error_msg"), [ pytest.param( [], [0, 1, 2], AssertionError, "function: fn added rows, it is not a valid filter operation", id="add_rows", ), pytest.param( {"x": [1, 2, 3]}, {"x": [1, 2, 3], "y": [4, 5, 6], "z": [7, 8, 9]}, AssertionError, "function: fn added columns, it is not a valid filter operation", id="add_cols", ), ], ) def test_log_filter_raises(before, after, error, error_msg): before_df = pd.DataFrame(before) after_df = pd.DataFrame(after) before_df.fn = Mock(return_value=after_df) with pytest.raises(error, match=error_msg): log_filter(before_df, "fn") @pytest.mark.parametrize( ("before", "after", "expected_level", "expected_msg"), ( ( pd.RangeIndex(3), pd.date_range("2020-01-01", "2020-01-03", name="date"), logging.INFO, ( "fn: set from 'None' (RangeIndex): [0, 1, 2] to 'date' " "(DatetimeIndex): ['2020-01-01 00:00:00', " "'2020-01-02 00:00:00', '2020-01-03 00:00:00']" ), ), ), ) def test_log_change_index(caplog, before, after, expected_level, expected_msg): before_df = pd.DataFrame(index=before) after_df = pd.DataFrame(index=after) _test_log_function( log_change_index, caplog, before_df, after_df, expected_level, expected_msg ) @pytest.mark.parametrize( ( "before_index", "before_columns", "after_index", "after_columns", "expected_level", "expected_msg", ), ( pytest.param( ["foo", "bar", "baz"], ["foo", "bar", "baz"], ["foo_1", "bar", "baz"], ["foo", "bar_1", "baz_1"], logging.INFO, ( "fn: renamed 1 row and 2 columns. " "rows: ['foo_1']. columns: ['bar_1', 'baz_1']" ), id="rows_and_columns", ), pytest.param( ["foo", "bar", "baz"], [], ["foo", "bar_1", "baz_1"], [], logging.INFO, "fn: renamed 2 rows: ['bar_1', 'baz_1']", id="rows", ), pytest.param( [], ["foo", "bar", "baz"], [], ["foo", "bar_1", "baz_1"], logging.INFO, "fn: renamed 2 columns: ['bar_1', 'baz_1']", id="columns", ), pytest.param( ["foo", "bar", "baz"], ["foo", "bar", "baz"], ["foo", "bar", "baz"], ["foo", "bar", "baz"], logging.INFO, "fn: renamed nothing", id="nothing", ), ), ) def test_log_rename( caplog, before_index, after_index, before_columns, after_columns, expected_level, expected_msg, ): before_df = pd.DataFrame(index=before_index, columns=before_columns) after_df =
pd.DataFrame(index=after_index, columns=after_columns)
pandas.DataFrame
import numpy as np import pytest from pandas._libs import join as _join from pandas import Categorical, DataFrame, Index, merge import pandas._testing as tm class TestIndexer: @pytest.mark.parametrize( "dtype", ["int32", "int64", "float32", "float64", "object"] ) def test_outer_join_indexer(self, dtype): indexer = _join.outer_join_indexer left = np.arange(3, dtype=dtype) right = np.arange(2, 5, dtype=dtype) empty = np.array([], dtype=dtype) result, lindexer, rindexer = indexer(left, right) assert isinstance(result, np.ndarray) assert isinstance(lindexer, np.ndarray) assert isinstance(rindexer, np.ndarray) tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype)) exp = np.array([0, 1, 2, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(empty, right) tm.assert_numpy_array_equal(result, right) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(left, empty) tm.assert_numpy_array_equal(result, left) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) def test_left_join_indexer_unique(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = _join.left_join_indexer_unique(b, a) expected = np.array([1, 1, 2, 3, 3], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_left_outer_join_bug(): left = np.array( [ 0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1, 3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0, 3, 1, 2, 0, 2, ], dtype=np.int64, ) right = np.array([3, 1], dtype=np.int64) max_groups = 4 lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False) exp_lidx = np.arange(len(left), dtype=np.int64) exp_ridx = -np.ones(len(left), dtype=np.int64) exp_ridx[left == 1] = 1 exp_ridx[left == 3] = 0 tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) index_exp = np.array([3, 5], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([2, 4], dtype=np.int64) bexp = np.array([1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_almost_equal(index, a) aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64) bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.left_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_outer_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.outer_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_inner_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.inner_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_merge_join_categorical_multiindex(): # From issue 16627 a = { "Cat1":
Categorical(["a", "b", "a", "c", "a", "b"], ["a", "b", "c"])
pandas.Categorical
# Import required modules import requests import pandas as pd import json import subprocess from tqdm import tqdm import re # Set pandas to show full rows and columns pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) ''' This is API Query Function ''' # Main function starts here def query(cname="cname", apikey="apikey", apiquery="apiquery"): ''' -- cname --> Cloud Instance Name <cname.infocyte.com> ('cname' is without .infocyte.com) -- apikey --> APIKEY or the API Token -- apiquery --> API GET Method ** Set above args as pre-defined variables (Can be used multiple times) or call them on the fly (Single use). icdata = ic.query(cname, apikey, apiquery) variable 'icdata' --> PandasDataframe. Can now be used with all options available from pandas. Refer README and Wiki for more details. https://pandas.pydata.org/docs/ Note: 'query' function loops until it reaches the last page on API explorer. Larger the data, more time it takes. However each loop will pull 1K entries (rows) and progress details are displayed while quering the data. ''' tqdm.pandas() global icpd, icd icd = requests.get("https://"+cname+".infocyte.com/api/" + apiquery+"?access_token="+apikey + "&count=True") if "There is no method to handle GET" in icd.content.decode("utf-8"): print("API Endpoint not found, suffix \"/explorer/#/\" at the end of URL to find the correct end point") elif icd.reason == "Not Found": print("Please check the CNAME used is correct") elif icd.reason == "Unauthorized": print("Please check the APIKey / Token has the permission to access the instance") elif icd.reason != "OK": print("Something went wrong and unable to find the reason") else: iccount = (str(icd.headers.get("X-Total-Count"))[:-3]) if (len(iccount) == 0): loopic = icd for x in tqdm(range(1), desc="Loading " + apiquery, ncols=100, unit='Loop(s)', bar_format='{l_bar}{bar} | {n_fmt}/{total_fmt} {unit}', colour='GREEN'): icdata = json.loads(loopic.text) icdb =
pd.DataFrame(icdata)
pandas.DataFrame
""" This module implements several methods for calculating and outputting solutions of the unionfind_cluster_editing() algorithm. It contains some methods to print solutions and, more importantly, methods to merge solutions into one better solution. There are 3 main algorithms: merge, repair and undo. Two repair algorithms with differing complexity are implemented. """ from union_find import * from math import log import sys import numpy as np from numba import njit, jit from numpy import random as rand from model_sqrt import * from numba.typed import Dict import pandas as pd def print_result(output_path, name, date): file = open(output_path + name, mode="a") file.write(str(date)) file.close() def print_zhk(output_path, merged, sizes): file = open(output_path + "zhk_sizes.txt", mode="a") for i in range(len(sizes)): if merged[i] == i: file.write(str(i) + " " + str(sizes[i]) + "\n") file.close() def print_solution_costs(solution_costs, output_path): """ This function outputs all sorted solution costs to a ifle named "..._solution_costs.txt". """ sorted_costs = np.sort(solution_costs) print_to = output_path + "solutions_v4.txt" with open(print_to, mode="a") as file: for cost in sorted_costs: file.write(str(cost)) file.write("\n") def all_solutions(solution_costs, parents, filename, missing_weight, n): """ This function outputs all solutions, sorted by their costs, to a ifle named "all_solutions.txt". """ cost_sorted_i = np.argsort(solution_costs) print_to = filename[:-4] + "_all_solutions_v4.txt" count = 1 with open(print_to, mode="a") as file: file.write("filename: %s \nmissing_weight: %f \nn: %d\n" % (filename, missing_weight, n)) for i in cost_sorted_i: file.write("%d. best solution with cost %f\n" % (count, solution_costs[i])) count += 1 for j in range(0,n): file.write(f"{parents[i, j]} ") file.write("\n") def merged_to_file(solutions, costs, filename, missing_weight, n, x, n_merges, output_path): """ A function to write the merged solution(s) to a file, named like the input instance ending with _merged.txt. """ print_to = output_path + "merged_v4.txt" with open(print_to, mode="a") as file: file.write("filename: %s \nmissing_weight: %f \nn: %d \nx (solutions merged): %d\nmerged solutions:\n" % (filename, missing_weight, n, x)) for i in range(n): file.write(f"{solutions[0, i]} ") def merged_short_print(solutions, costs, filename, missing_weight, n, x, n_merges): for j in range(n_merges): cluster_sizes = {} for i in range(n): curr = solutions[j, i] if curr in cluster_sizes: cluster_sizes[curr] += 1 else: cluster_sizes[curr] = 1 print(cluster_sizes) #### merge: scan-variant #### @njit def weighted_decision_scan(x, y, connectivity, f_vertex_costs, f_sizes, f_parents): """ This function is a helper function for merging functions. It generates a weight for cluster center x and another node y by counting the costs over all solutions for two scenarios: 1: y is in the same cluster as x 0: y is in another cluster The return value is between -1 and 1, -1 for certainly not connected, 1 for certainly connected. A value of 0 would indicate that connected or not connected would (in mean) yield the same costs (as in: the error is not big enough to make a difference). """ sol_len = len(f_parents) sum_for_0 = 0 sum_for_1 = 0 count_0 = 0 count_1 = 0 for i in range(0,sol_len): x_cost = f_vertex_costs[i, x] y_cost = f_vertex_costs[i, y] if connectivity[i]: sum_for_1 += x_cost + y_cost count_1 += 1 else: sum_for_0 += x_cost + y_cost count_0 += 1 if count_0 > 0: cost_0 = sum_for_0/count_0 if count_1 > 0: cost_1 = sum_for_1/count_1 if cost_0 == 0 and cost_1 == 0: print("Warning: Both together and single get cost 0 - something went wrong!") else: return (cost_0 - cost_1) / (cost_0 + cost_1) else: # Falls kein Eintrag 1 gehört Knoten recht sicher nicht zum Cluster return -1.0 else: # Falls kein Eintrag 0 gehört Knoten recht sicher zum Cluster return 1.0 # Falls Rückgabe positiv: Entscheidung für 1 (zusammen), falls negativ: Entscheidung für 0 (getrennt). # Je näher Rückgabewert an 0, desto unsicherer die Entscheidung. # Falls kein voriger Fall eintritt (Häufigkeit entscheidet/ Verhältnis liegt vor): return 0.0 def merged_solution_scan(solution_costs, vertex_costs, parents, sizes, missing_weight, n, filename, output_path, union_threshold): """ First merge algorithm. It calculates cluster masks for each cluster center: True, if the node is in the same component with cluster center, False otherwise. For these cluster masks, for each cluster center x and each other node y a weighted decision value is calculated. Is this weight better than the previous one, y gets assigned to new cluster center x. X then gets the weight of the maximum weight over all y, except if that is lower than its previous weight. Tree-like structures can emerge in such cases. Those trees are not handled yet, however they indicate a conflict in the solution, as a node that is both child and parent belongs to two distinct clusters. """ sol_len = len(solution_costs) # Neue Lösung als Array anlegen: merged_sol = np.arange(n) #dtype = np.int64 not supported by numba merged_sizes = np.ones(n, dtype=np.int64) # Arrays anlegen für Vergleichbarkeit der Cluster: connectivity = np.zeros(sol_len, dtype=np.int8) #np.bool not supported graph_file = open(filename, mode="r") l = 0 #wd_f = open(output_path + "wd_v4.txt", mode = "a") for line in graph_file: l += 1 # Kommentar-Zeilen überspringen if line[0] == "#": continue splitted = line.split() nodes = np.array(splitted[:-1], dtype=np.int64) weight = np.float64(splitted[2]) i = nodes[0] j = nodes[1] if weight < 0: continue # Fülle Cluster-Masken for x in range(sol_len): connectivity[x] = np.int8(parents[x, i] == parents[x, j]) # Berechne Zugehörigkeit zu Cluster (bzw. oder Nicht-Zugehörigkeit) # Alle vorigen Knoten waren schon als Zentrum besucht und haben diesen Knoten daher schon mit sich verbunden (bzw. eben nicht) - Symmetrie der Kosten! wd = weighted_decision_scan(i, j, connectivity, vertex_costs, sizes, parents) #wd_f.write(str(l) + " " + str(wd) +"\n") # Falls Gewicht groß genug: if wd > union_threshold: union(i, j, merged_sol, merged_sizes) #wd_f.close() result = np.zeros((2,n)) result[0] = merged_sol result[1] = merged_sizes return result #### merge repair variants: with/without scan #### @njit def repair_merged_v4_nd(merged, merged_sizes, solution_costs, vertex_costs, parents, sizes, n, node_dgree, big_border): sol_len = len(solution_costs) ccs_mndgr = calculate_mean_nodedgr_nd(merged, merged_sizes, node_dgree) ccs = ccs_mndgr[0] mean_ndgree = ccs_mndgr[1] connectivity = np.zeros(sol_len, dtype=np.int8) for s_center_i in range(len(ccs)): # s_center soll klein genug sein s_center = ccs[s_center_i] if merged_sizes[s_center] > mean_ndgree[s_center_i] * big_border: continue # Detektiere und verbinde "Mini-Cluster" (Wurzel des Clusters soll verbunden werden); # Reparatur wird versucht, wenn die Größe des Clusters weniger als halb so groß ist wie der Knotengrad angibt, dh. die lokale Fehlerrate wäre bei über 50% in der Probleminstanz. best_fit = s_center min_mwc = 1.7976931348623157e+308 for b_center_i in range(len(ccs)): # b_center soll groß genug sein b_center = ccs[b_center_i] if merged_sizes[b_center] <= mean_ndgree[b_center_i] * big_border: continue # Falls Cluster zusammen deutlich zu groß wären, überspringt diese Kombination direkt if merged_sizes[s_center] + merged_sizes[b_center] > 1.29 * mean_ndgree[b_center_i]: continue for x in range(0,sol_len): if parents[x, s_center] == parents[x, b_center]: connectivity[x] = 1 else: connectivity[x] = 0 # Berechne Gewicht: mwc = mean_weight_connected(s_center, connectivity, vertex_costs, sizes, parents) if mwc == -1: continue if mwc < min_mwc: # Aktualisieren von Minimalen Kosten min_mwc = mwc best_fit = b_center # Verbinde das Cluster mit dem Cluster, das im Mittel für s_center am günstigsten ist. union(s_center, best_fit, merged, merged_sizes) result = np.zeros((2,n), dtype=np.int64) result[0] = merged result[1] = merged_sizes return result @njit def mean_weight_connected(s_center, connectivity, vertex_costs, sizes, parents): sol_len = len(connectivity) mwc = 0.0 count = 0 for i in range(sol_len): if connectivity[i]: mwc += vertex_costs[i, s_center] count += 1 if count == 0: return -1.0 return mwc/count @njit def calculate_mean_nodedgr_array(merged, merged_sizes, node_dgree, cluster_centers): cluster_mean_nodedgr = np.zeros(len(cluster_centers), dtype=np.int64) for c in range(len(cluster_centers)): for i in range(len(merged)): if merged[i] == cluster_centers[c]: cluster_mean_nodedgr[c] += node_dgree[i] cluster_mean_nodedgr[c] /= merged_sizes[cluster_centers[c]] cmn_array = np.zeros(len(merged), dtype=np.int64) for i in range(len(cluster_centers)): c = cluster_centers[i] cmn_array[c] = cluster_mean_nodedgr[i] return cmn_array @njit def calculate_mean_nodedgr_nd(merged, merged_sizes, node_dgree): cluster_centers = pd.unique(merged) cluster_mean_nodedgr = np.zeros(len(cluster_centers), dtype=np.int64) for c in range(len(cluster_centers)): for i in range(len(merged)): if merged[i] == cluster_centers[c]: cluster_mean_nodedgr[c] += node_dgree[i] cluster_mean_nodedgr[c] /= merged_sizes[cluster_centers[c]] result = np.zeros((2,len(cluster_centers)), dtype=np.int64) result[0] = cluster_centers result[1] = cluster_mean_nodedgr return result def repair_merged_v4_scan(merged, merged_sizes, solution_costs, vertex_costs, parents, sizes, n, node_dgree, big_border, filename): sol_len = len(solution_costs) cluster_centers = pd.unique(merged) mean_ndgree = calculate_mean_nodedgr_array(merged, merged_sizes, node_dgree, cluster_centers) connectivity = np.zeros(sol_len, dtype=np.int8) best_fits = np.zeros(n, dtype=np.int64) min_mwcs = np.zeros(n, dtype = np.float64) for i in range(n): best_fits[i] = -1 min_mwcs[i] = 1.7976931348623157e+308 graph_file = open(filename, mode="r") for line in graph_file: # Kommentar-Zeilen überspringen if line[0] == "#": continue splitted = line.split() nodes = np.array(splitted[:-1], dtype=np.int64) weight = np.float64(splitted[2]) i = nodes[0] j = nodes[1] # Nur positive Kanten berücksichtigen if weight < 0: continue #Clusterzentren ermitteln s_center = merged[i] b_center = merged[j] # ggf. Benennung ändern (b: big, s: small) if merged_sizes[s_center] > merged_sizes[b_center]: tmp = s_center s_center = b_center b_center = tmp # Clustergrößen ermitteln s_center_s = merged_sizes[s_center] b_center_s = merged_sizes[b_center] if b_center_s < big_border * mean_ndgree[b_center]: continue if s_center_s >= big_border * mean_ndgree[s_center]: continue if s_center_s + b_center_s > 1.29 * mean_ndgree[s_center]: continue if s_center_s + b_center_s > 1.29 * mean_ndgree[b_center]: continue for x in range(0,sol_len): if parents[x, i] == parents[x, j]: connectivity[x] = 1 else: connectivity[x] = 0 # Berechne Gewicht: mwc = mean_weight_connected(s_center, connectivity, vertex_costs, sizes, parents) if mwc == -1: continue if mwc < min_mwcs[s_center]: # Aktualisieren von Minimalen Kosten min_mwcs[s_center] = mwc best_fits[s_center] = b_center # Laufe über alle großen Cluster (denen kleine zugewiesen wurden) und verbinde diese mit den günstigsten Kandidaten, # bis das Cluster (deutlich) zu voll wäre. bf_unique =
pd.unique(best_fits)
pandas.unique
""" Open Power System Data Household Datapackage validation.py : fix possible errors and wrongly measured data. """ import logging logger = logging.getLogger(__name__) import os import yaml import pytz import numpy as np import pandas as pd from datetime import datetime, timedelta from .tools import update_progress, derive_power def validate(household, household_data, config_dir='conf', verbose=False): ''' Search for measurement faults in several data series of a DataFrame and remove them Parameters ---------- household : dict Configuration dictionary of the household household_data : pandas.DataFrame DataFrame to inspect and possibly fix measurement errors config_dir : str directory path where all configurations can be found output : boolean Flag, if the validated feeds should be printed as human readable CSV files Returns ---------- result: pandas.DataFrame Adjusted DataFrame with result series ''' result = pd.DataFrame() logger.info('Validate %s series', household['name']) feeds_columns = household_data.columns.get_level_values('feed') feeds_configs = _read_adjustments(household['id'], config_dir) feeds_output = pd.DataFrame() feeds_existing = len(household_data.columns) feeds_success = 0 for feed_name in household['series'].keys(): feed = household_data.loc[:, feeds_columns==feed_name].dropna() #Take specific actions, depending on one-time occurrences for the specific feed if feed_name in feeds_configs: for feed_configs in feeds_configs[feed_name]: feed = _series_adjustment(feed_configs, feed, feed_name) # Keep only the rows where the energy values are within +3 to -3 times the standard deviation. error_std = np.abs(feed - feed.mean()) > 3*feed.std() if np.count_nonzero(error_std) > 0: logger.debug("Deleted %s %s values: %s energy values 3 times the standard deviation", household['name'], feed_name, str(np.count_nonzero(error_std))) # Keep only the rows where the energy values is increasing feed_fixed = feed[~error_std] error_inc = feed_fixed < feed_fixed.shift(1) feed_size = len(feed_fixed.index) for time in error_inc.replace(False, np.NaN).dropna().index: i = feed_fixed.index.get_loc(time) if i > 2 and i < feed_size: error_flag = None # If a rounding or transmission error results in a single value being too big, # fix that single data point, else flag all decreasing values if feed_fixed.iloc[i,0] >= feed_fixed.iloc[i-2,0] and not error_inc.iloc[i-2,0]: error_inc.iloc[i,0] = False error_inc.iloc[i-1,0] = True elif all(feed_fixed.iloc[i-1,0] > feed_fixed.iloc[i:min(feed_size-1,i+10),0]): error_flag = feed_fixed.index[i] else: j = i+1 while j < feed_size and feed_fixed.iloc[i-1,0] > feed_fixed.iloc[j,0]: if error_flag is None and j-i > 10: error_flag = feed_fixed.index[i] error_inc.iloc[j,0] = True j = j+1 if error_flag is not None: logger.warn('Unusual behaviour at index %s for %s: %s', error_flag.strftime('%d.%m.%Y %H:%M'), household['name'], feed_name) if np.count_nonzero(error_inc) > 0: feed_fixed = feed_fixed[~error_inc] logger.debug("Deleted %s %s values: %s decreasing energy values", household['name'], feed_name, str(np.count_nonzero(error_inc))) # Notify about rows where the derived power is significantly larger than the standard deviation value feed_power = derive_power(feed_fixed) quantile = feed_power[feed_power > 0].quantile(.99)[0] error_qnt = (feed_power.abs() > 3*quantile).shift(-1).fillna(False) error_qnt.columns = feed_fixed.columns if np.count_nonzero(error_qnt) > 0: feed_fixed = feed_fixed[~error_qnt] logger.debug("Deleted %s %s values: %s power values 3 times .99 standard deviation", household['name'], feed_name, str(np.count_nonzero(error_qnt))) if not feed_fixed.empty: # Always begin with an energy value of 0 feed_fixed -= feed_fixed.dropna().iloc[0,0] if verbose: os.makedirs("raw_data", exist_ok=True) error_std = error_std.replace(False, np.NaN) error_inc = error_inc.replace(False, np.NaN) error_qnt = error_qnt.replace(False, np.NaN) feed_columns = [feed_name+"_energy", feed_name+"_power", feed_name+'_error_std', feed_name+'_error_inc', feed_name+'_error_qnt'] feed_csv = pd.concat([feed, derive_power(feed), error_std, error_inc, error_qnt], axis=1) feed_csv.columns = feed_columns feed_csv.to_csv(os.path.join("raw_data", household['id']+'_'+feed_name+'.csv'), sep=',', decimal='.', encoding='utf-8') feed_output = pd.concat([feed_fixed, derive_power(feed_fixed), error_std, error_inc, error_qnt], axis=1) feed_output.columns = feed_columns feeds_output =
pd.concat([feeds_output, feed_output], axis=1)
pandas.concat
from elasticsearch import Elasticsearch, helpers import pandas from utils.log import * class ES(object): def __init__(self, conf): self.es = Elasticsearch([conf['es_host']]) self.winlogbeat = conf['winlogbeat_index'] def insert_behaviors(self, _index, data): records = [] for _be in data: _cols = _be.get_attribute_names() _record = _be.serialize() try: records.append({ '_index': _index + _be.getname().lower(), '_type': 'behavior', '_source': pandas.DataFrame([_record], columns=_cols).loc[0].to_json(default_handler=str), }) except Exception as e: log_error('Elasticsearch insert failed. {}'.format(e)) log_error(pandas.DataFrame([_record], columns=_cols).loc[0]) helpers.bulk(self.es, records) def query(self, _index, doctype, qstring): records = [] try: page = self.es.search(index=_index, doc_type=doctype, scroll='2m', size=1000, q=qstring, timeout='10m') sid = page['_scroll_id'] scroll_size = page['hits']['total'] docs = page['hits']['hits'] records += [x['_source'] for x in docs] while scroll_size > 0: page = self.es.scroll(scroll_id=sid, scroll='5m') sid = page['_scroll_id'] scroll_size = len(page['hits']['hits']) docs = page['hits']['hits'] records += [x['_source'] for x in docs] return
pandas.DataFrame(records)
pandas.DataFrame
import pandas as pd # from WindPy import * import sympy as smp import scipy as scp import scipy.stats as sss import scipy.optimize as sop import numpy as np import pandas as pd from datetime import datetime, date, timedelta import matplotlib as mpl import matplotlib.pyplot as plt from fh_tools.fh_utils import get_cache_file_path from scipy.stats import norm import matplotlib.mlab as mlab import pymysql import json from config_fh import get_db_engine, ANALYSIS_CACHE_FILE_NAME, get_db_session, get_redis, STR_FORMAT_DATE zhfont1 = mpl.font_manager.FontProperties(fname='C:\Windows\Fonts\simkai.ttf') def copula_func(copula_family, Xs_in, alpha_in): Num_vars_in = len(Xs_in) inner_fun = 0 if copula_family == 'Gumbel': for i in range(Num_vars_in): inner_fun += (-smp.log(Xs_in[i])) ** alpha_in gumbel_expr = smp.exp(-inner_fun ** (1 / alpha_in)) return gumbel_expr elif copula_family == 'Clayton': for i in range(Num_vars_in): inner_fun += Xs_in[i] ** (-alpha_in) clayton_expr = (inner_fun - Num_vars_in + 1) ** (-1 / alpha_in) return clayton_expr else: print('Copula function not ready yet') def copula_diff(func_in, Xs_in): Num_vars_in = len(Xs_in) temp_func = func_in.copy() for i in range(Num_vars_in): temp_func = smp.diff(temp_func, Xs_in[i]) return temp_func def estimate_parameter(diff_func, data_in, Xs_in, alpha_in): temp = 1 for i in range(len(data_in)): temp = temp * diff_func.subs([(Xs_in[j], data_in[i, j]) for j in range(len(Xs_in))]) myfunc = smp.lambdify(alpha_in, -smp.log(temp), 'math') ##function used to make alpha as para, x as value only alpha_num = sop.fminbound(myfunc, 1, 10) return alpha_num def rnd_generator(alpha_in, var_num_in, size_in): temp = np.zeros((size_in, var_num_in)) for i in range(size_in): gamma_rv = np.random.gamma(1, 1 / alpha_in) rnd_n = np.random.rand(var_num_in) rnd = (1 - 1 / gamma_rv * np.log(rnd_n)) ** (-1 / alpha_in) temp[i, :] = rnd return temp def cal_maxdd(nvlist): dd = [] for nvindex, nv in enumerate(nvlist): nvmax = max(nvlist[0:nvindex + 1]) dd_now = nv / nvmax - 1 dd.append(dd_now) return min(dd) class stress_test: def __init__(self, copula_family): self.coupla_family = copula_family self.sql_getfund = '''select nav_date2, max(nav_acc_max) as nav_acc_mm from ( select adddate(nav_date, 4 - weekday(nav_date)) as nav_date2, max(nav_acc) as nav_acc_max from fund_nav where wind_code='%s' and nav_date >= '%s' and nav_date <= '%s' group by nav_date) as nav_t group by nav_date2 order by nav_date2''' def get_fund_nv(self, fund_list, start_date, end_date): fund_nv = pd.DataFrame() for fund_code in fund_list: sql_fund = self.sql_getfund % (fund_code, start_date, end_date) engine = get_db_engine() fund_nv_tmp = pd.read_sql(sql_fund, engine) if len(fund_nv) == 0: fund_nv = fund_nv_tmp else: fund_nv = fund_nv.merge(fund_nv_tmp, on='nav_date2') fund_nv.dropna(how='any', inplace=True) fund_nv.set_index('nav_date2', inplace=True) return fund_nv def simulate_fund_profit(self, fund_nv): fund_profit = fund_nv.apply(lambda x: x / x.shift(1) - 1) fund_profit.dropna(how='any', inplace=True) # print(fund_profit) cdfs = np.zeros_like(fund_profit) norm_mean = np.zeros(fund_profit.columns.size) norm_var = np.zeros(fund_profit.columns.size) for i in range(fund_profit.columns.size): norm_mean[i], norm_var[i] = sss.norm.fit(fund_profit.iloc[:, i]) cdfs[:, i] = sss.norm.cdf(fund_profit.iloc[:, i], norm_mean[i], norm_var[i]) # %% Num_vars = fund_profit.columns.size Xs = smp.symbols('X1:%d' % (Num_vars + 1)) # print(Num_vars, Xs) alpha = smp.symbols('alpha') myfunc = copula_func(self.coupla_family, Xs, alpha) myfunc_diff = copula_diff(myfunc, Xs) # print(Num_vars, Xs,1) alpha_num = estimate_parameter(myfunc_diff, cdfs, Xs, alpha) # %% simu_data = rnd_generator(alpha_num, len(Xs), 500) simu_data_conditional = simu_data[simu_data[:, 0] < 0.1] simu_real = simu_data.copy() for i in range(fund_profit.columns.size): simu_real[:, i] = norm.ppf(simu_real[:, i], norm_mean[i], norm_var[i]) # for i in range(testdata.columns.size): # simu_data_conditional[:,i]=sss.norm.ppf(simu_data_conditional[:,i], norm_mean[i], norm_var[i]) # print(simu_data) return simu_real def get_max_drawdown(self, wind_code_list, start_date, end_date, weight_list, simulate_count): fnv = self.get_fund_nv(wind_code_list, start_date, end_date) weight_list = np.array(weight_list) weight_list = weight_list / sum(weight_list) max_dd_list = [] for i in range(simulate_count): simu = self.simulate_fund_profit(fnv) simu_pd =
pd.DataFrame(simu, columns=wind_code_list)
pandas.DataFrame
__all__ = [ "read_clock_paramaters", "read_weather_inputs", "read_model_parameters", "read_irrigation_management", "read_field_management", "read_groundwater_table", "compute_variables", "compute_crop_calander", "calculate_HIGC", "calculate_HI_linear", "read_model_initial_conditions", "create_soil_profile", ] # Cell import numpy as np import os import pandas as pd from .classes import * import pathlib from copy import deepcopy import aquacrop # Cell def read_clock_paramaters(SimStartTime, SimEndTime, OffSeason=False): """ function to read in start and end simulaiton time and return a `ClockStructClass` object *Arguments:*\n `SimStartTime` : `str`: simulation start date `SimEndTime` : `str` : simulation start date `OffSeason` : `bool` : simulate off season true, false *Returns:* `ClockStruct` : `ClockStructClass` : time paramaters """ # extract data and put into numpy datetime format SimStartTime = pd.to_datetime(SimStartTime) SimEndTime = pd.to_datetime(SimEndTime) # create object ClockStruct = ClockStructClass() # add variables ClockStruct.SimulationStartDate = SimStartTime ClockStruct.SimulationEndDate = SimEndTime ClockStruct.nSteps = (SimEndTime - SimStartTime).days + 1 ClockStruct.TimeSpan =
pd.date_range(freq="D", start=SimStartTime, end=SimEndTime)
pandas.date_range
# -*- coding: utf-8 -*- """Data structure for validating and efficiently slicing fixed-length segments of typically multichannel time-series data. """ import numpy as np import pandas as pd from .errors import FitGridError from . import tools class Epochs: """Container class used for storing epochs tables and exposing statsmodels. Parameters ---------- epochs_table : pandas DataFrame long form dataframe containing epochs with equal indices time : str time column name epoch_id : str epoch identifier column name channels : list of str list of channel names to serve as dependent variables Returns ------- epochs : Epochs epochs object """ def __init__(self, epochs_table, time, epoch_id, channels): # channels must be a list of strings if not isinstance(channels, list) or not all( isinstance(item, str) for item in channels ): raise FitGridError('channels should be a list of strings.') # all channels must be present as epochs table columns missing_channels = set(channels) - set(epochs_table.columns) if missing_channels: raise FitGridError( 'channels should all be present in the epochs table, ' f'the following are missing: {missing_channels}' ) if not isinstance(epochs_table, pd.DataFrame): raise FitGridError('epochs_table must be a Pandas DataFrame.') # these index columns are required for consistency checks for item in (epoch_id, time): if item not in epochs_table.index.names: raise FitGridError( f'{item} must be a column in the epochs table index.' ) # check no duplicate column names in index and regular columns names = list(epochs_table.index.names) + list(epochs_table.columns) deduped_names = tools.deduplicate_list(names) if deduped_names != names: raise FitGridError('Duplicate column names not allowed.') # make our own copy so we are immune to modification to original table table = ( epochs_table.copy().reset_index().set_index(epoch_id).sort_index() ) assert table.index.names == [epoch_id] snapshots = table.groupby(time) # check that snapshots across epochs have equal index by transitivity prev_group = None for idx, cur_group in snapshots: if prev_group is not None: if not prev_group.index.equals(cur_group.index): raise FitGridError( f'Snapshot {idx} differs from ' f'previous snapshot in {epoch_id} index:\n' f'Current snapshot\'s indices:\n' f'{cur_group.index}\n' f'Previous snapshot\'s indices:\n' f'{prev_group.index}' ) prev_group = cur_group if not prev_group.index.is_unique: dupes = tools.get_index_duplicates_table(table, epoch_id) raise FitGridError( f'Duplicate values in {epoch_id} index not allowed:\n{dupes}' ) # checks passed, set instance variables self.time = time self.epoch_id = epoch_id self.channels = channels self.table = table self._snapshots = snapshots self.epoch_index = tools.get_first_group(snapshots).index.copy() self.time_index =
pd.Index([time for time, _ in snapshots], name=time)
pandas.Index
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # ===================================================================== # Copyright (C) 2018-2019 by Owl Data # author: <NAME> # ===================================================================== import requests import json import time import pandas as pd from pandas.tseries.offsets import MonthEnd, QuarterEnd, YearEnd from ._owlerror import OwlError from ._owltime import _DataID # -------------------- # BLOCK API擷取資料 # -------------------- # 核心程式 class OwlData(_DataID): def __init__(self, auid:str, ausrt:str): ''' 請輸入個人數據貓頭鷹相關資料,以便登入取得財經數據 Parameters ---------- :param auid: str - 請輸入數據貓頭鷹 AppID :param ausrt: str - 請輸入數據貓頭鷹 應用程式密鑰 ''' self._token = { 'token_url':"https://owl.cmoney.com.tw/OwlApi/auth", 'token_params':"appId=" + auid + "&appSecret=" + ausrt, 'token_headers':{'content-type': "application/x-www-form-urlencoded"}, #POST表單,預設的編碼方式 (enctype) 'data_url':"https://owl.cmoney.com.tw/OwlApi/api/v2/json/", 'testmap':"PYCtrl-14881b", 'pythonmap':"PYCtrl-14882b" } # 取得 TOKEN 結果 self._token_result = '' # Data Token self._data_headers = {} # 連線進入並輸出連線狀態 self.status_code = self._request_token_authorization() # OwlTime Class super().__init__() def __repr__(self): return '貓頭鷹資料庫連線狀態: {}'.format(str(self.status_code)) def _request(self,*args,**kargs): '''當連線出現異常時,重新啟動下載機制''' i=3 while i >=0: try: return requests.request(*args,**kargs) except: time.sleep(3) i-=1 # Token 取得 def _request_token_authorization(self) -> int: '''請求權限交換''' self._token_result = self._request("POST",self._token['token_url'], data = self._token['token_params'], headers = self._token['token_headers']) if (self._token_result.status_code == 200): token = json.loads(self._token_result.text).get("token") self._data_headers = {'authorization':'Bearer ' + token} self._pdid_map() return self._token_result.status_code elif(self._token_result.status_code in OwlError._http_error.keys()): print('錯誤代碼: {} '.format(str(self._token_result.status_code)),OwlError._http_error[self._token_result.status_code]) else: print("連線錯誤,請洽業務人員") # 呼叫 OwlData 資料下載 def _data_from_owl(self, url:str) -> pd.DataFrame: ''' 輸入API網址,獲取對應的數據資料 Parameters ------------ :param url: str - 在url的地方輸入API網址,回傳數據資料 - 個股/多股 Returns -------- :DataFrame: 輸出分別為個股與多股 Examples --------- 個股/多股: 輸出帶有DataFrame的資料格式 個股: 日期 股票名稱 開盤價 最高價 最低價 ... 0 20171229 台泥 36.20 36.80 36.10 ... 1 20171228 台泥 36.10 36.25 36.00 ... 2 20171227 台泥 36.10 36.45 36.00 ... 3 20171226 台泥 36.10 36.50 35.95 ... 4 20171225 台泥 35.30 36.25 35.10 ... 多股: 股票代號 股票名稱 日期 開盤價 ... 0 1101 台泥 20171229 36.20 ... 1 1102 亞泥 20171229 27.80 ... 2 1103 嘉泥 20171229 12.85 ... 3 1104 環泥 20171229 22.85 ... Notes ------- 先請求網址回覆200後,才會抓取資料(網址輸入錯誤,才會撈不到資料) 個股: 假設基準日: 20190701、股票代號: 1101、期數: 20,則會獲取自20190701往前20筆 1101的資料 多股: 取指定日期當天,各檔的數據資料 ''' data_result = self._request("GET", url, headers = self._data_headers) # 若逾時連線,則重新再次連線一次 try: if data_result.status_code == 200: pass except: data_result = self._request("GET", url, headers = self._data_headers) # status code 下載判別狀態 try: if data_result.status_code == 200: data=json.loads(data_result.text) return pd.DataFrame(data.get('Data'), columns = data.get('Title')) elif data_result.status_code in OwlError._http_error.keys(): print('錯誤代碼: {:s} '.format(str(self._token_result.status_code)), OwlError._http_error[self._token_result.status_code]) return 'error' except: return 'error' # 修正資料 def _check(self, result:pd.DataFrame, freq=None, num_col=2, colists=None, pd_id=None) -> pd.DataFrame: ''' 商品檢查點 Parameters ---------- :param result: DataFrame - 輸入原始表格 :param freq: str - 表格頻率 :param num_col: int - 數值化資料欄位起點 :param colists: list, default None - 填入欲查看的欄位名稱,未寫輸入則取全部欄位 :param pd_id: str - 商品代碼 Returns ---------- DataFrame ''' try: if result.empty: print('SidError:',OwlError._dicts["SidError"]) return result if result is not 'error': # 日期修正 if freq == 'd': result['日期'] = [pd.to_datetime(i) if i !='' else '' for i in result['日期']] if '股票代號' not in result.columns: result.sort_values('日期', inplace = True) result.reset_index(drop = True, inplace = True) elif freq == 'm': result['年月'] = [pd.to_datetime(i,format='%Y%m')+MonthEnd(1) if i !='' else '' for i in result['年月']] if '股票代號' not in result.columns: result.sort_values('年月', inplace = True) result.reset_index(drop = True, inplace = True) elif freq == 'q': result['年季'] = result['年季'].apply(lambda x: x[0:4]+x[4:6].replace('0','Q')) result['年季'] = [pd.to_datetime(i)+Quar
terEnd(1)
pandas.tseries.offsets.QuarterEnd
import pandas as pd import numpy as np import seaborn as sns from scipy import stats import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.neural_network import MLPRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor, AdaBoostRegressor from xgboost import XGBRegressor from sklearn.metrics import mean_absolute_error from sklearn.svm import SVR from warnings import filterwarnings import tensorflow as tf from tensorflow import keras filterwarnings('ignore') # Data features = pd.read_csv('dengue_features_train.csv', index_col=[0, 1, ]) label = pd.read_csv('dengue_labels_train.csv', index_col=[0, 1, ]) # SJ and IQ sj_features, iq_features = features.loc['sj'], features.loc['iq'] sj_label, iq_label = label.loc['sj'], label.loc['iq'] sj_features.drop(columns=['week_start_date'], axis=1, inplace=True) iq_features.drop(columns=['week_start_date'], axis=1, inplace=True) # NaN fill sj_features.fillna(method='ffill', inplace=True) iq_features.fillna(method='ffill', inplace=True) # feature engineering sj_features['station_range_temp_c'] = sj_features['station_max_temp_c'] - \ sj_features['station_min_temp_c'] iq_features['station_range_temp_c'] = iq_features['station_max_temp_c'] - \ iq_features['station_min_temp_c'] sj_features.drop(columns=['station_max_temp_c', 'station_min_temp_c', 'station_avg_temp_c'], axis=1, inplace=True) iq_features.drop(columns=['station_max_temp_c', 'station_min_temp_c', 'station_avg_temp_c'], axis=1, inplace=True) sj_features['reanalysis_range_air_temp_k'] = sj_features['reanalysis_max_air_temp_k'] - \ sj_features['reanalysis_min_air_temp_k'] iq_features['reanalysis_range_air_temp_k'] = iq_features['reanalysis_max_air_temp_k'] - \ iq_features['reanalysis_min_air_temp_k'] sj_features.drop(columns=['reanalysis_max_air_temp_k', 'reanalysis_min_air_temp_k', 'reanalysis_tdtr_k', 'reanalysis_avg_temp_k', 'reanalysis_dew_point_temp_k'], axis=1, inplace=True) iq_features.drop(columns=['reanalysis_max_air_temp_k', 'reanalysis_min_air_temp_k', 'reanalysis_tdtr_k', 'reanalysis_avg_temp_k', 'reanalysis_air_temp_k', 'reanalysis_dew_point_temp_k'], axis=1, inplace=True) ndvi = ['ndvi_sw', 'ndvi_se', 'ndvi_nw', 'ndvi_ne'] precip = ['station_precip_mm', 'precipitation_amt_mm', 'reanalysis_sat_precip_amt_mm'] sj_ndvi_data, sj_precip_data = sj_features[ndvi], sj_features[precip] sj_ndvi_data['minimum_ndvi'], sj_precip_data['precip'] = sj_ndvi_data.min( axis=1), sj_precip_data.max(axis=1) iq_ndvi_data, iq_precip_data = iq_features[ndvi], iq_features[precip] iq_ndvi_data['minimum_ndvi'], iq_precip_data['precip'] = iq_ndvi_data.min( axis=1), iq_precip_data.max(axis=1) sj_features['minimum_ndvi'], sj_features['precip'] = sj_ndvi_data['minimum_ndvi'].copy( ), sj_precip_data['precip'].copy() iq_features['minimum_ndvi'], iq_features['precip'] = iq_ndvi_data['minimum_ndvi'].copy( ), iq_precip_data['precip'].copy() sj_features.drop(columns=ndvi, axis=1, inplace=True) sj_features.drop(columns=precip, axis=1, inplace=True) iq_features.drop(columns=ndvi, axis=1, inplace=True) iq_features.drop(columns=precip, axis=1, inplace=True) print(sj_features.columns) # Merge sj_data = sj_features.merge(sj_label, on=['year', 'weekofyear']) iq_data = iq_features.merge(iq_label, on=['year', 'weekofyear']) # iq_data['total_cases'].hist() # plt.show() ''' # Seaborn # print(plt.colormaps()) corr_sj = sj_data.corr() sns.heatmap(corr_sj, cmap='gist_heat_r', ) plt.xticks(size=7) plt.yticks(size=7) plt.show() corr_iq = iq_data.corr() sns.heatmap(corr_iq, cmap='gist_heat_r', ) plt.xticks(size=7) plt.yticks(size=7) plt.show() ''' sj_index = np.all(stats.zscore(sj_data) < 3.5, axis=1) sj_data = sj_data.loc[sj_index] iq_index = np.all(stats.zscore(iq_data) < 3.5, axis=1) iq_data = iq_data.loc[iq_index] # iq_data['total_cases'].hist() # plt.show() # Train test split data_list = [sj_data, iq_data] for idx in range(len(data_list)): if idx == 0: X_sj = sj_data.drop(columns='total_cases', axis=1) y_sj = sj_data['total_cases'] elif idx == 1: X_iq = iq_data.drop(columns='total_cases', axis=1) y_iq = iq_data['total_cases'] sj_x_train, sj_x_test, sj_y_train, sj_y_test = train_test_split( X_sj, y_sj, test_size=0.2, random_state=42) iq_x_train, iq_x_test, iq_y_train, iq_y_test = train_test_split( X_iq, y_iq, test_size=0.2, random_state=42) print(f'\nSJ X train shape:{sj_x_train.shape} SJ y train shape:{sj_y_train.shape} SJ X test shape:{sj_x_test.shape} SJ y test shape:{sj_y_test.shape}') print(f'\nIQ X train shape:{iq_x_train.shape} IQ y train shape:{iq_y_train.shape} IQ X test shape:{iq_x_test.shape} IQ y test shape:{iq_y_test.shape}') # Scaled x_train = [sj_x_train, iq_x_train] scaler = StandardScaler() for idx in range(len(x_train)): if idx == 0: sj_scaled = scaler.fit_transform(sj_x_train) elif idx == 1: iq_scaled = scaler.fit_transform(iq_x_train) scaled_data = [sj_scaled, iq_scaled] # class ''' class Model: def training(self, X, y, estimator): estimator.fit(X, y) print(estimator) X_predict = estimator.predict(X) mae = mean_absolute_error(y, X_predict) print(f'Training set mean Absolute Error :{mae}') def validation(self, X, y, estimator): scores = cross_val_score( estimator, X, y, cv=10, scoring='neg_mean_absolute_error') negative_score = -scores print(f'10 fold validation scores :{negative_score}') print(f'\n mean :{negative_score.mean()}') def prediction_test(self, test_X, y_test, estimator): X_test_predict = estimator.predict(test_X) mae_test = mean_absolute_error(y_test, X_test_predict) print(mae_test) # Models xg = Model() xgbsj = XGBRegressor(seed=42, verbosity=0, colsample_bytree=0.9, learning_rate=0.01, max_depth=7, min_child_weight=1, n_estimators=170, reg_alpha=0.7, subsample=0.9, objective='reg:tweedie') xgbiq = XGBRegressor(seed=42, verbosity=0, colsample_bytree=0.5, learning_rate=0.01, max_depth=7, min_child_weight=1, n_estimators=170, reg_alpha=0.1, subsample=0.7, objective='reg:tweedie') mlp_sj = MLPRegressor(hidden_layer_sizes=(3, 2, 1,), learning_rate='adaptive', solver='adam', random_state=42, nesterovs_momentum=False,) mlp_iq = MLPRegressor(hidden_layer_sizes=(9, 5, 1,), learning_rate='adaptive', solver='adam', random_state=42, nesterovs_momentum=False,) ''' # NN model = keras.models.Sequential([keras.layers.Dense(64, activation='softplus', input_shape=sj_scaled.shape[1:]), keras.layers.Dense(32, activation='softplus'), keras.layers.Dense(1)]) model.compile(loss='mean_absolute_error', optimizer='sgd') history = model.fit(sj_scaled, sj_y_train, validation_split=0.1, epochs=200) print(history.history) histo = pd.DataFrame(history.history) histo.plot() plt.grid(True) plt.show() for idx in range(len(scaled_data)): if idx == 0: print('\nSJ') sj_train = xg.training(sj_scaled, sj_y_train, mlp_sj) elif idx == 1: print('\nIQ') iq_train = xg.training(iq_scaled, iq_y_train, xgbiq) for idx in range(len(scaled_data)): if idx == 0: print('\nSJ') sj_val = xg.validation(sj_scaled, sj_y_train, mlp_sj) elif idx == 1: print('\nIQ') iq_val = xg.validation(iq_scaled, iq_y_train, xgbiq) ''' # GridSearchCV param = {'max_depth': [3, 5, 7], 'learning_rate': [0.01], 'n_estimators': [170], 'subsample': [ 0.7, 0.5, 0.9], 'min_child_weight': [1, 2, 3], 'reg_alpha': [0.7, 0.9, 0.5], 'colsample_bytree': [0.9, 0.5, 0.7], } grid_search = GridSearchCV(xgb, param_grid=param, cv=10, scoring='neg_mean_absolute_error', return_train_score=True) grid_search.fit(iq_scaled, iq_y_train) print(grid_search.best_params_) print(grid_search.best_score_) ''' # Scaling x_test = [sj_x_test, iq_x_test] for idx in range(len(x_test)): if idx == 0: sj_scaled_test = scaler.fit_transform(sj_x_test) elif idx == 1: iq_scaled_test = scaler.fit_transform(iq_x_test) test_scaled_data = [sj_scaled_test, iq_scaled_test] for idx in range(len(test_scaled_data)): if idx == 0: sj_test_predict = xg.prediction_test(sj_scaled_test, sj_y_test, mlp_sj) elif idx == 1: iq_test_predict = xg.prediction_test(iq_scaled_test, iq_y_test, xgbiq) mlp_sj.fit(sj_scaled, sj_y_train) mlp_iq.fit(iq_scaled, iq_y_train) # Dengue feature test test_features = pd.read_csv('dengue_features_test.csv', index_col=[0, 1, ]) sj_test_features, iq_test_features = test_features.loc['sj'], test_features.loc['iq'] sj_test_features.drop(columns=['week_start_date'], axis=1, inplace=True) iq_test_features.drop(columns=['week_start_date'], axis=1, inplace=True) # NaN fill sj_test_features.fillna(method='ffill', inplace=True) iq_test_features.fillna(method='ffill', inplace=True) # feature engineering sj_test_features['station_range_temp_c'] = sj_test_features['station_max_temp_c'] - \ sj_test_features['station_min_temp_c'] iq_test_features['station_range_temp_c'] = iq_test_features['station_max_temp_c'] - \ iq_test_features['station_min_temp_c'] sj_test_features.drop(columns=['station_max_temp_c', 'station_min_temp_c', 'station_avg_temp_c'], axis=1, inplace=True) iq_test_features.drop(columns=['station_max_temp_c', 'station_min_temp_c', 'station_avg_temp_c'], axis=1, inplace=True) sj_test_features['reanalysis_range_air_temp_k'] = sj_test_features['reanalysis_max_air_temp_k'] - \ sj_test_features['reanalysis_min_air_temp_k'] iq_test_features['reanalysis_range_air_temp_k'] = iq_test_features['reanalysis_max_air_temp_k'] - \ iq_test_features['reanalysis_min_air_temp_k'] sj_test_features.drop(columns=['reanalysis_max_air_temp_k', 'reanalysis_min_air_temp_k', 'reanalysis_tdtr_k', 'reanalysis_avg_temp_k', 'reanalysis_dew_point_temp_k'], axis=1, inplace=True) iq_test_features.drop(columns=['reanalysis_max_air_temp_k', 'reanalysis_min_air_temp_k', 'reanalysis_tdtr_k', 'reanalysis_avg_temp_k', 'reanalysis_air_temp_k', 'reanalysis_dew_point_temp_k'], axis=1, inplace=True) sj_test_ndvi_data, sj_test_precip_data = sj_test_features[ndvi], sj_test_features[precip] sj_test_ndvi_data['minimum_ndvi'], sj_test_precip_data['precip'] = sj_test_ndvi_data.min( axis=1), sj_test_precip_data.max(axis=1) iq_test_ndvi_data, iq_test_precip_data = iq_test_features[ndvi], iq_test_features[precip] iq_test_ndvi_data['minimum_ndvi'], iq_test_precip_data['precip'] = iq_test_ndvi_data.min( axis=1), iq_test_precip_data.max(axis=1) sj_test_features['minimum_ndvi'], sj_test_features['precip'] = sj_test_ndvi_data['minimum_ndvi'].copy( ), sj_test_precip_data['precip'].copy() iq_test_features['minimum_ndvi'], iq_test_features['precip'] = iq_test_ndvi_data['minimum_ndvi'].copy( ), iq_test_precip_data['precip'].copy() sj_test_features.drop(columns=ndvi, axis=1, inplace=True) sj_test_features.drop(columns=precip, axis=1, inplace=True) iq_test_features.drop(columns=ndvi, axis=1, inplace=True) iq_test_features.drop(columns=precip, axis=1, inplace=True) # Scaled x_test_features = [sj_test_features, iq_test_features] for idx in range(len(x_test_features)): if idx == 0: sj_test_actual = scaler.fit_transform(sj_test_features) elif idx == 1: iq_test_actual = scaler.fit_transform(iq_test_features) sj_prediction = mlp_sj.predict(sj_test_actual) iq_prediction = mlp_iq.predict(iq_test_actual) print(f'\n{sj_prediction.shape} {iq_prediction.shape}') sj_final =
pd.DataFrame(sj_prediction)
pandas.DataFrame
import os import pathlib import sys import febrl_data_transform as transform import pandas as pd OUTPUT_DATA_DIR = pathlib.Path(__file__).parent / "holdout" ORIGINALS_DATA_DIR = pathlib.Path(__file__).parent / "holdout" / "originals" def main(): # Read in FEBRL data with dupes and separate into A/B/true links. dataset_A = [] dataset_B = [] true_links = [] for filename in [ "febrl_holdout_dupes_light_mod.csv", "febrl_holdout_dupes_medium_mod.csv", "febrl_holdout_dupes_heavy_mod.csv", ]: _df_A, _df_B, _df_true_links = transform.transform_febrl_dataset_with_dupes( ORIGINALS_DATA_DIR / filename ) dataset_A.append(_df_A) dataset_B.append(_df_B) true_links.append(_df_true_links) df_A = pd.concat(dataset_A) df_B = pd.concat(dataset_B) df_true_links = pd.concat(true_links) # Read in extra, non-dupe records and split between datasets A and B. df_extra = transform.transform_febrl_dataset_without_dupes( ORIGINALS_DATA_DIR / "febrl_holdout_extras.csv" ) chunk_size = int(df_extra.shape[0] / 2) df_A = pd.concat([df_A, df_extra.iloc[0:chunk_size]]) df_B_extra = df_extra.iloc[chunk_size:].rename( columns={"person_id_A": "person_id_B"} ) df_B =
pd.concat([df_B, df_B_extra])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- ## Import packages import pandas as pd ## necessary data analysis package import pyam import nomenclature as nc import fileinput import yaml import os import sys if len(sys.argv) <3: print('python imputdir outputdir') else: inputdir=sys.argv[1] outputfile=sys.argv[2] # open config file with open("settingsUploadOutputsPlan4eu.yml","r") as myyaml: cfg=yaml.load(myyaml,Loader=yaml.FullLoader) # compute date range cfg['T'] = pd.date_range(start=pd.to_datetime(cfg['date_start']),end=pd.to_datetime(cfg['date_end']), freq='1H') #delete output file if already exists if os.path.exists(outputfile): os.remove(outputfile) i=0 # loop on outputfiles: # TO BE DONE: include scenarised outputs if cfg['scenarios']>1: # compute list of files for file in cfg['listfiles']: namefile=file[0:-7] for i in range(cfg['scenarios']): listfiles.append(namefile+'_Scen'+i+'_OUT.csv') else: listfiles=cfg['listfiles'] for file in listfiles: if file.find('Scen'): # find scenario number scen_index=file[0:-8].split('Scen')[1] scenario=cfg['scenario']+'|'+scen_index listscenarios.append(scenario) else: scenario=cfg['scenario'] print('writing '+file) variable=cfg['listfiles'][file] print(variable) data=
pd.read_csv(inputdir+'\\'+file)
pandas.read_csv
#!/usr/bin/env python import os import pdb import glob import sys import shutil import json import re import nibabel as nib from argparse import ArgumentParser import pandas as pd import numpy as np import nilearn.plotting as plotting import itertools import matplotlib.colors as colors import seaborn as sns import matplotlib.pyplot as plt import math from statannot import add_stat_annotation import bct import statsmodels import statsmodels.api as sm from statsmodels.formula.api import ols sys.path.insert(0,'..') import ESM_utils as esm from scipy import stats from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error ## look at mutation differences def plot_aggregate_roi_performance(ref_pattern_df, pred_pattern_df, roi_labels, output_dir): plt.figure(figsize=(5,5)) ref_roi_avg = np.mean(ref_pattern_df.loc[:, roi_labels], axis=0) pred_roi_avg = np.mean(pred_pattern_df.loc[:, roi_labels], axis=0) sns.regplot(ref_roi_avg, pred_roi_avg, color="indianred") r,p = stats.pearsonr(ref_roi_avg, pred_roi_avg) r2 = r ** 2 xmin = np.min(ref_roi_avg) ymax = np.max(pred_roi_avg) plt.text(xmin, ymax, "$r^2$ = {0}".format(np.round(r2, 2), fontsize=16)) plt.xlim([-0.01,ymax+.1]) plt.ylim([-0.01,ymax+.1]) plt.xticks(x=16) plt.yticks(y=16) plt.xlabel(r"Observed A$\beta$ Probabilities", fontsize=16) plt.ylabel(r"Predicted A$\beta$ Probabilities", fontsize=16) plt.title(r"Average A$\beta$ Pattern Across All MC", fontsize=16) output_path = os.path.join(output_dir, "aggreggate_roi_performance_xsec.png") plt.tight_layout() plt.savefig(output_path) def plot_aggregate_roi_performance_across_eyo(ref_pattern_df, pred_pattern_df, roi_labels, output_dir): #threshold = 0.3 age_ranges = [[-20, -10], [-10,0], [0,10], [10,20]] n_cols = len(age_ranges) fig = plt.figure(figsize=(8,8)) for idx, ar in enumerate(age_ranges): #loc = 2*(idx+1)-1 ref = np.mean(ref_pattern_df[(ref_pattern_df.DIAN_EYO > ar[0]) & (ref_pattern_df.DIAN_EYO < ar[1])][roi_labels], axis=0) pred = np.mean(pred_pattern_df[(pred_pattern_df.DIAN_EYO > ar[0]) & (pred_pattern_df.DIAN_EYO < ar[1])][roi_labels], axis=0) n = ref_pattern_df[(ref_pattern_df.DIAN_EYO > ar[0]) & (ref_pattern_df.DIAN_EYO < ar[1])].shape[0] r,p = stats.pearsonr(ref, pred) r2 = r**2 ax1 = plt.subplot(2, 2, idx+1) sns.regplot(ref, pred, color="indianred") plt.xlim([-0.1, 1.1]) plt.ylim([-0.1, 1.1]) plt.text(s=r"$r^2$ = {0}".format(np.round(r2, 2)), x=0, y=.9, fontsize=18) if idx < 2: plt.xticks([]) else: plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.title("EYO: {0} to {1} (n = {2})".format(str(ar[0]), str(ar[1]), str(n)), fontsize=18) fig.text(0.2, 0, r"Observed A$\beta$ Probabilities", fontsize=26) fig.text(0.01, 0.2, r"Predicted A$\beta$ Probabilities", fontsize=26, rotation=90) #fig.text(0.2, .95, "Group-level ESM Performance", fontsize=26) output_path = os.path.join(output_dir, "aggreggate_roi_performance_xsec_across_eyo.png") #plt.tight_layout() plt.savefig(output_path) def roi_performance_hist(ref_pattern_df, pred_pattern_df, roi_labels, output_dir): roi_r2 = [] for roi in roi_labels: r = stats.pearsonr(ref_pattern_df.loc[:, roi], pred_pattern_df.loc[:, roi])[0] roi_r2.append(r**2) roi_r2_df = pd.DataFrame(columns=["ROI", "r2"]) roi_r2_df['ROI'] = roi_labels roi_r2_df['r2'] = roi_r2 g = sns.catplot(x='ROI', y='r2',data=roi_r2_df, ci=None, order = roi_r2_df.sort_values('r2',ascending=False)['ROI'], kind='bar') g.set_xticklabels(rotation=90) g.fig.set_size_inches((14,6)) plt.title('R2 Per ROI Across All Subjects') output_path = os.path.join(output_dir, "roi_performance_hist.png") plt.tight_layout() plt.savefig(output_path) def plot_conn_matrices(sc_mat, fc_mat): fig = plt.figure(figsize=(12,8)) ax1 = plt.subplot(1,2,1) plotting.plot_matrix(sc_mat[0:78,0:78], colorbar=False, cmap="Reds", axes=ax1) ax1.set_title("Structural Connectivity", fontsize=20) ax2 = plt.subplot(1,2,2) plotting.plot_matrix(fc_mat[0:78,0:78], colorbar=True, cmap="Reds", axes=ax2) ax2.set_title("Functional Connectivity", fontsize=20) plt.savefig("../../figures/conn_matrices_plot.png") def plot_subject_performance(res, epicenter, dataset, output_dir): plt.figure(figsize=(5,5)) pal = {"No": "mediumblue", "Yes": "red"} face_pal = {"No": "cornflowerblue", "Yes": "indianred"} g = sns.boxplot(x="mutation_type", y="model_r2", data=res, hue="AB_Positive", palette=face_pal, fliersize=0) sns.stripplot(x="mutation_type", y="model_r2", data=res, hue="AB_Positive", jitter=True, split=True, linewidth=0.5, palette=pal) g.set(xticklabels=["PSEN1", "PSEN2", "APP"]) g.set_ylim([0,.8]) plt.xlabel("Mutation Type") plt.ylabel("Within subject r2") if epicenter == "cortical": title = "Epicenter: MOF, PC, Precuneus" elif epicenter == "subcortical": title = "Epicenter: Caudate and Putamen" elif epicenter == "pc-cac": title = "Epicenter: Posterior cingulate & Caudal Anterior Cingulate" plt.title(title) output_path = os.path.join(output_dir, "within_subject_xsec_perform_across_muttypes.png") # Get the handles and labels. For this example it'll be 2 tuples # of length 4 each. handles, labels = g.get_legend_handles_labels() # When creating the legend, only use the first two elements # to effectively remove the last two. l = plt.legend(handles[0:2], labels[0:2], bbox_to_anchor=(.75, .98), loc=2, borderaxespad=0., title=r"A$\beta$ Positive") #plt.tight_layout() plt.savefig(output_path) def set_ab_positive(ref_pattern_df, rois_to_analyze): for sub in ref_pattern_df.index: avg_ab_val = np.mean(list(ref_pattern_df.loc[sub, rois_to_analyze])) ref_pattern_df.loc[sub, 'PUP_ROI_AB_Mean'] = avg_ab_val if avg_ab_val > 0.1: ref_pattern_df.loc[sub, 'AB_Positive'] = "Yes" else: ref_pattern_df.loc[sub, 'AB_Positive'] = "No" return ref_pattern_df def get_mutation_type(subs, genetic_df): mutation_type = [] for sub in subs: mt = genetic_df[(genetic_df.IMAGID == sub)].MUTATIONTYPE.values[0] mutation_type.append(mt) return mutation_type def get_eyo(subs, visit_labels, clinical_df): eyos = [] for i, sub in enumerate(subs): eyo = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit_labels[i])].DIAN_EYO.values[0] eyos.append(eyo) return eyos def get_pup_cortical_analysis_cols(roi_labels): pup_cortical_rois = [] for i, roi in enumerate(roi_labels): if "precuneus" in roi.lower() or "superior frontal" in roi.lower() \ or "rostral middle frontal" in roi.lower() or "lateral orbitofrontal" in roi.lower() \ or "medial orbitofrontal" in roi.lower() or "superior temporal" in roi.lower() \ or "middle temporal" in roi.lower(): pup_cortical_rois.append(roi) return pup_cortical_rois def get_clinical_status(res, clinical_df): for sub in res.index: visit = res.loc[sub, 'visit_label'] cdr = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].cdrglob.values[0] if cdr > 0: res.loc[sub, 'Symptomatic'] = "Yes" else: res.loc[sub, 'Symptomatic'] = "No" res.loc[sub, 'CDR'] = cdr return res def plot_effective_anat_dist_vs_ab(ref_pattern_df, acp_matrix, epicenters_idx, roi_labels, output_dir): # set diagonal to 1 for i in range(0, len(acp_matrix)): acp_matrix[i][i] = 1 acp_matrix_reciprocal = np.reciprocal(acp_matrix) acp_effective_dist = bct.distance_wei(acp_matrix_reciprocal) roi_labels_not_seed = [] effective_anat_distance_dict = {} for i, roi in enumerate(roi_labels): dist = 0 for j in epicenters_idx: dist += acp_effective_dist[0][i, j] dist = dist / len(epicenters_idx) #print("{0}: {1}".format(roi, str(np.round(dist,3)))) effective_anat_distance_dict[roi] = dist roi_dist_ab_df = pd.DataFrame(columns=["Avg_Deposition_Asymptomatic", "Avg_Deposition_Symptomatic", "Effective_Anat_Distance"], index=roi_labels, dtype="float") for i,roi in enumerate(roi_labels): roi_dist_ab_df.loc[roi, "Effective_Anat_Distance"] = effective_anat_distance_dict[roi] roi_dist_ab_df.loc[roi, "Avg_Deposition_Asymptomatic"] = np.mean(ref_pattern_df[ref_pattern_df.Symptomatic == "No"].loc[:, roi]) roi_dist_ab_df.loc[roi, "Avg_Deposition_Symptomatic"] = np.mean(ref_pattern_df[ref_pattern_df.Symptomatic == "Yes"].loc[:, roi]) fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=False, sharex=False, figsize=(6,3)) axes = [ax1, ax2] for i, status in enumerate(["Avg_Deposition_Asymptomatic", "Avg_Deposition_Symptomatic"]): axes[i] = sns.regplot(x="Effective_Anat_Distance", y=status, data=roi_dist_ab_df.loc[roi_labels,:], ax=axes[i]) r, p = stats.pearsonr(roi_dist_ab_df.loc[roi_labels, "Effective_Anat_Distance"], roi_dist_ab_df.loc[roi_labels, status]) title = status.split("_")[-1] axes[i].set_xlabel("Effective Anatomical Distance", fontsize=10, axes=axes[i]) axes[i].set_ylabel(r"Regional A$\beta$ Probability", fontsize=10, axes=axes[i]) axes[i].set_title(title, fontsize=10) axes[i].set_ylim([-0.1,1]) axes[i].text(x=1.5, y=0.8, s="r: {0}\np < 0.01".format(str(np.round(r,3)))) plt.tight_layout() plt.savefig(os.path.join(output_dir, "effective_anat_dist_vs_ab.png")) def plot_clinical_status_vs_esm_params(res, output_dir): plt.figure(figsize=(10,13)) nrows = 2 ncols = 2 params = ["BETAS_est", "DELTAS_est", "BDR_log", "PUP_ROI_AB_Mean"] face_pal = {"No": "cornflowerblue", "Yes": "indianred"} titles = ["Production Rate", "Clearance Rate", "Prod/Clear Ratio (Log)", "Amyloid Beta"] for i, param in enumerate(params): j = i + 1 plt.subplot(nrows, ncols, j) g = sns.boxplot(x="Symptomatic", y=param, data=res[res.AB_Positive == "Yes"], palette=face_pal) add_stat_annotation(g, data=res[res.AB_Positive == "Yes"], x="Symptomatic", y=param, box_pairs=[("Yes","No")], test='t-test_ind', text_format='star', loc='inside', verbose=2, fontsize=18) plt.ylabel("") plt.title(titles[i], fontsize=22) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.xlabel("Symptomatic",fontsize=18) plt.tight_layout() plt.savefig(os.path.join(output_dir, "clinical_status_vs_esm_params.png")) def model_performance_summary(filename, ref_pattern_df, pred_pattern_df, roi_cols): ref_region = filename.split("ref-")[1].split("_")[0] epicenter = filename.split("epicenter-")[1].split("_")[0] if epicenter.isnumeric(): i = int(epicenter) - 1 epicenter = roi_cols[i] global_r, global_p = stats.pearsonr(ref_pattern_df[roi_cols].mean(0), pred_pattern_df[roi_cols].mean(0)) global_r2 = np.round(global_r ** 2,2) sub_r2 = [] for sub in ref_pattern_df.index: r,p = stats.pearsonr(ref_pattern_df.loc[sub, roi_cols], pred_pattern_df.loc[sub, roi_cols]) r2 = r ** 2 sub_r2.append(r2) sub_r2_avg = np.round(np.mean(sub_r2),2) perform_df = pd.DataFrame(columns=["Pipeline", "ReferenceRegion", "Epicenter", "Global_R2", "Subject_R2"]) perform_df.loc[0] = ["PUP", ref_region, epicenter, global_r2, sub_r2_avg] output_file = os.path.join("../results_csv", filename + ".csv") perform_df.to_csv(output_file) def plot_ref_vs_pred_group_brain(ref_pattern_df, pred_pattern_df, roi_labels, output_dir): dkt_atlas = nib.load("../../data/atlases/dkt_atlas_1mm.nii.gz") dkt_data = dkt_atlas.get_data() age_ranges = [[-20, -10], [-10,0], [0,10], [10,20]] img_slice = [-2, 2, 24] n_rows = len(age_ranges) fig = plt.figure(figsize=(20,20)) threshold = 0.1 for idx, ar in enumerate(age_ranges): loc = 2*(idx+1)-1 curr_ref_probs = np.zeros_like(dkt_data) curr_pred_probs = np.zeros_like(dkt_data) for i in range(0, len(roi_labels)): n = len(ref_pattern_df[(ref_pattern_df.DIAN_EYO > ar[0]) & (ref_pattern_df.DIAN_EYO < ar[1])][roi_labels[i]]) curr_ref_probs[dkt_data==(i+1)] = np.mean(ref_pattern_df[(ref_pattern_df.DIAN_EYO > ar[0]) & (ref_pattern_df.DIAN_EYO < ar[1])][roi_labels[i]]) curr_pred_probs[dkt_data==(i+1)] = np.mean(pred_pattern_df[(pred_pattern_df.DIAN_EYO > ar[0]) & (pred_pattern_df.DIAN_EYO < ar[1])][roi_labels[i]]) curr_ref_probs_img = nib.Nifti1Image(curr_ref_probs, affine=dkt_atlas.affine, header=dkt_atlas.header) curr_pred_probs_img = nib.Nifti1Image(curr_pred_probs, affine=dkt_atlas.affine, header=dkt_atlas.header) ax1 = plt.subplot(n_rows, 2, loc) plotting.plot_stat_map(curr_ref_probs_img, colorbar=True, draw_cross=False, vmax=1, cut_coords=img_slice, axes=ax1, threshold=threshold, cmap="Spectral_r") plt.title("EYO: {0} to {1} (n = {2})".format(str(ar[0]), str(ar[1]), str(n)), fontsize=36) ax2 = plt.subplot(n_rows, 2, loc+1) plotting.plot_stat_map(curr_pred_probs_img, colorbar=True, draw_cross=False, vmax=1, cut_coords=img_slice, axes=ax2, threshold=threshold, cmap="Spectral_r") fig.text(x=0.25, y=0.9,s="Observed", fontsize=36) fig.text(x=0.65, y=0.9,s="Predicted", fontsize=36) plt.savefig(os.path.join(output_dir, "ref_vs_pred_group_brain.png")) def plot_sub_level_r2_hist(res, output_dir): plt.figure(figsize=(5,5)) avg = np.mean(res.model_r2) g = sns.distplot(res.model_r2) ymin, ymax = g.get_ylim() xmin, xmax = g.get_xlim() g.text(x=xmax-0.5, y=ymax-0.5, s="avg: {0}".format(avg)) plt.savefig(os.path.join(output_dir, "sub_level_r2_hist.png")) def plot_pup_ab_vs_r2(res, output_dir): fig = plt.figure(figsize=(5,3)) g = sns.lmplot(x="PUP_ROI_AB_Mean", y="model_r2", data=res, lowess=True) plt.xlabel(r"Average Cortical A$\beta$ Deposition") plt.ylabel("Within subject r2") g.set(ylim=(0, 1)) plt.savefig(os.path.join(output_dir, "pup_ab_vs_r2.png")) def add_csf_biomarker_info(res, biomarker_df, clinical_df): for sub in res.index: visit = res.loc[sub, 'visit_label'] csf_ab42 = biomarker_df[(biomarker_df.IMAGID == sub) & (biomarker_df.visit == visit)].CSF_xMAP_AB42.values[0] csf_tau = biomarker_df[(biomarker_df.IMAGID == sub) & (biomarker_df.visit == visit)].CSF_xMAP_tau.values[0] csf_ptau = biomarker_df[(biomarker_df.IMAGID == sub) & (biomarker_df.visit == visit)].CSF_xMAP_ptau.values[0] res.loc[sub, 'CSF_AB42'] = csf_ab42 res.loc[sub, 'CSF_Tau'] = csf_tau res.loc[sub, 'CSF_pTau'] = csf_ptau res.loc[sub, 'Age'] = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].VISITAGEc.values[0] res.loc[sub, 'Gender'] = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].gender.values[0] res.loc[sub, 'Education'] = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].EDUC.values[0] return res def plot_anova_csf_results(res, output_dir): sns.set_style("white", {'axes.grid' : False}) csf_ab42_formula = 'CSF_AB42 ~ BETAS_est + DELTAS_est + Onset_age + C(Gender) + Age + Education' csf_ab42_model = ols(csf_ab42_formula, res).fit() csf_ab42_table = statsmodels.stats.anova.anova_lm(csf_ab42_model, typ=2) csf_tau_formula = 'CSF_Tau ~ BETAS_est + DELTAS_est + Onset_age + C(Gender) + Age + Education' csf_tau_model = ols(csf_tau_formula, res).fit() csf_tau_table = statsmodels.stats.anova.anova_lm(csf_tau_model, typ=2) csf_ptau_formula = 'CSF_pTau ~ BETAS_est + DELTAS_est + Onset_age + C(Gender) + Age + Education' csf_ptau_model = ols(csf_ptau_formula, res).fit() csf_ptau_table = statsmodels.stats.anova.anova_lm(csf_ptau_model, typ=2) anova_results = {'csf_ab42': {}, 'csf_tau': {}, 'csf_ptau': {}} csf_types = ['csf_ab42', 'csf_tau', 'csf_ptau'] for i, tbl in enumerate([csf_ab42_table,csf_tau_table,csf_ptau_table]): csf_type = csf_types[i] for j, x in enumerate(tbl[tbl.index != 'Residual'].index): anova_results[csf_type][x] = {} var_explained = np.round((tbl.loc[x, 'sum_sq'] / np.sum(tbl.loc[:, "sum_sq"])) * 100, 2) p_value = tbl.loc[x, 'PR(>F)'] var_sig = str(var_explained) + " (" + format(p_value, '.02e') + "), F-value" + str(np.round(tbl.loc[x, 'F'], 3)) anova_results[csf_type][x]['var_explained'] = var_explained anova_results[csf_type][x]['p_value'] = np.round(p_value,3) anova_results[csf_type][x]['F_value'] = np.round(tbl.loc[x, 'F'], 3) anova_barplot_df =
pd.DataFrame(columns=["BETAS_est", "DELTAS_est", "Onset_age", "Age", "Education", "C(Gender)"], index=["CSF_AB42", "CSF_Tau", "CSF_pTau"])
pandas.DataFrame
#!/usr/bin/env python import numpy as np import pandas as pd import pytest from modnet.preprocessing import get_cross_nmi from modnet.preprocessing import nmi_target def test_nmi_target(): # Test with linear data (should get 1.0 mutual information, or very close due to algorithm used # in mutual_info_regression) npoints = 31 x = np.linspace(0.5, 3.5, npoints) y = 2*x - 2 z = 4*x + 2 df_feat = pd.DataFrame({'x': x, 'y': y}) df_target = pd.DataFrame({'z': z}) # Here we fix the number of neighbors for the call to sklearn.feature_selection's mutual_info_regression to 2 so # that we get exactly 1 for the mutual information. df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) # Same data shuffled # Shuffle the x, y and z indices = np.arange(npoints) np.random.seed(42) np.random.shuffle(indices) xs = x.take(indices) ys = y.take(indices) zs = z.take(indices) df_feat = pd.DataFrame({'x': xs, 'y': ys}) df_target = pd.DataFrame({'z': zs}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) # Test with one constant feature c = np.ones(npoints) * 1.4 df_feat = pd.DataFrame({'x': x, 'y': y, 'c': c}) df_target = pd.DataFrame({'z': z}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, drop_constant_features=False, n_neighbors=2) assert df_nmi_target.shape == (3, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['c']['z'] == pytest.approx(0.0) # Test with unrelated data (grid) x = np.linspace(start=2, stop=5, num=4) z = np.linspace(start=3, stop=7, num=5) x, z = np.meshgrid(x, z) x = x.flatten() z = z.flatten() df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z': z}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target) assert df_nmi_target.shape == (1, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(0.0) # Test initial checks # Incompatible shapes x = np.linspace(start=2, stop=3, num=5) z = np.linspace(start=2, stop=3, num=8) df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z': z}) with pytest.raises(ValueError, match=r'The input features DataFrame and the target variable DataFrame ' r'should contain the same number of data points.'): nmi_target(df_feat=df_feat, df_target=df_target) # Target DataFrame does not have exactly one column x = np.linspace(start=2, stop=3, num=5) z = np.linspace(start=2, stop=3, num=5) df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z2': z, 'z': z}) with pytest.raises(ValueError, match=r'The target DataFrame should have exactly one column.'): nmi_target(df_feat=df_feat, df_target=df_target) # Test with some more real data (for which NMI is not just 0.0 or 1.0) npoints = 200 np.random.seed(42) x = np.random.rand(npoints) z = 4 * x + 1.0 * np.random.rand(npoints) df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z': z}) # Here we fix the random_state for the call to sklearn.feature_selection's mutual_info_regression so # that we always get the same value. df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, random_state=42) assert df_nmi_target.shape == (1, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(0.3417665092162398) def test_get_cross_nmi(): # Test with linear data (should get 1.0 mutual information, or very close due to algorithm used # in mutual_info_regression) npoints = 31 x = np.linspace(0.5, 3.5, npoints) y = 2*x - 2 z = 4*x + 2 df_feat = pd.DataFrame({'x': x, 'y': y, 'z': z}) # Here we fix the number of neighbors for the call to sklearn.feature_selection's mutual_info_regression to 2 so # that we get exactly 1 for the mutual information. df_cross_nmi = get_cross_nmi(df_feat=df_feat, n_neighbors=2) assert df_cross_nmi.shape == (3, 3) for idx in df_cross_nmi.index: for col in df_cross_nmi.columns: assert df_cross_nmi.loc[idx][col] == pytest.approx(1.0) # Same data shuffled # Shuffle the x, y and z indices = np.arange(npoints) np.random.seed(42) np.random.shuffle(indices) xs = x.take(indices) ys = y.take(indices) zs = z.take(indices) df_feat = pd.DataFrame({'x': xs, 'y': ys, 'z': zs}) df_cross_nmi = get_cross_nmi(df_feat=df_feat, n_neighbors=2) assert df_cross_nmi.shape == (3, 3) for idx in df_cross_nmi.index: for col in df_cross_nmi.columns: assert df_cross_nmi.loc[idx][col] == pytest.approx(1.0) # Test with one constant feature c = np.ones(npoints) * 1.4 df_feat = pd.DataFrame({'x': x, 'y': y, 'z': z, 'c': c}) df_cross_nmi = get_cross_nmi(df_feat=df_feat, n_neighbors=2) assert df_cross_nmi.shape == (4, 4) for idx in df_cross_nmi.index: for col in df_cross_nmi.columns: expected = 0.0 if idx == 'c' or col == 'c' else 1.0 assert df_cross_nmi.loc[idx][col] == pytest.approx(expected) # Test with unrelated data (grid) x = np.linspace(start=2, stop=5, num=4) y = np.linspace(start=3, stop=7, num=5) x, y = np.meshgrid(x, y) x = x.flatten() y = y.flatten() df_feat = pd.DataFrame({'x': x, 'y': y}) df_cross_nmi = get_cross_nmi(df_feat=df_feat, n_neighbors=2) assert df_cross_nmi.shape == (2, 2) assert df_cross_nmi.loc['x']['y'] == pytest.approx(0.0) assert df_cross_nmi.loc['y']['x'] == pytest.approx(0.0) # Test with some more real data (for which NMI is not just 0.0 or 1.0) npoints = 200 np.random.seed(42) x = np.random.rand(npoints) y = 4 * x + 1.0 * np.random.rand(npoints) df_feat =
pd.DataFrame({'x': x, 'y': y})
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results)
tm.assert_frame_equal(expected, result)
pandas.util.testing.assert_frame_equal
import os from pathlib import Path import pandas as pd import requests class OisManager: TOIS_CSV_URL = 'https://exofop.ipac.caltech.edu/tess/download_toi.php?sort=toi&output=csv' CTOIS_CSV_URL = 'https://exofop.ipac.caltech.edu/tess/download_ctoi.php?sort=ctoi&output=csv' KOIS_LIST_URL = 'https://exofop.ipac.caltech.edu/kepler/targets.php?sort=num-pc&page1=1&ipp1=100000&koi1=&koi2=' KIC_STAR_URL = 'https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=keplerstellar&select=kepid,dist' KOI_CSV_URL = 'https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=cumulative' EPIC_CSV_URL = 'https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=k2candidates&' \ 'select=epic_name,epic_candname,k2c_disp,pl_orbper,st_dist,st_teff,st_logg,st_metfe,st_metratio,' \ 'st_vsini,st_kep,pl_trandep,pl_trandur,pl_rade,pl_eqt,pl_orbincl,ra_str,dec_str,pl_tranmid' TOIS_CSV = 'tois.csv' CTOIS_CSV = 'ctois.csv' KOIS_CSV = 'kois.csv' EPIC_CSV = 'epic_ois.csv' KIC_STAR_CSV = 'kic_star.csv' ois = None def __init__(self): home = str(Path.home()) + "/.sherlockpipe/" if not os.path.exists(home): os.mkdir(home) self.tois_csv = home + self.TOIS_CSV self.ctois_csv = home + self.CTOIS_CSV self.kois_csv = home + self.KOIS_CSV self.epic_csv = home + self.EPIC_CSV self.kic_star_csv = home + self.KIC_STAR_CSV def load_ois(self): if not os.path.isfile(self.tois_csv) or not os.path.isfile(self.ctois_csv): print("TOIs files are not found. Downloading...") self.update_tic_csvs() print("TOIs files download is finished!") toi_data = pd.read_csv(self.tois_csv) ois = toi_data ctoi_data =
pd.read_csv(self.ctois_csv)
pandas.read_csv
""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ from __future__ import annotations import operator from textwrap import dedent from typing import ( TYPE_CHECKING, Literal, Union, cast, final, ) from warnings import warn import numpy as np from pandas._libs import ( algos, hashtable as htable, iNaT, lib, ) from pandas._typing import ( AnyArrayLike, ArrayLike, DtypeObj, Scalar, TakeIndexer, npt, ) from pandas.util._decorators import doc from pandas.core.dtypes.cast import ( construct_1d_object_array_from_listlike, infer_dtype_from_array, sanitize_to_nanoseconds, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_object, ensure_platform_int, is_array_like, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_dtype, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import PandasDtype from pandas.core.dtypes.generic import ( ABCDatetimeArray, ABCExtensionArray, ABCIndex, ABCMultiIndex, ABCRangeIndex, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, ) from pandas.core.array_algos.take import take_nd from pandas.core.construction import ( array as pd_array, ensure_wrapped_if_datetimelike, extract_array, ) from pandas.core.indexers import validate_indices if TYPE_CHECKING: from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas import ( Categorical, DataFrame, Index, Series, ) from pandas.core.arrays import ( DatetimeArray, ExtensionArray, TimedeltaArray, ) _shared_docs: dict[str, str] = {} # --------------- # # dtype access # # --------------- # def _ensure_data(values: ArrayLike) -> np.ndarray: """ routine to ensure that our data is of the correct input dtype for lower-level routines This will coerce: - ints -> int64 - uint -> uint64 - bool -> uint64 (TODO this should be uint8) - datetimelike -> i8 - datetime64tz -> i8 (in local tz) - categorical -> codes Parameters ---------- values : np.ndarray or ExtensionArray Returns ------- np.ndarray """ if not isinstance(values, ABCMultiIndex): # extract_array would raise values = extract_array(values, extract_numpy=True) # we check some simple dtypes first if is_object_dtype(values.dtype): return ensure_object(np.asarray(values)) elif is_bool_dtype(values.dtype): if isinstance(values, np.ndarray): # i.e. actually dtype == np.dtype("bool") return np.asarray(values).view("uint8") else: # i.e. all-bool Categorical, BooleanArray try: return np.asarray(values).astype("uint8", copy=False) except TypeError: # GH#42107 we have pd.NAs present return np.asarray(values) elif is_integer_dtype(values.dtype): return np.asarray(values) elif is_float_dtype(values.dtype): # Note: checking `values.dtype == "float128"` raises on Windows and 32bit # error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype, dtype[Any]]" # has no attribute "itemsize" if values.dtype.itemsize in [2, 12, 16]: # type: ignore[union-attr] # we dont (yet) have float128 hashtable support return ensure_float64(values) return np.asarray(values) elif is_complex_dtype(values.dtype): # Incompatible return value type (got "Tuple[Union[Any, ExtensionArray, # ndarray[Any, Any]], Union[Any, ExtensionDtype]]", expected # "Tuple[ndarray[Any, Any], Union[dtype[Any], ExtensionDtype]]") return values # type: ignore[return-value] # datetimelike elif needs_i8_conversion(values.dtype): if isinstance(values, np.ndarray): values = sanitize_to_nanoseconds(values) npvalues = values.view("i8") npvalues = cast(np.ndarray, npvalues) return npvalues elif is_categorical_dtype(values.dtype): values = cast("Categorical", values) values = values.codes return values # we have failed, return object values = np.asarray(values, dtype=object) return ensure_object(values) def _reconstruct_data( values: ArrayLike, dtype: DtypeObj, original: AnyArrayLike ) -> ArrayLike: """ reverse of _ensure_data Parameters ---------- values : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype original : AnyArrayLike Returns ------- ExtensionArray or np.ndarray """ if isinstance(values, ABCExtensionArray) and values.dtype == dtype: # Catch DatetimeArray/TimedeltaArray return values if not isinstance(dtype, np.dtype): # i.e. ExtensionDtype cls = dtype.construct_array_type() if isinstance(values, cls) and values.dtype == dtype: return values values = cls._from_sequence(values) elif is_bool_dtype(dtype): values = values.astype(dtype, copy=False) # we only support object dtypes bool Index if isinstance(original, ABCIndex): values = values.astype(object, copy=False) elif dtype is not None: if is_datetime64_dtype(dtype): dtype = np.dtype("datetime64[ns]") elif is_timedelta64_dtype(dtype): dtype = np.dtype("timedelta64[ns]") values = values.astype(dtype, copy=False) return values def _ensure_arraylike(values) -> ArrayLike: """ ensure that we are arraylike if not already """ if not is_array_like(values): inferred = lib.infer_dtype(values, skipna=False) if inferred in ["mixed", "string", "mixed-integer"]: # "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160 if isinstance(values, tuple): values = list(values) values = construct_1d_object_array_from_listlike(values) else: values = np.asarray(values) return values _hashtables = { "complex128": htable.Complex128HashTable, "complex64": htable.Complex64HashTable, "float64": htable.Float64HashTable, "float32": htable.Float32HashTable, "uint64": htable.UInt64HashTable, "uint32": htable.UInt32HashTable, "uint16": htable.UInt16HashTable, "uint8": htable.UInt8HashTable, "int64": htable.Int64HashTable, "int32": htable.Int32HashTable, "int16": htable.Int16HashTable, "int8": htable.Int8HashTable, "string": htable.StringHashTable, "object": htable.PyObjectHashTable, } def _get_hashtable_algo(values: np.ndarray): """ Parameters ---------- values : np.ndarray Returns ------- htable : HashTable subclass values : ndarray """ values = _ensure_data(values) ndtype = _check_object_for_strings(values) htable = _hashtables[ndtype] return htable, values def _get_values_for_rank(values: ArrayLike) -> np.ndarray: if is_categorical_dtype(values): values = cast("Categorical", values)._values_for_rank() values = _ensure_data(values) if values.dtype.kind in ["i", "u", "f"]: # rank_t includes only object, int64, uint64, float64 dtype = values.dtype.kind + "8" values = values.astype(dtype, copy=False) return values def get_data_algo(values: ArrayLike): values = _get_values_for_rank(values) ndtype = _check_object_for_strings(values) htable = _hashtables.get(ndtype, _hashtables["object"]) return htable, values def _check_object_for_strings(values: np.ndarray) -> str: """ Check if we can use string hashtable instead of object hashtable. Parameters ---------- values : ndarray Returns ------- str """ ndtype = values.dtype.name if ndtype == "object": # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ["string"]: ndtype = "string" return ndtype # --------------- # # top-level algos # # --------------- # def unique(values): """ Hash table-based unique. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) """ values = _ensure_arraylike(values) if is_extension_array_dtype(values.dtype): # Dispatch to extension dtype's unique. return values.unique() original = values htable, values = _get_hashtable_algo(values) table = htable(len(values)) uniques = table.unique(values) uniques = _reconstruct_data(uniques, original.dtype, original) return uniques unique1d = unique def isin(comps: AnyArrayLike, values: AnyArrayLike) -> npt.NDArray[np.bool_]: """ Compute the isin boolean array. Parameters ---------- comps : array-like values : array-like Returns ------- ndarray[bool] Same length as `comps`. """ if not is_list_like(comps): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(comps).__name__}]" ) if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(values).__name__}]" ) if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)): values = _ensure_arraylike(list(values)) elif isinstance(values, ABCMultiIndex): # Avoid raising in extract_array values = np.array(values) else: values = extract_array(values, extract_numpy=True, extract_range=True) comps = _ensure_arraylike(comps) comps = extract_array(comps, extract_numpy=True) if not isinstance(comps, np.ndarray): # i.e. Extension Array return comps.isin(values) elif needs_i8_conversion(comps.dtype): # Dispatch to DatetimeLikeArrayMixin.isin return pd_array(comps).isin(values) elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps.dtype): # e.g. comps are integers and values are datetime64s return np.zeros(comps.shape, dtype=bool) # TODO: not quite right ... Sparse/Categorical elif needs_i8_conversion(values.dtype): return isin(comps, values.astype(object)) elif is_extension_array_dtype(values.dtype): return isin(np.asarray(comps), np.asarray(values)) # GH16012 # Ensure np.in1d doesn't get object types or it *may* throw an exception # Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array), # in1d is faster for small sizes if len(comps) > 1_000_000 and len(values) <= 26 and not is_object_dtype(comps): # If the values include nan we need to check for nan explicitly # since np.nan it not equal to np.nan if isna(values).any(): def f(c, v): return np.logical_or(np.in1d(c, v), np.isnan(c)) else: f = np.in1d else: # error: List item 0 has incompatible type "Union[Any, dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, # Any]]" # error: List item 1 has incompatible type "Union[Any, ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" # error: List item 1 has incompatible type "Union[dtype[Any], ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" common = np.find_common_type( [values.dtype, comps.dtype], [] # type: ignore[list-item] ) values = values.astype(common, copy=False) comps = comps.astype(common, copy=False) f = htable.ismember return f(comps, values) def factorize_array( values: np.ndarray, na_sentinel: int = -1, size_hint: int | None = None, na_value=None, mask: np.ndarray | None = None, ) -> tuple[npt.NDArray[np.intp], np.ndarray]: """ Factorize a numpy array to codes and uniques. This doesn't do any coercion of types or unboxing before factorization. Parameters ---------- values : ndarray na_sentinel : int, default -1 size_hint : int, optional Passed through to the hashtable's 'get_labels' method na_value : object, optional A value in `values` to consider missing. Note: only use this parameter when you know that you don't have any values pandas would consider missing in the array (NaN for float data, iNaT for datetimes, etc.). mask : ndarray[bool], optional If not None, the mask is used as indicator for missing values (True = missing, False = valid) instead of `na_value` or condition "val != val". Returns ------- codes : ndarray[np.intp] uniques : ndarray """ hash_klass, values = get_data_algo(values) table = hash_klass(size_hint or len(values)) uniques, codes = table.factorize( values, na_sentinel=na_sentinel, na_value=na_value, mask=mask ) codes = ensure_platform_int(codes) return codes, uniques @doc( values=dedent( """\ values : sequence A 1-D sequence. Sequences that aren't pandas objects are coerced to ndarrays before factorization. """ ), sort=dedent( """\ sort : bool, default False Sort `uniques` and shuffle `codes` to maintain the relationship. """ ), size_hint=dedent( """\ size_hint : int, optional Hint to the hashtable sizer. """ ), ) def factorize( values, sort: bool = False, na_sentinel: int | None = -1, size_hint: int | None = None, ) -> tuple[np.ndarray, np.ndarray | Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. `factorize` is available as both a top-level function :func:`pandas.factorize`, and as a method :meth:`Series.factorize` and :meth:`Index.factorize`. Parameters ---------- {values}{sort} na_sentinel : int or None, default -1 Value to mark "not found". If None, will not drop the NaN from the uniques of the values. .. versionchanged:: 1.1.2 {size_hint}\ Returns ------- codes : ndarray An integer ndarray that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : ndarray, Index, or Categorical The unique valid values. When `values` is Categorical, `uniques` is a Categorical. When `values` is some other pandas object, an `Index` is returned. Otherwise, a 1-D ndarray is returned. .. note :: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. See Also -------- cut : Discretize continuous-valued array. unique : Find the unique value in an array. Examples -------- These examples all show factorize as a top-level method like ``pd.factorize(values)``. The results are identical for methods like :meth:`Series.factorize`. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) With ``sort=True``, the `uniques` will be sorted, and `codes` will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]...) >>> uniques array(['a', 'b', 'c'], dtype=object) Missing values are indicated in `codes` with `na_sentinel` (``-1`` by default). Note that missing values are never included in `uniques`. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we've only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of `uniques` will differ. For Categoricals, a `Categorical` is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that ``'b'`` is in ``uniques.categories``, despite not being present in ``cat.values``. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting ``na_sentinel=None``. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: na_sentinel=-1 >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, na_sentinel=None) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan]) """ # Implementation notes: This method is responsible for 3 things # 1.) coercing data to array-like (ndarray, Index, extension array) # 2.) factorizing codes and uniques # 3.) Maybe boxing the uniques in an Index # # Step 2 is dispatched to extension types (like Categorical). They are # responsible only for factorization. All data coercion, sorting and boxing # should happen here. if isinstance(values, ABCRangeIndex): return values.factorize(sort=sort) values = _ensure_arraylike(values) original = values if not isinstance(values, ABCMultiIndex): values = extract_array(values, extract_numpy=True) # GH35667, if na_sentinel=None, we will not dropna NaNs from the uniques # of values, assign na_sentinel=-1 to replace code value for NaN. dropna = True if na_sentinel is None: na_sentinel = -1 dropna = False if ( isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray)) and values.freq is not None ): codes, uniques = values.factorize(sort=sort) if isinstance(original, ABCIndex): uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques if not isinstance(values.dtype, np.dtype): # i.e. ExtensionDtype codes, uniques = values.factorize(na_sentinel=na_sentinel) dtype = original.dtype else: dtype = values.dtype values = _ensure_data(values) na_value: Scalar if original.dtype.kind in ["m", "M"]: # Note: factorize_array will cast NaT bc it has a __int__ # method, but will not cast the more-correct dtype.type("nat") na_value = iNaT else: na_value = None codes, uniques = factorize_array( values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value ) if sort and len(uniques) > 0: uniques, codes = safe_sort( uniques, codes, na_sentinel=na_sentinel, assume_unique=True, verify=False ) code_is_na = codes == na_sentinel if not dropna and code_is_na.any(): # na_value is set based on the dtype of uniques, and compat set to False is # because we do not want na_value to be 0 for integers na_value = na_value_for_dtype(uniques.dtype, compat=False) uniques = np.append(uniques, [na_value]) codes = np.where(code_is_na, len(uniques) - 1, codes) uniques = _reconstruct_data(uniques, dtype, original) # return original tenor if isinstance(original, ABCIndex): if original.dtype.kind in ["m", "M"] and isinstance(uniques, np.ndarray): original._data = cast( "Union[DatetimeArray, TimedeltaArray]", original._data ) uniques = type(original._data)._simple_new(uniques, dtype=original.dtype) uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques def value_counts( values, sort: bool = True, ascending: bool = False, normalize: bool = False, bins=None, dropna: bool = True, ) -> Series: """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series """ from pandas.core.series import Series name = getattr(values, "name", None) if bins is not None: from pandas.core.reshape.tile import cut values = Series(values) try: ii = cut(values, bins, include_lowest=True) except TypeError as err: raise TypeError("bins argument only works with numeric data.") from err # count, remove nulls (from the index), and but the bins result = ii.value_counts(dropna=dropna) result = result[result.index.notna()] result.index = result.index.astype("interval") result = result.sort_index() # if we are dropna and we have NO values if dropna and (result._values == 0).all(): result = result.iloc[0:0] # normalizing is by len of all (regardless of dropna) counts = np.array([len(ii)]) else: if is_extension_array_dtype(values): # handle Categorical and sparse, result = Series(values)._values.value_counts(dropna=dropna) result.name = name counts = result._values else: keys, counts = value_counts_arraylike(values, dropna) result = Series(counts, index=keys, name=name) if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / counts.sum() return result # Called once from SparseArray, otherwise could be private def value_counts_arraylike(values, dropna: bool): """ Parameters ---------- values : arraylike dropna : bool Returns ------- uniques : np.ndarray or ExtensionArray counts : np.ndarray """ values = _ensure_arraylike(values) original = values values = _ensure_data(values) # TODO: handle uint8 keys, counts = htable.value_count(values, dropna) if needs_i8_conversion(original.dtype): # datetime, timedelta, or period if dropna: msk = keys != iNaT keys, counts = keys[msk], counts[msk] res_keys = _reconstruct_data(keys, original.dtype, original) return res_keys, counts def duplicated( values: ArrayLike, keep: Literal["first", "last", False] = "first" ) -> npt.NDArray[np.bool_]: """ Return boolean ndarray denoting duplicate values. Parameters ---------- values : nd.array, ExtensionArray or Series Array over which to check for duplicate values. keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : ndarray[bool] """ values = _ensure_data(values) return htable.duplicated(values, keep=keep) def mode(values, dropna: bool = True) -> Series: """ Returns the mode(s) of an array. Parameters ---------- values : array-like Array over which to check for duplicate values. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- mode : Series """ from pandas import Series from pandas.core.indexes.api import default_index values = _ensure_arraylike(values) original = values # categorical is a fast-path if is_categorical_dtype(values): if isinstance(values, Series): # TODO: should we be passing `name` below? return Series(values._values.mode(dropna=dropna), name=values.name) return values.mode(dropna=dropna) if dropna and needs_i8_conversion(values.dtype): mask = values.isnull() values = values[~mask] values = _ensure_data(values) npresult = htable.mode(values, dropna=dropna) try: npresult = np.sort(npresult) except TypeError as err: warn(f"Unable to sort modes: {err}") result = _reconstruct_data(npresult, original.dtype, original) # Ensure index is type stable (should always use int index) return Series(result, index=default_index(len(result))) def rank( values: ArrayLike, axis: int = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> np.ndarray: """ Rank the values along a given axis. Parameters ---------- values : array-like Array whose values will be ranked. The number of dimensions in this array must not exceed 2. axis : int, default 0 Axis over which to perform rankings. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' The method by which tiebreaks are broken during the ranking. na_option : {'keep', 'top'}, default 'keep' The method by which NaNs are placed in the ranking. - ``keep``: rank each NaN value with a NaN ranking - ``top``: replace each NaN with either +/- inf so that they there are ranked at the top ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to the display the returned rankings in integer form (e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1). """ is_datetimelike = needs_i8_conversion(values.dtype) values = _get_values_for_rank(values) if values.ndim == 1: ranks = algos.rank_1d( values, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) elif values.ndim == 2: ranks = algos.rank_2d( values, axis=axis, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) else: raise TypeError("Array with ndim > 2 are not supported.") return ranks def checked_add_with_arr( arr: np.ndarray, b, arr_mask: npt.NDArray[np.bool_] | None = None, b_mask: npt.NDArray[np.bool_] | None = None, ) -> np.ndarray: """ Perform array addition that checks for underflow and overflow. Performs the addition of an int64 array and an int64 integer (or array) but checks that they do not result in overflow first. For elements that are indicated to be NaN, whether or not there is overflow for that element is automatically ignored. Parameters ---------- arr : array addend. b : array or scalar addend. arr_mask : np.ndarray[bool] or None, default None array indicating which elements to exclude from checking b_mask : np.ndarray[bool] or None, default None array or scalar indicating which element(s) to exclude from checking Returns ------- sum : An array for elements x + b for each element x in arr if b is a scalar or an array for elements x + y for each element pair (x, y) in (arr, b). Raises ------ OverflowError if any x + y exceeds the maximum or minimum int64 value. """ # For performance reasons, we broadcast 'b' to the new array 'b2' # so that it has the same size as 'arr'. b2 = np.broadcast_to(b, arr.shape) if b_mask is not None: # We do the same broadcasting for b_mask as well. b2_mask = np.broadcast_to(b_mask, arr.shape) else: b2_mask = None # For elements that are NaN, regardless of their value, we should # ignore whether they overflow or not when doing the checked add. if arr_mask is not None and b2_mask is not None: not_nan = np.logical_not(arr_mask | b2_mask) elif arr_mask is not None: not_nan = np.logical_not(arr_mask) elif b_mask is not None: not_nan = np.logical_not(b2_mask) else: not_nan = np.empty(arr.shape, dtype=bool) not_nan.fill(True) # gh-14324: For each element in 'arr' and its corresponding element # in 'b2', we check the sign of the element in 'b2'. If it is positive, # we then check whether its sum with the element in 'arr' exceeds # np.iinfo(np.int64).max. If so, we have an overflow error. If it # it is negative, we then check whether its sum with the element in # 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow # error as well. i8max = lib.i8max i8min = iNaT mask1 = b2 > 0 mask2 = b2 < 0 if not mask1.any(): to_raise = ((i8min - b2 > arr) & not_nan).any() elif not mask2.any(): to_raise = ((i8max - b2 < arr) & not_nan).any() else: to_raise = ((i8max - b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or ( (i8min - b2[mask2] > arr[mask2]) & not_nan[mask2] ).any() if to_raise: raise OverflowError("Overflow in int64 addition") return arr + b def quantile(x, q, interpolation_method="fraction"): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- x : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = isna(x) x = x[~mask] values = np.sort(x) def _interpolate(a, b, fraction): """ Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if idx % 1 == 0: score = values[int(idx)] else: if interpolation_method == "fraction": score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == "lower": score = values[np.floor(idx)] elif interpolation_method == "higher": score = values[np.ceil(idx)] else: raise ValueError( "interpolation_method can only be 'fraction' " ", 'lower' or 'higher'" ) return score if is_scalar(q): return _get_score(q) q = np.asarray(q, np.float64) result = [_get_score(x) for x in q] return np.array(result, dtype=np.float64) # --------------- # # select n # # --------------- # class SelectN: def __init__(self, obj, n: int, keep: str): self.obj = obj self.n = n self.keep = keep if self.keep not in ("first", "last", "all"): raise ValueError('keep must be either "first", "last" or "all"') def compute(self, method: str) -> DataFrame | Series: raise NotImplementedError @final def nlargest(self): return self.compute("nlargest") @final def nsmallest(self): return self.compute("nsmallest") @final @staticmethod def is_valid_dtype_n_method(dtype: DtypeObj) -> bool: """ Helper function to determine if dtype is valid for nsmallest/nlargest methods """ return ( is_numeric_dtype(dtype) and not is_complex_dtype(dtype) ) or needs_i8_conversion(dtype) class SelectNSeries(SelectN): """ Implement n largest/smallest for Series Parameters ---------- obj : Series n : int keep : {'first', 'last'}, default 'first' Returns ------- nordered : Series """ def compute(self, method: str) -> Series: from pandas.core.reshape.concat import concat n = self.n dtype = self.obj.dtype if not self.is_valid_dtype_n_method(dtype): raise TypeError(f"Cannot use method '{method}' with dtype {dtype}") if n <= 0: return self.obj[[]] dropped = self.obj.dropna() nan_index = self.obj.drop(dropped.index) if is_extension_array_dtype(dropped.dtype): # GH#41816 bc we have dropped NAs above, MaskedArrays can use the # numpy logic. from pandas.core.arrays import BaseMaskedArray arr = dropped._values if isinstance(arr, BaseMaskedArray): ser = type(dropped)(arr._data, index=dropped.index, name=dropped.name) result = type(self)(ser, n=self.n, keep=self.keep).compute(method) return result.astype(arr.dtype) # slow method if n >= len(self.obj): ascending = method == "nsmallest" return self.obj.sort_values(ascending=ascending).head(n) # fast method new_dtype = dropped.dtype arr = _ensure_data(dropped.values) if method == "nlargest": arr = -arr if is_integer_dtype(new_dtype): # GH 21426: ensure reverse ordering at boundaries arr -= 1 elif is_bool_dtype(new_dtype): # GH 26154: ensure False is smaller than True arr = 1 - (-arr) if self.keep == "last": arr = arr[::-1] nbase = n findex = len(self.obj) narr = len(arr) n = min(n, narr) # arr passed into kth_smallest must be contiguous. We copy # here because kth_smallest will modify its input kth_val = algos.kth_smallest(arr.copy(order="C"), n - 1) (ns,) = np.nonzero(arr <= kth_val) inds = ns[arr[ns].argsort(kind="mergesort")] if self.keep != "all": inds = inds[:n] findex = nbase if self.keep == "last": # reverse indices inds = narr - 1 - inds return concat([dropped.iloc[inds], nan_index]).iloc[:findex] class SelectNFrame(SelectN): """ Implement n largest/smallest for DataFrame Parameters ---------- obj : DataFrame n : int keep : {'first', 'last'}, default 'first' columns : list or str Returns ------- nordered : DataFrame """ def __init__(self, obj, n: int, keep: str, columns): super().__init__(obj, n, keep) if not is_list_like(columns) or isinstance(columns, tuple): columns = [columns] columns = list(columns) self.columns = columns def compute(self, method: str) -> DataFrame: from pandas.core.api import Int64Index n = self.n frame = self.obj columns = self.columns for column in columns: dtype = frame[column].dtype if not self.is_valid_dtype_n_method(dtype): raise TypeError( f"Column {repr(column)} has dtype {dtype}, " f"cannot use method {repr(method)} with this dtype" ) def get_indexer(current_indexer, other_indexer): """ Helper function to concat `current_indexer` and `other_indexer` depending on `method` """ if method == "nsmallest": return current_indexer.append(other_indexer) else: return other_indexer.append(current_indexer) # Below we save and reset the index in case index contains duplicates original_index = frame.index cur_frame = frame = frame.reset_index(drop=True) cur_n = n indexer = Int64Index([]) for i, column in enumerate(columns): # For each column we apply method to cur_frame[column]. # If it's the last column or if we have the number of # results desired we are done. # Otherwise there are duplicates of the largest/smallest # value and we need to look at the rest of the columns # to determine which of the rows with the largest/smallest # value in the column to keep. series = cur_frame[column] is_last_column = len(columns) - 1 == i values = getattr(series, method)( cur_n, keep=self.keep if is_last_column else "all" ) if is_last_column or len(values) <= cur_n: indexer = get_indexer(indexer, values.index) break # Now find all values which are equal to # the (nsmallest: largest)/(nlargest: smallest) # from our series. border_value = values == values[values.index[-1]] # Some of these values are among the top-n # some aren't. unsafe_values = values[border_value] # These values are definitely among the top-n safe_values = values[~border_value] indexer = get_indexer(indexer, safe_values.index) # Go on and separate the unsafe_values on the remaining # columns. cur_frame = cur_frame.loc[unsafe_values.index] cur_n = n - len(indexer) frame = frame.take(indexer) # Restore the index on frame frame.index = original_index.take(indexer) # If there is only one column, the frame is already sorted. if len(columns) == 1: return frame ascending = method == "nsmallest" return frame.sort_values(columns, ascending=ascending, kind="mergesort") # ---- # # take # # ---- # def take( arr, indices: TakeIndexer, axis: int = 0, allow_fill: bool = False, fill_value=None, ): """ Take elements from an array. Parameters ---------- arr : array-like or scalar value Non array-likes (sequences/scalars without a dtype) are coerced to an ndarray. indices : sequence of int or one-dimensional np.ndarray of int Indices to be taken. axis : int, default 0 The axis over which to select values. allow_fill : bool, default False How to handle negative values in `indices`. * False: negative values in `indices` indicate positional indices from the right (the default). This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values. These values are set to `fill_value`. Any other negative values raise a ``ValueError``. fill_value : any, optional Fill value to use for NA-indices when `allow_fill` is True. This may be ``None``, in which case the default NA value for the type (``self.dtype.na_value``) is used. For multi-dimensional `arr`, each *element* is filled with `fill_value`. Returns ------- ndarray or ExtensionArray Same type as the input. Raises ------ IndexError When `indices` is out of bounds for the array. ValueError When the indexer contains negative values other than ``-1`` and `allow_fill` is True. Notes ----- When `allow_fill` is False, `indices` may be whatever dimensionality is accepted by NumPy for `arr`. When `allow_fill` is True, `indices` should be 1-D. See Also -------- numpy.take : Take elements from an array along an axis. Examples -------- >>> from pandas.api.extensions import take With the default ``allow_fill=False``, negative numbers indicate positional indices from the right. >>> take(np.array([10, 20, 30]), [0, 0, -1]) array([10, 10, 30]) Setting ``allow_fill=True`` will place `fill_value` in those positions. >>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True) array([10., 10., nan]) >>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True, ... fill_value=-10) array([ 10, 10, -10]) """ if not is_array_like(arr): arr = np.asarray(arr) indices = np.asarray(indices, dtype=np.intp) if allow_fill: # Pandas style, -1 means NA validate_indices(indices, arr.shape[axis]) result = take_nd( arr, indices, axis=axis, allow_fill=True, fill_value=fill_value ) else: # NumPy style result = arr.take(indices, axis=axis) return result # ------------ # # searchsorted # # ------------ # def searchsorted( arr: ArrayLike, value: NumpyValueArrayLike | ExtensionArray, side: Literal["left", "right"] = "left", sorter: NumpySorter = None, ) -> npt.NDArray[np.intp] | np.intp: """ Find indices where elements should be inserted to maintain order. .. versionadded:: 0.25.0 Find the indices into a sorted array `arr` (a) such that, if the corresponding elements in `value` were inserted before the indices, the order of `arr` would be preserved. Assuming that `arr` is sorted: ====== ================================ `side` returned index `i` satisfies ====== ================================ left ``arr[i-1] < value <= self[i]`` right ``arr[i-1] <= value < self[i]`` ====== ================================ Parameters ---------- arr: np.ndarray, ExtensionArray, Series Input array. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. value : array-like or scalar Values to insert into `arr`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array-like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. Returns ------- array of ints or int If value is array-like, array of insertion points. If value is scalar, a single integer. See Also -------- numpy.searchsorted : Similar method from NumPy. """ if sorter is not None: sorter = ensure_platform_int(sorter) if ( isinstance(arr, np.ndarray) and is_integer_dtype(arr.dtype) and (is_integer(value) or is_integer_dtype(value)) ): # if `arr` and `value` have different dtypes, `arr` would be # recast by numpy, causing a slow search. # Before searching below, we therefore try to give `value` the # same dtype as `arr`, while guarding against integer overflows. iinfo = np.iinfo(arr.dtype.type) value_arr = np.array([value]) if is_scalar(value) else np.array(value) if (value_arr >= iinfo.min).all() and (value_arr <= iinfo.max).all(): # value within bounds, so no overflow, so can convert value dtype # to dtype of arr dtype = arr.dtype else: dtype = value_arr.dtype if is_scalar(value): # We know that value is int value = cast(int, dtype.type(value)) else: value = pd_array(cast(ArrayLike, value), dtype=dtype) elif not ( is_object_dtype(arr) or is_numeric_dtype(arr) or is_categorical_dtype(arr) ): # E.g. if `arr` is an array with dtype='datetime64[ns]' # and `value` is a pd.Timestamp, we may need to convert value arr = ensure_wrapped_if_datetimelike(arr) # Argument 1 to "searchsorted" of "ndarray" has incompatible type # "Union[NumpyValueArrayLike, ExtensionArray]"; expected "NumpyValueArrayLike" return arr.searchsorted(value, side=side, sorter=sorter) # type: ignore[arg-type] # ---- # # diff # # ---- # _diff_special = {"float64", "float32", "int64", "int32", "int16", "int8"} def diff(arr, n: int, axis: int = 0, stacklevel: int = 3): """ difference of n between self, analogous to s-s.shift(n) Parameters ---------- arr : ndarray or ExtensionArray n : int number of periods axis : {0, 1} axis to shift on stacklevel : int, default 3 The stacklevel for the lost dtype warning. Returns ------- shifted """ n = int(n) na = np.nan dtype = arr.dtype is_bool = is_bool_dtype(dtype) if is_bool: op = operator.xor else: op = operator.sub if isinstance(dtype, PandasDtype): # PandasArray cannot necessarily hold shifted versions of itself. arr = arr.to_numpy() dtype = arr.dtype if not isinstance(dtype, np.dtype): # i.e ExtensionDtype if hasattr(arr, f"__{op.__name__}__"): if axis != 0: raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}") return op(arr, arr.shift(n)) else: warn( "dtype lost in 'diff()'. In the future this will raise a " "TypeError. Convert to a suitable dtype prior to calling 'diff'.", FutureWarning, stacklevel=stacklevel, ) arr = np.asarray(arr) dtype = arr.dtype is_timedelta = False if needs_i8_conversion(arr.dtype): dtype = np.int64 arr = arr.view("i8") na = iNaT is_timedelta = True elif is_bool: # We have to cast in order to be able to hold np.nan dtype = np.object_ elif is_integer_dtype(dtype): # We have to cast in order to be able to hold np.nan # int8, int16 are incompatible with float64, # see https://github.com/cython/cython/issues/2646 if arr.dtype.name in ["int8", "int16"]: dtype = np.float32 else: dtype = np.float64 orig_ndim = arr.ndim if orig_ndim == 1: # reshape so we can always use algos.diff_2d arr = arr.reshape(-1, 1) # TODO: require axis == 0 dtype = np.dtype(dtype) out_arr = np.empty(arr.shape, dtype=dtype) na_indexer = [slice(None)] * 2 na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None) out_arr[tuple(na_indexer)] = na if arr.dtype.name in _diff_special: # TODO: can diff_2d dtype specialization troubles be fixed by defining # out_arr inside diff_2d? algos.diff_2d(arr, out_arr, n, axis, datetimelike=is_timedelta) else: # To keep mypy happy, _res_indexer is a list while res_indexer is # a tuple, ditto for lag_indexer. _res_indexer = [slice(None)] * 2 _res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n) res_indexer = tuple(_res_indexer) _lag_indexer = [slice(None)] * 2 _lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None) lag_indexer = tuple(_lag_indexer) out_arr[res_indexer] = op(arr[res_indexer], arr[lag_indexer]) if is_timedelta: out_arr = out_arr.view("timedelta64[ns]") if orig_ndim == 1: out_arr = out_arr[:, 0] return out_arr # -------------------------------------------------------------------- # Helper functions # Note: safe_sort is in algorithms.py instead of sorting.py because it is # low-dependency, is used in this module, and used private methods from # this module. def safe_sort( values, codes=None, na_sentinel: int = -1, assume_unique: bool = False, verify: bool = True, ) -> np.ndarray | tuple[np.ndarray, np.ndarray]: """ Sort ``values`` and reorder corresponding ``codes``. ``values`` should be unique if ``codes`` is not None. Safe for use with mixed types (int, str), orders ints before strs. Parameters ---------- values : list-like Sequence; must be unique if ``codes`` is not None. codes : list_like, optional Indices to ``values``. All out of bound indices are treated as "not found" and will be masked with ``na_sentinel``. na_sentinel : int, default -1 Value in ``codes`` to mark "not found". Ignored when ``codes`` is None. assume_unique : bool, default False When True, ``values`` are assumed to be unique, which can speed up the calculation. Ignored when ``codes`` is None. verify : bool, default True Check if codes are out of bound for the values and put out of bound codes equal to na_sentinel. If ``verify=False``, it is assumed there are no out of bound codes. Ignored when ``codes`` is None. .. versionadded:: 0.25.0 Returns ------- ordered : ndarray Sorted ``values`` new_codes : ndarray Reordered ``codes``; returned when ``codes`` is not None. Raises ------ TypeError * If ``values`` is not list-like or if ``codes`` is neither None nor list-like * If ``values`` cannot be sorted ValueError * If ``codes`` is not None and ``values`` contain duplicates. """ if not is_list_like(values): raise TypeError( "Only list-like objects are allowed to be passed to safe_sort as values" ) if not isinstance(values, (np.ndarray, ABCExtensionArray)): # don't convert to string types dtype, _ = infer_dtype_from_array(values) # error: Argument "dtype" to "asarray" has incompatible type "Union[dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], # _DTypeDict, Tuple[Any, Any]]]" values = np.asarray(values, dtype=dtype) # type: ignore[arg-type] sorter = None if ( not is_extension_array_dtype(values) and lib.infer_dtype(values, skipna=False) == "mixed-integer" ): ordered = _sort_mixed(values) else: try: sorter = values.argsort() ordered = values.take(sorter) except TypeError: # Previous sorters failed or were not applicable, try `_sort_mixed` # which would work, but which fails for special case of 1d arrays # with tuples. if values.size and isinstance(values[0], tuple): ordered = _sort_tuples(values) else: ordered = _sort_mixed(values) # codes: if codes is None: return ordered if not is_list_like(codes): raise TypeError( "Only list-like objects or None are allowed to " "be passed to safe_sort as codes" ) codes = ensure_platform_int(np.asarray(codes)) if not assume_unique and not len(unique(values)) == len(values): raise ValueError("values should be unique if codes is not None") if sorter is None: # mixed types hash_klass, values = get_data_algo(values) t = hash_klass(len(values)) t.map_locations(values) sorter = ensure_platform_int(t.lookup(ordered)) if na_sentinel == -1: # take_nd is faster, but only works for na_sentinels of -1 order2 = sorter.argsort() new_codes = take_nd(order2, codes, fill_value=-1) if verify: mask = (codes < -len(values)) | (codes >= len(values)) else: mask = None else: reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) # Out of bound indices will be masked with `na_sentinel` next, so we # may deal with them here without performance loss using `mode='wrap'` new_codes = reverse_indexer.take(codes, mode="wrap") mask = codes == na_sentinel if verify: mask = mask | (codes < -len(values)) | (codes >= len(values)) if mask is not None: np.putmask(new_codes, mask, na_sentinel) return ordered,
ensure_platform_int(new_codes)
pandas.core.dtypes.common.ensure_platform_int
import pandas as pd import numpy as np import datetime as dt import pickle import os import shutil import sys from joblib import Parallel, delayed, cpu_count import subprocess from tqdm import tqdm from copy import deepcopy from blechpy.utils import print_tools as pt, write_tools as wt, userIO from blechpy.utils.decorators import Logger from blechpy.analysis import palatability_analysis as pal_analysis from blechpy.analysis import spike_sorting as ss, spike_analysis, circus_interface as circ from blechpy.analysis import blech_clustering as clust from blechpy.plotting import palatability_plot as pal_plt, data_plot as datplt from blechpy import dio from blechpy.datastructures.objects import data_object from blechpy.utils import spike_sorting_GUI as ssg class dataset(data_object): '''Stores information related to an intan recording directory, allows executing basic processing and analysis scripts, and stores parameters data for those analyses Parameters ---------- file_dir : str (optional) absolute path to a recording directory, if left empty a filechooser will popup ''' PROCESSING_STEPS = ['initialize parameters', 'extract_data', 'create_trial_list', 'mark_dead_channels', 'common_average_reference', 'spike_detection', 'spike_clustering', 'cleanup_clustering', 'sort_units', 'make_unit_plots', 'units_similarity', 'make_unit_arrays', 'make_psth_arrays', 'plot_psths', 'palatability_calculate', 'palatability_plot', 'overlay_psth'] def __init__(self, file_dir=None, data_name=None, shell=False): '''Initialize dataset object from file_dir, grabs basename from name of directory and initializes basic analysis parameters Parameters ---------- file_dir : str (optional), file directory for intan recording data Throws ------ ValueError if file_dir is not provided and no directory is chosen when prompted NotADirectoryError : if file_dir does not exist ''' super().__init__('dataset', file_dir, data_name=data_name, shell=shell) h5_file = dio.h5io.get_h5_filename(self.root_dir) if h5_file is None: h5_file = os.path.join(self.root_dir, '%s.h5' % self.data_name) print(f'No existing h5 file found. New h5 will be created at {h5_file}.') else: print(f'Existing h5 file found. Using {h5_file}.') self.h5_file = h5_file self.dataset_creation_date = dt.datetime.today() # Outline standard processing pipeline and status check self.processing_steps = dataset.PROCESSING_STEPS.copy() self.process_status = dict.fromkeys(self.processing_steps, False) def _change_root(self, new_root=None): old_root = self.root_dir new_root = super()._change_root(new_root) self.h5_file = self.h5_file.replace(old_root, new_root) return new_root @Logger('Initializing Parameters') def initParams(self, data_quality='clean', emg_port=None, emg_channels=None, car_keyword=None, car_group_areas=None, shell=False, dig_in_names=None, dig_out_names=None, accept_params=False): ''' Initalizes basic default analysis parameters and allows customization of parameters Parameters (all optional) ------------------------- data_quality : {'clean', 'noisy'} keyword defining which default set of parameters to use to detect headstage disconnection during clustering default is 'clean'. Best practice is to run blech_clust as 'clean' and re-run as 'noisy' if too many early cutoffs occurr emg_port : str Port ('A', 'B', 'C') of EMG, if there was an EMG. None (default) will query user. False indicates no EMG port and not to query user emg_channels : list of int channel or channels of EMGs on port specified default is None car_keyword : str Specifes default common average reference groups defaults are found in CAR_defaults.json Currently 'bilateral32' is only keyword available If left as None (default) user will be queries to select common average reference groups shell : bool False (default) for GUI. True for command-line interface dig_in_names : list of str Names of digital inputs. Must match number of digital inputs used in recording. None (default) queries user to name each dig_in dig_out_names : list of str Names of digital outputs. Must match number of digital outputs in recording. None (default) queries user to name each dig_out accept_params : bool True automatically accepts default parameters where possible, decreasing user queries False (default) will query user to confirm or edit parameters for clustering, spike array and psth creation and palatability/identity calculations ''' # Get parameters from info.rhd file_dir = self.root_dir rec_info = dio.rawIO.read_rec_info(file_dir) ports = rec_info.pop('ports') channels = rec_info.pop('channels') sampling_rate = rec_info['amplifier_sampling_rate'] self.rec_info = rec_info self.sampling_rate = sampling_rate # Get default parameters from files clustering_params = dio.params.load_params('clustering_params', file_dir, default_keyword=data_quality) spike_array_params = dio.params.load_params('spike_array_params', file_dir) psth_params = dio.params.load_params('psth_params', file_dir) pal_id_params = dio.params.load_params('pal_id_params', file_dir) spike_array_params['sampling_rate'] = sampling_rate clustering_params['file_dir'] = file_dir clustering_params['sampling_rate'] = sampling_rate self.spike_array_params = spike_array_params # Setup digital input mapping if rec_info.get('dig_in'): self._setup_digital_mapping('in', dig_in_names, shell) dim = self.dig_in_mapping.copy() else: self.dig_in_mapping = None if rec_info.get('dig_out'): q = userIO.ask_user('Your info.rhd suggests you have digital ' 'outputs. Is this True?', shell=shell) if q == 1: self._setup_digital_mapping('out', dig_out_names, shell) dom = self.dig_out_mapping.copy() else: _ = rec_info.pop('dig_out') self.dig_out_mapping = None else: self.dig_out_mapping = None # Setup electrode and emg mapping self._setup_channel_mapping(ports, channels, emg_port, emg_channels, shell=shell) # Set CAR groups self._set_CAR_groups(group_keyword=car_keyword, group_areas=car_group_areas, shell=shell) # Confirm parameters if not accept_params: conf = userIO.confirm_parameter_dict clustering_params = conf(clustering_params, 'Clustering Parameters', shell=shell) self.edit_spike_array_params(shell=shell) psth_params = conf(psth_params, 'PSTH Parameters', shell=shell) pal_id_params = conf(pal_id_params, 'Palatability/Identity Parameters\n' 'Valid unit_type is Single, Multi or All', shell=shell) # Store parameters self.clustering_params = clustering_params self.pal_id_params = pal_id_params self.psth_params = psth_params self._write_all_params_to_json() self.process_status['initialize parameters'] = True self.save() def _set_CAR_groups(self, group_keyword=None, shell=False, group_areas=None): '''Sets that electrode groups for common average referencing and defines which brain region electrodes eneded up in Parameters ---------- group_keyword : str or int Keyword corresponding to a preset electrode grouping in CAR_params.json Or integer indicating number of CAR groups shell : bool True for command-line interface, False (default) for GUI ''' if not hasattr(self, 'electrode_mapping'): raise ValueError('Set electrode mapping before setting CAR groups') em = self.electrode_mapping.copy() car_param_file = os.path.join(self.root_dir, 'analysis_params', 'CAR_params.json') if os.path.isfile(car_param_file): tmp = dio.params.load_params('CAR_params', self.root_dir) if tmp is not None: group_electrodes = tmp else: raise ValueError('CAR_params file exists in recording dir, but is empty') else: if group_keyword is None: group_keyword = userIO.get_user_input( 'Input keyword for CAR parameters or number of CAR groups', shell=shell) if group_keyword is None: ValueError('Must provide a keyword or number of groups') if group_keyword.isnumeric(): num_groups = int(group_keyword) group_electrodes = dio.params.select_CAR_groups(num_groups, em, shell=shell) else: group_electrodes = dio.params.load_params('CAR_params', self.root_dir, default_keyword=group_keyword) num_groups = len(group_electrodes) if group_areas is not None and len(group_areas) == num_groups: for i, x in enumerate(zip(group_electrodes, group_areas)): em.loc[x[0], 'area'] = x[1] em.loc[x[0], 'CAR_group'] = i else: group_names = ['Group %i' % i for i in range(num_groups)] area_dict = dict.fromkeys(group_names, '') area_dict = userIO.fill_dict(area_dict, 'Set Areas for CAR groups', shell=shell) for k, v in area_dict.items(): i = int(k.replace('Group', '')) em.loc[group_electrodes[i], 'area'] = v em.loc[group_electrodes[i], 'CAR_group'] = i self.CAR_electrodes = group_electrodes self.electrode_mapping = em.copy() if os.path.isfile(self.h5_file): dio.h5io.write_electrode_map_to_h5(self.h5_file, self.electrode_mapping) @Logger('Re-labelling CAR group areas') def set_electrode_areas(self, areas): '''sets the electrode area for each CAR group. Parameters ---------- areas : list of str number of elements must match number of CAR groups Throws ------ ValueError ''' em = self.electrode_mapping.copy() if len(em['CAR_group'].unique()) != len(areas): raise ValueError('Number of items in areas must match number of CAR groups') em['area'] = em['CAR_group'].apply(lambda x: areas[int(x)]) self.electrode_mapping = em.copy() dio.h5io.write_electrode_map_to_h5(self.h5_file, self.electrode_mapping) self.save() def _setup_digital_mapping(self, dig_type, dig_in_names=None, shell=False): '''sets up dig_in_mapping dataframe and queries user to fill in columns Parameters ---------- dig_in_names : list of str (optional) shell : bool (optional) True for command-line interface False (default) for GUI ''' rec_info = self.rec_info df =
pd.DataFrame()
pandas.DataFrame
import os import unittest import numpy as np import pandas as pd from cgnal.core.data.model.ml import ( LazyDataset, IterGenerator, MultiFeatureSample, Sample, PandasDataset, PandasTimeIndexedDataset, CachedDataset, features_and_labels_to_dataset, ) from typing import Iterator, Generator from cgnal.core.tests.core import TestCase, logTest from tests import TMP_FOLDER samples = [ Sample(features=[100, 101], label=1), Sample(features=[102, 103], label=2), Sample(features=[104, 105], label=3), Sample(features=[106, 107], label=4), Sample(features=[108, 109], label=5), Sample(features=[110, 111], label=6), Sample(features=[112, 113], label=7), Sample(features=[114, 115], label=8), Sample(features=[116, 117], label=9), ] def samples_gen(): for sample in samples: if not any([np.isnan(x).any() for x in sample.features]): yield sample lazyDat = LazyDataset(IterGenerator(samples_gen)) class features_and_labels_to_datasetTests(TestCase): def test_features_and_labels_to_dataset(self): dataset = features_and_labels_to_dataset( pd.concat( [ pd.Series([1, 0, 2, 3], name="feat1"),
pd.Series([1, 2, 3, 4], name="feat2")
pandas.Series
import pandas as pd import datetime from copy import deepcopy from rgtfs import io, tables def calculate_exits(row, calendar_dates_by_trip_id): dow = { 0: "monday", 1: "tuesday", 2: "wednesday", 3: "thursday", 4: "friday", 5: "saturday", 6: "sunday", } _df = [] calendar = calendar_dates_by_trip_id.query(f'trip_id == "{row["trip_id"]}"').iloc[0] current_date = pd.Timestamp(str(calendar["start_date"])) end_date = pd.Timestamp(str(calendar["end_date"])) # Loop through all dates in calendar while current_date <= end_date: # Has to be match day of the week if not calendar[dow[current_date.weekday()]]: current_date = current_date + datetime.timedelta(days=1) current_time = pd.Timestamp(str(current_date.date()) + " " + row["start_time"]) end_time = pd.Timestamp(str(current_date.date()) + " " + row["end_time"]) while current_time < end_time: _df.append(current_time) current_time = current_time + datetime.timedelta( seconds=row["headway_secs"] ) current_date = current_date + datetime.timedelta(days=1) _df = pd.DataFrame({"departure_datetime": _df}) _df["trip_id"] = row["trip_id"] return _df def generate_realized_trips_from_gtfs(gtfs_path): """Transforms a GTFS feed to realized_trips format (see README for specification). It can either read a feed zip file or a folder. Parameters ---------- gtfs_path : str GTFS feed zip file or folder path Returns ------- pd.DataFrame realized_trips data structure (see README for specification) """ gtfs = io.read_gtfs(gtfs_path, "km") # Generates all exits calendar_dates_by_trip_id = ( pd.merge( gtfs.trips[["service_id", "trip_id"]], gtfs.calendar, on=["service_id"] ) ).drop_duplicates(subset=["service_id", "trip_id"]) realized_trips = [] for i, row in gtfs.frequencies.iterrows(): realized_trips.append(calculate_exits(row, calendar_dates_by_trip_id)) realized_trips =
pd.concat(realized_trips)
pandas.concat
#!/usr/bin/env python3 import itertools import string from elasticsearch import Elasticsearch,helpers import sys import os from glob import glob import pandas as pd import json host = sys.argv[1] port = int(sys.argv[2]) alias = sys.argv[3] print(host) print(port) print(alias) es = Elasticsearch([{'host': host, 'port': port}]) # create our test index # Get all csv files in /root/data files = [y for x in os.walk('/root/data') for y in glob(os.path.join(x[0], '*.csv'))] count = 0 def clean_field(val): val = val.split('.') val = [i for i in val if i != ''] val = '_'.join(val) val = val.split() val = [i for i in val if i != ''] val = '_'.join(val) val = val.split('/') val = [i for i in val if i != ''] val = '_'.join(val) return val es.indices.delete(index=alias + '*', ignore=[400, 404]) indices = [] for file in files: data =
pd.read_csv(file, sep=None, engine='python')
pandas.read_csv
# -*- coding: utf-8 -*- """CARND3 Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1a44b45RBXDba9Nj99y_VLiS6lOwt5uKL """ import os import csv import cv2 import glob from PIL import Image import numpy as np import sklearn import random import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import matplotlib.image as mpimg os.chdir(r"data") # Import as a dataframe and plot steering df = pd.read_csv('driving_log.csv', header=0) df.columns = ["center_image", "left_image", "right_image", "steering", "throttle", "break", "speed"] df.drop(['throttle', 'break', 'speed'], axis = 1, inplace = True) import seaborn as sns sns.set(style="whitegrid", color_codes=True) sns.distplot(df['steering'], kde = False) print(len(df)) ## Oversample left and right turns. Downsample turns close to zero. straight =[] left_turn = [] right_turn = [] for i in range(len(df)): keep_prob = random.random() # Normal right turns - Double by adding small random fluctuations if (df["steering"][i] >0.20 and df["steering"][i] <=0.50): for j in range(2): new_steering = df["steering"][i]*(1.0 + np.random.uniform(-1,1)/100.0) right_turn.append([df["center_image"][i], df["left_image"][i], df["right_image"][i], new_steering]) # Normal left turns - Double by adding small random fluctuations elif (df["steering"][i] >= -0.50 and df["steering"][i] < -0.15): for j in range(2): new_steering = df["steering"][i]*(1.0 + np.random.uniform(-1,1)/100.0) left_turn.append([df["center_image"][i], df["left_image"][i], df["right_image"][i], new_steering]) ## Zero angle steering - undersample by 10% worked best elif (df["steering"][i] > -0.02 and df["steering"][i] < 0.02): if keep_prob <=0.90: straight.append([df["center_image"][i], df["left_image"][i], df["right_image"][i], df["steering"][i]]) else: straight.append([df["center_image"][i], df["left_image"][i], df["right_image"][i], df["steering"][i]]) # Create a new list new_list = [] new_list = right_turn + left_turn + straight print(len(new_list), len(straight), len(left_turn), len(right_turn)) # Plot new distribution of steering df_straight = pd.DataFrame(straight, columns=["center_image", "left_image", "right_image", "steering"]) df_left = pd.DataFrame(left_turn, columns=["center_image", "left_image", "right_image", "steering"]) df_right =
pd.DataFrame(right_turn, columns=["center_image", "left_image", "right_image", "steering"])
pandas.DataFrame
""" Applying Box-Jenkins Forecasting Methodology to Predict Massachusetts Cannabis Data Copyright (c) 2021 Cannlytics and the Cannabis Data Science Meetup Group Authors: <NAME> <<EMAIL>> Created: 10/6/2021 Updated: 11/10/2021 License: MIT License <https://opensource.org/licenses/MIT> References: - Time Series forecasting using Auto ARIMA in Python https://towardsdatascience.com/time-series-forecasting-using-auto-arima-in-python-bb83e49210cd Data Sources: MA Cannabis Control Commission - Retail Sales by Date and Product Type: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/xwf2-j7g9 - Approved Massachusetts Licensees: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/hmwt-yiqy - Average Monthly Price per Ounce for Adult-Use Cannabis: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/rqtv-uenj - Plant Activity and Volume: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/j3q7-3usu - Weekly sales by product type: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/87rp-xn9v Fed Fred - MA Gross Domestic Product: https://fred.stlouisfed.org/series/MANQGSP - MA Civilian Labor Force: https://fred.stlouisfed.org/series/MALF - MA All Employees: https://fred.stlouisfed.org/series/MANA - MA Avg. Weekly Wage: https://fred.stlouisfed.org/series/LES1252881600Q - MA Minimum Wage: https://fred.stlouisfed.org/series/STTMINWGMA - MA Population: https://fred.stlouisfed.org/series/MAPOP """ from dotenv import dotenv_values import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import numpy as np import pandas as pd import pmdarima as pm import requests import seaborn as sns import statsmodels.api as sm # Internal imports from utils import ( end_of_period_timeseries, forecast_arima, format_millions, format_thousands, reverse_dataframe, set_training_period, ) #-------------------------------------------------------------------------- # Get all MA public cannabis data. #-------------------------------------------------------------------------- # Setup Socrata API, get the App Token, and define the headers. config = dotenv_values('../.env') app_token = config.get('APP_TOKEN', None) headers = {'X-App-Token': app_token} base = 'https://opendata.mass-cannabis-control.com/resource' # Get production stats (total employees, total plants, etc.) j3q7-3usu url = f'{base}/j3q7-3usu.json' params = {'$limit': 2000, '$order': 'activitysummarydate DESC'} response = requests.get(url, headers=headers, params=params) production = pd.DataFrame(response.json(), dtype=float) production = reverse_dataframe(production) # Calculate sales difference. production['sales'] = production['salestotal'].diff() # FIX: Fix outlier that appears to have an extra 0. outlier = production.loc[production.sales >= 10000000] production.at[outlier.index, 'sales'] = 0 # FIX: Remove negative values. negatives = production.loc[production.sales < 0] production.at[negatives.index, 'sales'] = 0 # Aggregate daily production data into monthly and quarterly averages. production['date'] = pd.to_datetime(production['activitysummarydate']) production.set_index('date', inplace=True) monthly_avg_production = production.resample('M').mean() quarterly_avg_production = production.resample('Q').mean() monthly_total_production = production.resample('M').sum() quarterly_total_production = production.resample('Q').sum() # Get licensees data. url = f'{base}/hmwt-yiqy.json' params = {'$limit': 10000, '$order': 'app_create_date DESC'} response = requests.get(url, headers=headers, params=params) licensees = pd.DataFrame(response.json(), dtype=float) # Get the monthly average price per ounce. url = f'{base}/rqtv-uenj.json' params = {'$limit': 10000, '$order': 'date DESC'} response = requests.get(url, headers=headers, params=params) prices = pd.DataFrame(response.json(), dtype=float) prices = reverse_dataframe(prices) prices.set_index('date', inplace=True) # Calculate the average price per specific quantity. price_per_gram = prices.avg_1oz.astype(float).divide(28).round(2) price_per_teenth = prices.avg_1oz.astype(float).divide(16).round(2) price_per_eighth = prices.avg_1oz.astype(float).divide(8).round(2) price_per_quarter = prices.avg_1oz.astype(float).divide(4).round(2) # Get the products. url = f'{base}/xwf2-j7g9.json' params = {'$limit': 10000, '$order': 'saledate DESC'} response = requests.get(url, headers=headers, params=params) products = pd.DataFrame(response.json(), dtype=float) products = reverse_dataframe(products) products.set_index('saledate', inplace=True) product_types = list(products.productcategoryname.unique()) #-------------------------------------------------------------------------- # Estimate historic sales per retialer, plants per cultivator, # and employees per licensee. #-------------------------------------------------------------------------- # Create weekly series. weekly_sales = production.sales.resample('W-SUN').sum() weekly_plants = production.total_planttrackedcount.resample('W-SUN').mean() weekly_employees = production.total_employees.resample('W-SUN').mean() # Find total retailers and cultivators. retailers = licensees.loc[licensees.license_type == 'Marijuana Retailer'] cultivators = licensees.loc[licensees.license_type == 'Marijuana Cultivator'] total_retailers = len(retailers) total_cultivators = len(cultivators) total_licensees = len(licensees) # Create total licensees series. production['total_retailers'] = 0 production['total_cultivators'] = 0 production['total_licensees'] = 0 for index, _ in production.iterrows(): timestamp = index.isoformat() production.at[index, 'total_retailers'] = len(licensees.loc[ (licensees.license_type == 'Marijuana Retailer') & (licensees.app_create_date <= timestamp) ]) production.at[index, 'total_cultivators'] = len(licensees.loc[ (licensees.license_type == 'Marijuana Cultivator') & (licensees.app_create_date <= timestamp) ]) production.at[index, 'total_licensees'] = len(licensees.loc[ (licensees.app_create_date <= timestamp) ]) # Create weekly averages. weekly_total_retailers = production['total_retailers'].resample('W-SUN').mean() weekly_total_cultivators = production['total_cultivators'].resample('W-SUN').mean() weekly_total_licensees = production['total_licensees'].resample('W-SUN').mean() # Estimate sales per retailer. sales_per_retailer = weekly_sales / weekly_total_retailers sales_per_retailer.plot() plt.show() # Estimate plants per cultivator. plants_per_cultivator = weekly_plants / weekly_total_cultivators plants_per_cultivator.plot() plt.show() # Estimate employees per licensee. employees_per_license = weekly_employees / weekly_total_licensees employees_per_license.plot() plt.show() #-------------------------------------------------------------------------- # Estimate sales, plants grown, and employees, # total retailers, total cultivators, and total licensees # in 2021 and 2022 using Box-Jenkins (ARIMA) methodology. # Month fixed effects are used. # Optional: Attempt to forecast with daily series with # day-of-the-week fixed effects. #-------------------------------------------------------------------------- # Specifiy training time periods. train_start = '2020-06-01' train_end = '2021-10-25' # Define forecast horizon. forecast_horizon = pd.date_range( pd.to_datetime(train_end), periods=62, freq='w' ) # Create month fixed effects (dummy variables), # excluding 1 month (January) for comparison. month_effects = pd.get_dummies(weekly_sales.index.month) month_effects.index = weekly_sales.index month_effects = set_training_period(month_effects, train_start, train_end) forecast_month_effects = pd.get_dummies(forecast_horizon.month) del month_effects[1] try: del forecast_month_effects[1] except: pass # Forecast sales. sales_model = pm.auto_arima( set_training_period(weekly_sales, train_start, train_end), X=month_effects, start_p=0, d=0, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, ) sales_forecast, sales_conf = forecast_arima( sales_model, forecast_horizon, X=forecast_month_effects ) # Forecast total plants. plants_model = pm.auto_arima( set_training_period(weekly_plants, train_start, train_end), X=month_effects, start_p=0, d=0, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, ) plants_forecast, plants_conf = forecast_arima( plants_model, forecast_horizon, X=forecast_month_effects ) # Forecast total employees. employees_model = pm.auto_arima( set_training_period(weekly_employees, train_start, train_end), X=month_effects, start_p=0, d=1, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, ) employees_forecast, employees_conf = forecast_arima( employees_model, forecast_horizon, X=forecast_month_effects ) # Forecast total retailers. retailers_model = pm.auto_arima( set_training_period(weekly_total_retailers, train_start, train_end), X=month_effects, start_p=0, d=1, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, # m=12, ) total_retailers_forecast, total_retailers_conf = forecast_arima( retailers_model, forecast_horizon, X=forecast_month_effects ) # Forecast total cultivators. cultivators_model = pm.auto_arima( set_training_period(weekly_total_cultivators, train_start, train_end), X=month_effects, start_p=0, d=1, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, # m=12, ) total_cultivators_forecast, total_cultivators_conf = forecast_arima( cultivators_model, forecast_horizon, X=forecast_month_effects ) # Forecast total licensees. licensees_model = pm.auto_arima( set_training_period(weekly_total_licensees, train_start, train_end), X=month_effects, start_p=0, d=1, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, # m=12, ) total_licensees_forecast, total_licensees_conf = forecast_arima( licensees_model, forecast_horizon, X=forecast_month_effects ) # Predict total sales per retailer in 2022. # TODO: Figure out how to estimate confidence bounds? forecast_sales_per_retailer = sales_forecast / total_retailers_forecast # Predict total plants per cultivator in 2022. forecast_plants_per_cultivator = plants_forecast / total_cultivators_forecast # Predict total employees per licensee in 2022. forecast_employees_per_license = employees_forecast / total_licensees_forecast #-------------------------------------------------------------------------- # Visualize the forecasts as 2x3 time series plots. # Sales | Plants # Retailers | Cultivators # Sales per Retailer | Plants per Cultivator #-------------------------------------------------------------------------- def plot_forecast( ax, forecast, historic=None, conf=None, title=None, color=None, formatter=None, ): """Plot a time series forecast. Args: ax (): The axes on which to plot the forecast. forecast (Series): The forecast to plot. historic (Series): Optional historic time series to plot. conf (Array): An optional 2xN array of lower and upper confidence bounds for the forecast series. title (str): An optional title to place above the chart. color: (str): An optional color hex code. formatter (func): An optional formatting function for the Y axis. """ forecast.plot(color=color, style='--', label='Forecast') if conf is not None: plt.fill_between( forecast.index, conf[:, 0], conf[:, 1], alpha=0.1, color=color, ) if historic is not None: historic.plot(color=color, label='Historic') if title is not None: plt.title(title, fontsize=24, pad=10) if formatter is not None: yaxis_format = FuncFormatter(formatter) ax.yaxis.set_major_formatter(yaxis_format) plt.gca().set(ylim=0) plt.setp(ax.get_yticklabels()[0], visible=False) plt.xlabel('') plt.xticks(fontsize=18) plt.yticks(fontsize=18) # Define the plot style. plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = 'Times New Roman' palette = sns.color_palette('tab10') # Plot all series. fig = plt.figure(figsize=(40, 25)) # Plot sales. ax1 = plt.subplot(3, 2, 1) plot_forecast( ax1, sales_forecast, historic=weekly_sales, conf=sales_conf, title='Cannabis Sales', color=palette[0], formatter=format_millions, ) # Plot plants. ax2 = plt.subplot(3, 2, 2) plot_forecast( ax2, plants_forecast, historic=weekly_plants, conf=plants_conf, title='Cannabis Plants', color=palette[-1], formatter=format_thousands, ) # Plot retailers. ax3= plt.subplot(3, 2, 3) plot_forecast( ax3, total_retailers_forecast, historic=weekly_total_retailers, conf=total_retailers_conf, title='Cannabis Retailers', color=palette[3], # formatter=format_thousands, ) # Plot cultivators. ax4= plt.subplot(3, 2, 4) plot_forecast( ax4, total_cultivators_forecast, historic=weekly_total_cultivators, conf=total_cultivators_conf, title='Cannabis Cultivators', color=palette[2], # formatter=format_thousands, ) # Plot average sales per retailer. ax5= plt.subplot(3, 2, 5) plot_forecast( ax5, forecast_sales_per_retailer, historic=sales_per_retailer, # conf=total_cultivators_conf, title='Average Cannabis Sales per Retailer', color=palette[4], formatter=format_thousands, ) # Plot average plants per cultivator. ax6 = plt.subplot(3, 2, 6) plot_forecast( ax6, forecast_plants_per_cultivator, historic=plants_per_cultivator, # conf=total_cultivators_conf, title='Average Cannabis Plants per Cultivator', color=palette[5], # formatter=format_thousands, ) # Add figure notes. notes = """Data: Cannabis sales, total tracked plants, and licensees data from October 15, 2018 through October 26, 2021. Data Source: MA Cannabis Control Commission.""" plt.figtext(0.05, -0.01, notes, ha='left', fontsize=16) # Add a title above all of the subplots. fig.suptitle( 'Massachusetts Historic and Predicted Cannabis Market Performance', fontsize=40 ) # Save the figure. plt.margins(1, 1) plt.savefig( 'figures/ma_market_forecast.pdf', dpi=300, bbox_inches='tight', pad_inches=0.75, transparent=True, ) # Show the figure. plt.show() # Optional: Show a legend? # plt.legend(loc='lower left', fontsize=18) # Optional: Find a clever way to display 2022 forecast totals (curly braces?) #-------------------------------------------------------------------------- # Optional: Estimate a production function with the forecasted values # and calculate the estimated competitive wage and interest rate, # getting supplemental data from FRED (Federal Reserve Economic Data). #-------------------------------------------------------------------------- # Initialize Fred client. from fredapi import Fred config = dotenv_values('../.env') fred = Fred(api_key=config.get('FRED_API_KEY')) # Find the observation time start. observation_start = production.index.min().isoformat() # Get average weekly hours worked in MA. avg_weekly_hours = fred.get_series('SMU25000000500000002SA', observation_start=observation_start) avg_weekly_hours = end_of_period_timeseries(avg_weekly_hours) avg_weekly_hours = avg_weekly_hours.resample('W-Sun').ffill().iloc[:-1] #-------------------------------------------------------------------------- # Optional: Estimate historic competitive wages and interest rates. #-------------------------------------------------------------------------- # Define variables. Y = weekly_sales K = weekly_plants L = weekly_employees * avg_weekly_hours # Exclude missing observations. missing_sales = Y.loc[Y == 0].index Y = Y[~Y.index.isin(missing_sales)] K = K[~K.index.isin(missing_sales)] L = L[~L.index.isin(missing_sales)] # Restrict time frame. Y = Y.loc[(Y.index >= pd.to_datetime('2019-01-01')) & (Y.index <= pd.to_datetime('2021-08-01'))] K = K.loc[(K.index >= pd.to_datetime('2019-01-01')) & (K.index <= pd.to_datetime('2021-08-01'))] L = L.loc[(L.index >=
pd.to_datetime('2019-01-01')
pandas.to_datetime
"""Unit tests for engine module utility functions.""" import numpy as np import pandas as pd import pytest from pandera.engines import utils @pytest.mark.parametrize( "data_container, data_type, expected_failure_cases", [ [pd.Series(list("ab1cd3")), int, [False, False, True] * 2], [pd.Series(list("12345")), int, [True] * 5], [
pd.Series([1, 2, "foo", "bar"])
pandas.Series
# coding=utf-8 import pandas as pd import xgboost as xgb from sklearn.metrics import f1_score import param ############################ 定义评估函数 ############################ def micro_avg_f1(preds, dtrain): y_true = dtrain.get_label() return 'micro_avg_f1', f1_score(y_true, preds, average='micro') ############################ 加载特征 & 标签 ############################ df_tfidf_lr = pd.read_csv(param.data_path + '/output/feature/tfidf/lr_prob_12w.csv') df_tfidf_bnb = pd.read_csv(param.data_path + '/output/feature/tfidf/bnb_prob_12w.csv') df_tfidf_mnb =
pd.read_csv(param.data_path + '/output/feature/tfidf/mnb_prob_12w.csv')
pandas.read_csv
from datetime import datetime, timedelta from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, Timedelta, Timestamp, date_range, ) import pandas._testing as tm class TestSeriesDtypes: def test_dt64_series_astype_object(self): dt64ser = Series(
date_range("20130101", periods=3)
pandas.date_range
import os from pathlib import Path import joblib import pandas as pd import numpy as np from multiprocessing import Pool from collections import defaultdict import functools import re import sys sys.path.insert(0, './code') from utils import DataLogger # noqa: E402 class DataNotFoundException(Exception): pass def get_time_split(df): df_12 = df[df['dt'] <= 12] df_16 = df[(df['dt'] > 12) & (df['dt'] <= 16)] # df_20 = df[(df['dt'] > 16) & (df['dt'] <= 19)] # df_21 = df[(df['dt'] > 17) & (df['dt'] <= 20)] df_22 = df[(df['dt'] > 18) & (df['dt'] <= 21)] df_23 = df[(df['dt'] > 19) & (df['dt'] <= 22)] # df_24 = df[(df['dt'] > 20) & (df['dt'] <= 23)] # df_25 = df[(df['dt'] > 21) & (df['dt'] <= 24)] r_dict = { "one_to_twelve": df_12, "twelve_to_sixteen": df_16, # "prev_three_months_20": df_20, # "prev_three_months_21": df_21, "prev_three_months_22": df_22, "prev_three_months_23": df_23, # "prev_three_months_24": df_24, # "prev_three_months_25": df_25 } return r_dict def get_merge_dict(): merge_dict = { # 20: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_20"], # 21: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_21"], 22: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_22"], 23: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_23"], # 24: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_24"], # 25: ["one_to_twelve", "twelve_to_sixteen", "prev_three_months_25"], } return merge_dict def get_time_split_result(a_func): @functools.wraps(a_func) def wrapper(self, df): r_dict = defaultdict(list) df_dict = get_time_split(df) use_dict = {key: a_func(self, df_dict[key]) for key in df_dict.keys()} merge_dict = get_merge_dict() for dt in merge_dict.keys(): vals_12 = use_dict[merge_dict[dt][0]] vals_16 = use_dict[merge_dict[dt][1]] vals_prevs = use_dict[merge_dict[dt][2]] for val, val_12, val_16 in zip(vals_prevs, vals_12, vals_16): name = val[0] name_12 = "{}_12".format(name) name_16 = "{}_16".format(name) r_dict[name].append(val[1]) r_dict[name_12].append(val_12[1]) r_dict[name_16].append(val_16[1]) return r_dict return wrapper class DataLoader(): def __init__(self): self.output_path = Path(os.path.abspath(os.getcwd())) / 'output' self.input_path = Path(os.path.abspath(os.getcwd())) / 'input' self.model_path = Path(os.path.abspath(os.getcwd())) / 'model' def save_data(self, cls, data_name, message): logger = DataLogger() logger.save_data("Save data {} is generated from {}".format( data_name, message)) joblib.dump(cls, self.output_path / data_name) logger.save_data("{} is sucessfully saved".format(data_name)) def load_data(self, data_name, data_type='joblib', **kwargs): if data_type == 'joblib': data = joblib.load(self.input_path / data_name, **kwargs) elif data_type == 'csv': data = pd.read_csv(self.input_path / data_name, **kwargs) return data def load_result(self, data_name, data_type='joblib', **kwargs): if data_type == 'joblib': data = joblib.load(self.output_path / data_name, **kwargs) elif data_type == 'csv': data =
pd.read_csv(self.output_path / data_name, **kwargs)
pandas.read_csv
import time import pandas as pd import A01_process_route_seq import A02_process_package_data import A03_process_route_data import numpy as np import os import json def haversine_np(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) All args must be of equal length. """ lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6367 * c return km def merge_all_data(route_data, seq_df, package, save_file, data_output_path, data_apply_output_path, data_path): #tic = time.time() #print('load data time',time.time() - tic) assert len(route_data.loc[route_data['stops'].isna()]) == 0 assert len(seq_df.loc[seq_df['stops'].isna()]) == 0 assert len(package.loc[package['stops'].isna()]) == 0 #%% route_seq = pd.merge(route_data, seq_df,on = ['route_id','stops'], how = 'left') route_seq = route_seq.sort_values(['route_id','seq_ID']) assert len(route_seq.loc[route_seq['seq_ID'].isna()]) == 0 all_zone_id = list(pd.unique(route_seq['zone_id'])) all_zone_id = [x for x in all_zone_id if str(x) != 'nan'] if 'INIT' in all_zone_id: all_zone_id.remove('INIT') replace_zone = [] # key = all_zone_id[0] for key in all_zone_id: try: split_dot_1, split_dot_2 = key.split('.') split_dot_1_1, split_dot_1_2 = split_dot_1.split('-') assert len(split_dot_1_1) == 1 assert len(split_dot_1_2) > 0 assert len(split_dot_2) == 2 except: replace_zone.append(key) # check ### #z = replace_zone[1] all_routes_with_bad_zone = list(pd.unique(route_seq.loc[route_seq['zone_id'].isin(replace_zone),'route_id'])) for r in all_routes_with_bad_zone: info = route_seq.loc[route_seq['route_id'] == r].copy() info_with_invalid_zone = info.loc[info['zone_id'].isin(replace_zone)] prop_inv_zone = len(info_with_invalid_zone)/len(info) if prop_inv_zone > 0.3: #in_valid_zone = list(pd.unique([''])) # not fill continue else: route_seq.loc[(route_seq['route_id'] == r) & (route_seq['zone_id'].isin(replace_zone)),'zone_id'] = np.nan #,'zone_id'] = np.nan ### #a1=1 #print(route_seq['route_id'].iloc[0]) # route_seq.loc[route_seq['route_id'] == 'RouteID_00143bdd-0a6b-49ec-bb35-36593d303e77', 'zone_id'] = np.nan route_seq.loc[route_seq['type'] == 'Station', 'zone_id'] = 'INIT' # first fill all na routes route_seq['zone_na'] = route_seq['zone_id'].isna() route_seq['max_stops_num_except_ini'] = route_seq.groupby(['route_id'])['stops'].transform('count') - 1 route_seq['zone_na_num_stops'] = route_seq.groupby(['route_id'])['zone_na'].transform('sum') route_all_na = route_seq.loc[route_seq['max_stops_num_except_ini']==route_seq['zone_na_num_stops']] route_all_na_id = list(pd.unique(route_all_na['route_id'])) for key in route_all_na_id: route_seq.loc[(route_seq['route_id'] == key)&(route_seq['zone_id'] != 'INIT'), 'zone_id'] = 'A-999.9Z' route_seq = route_seq.drop(columns=['zone_na','max_stops_num_except_ini','zone_na_num_stops']) ############## FILL_NA_METHOD = 'Nearest_TT_N' # NEAREST: if FILL_NA_METHOD == 'Nearest': ##########fill by nearest na_stop = route_seq.loc[route_seq['zone_id'].isna(),['route_id','stops','lat','lng']] no_na_stop = route_seq.loc[(~(route_seq['zone_id'].isna())) & (route_seq['zone_id']!='INIT'),['route_id','stops','lat','lng','zone_id']] no_na_stop = no_na_stop.rename(columns = {'stops':'nearby_stops','lat':'lat_nearby','lng':'lng_nearby'}) na_stop_nearby_stop = na_stop.merge(no_na_stop, on = ['route_id']) na_stop_nearby_stop['dist'] = haversine_np(na_stop_nearby_stop['lng'].values, na_stop_nearby_stop['lat'].values, na_stop_nearby_stop['lng_nearby'].values, na_stop_nearby_stop['lat_nearby'].values) na_stop_nearby_stop = na_stop_nearby_stop.sort_values(['route_id','stops','dist']) na_stop_nearby_stop_with_zone = na_stop_nearby_stop.groupby(['route_id','stops'], as_index = False).first() na_stop_nearby_stop_with_zone['zone_id_infer'] = na_stop_nearby_stop_with_zone['zone_id'] route_seq = route_seq.merge(na_stop_nearby_stop_with_zone[['route_id','stops','zone_id_infer']], on = ['route_id','stops'], how = 'left') route_seq.loc[route_seq['zone_id'].isna(),'zone_id'] = route_seq.loc[route_seq['zone_id'].isna(),'zone_id_infer'] route_seq = route_seq.drop(columns = ['zone_id_infer']) #check_na = route_seq.loc[route_seq['zone_id'].isna()] #a=1 #check_all_na = na_stop_nearby_stop.loc[na_stop_nearby_stop['']] a=1 route_seq_fill_na = route_seq.copy() elif FILL_NA_METHOD == 'Nearest_N': near_num = 2 ##########fill by nearest na_stop = route_seq.loc[route_seq['zone_id'].isna(),['route_id','stops','lat','lng']] no_na_stop = route_seq.loc[(~(route_seq['zone_id'].isna())) & (route_seq['zone_id']!='INIT'),['route_id','stops','lat','lng','zone_id']] no_na_stop = no_na_stop.rename(columns = {'stops':'nearby_stops','lat':'lat_nearby','lng':'lng_nearby'}) na_stop_nearby_stop = na_stop.merge(no_na_stop, on = ['route_id']) na_stop_nearby_stop['dist'] = haversine_np(na_stop_nearby_stop['lng'].values, na_stop_nearby_stop['lat'].values, na_stop_nearby_stop['lng_nearby'].values, na_stop_nearby_stop['lat_nearby'].values) na_stop_nearby_stop = na_stop_nearby_stop.sort_values(['route_id','stops','dist']) na_stop_nearby_stop_with_zone = na_stop_nearby_stop.groupby(['route_id','stops'], as_index = False).head(near_num) na_stop_nearby_stop_with_zone = na_stop_nearby_stop_with_zone.reset_index(drop=True) na_stop_nearby_stop_with_zone['weight'] = 1/ na_stop_nearby_stop_with_zone['dist'] na_stop_nearby_stop_with_zone_num = na_stop_nearby_stop_with_zone.groupby(['route_id','stops','zone_id'])['weight'].sum().reset_index() na_stop_nearby_stop_with_zone_num = na_stop_nearby_stop_with_zone_num.rename(columns = {'weight':'num_fre_zone'}) na_stop_nearby_stop_with_zone_num = na_stop_nearby_stop_with_zone_num.sort_values(['route_id','stops','num_fre_zone'],ascending=False) na_stop_nearby_stop_with_zone = na_stop_nearby_stop_with_zone_num.groupby(['route_id','stops']).first().reset_index() na_stop_nearby_stop_with_zone['zone_id_infer'] = na_stop_nearby_stop_with_zone['zone_id'] route_seq = route_seq.merge(na_stop_nearby_stop_with_zone[['route_id','stops','zone_id_infer']], on = ['route_id','stops'], how = 'left') route_seq.loc[route_seq['zone_id'].isna(),'zone_id'] = route_seq.loc[route_seq['zone_id'].isna(),'zone_id_infer'] route_seq = route_seq.drop(columns = ['zone_id_infer']) #check_na = route_seq.loc[route_seq['zone_id'].isna()] #a=1 #check_all_na = na_stop_nearby_stop.loc[na_stop_nearby_stop['']] a=1 route_seq_fill_na = route_seq.copy() elif FILL_NA_METHOD == 'Nearest_TT_N': near_num = 1 filepath = data_path + 'model_apply_inputs/new_travel_times.json' with open(filepath, newline='') as in_file: travel_time_matrix = json.load(in_file) stop_tt = {'route_id': [], 'from_stop': [], 'to_stop': [], 'travel_time': []} for key in travel_time_matrix: for from_zone in travel_time_matrix[key]: for to_zone in travel_time_matrix[key][from_zone]: if (from_zone != to_zone): # and (from_zone == 'INIT'): stop_tt['route_id'].append(key) stop_tt['from_stop'].append(from_zone) stop_tt['to_stop'].append(to_zone) stop_tt['travel_time'].append(travel_time_matrix[key][from_zone][to_zone]) stop_tt_df =
pd.DataFrame(stop_tt)
pandas.DataFrame
#import urllib2 import csv import sys import re from datetime import datetime import time import pandas as pd import configparser import hashlib import os import rdflib import logging logging.getLogger().disabled = True if sys.version_info[0] == 3: from importlib import reload reload(sys) if sys.version_info[0] == 2: sys.setdefaultencoding('utf8') whyis = rdflib.Namespace('http://vocab.rpi.edu/whyis/') np = rdflib.Namespace("http://www.nanopub.org/nschema#") prov = rdflib.Namespace("http://www.w3.org/ns/prov#") dc = rdflib.Namespace("http://purl.org/dc/terms/") sio = rdflib.Namespace("http://semanticscience.org/resource/") setl = rdflib.Namespace("http://purl.org/twc/vocab/setl/") pv = rdflib.Namespace("http://purl.org/net/provenance/ns#") skos = rdflib.Namespace("http://www.w3.org/2008/05/skos#") rdfs = rdflib.RDFS rdf = rdflib.RDF owl = rdflib.OWL xsd = rdflib.XSD def parseString(input_string, delim) : my_list = input_string.split(delim) for i in range(0,len(my_list)) : my_list[i] = my_list[i].strip() return my_list def codeMapper(input_word) : unitVal = input_word for unit_label in unit_label_list : if (unit_label == input_word) : unit_index = unit_label_list.index(unit_label) unitVal = unit_uri_list[unit_index] for unit_code in unit_code_list : if (unit_code == input_word) : unit_index = unit_code_list.index(unit_code) unitVal = unit_uri_list[unit_index] return unitVal def convertImplicitToKGEntry(*args) : if (args[0][:2] == "??") : if (studyRef is not None ) : if (args[0]==studyRef) : return "<" + prefixes[kb] + args[0][2:] + ">" if (len(args) == 2) : return "<" + prefixes[kb] + args[0][2:] + "-" + args[1] + ">" else : return "<" + prefixes[kb] + args[0][2:] + ">" elif (':' not in args[0]) : # Check for entry in column list for item in explicit_entry_list : if args[0] == item.Column : if (len(args) == 2) : return "<" + prefixes[kb] + args[0].replace(" ","_").replace(",","").replace("(","").replace(")","").replace("/","-").replace("\\","-") + "-" + args[1] + ">" else : return "<" + prefixes[kb] + args[0].replace(" ","_").replace(",","").replace("(","").replace(")","").replace("/","-").replace("\\","-") + ">" return '"' + args[0] + "\"^^xsd:string" else : return args[0] def checkImplicit(input_word) : try: if (input_word[:2] == "??") : return True else : return False except Exception as e: print("Something went wrong in checkImplicit()" + str(e)) sys.exit(1) def isfloat(term): try: float(term) return True except ValueError: return False def isURI(term): try: if any(c in term for c in ("http://","https://")) : return True else: return False except ValueError: return False def isSchemaVar(term) : for entry in explicit_entry_list : if term == entry[1] : return True return False def assignVID(implicit_entry_tuples,timeline_tuple,a_tuple,column, npubIdentifier) : v_id = npubIdentifier for v_tuple in implicit_entry_tuples : # referenced in implicit list if v_tuple["Column"] == a_tuple[column]: v_id = hashlib.md5((str(v_tuple) + str(npubIdentifier)).encode("utf-8")).hexdigest() if v_id == None : # maybe it's referenced in the timeline for t_tuple in timeline_tuple: if t_tuple["Column"] == a_tuple[column]: #print("Got here") v_id = hashlib.md5((str(t_tuple) + str(npubIdentifier)).encode("utf-8")).hexdigest() if v_id == npubIdentifier : # if it's not in implicit list or timeline print("Warning, " + column + " ID assigned to nanopub ID") return v_id def assignTerm(col_headers, column, implicit_entry_tuples, a_tuple, row, v_id) : termURI = None for v_tuple in implicit_entry_tuples : # referenced in implicit list if v_tuple["Column"] == a_tuple[column]: if "Template" in v_tuple : template_term = extractTemplate(col_headers,row,v_tuple["Template"]) termURI = "<" + prefixes[kb] + template_term + ">" if termURI is None : termURI = convertImplicitToKGEntry(a_tuple[column],v_id) return termURI '''def processPrefixes(output_file,query_file): if 'prefixes' in config['Prefixes']: prefix_fn = config['Prefixes']['prefixes'] else: prefix_fn="prefixes.txt" prefix_file = open(prefix_fn,"r") prefixes = prefix_file.readlines() for prefix in prefixes : #print(prefix.find(">")) output_file.write(prefix) query_file.write(prefix[1:prefix.find(">")+1]) query_file.write("\n") prefix_file.close() output_file.write("\n")''' def checkTemplate(term) : if "{" in term and "}" in term: return True return False def extractTemplate(col_headers,row,term) : while checkTemplate(term) : open_index = term.find("{") close_index = term.find("}") key = term[open_index+1:close_index] term = term[:open_index] + str(row[col_headers.index(key)+1]) + term[close_index+1:] return term def extractExplicitTerm(col_headers,row,term) : # need to write this function while checkTemplate(term) : open_index = term.find("{") close_index = term.find("}") key = term[open_index+1:close_index] if isSchemaVar(key) : for entry in explicit_entry_list : if entry.Column == key : if pd.notnull(entry.Template) : term = extractTemplate(col_headers,row,entry.Template) else : typeString = "" if pd.notnull(entry.Attribute) : typeString += str(entry.Attribute) if pd.notnull(entry.Entity) : typeString += str(entry.Entity) if pd.notnull(entry.Label) : typeString += str(entry.Label) if pd.notnull(entry.Unit) : typeString += str(entry.Unit) if pd.notnull(entry.Time) : typeString += str(entry.Time) if pd.notnull(entry.inRelationTo) : typeString += str(entry.inRelationTo) if pd.notnull(entry.wasGeneratedBy) : typeString += str(entry.wasGeneratedBy) if pd.notnull(entry.wasDerivedFrom) : typeString += str(entry.wasDerivedFrom) identifierKey = hashlib.md5((str(row[col_headers.index(key)+1])+typeString).encode("utf-8")).hexdigest() term = entry.Column + "-" + identifierKey #return extractTemplate(col_headers,row,entry.Template) else : # What does it mean for a template reference to not be a schema variable? print("Warning: Template reference " + term + " is not be a schema variable") term = term[:open_index] + str(row[col_headers.index(key)+1]) + term[close_index+1:] # Needs updating probably, at least checking return term def writeClassAttributeOrEntity(item, term, input_tuple, assertionString, whereString, swrlString) : if (pd.notnull(item.Entity)) and (pd.isnull(item.Attribute)) : if ',' in item.Entity : entities = parseString(item.Entity,',') for entity in entities : assertionString += " ;\n <" + rdfs.subClassOf + "> " + codeMapper(entity) whereString += codeMapper(entity) + " " swrlString += codeMapper(entity) + "(" + term + ") ^ " if entities.index(entity) + 1 != len(entities) : whereString += ", " else : assertionString += " ;\n <" + rdfs.subClassOf + "> " + codeMapper(item.Entity) whereString += codeMapper(item.Entity) + " " swrlString += codeMapper(item.Entity) + "(" + term + ") ^ " input_tuple["Entity"]=codeMapper(item.Entity) if (input_tuple["Entity"] == "hasco:Study") : global studyRef studyRef = item.Column input_tuple["Study"] = item.Column elif (pd.isnull(item.Entity)) and (pd.notnull(item.Attribute)) : if ',' in item.Attribute : attributes = parseString(item.Attribute,',') for attribute in attributes : assertionString += " ;\n <" + rdfs.subClassOf + "> " + codeMapper(attribute) whereString += codeMapper(attribute) + " " swrlString += codeMapper(attribute) + "(" + term + ") ^ " if attributes.index(attribute) + 1 != len(attributes) : whereString += ", " else : assertionString += " ;\n <" + rdfs.subClassOf + "> " + codeMapper(item.Attribute) whereString += codeMapper(item.Attribute) + " " swrlString += codeMapper(item.Attribute) + "(" + term + ") ^ " input_tuple["Attribute"]=codeMapper(item.Attribute) else : print("Warning: Entry not assigned an Entity or Attribute value, or was assigned both.") input_tuple["Attribute"]=codeMapper("sio:Attribute") assertionString += " ;\n <" + rdfs.subClassOf + "> sio:Attribute" whereString += "sio:Attribute " swrlString += "sio:Attribute(" + term + ") ^ " return [input_tuple, assertionString, whereString, swrlString] def writeClassAttributeOf(item, term, input_tuple, assertionString, whereString, swrlString) : if (pd.notnull(item.attributeOf)) : if checkTemplate(item.attributeOf) : open_index = item.attributeOf.find("{") close_index = item.attributeOf.find("}") key = item.attributeOf[open_index+1:close_index] assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + "> " + convertImplicitToKGEntry(key) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["attributeOf"] + "> ]" #assertionString += " ;\n <" + properties_tuple["attributeOf"] + "> " + convertImplicitToKGEntry(key) whereString += " ;\n <" + properties_tuple["attributeOf"] + "> ?" + key.lower() + "_E" swrlString += properties_tuple["attributeOf"] + "(" + term + " , " + [key,key[1:] + "_V"][checkImplicit(key)] + ") ^ " else : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + "> " + convertImplicitToKGEntry(item.attributeOf) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["attributeOf"] + "> ]" #assertionString += " ;\n <" + properties_tuple["attributeOf"] + "> " + convertImplicitToKGEntry(item.attributeOf) whereString += " ;\n <" + properties_tuple["attributeOf"] + "> " + [item.attributeOf + " ",item.attributeOf[1:] + "_V "][checkImplicit(item.attributeOf)] swrlString += properties_tuple["attributeOf"] + "(" + term + " , " + [item.attributeOf,item.attributeOf[1:] + "_V"][checkImplicit(item.attributeOf)] + ") ^ " input_tuple["isAttributeOf"]=item.attributeOf return [input_tuple, assertionString, whereString, swrlString] def writeClassUnit(item, term, input_tuple, assertionString, whereString, swrlString) : if (pd.notnull(item.Unit)) : if checkTemplate(item.Unit) : open_index = item.Unit.find("{") close_index = item.Unit.find("}") key = item.Unit[open_index+1:close_index] assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + convertImplicitToKGEntry(key) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["Unit"] + "> ]" #assertionString += " ;\n <" + properties_tuple["Unit"] + "> " + convertImplicitToKGEntry(key) whereString += " ;\n <" + properties_tuple["Unit"] + "> ?" + key.lower() + "_E" swrlString += properties_tuple["Unit"] + "(" + term + " , " + [key,key[1:] + "_V"][checkImplicit(key)] + ") ^ " input_tuple["Unit"] = key else : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + str(codeMapper(item.Unit)) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["Unit"] + "> ]" #assertionString += " ;\n <" + properties_tuple["Unit"] + "> " + str(codeMapper(item.Unit)) whereString += " ;\n <" + properties_tuple["Unit"] + "> " + str(codeMapper(item.Unit)) swrlString += properties_tuple["Unit"] + "(" + term + " , " + str(codeMapper(item.Unit)) + ") ^ " input_tuple["Unit"] = codeMapper(item.Unit) # Incorporate item.Format here return [input_tuple, assertionString, whereString, swrlString] def writeClassTime(item, term, input_tuple, assertionString, whereString, swrlString) : if (pd.notnull(item.Time)) : if checkTemplate(item.Time) : open_index = item.Time.find("{") close_index = item.Time.find("}") key = item.Time[open_index+1:close_index] assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.onProperty + "> <" + properties_tuple["Time"] + "> ;\n <" + owl.someValuesFrom + "> " + convertImplicitToKGEntry(key) + " ]" #assertionString += " ;\n <" + properties_tuple["Time"] + "> " + convertImplicitToKGEntry(key) whereString += " ;\n <" + properties_tuple["Time"] + "> ?" + key.lower() + "_E" swrlString += properties_tuple["Time"] + "(" + term + " , " + [key,key[1:] + "_V"][checkImplicit(key)] + ") ^ " else : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.onProperty + "> <" + properties_tuple["Time"] + "> ;\n <" + owl.someValuesFrom + "> " + convertImplicitToKGEntry(item.Time) + " ]" #assertionString += " ;\n <" + properties_tuple["Time"] + "> " + convertImplicitToKGEntry(item.Time) whereString += " ;\n <" + properties_tuple["Time"] + "> " + [item.Time + " ",item.Time[1:] + "_V "][checkImplicit(item.Time)] swrlString += properties_tuple["Time"] + "(" + term + " , " + [item.Time + " ",item.Time[1:] + "_V "][checkImplicit(item.Time)] + ") ^ " input_tuple["Time"]=item.Time return [input_tuple, assertionString, whereString, swrlString] def writeClassRelation(item, term, input_tuple, assertionString, whereString, swrlString) : if (pd.notnull(item.inRelationTo)) : input_tuple["inRelationTo"]=item.inRelationTo # If there is a value in the Relation column but not the Role column ... if (pd.notnull(item.Relation)) and (pd.isnull(item.Role)) : assertionString += " ;\n " + item.Relation + " " + convertImplicitToKGEntry(item.inRelationTo) if(isSchemaVar(item.inRelationTo)): whereString += " ;\n " + item.Relation + " ?" + item.inRelationTo.lower() + "_E " swrlString += item.Relation + "(" + term + " , " + "?" + item.inRelationTo.lower() + "_E) ^ " else : whereString += " ;\n " + item.Relation + " " + [item.inRelationTo + " ",item.inRelationTo[1:] + "_V "][checkImplicit(item.inRelationTo)] swrlString += item.Relation + "(" + term + " , " + [item.inRelationTo,item.inRelationTo[1:] + "_V"][checkImplicit(item.inRelationTo)] + ") ^ " input_tuple["Relation"]=item.Relation # If there is a value in the Role column but not the Relation column ... elif (pd.isnull(item.Relation)) and (pd.notnull(item.Role)) : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.onProperty + "> <" + properties_tuple["Role"] + "> ;\n <" + owl.someValuesFrom + "> [ <" + rdf.type + "> <" + owl.Class + "> ;\n <" + owl.intersectionOf + "> ( \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + "> " + [item.inRelationTo,convertImplicitToKGEntry(item.inRelationTo)][checkImplicit(item.inRelationTo)] + " ;\n <" + owl.onProperty + "> <" + properties_tuple["inRelationTo"] + "> ] <" + item.Role + "> ) ] ]" #assertionString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + item.Role + " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(item.inRelationTo) + " ]" whereString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + item.Role + " ;\n <" + properties_tuple["inRelationTo"] + "> " + [item.inRelationTo + " ",item.inRelationTo[1:] + "_V "][checkImplicit(item.inRelationTo)] + " ]" swrlString += "" # add appropriate swrl term input_tuple["Role"]=item.Role # If there is a value in the Role and Relation columns ... elif (pd.notnull(item.Relation)) and (pd.notnull(item.Role)) : input_tuple["Relation"]=item.Relation input_tuple["Role"]=item.Role assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.onProperty + "> <" + properties_tuple["Role"] + "> ;\n <" + owl.someValuesFrom + "> [ <" + rdf.type + "> <" + owl.Class + "> ;\n <" + owl.intersectionOf + "> ( \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + "> " + [item.inRelationTo,convertImplicitToKGEntry(item.inRelationTo)][checkImplicit(item.inRelationTo)] + " ;\n <" + owl.onProperty + "> <" + item.Relation + "> ] <" + item.Role + "> ) ] ]" #assertionString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(item.inRelationTo) if(isSchemaVar(item.inRelationTo)): whereString += " ;\n <" + properties_tuple["inRelationTo"] + "> ?" + item.inRelationTo.lower() + "_E " swrlString += "" # add appropriate swrl term else : whereString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + [item.inRelationTo + " ",item.inRelationTo[1:] + "_V "][checkImplicit(item.inRelationTo)] swrlString += "" # add appropriate swrl term elif (pd.isnull(item.Relation)) and (pd.isnull(item.Role)) : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + "> " + convertImplicitToKGEntry(item.inRelationTo) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["inRelationTo"] + "> ]" #assertionString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(item.inRelationTo) if(isSchemaVar(item.inRelationTo)): whereString += " ;\n <" + properties_tuple["inRelationTo"] + "> ?" + item.inRelationTo.lower() + "_E " swrlString += properties_tuple["inRelationTo"] + "(" + term + " , " + "?" + item.inRelationTo.lower() + "_E) ^ " else : whereString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + [item.inRelationTo + " ",item.inRelationTo[1:] + "_V "][checkImplicit(item.inRelationTo)] swrlString += properties_tuple["inRelationTo"] + "(" + term + " , " + [item.inRelationTo,item.inRelationTo[1:] + "_V"][checkImplicit(item.inRelationTo)] + ") ^ " elif (pd.notnull(item.Role)) : # if there is a role, but no in relation to input_tuple["Role"]=item.Role assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.onProperty + "> <" + properties_tuple["Role"] + "> ;\n <" + owl.someValuesFrom + "> [ <" + rdf.type + "> <" + item.Role + "> ] ]" #assertionString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + item.Role + " ]" whereString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + item.Role + " ]" swrlString += "" # add appropriate swrl term return [input_tuple, assertionString, whereString, swrlString] def writeClassWasDerivedFrom(item, term, input_tuple, provenanceString, whereString, swrlString) : if pd.notnull(item.wasDerivedFrom) : provenanceString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.someValuesFrom + "> " + convertImplicitToKGEntry(item.wasDerivedFrom) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["wasDerivedFrom"] + "> ]" #provenanceString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> " + convertImplicitToKGEntry(item.wasDerivedFrom) input_tuple["wasDerivedFrom"]=item.wasDerivedFrom if(isSchemaVar(item.wasDerivedFrom)): whereString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> ?" + item.wasDerivedFrom.lower() + "_E " swrlString += properties_tuple["wasDerivedFrom"] + "(" + term + " , " + "?" + item.wasDerivedFrom.lower() + "_E) ^ " elif checkTemplate(item.wasDerivedFrom) : open_index = item.wasDerivedFrom.find("{") close_index = item.wasDerivedFrom.find("}") key = item.wasDerivedFrom[open_index+1:close_index] provenanceString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.someValuesFrom + "> " + convertImplicitToKGEntry(key) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["wasDerivedFrom"] + "> ]" #provenanceString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> " + convertImplicitToKGEntry(key) whereString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> ?" + key.lower() + "_E" swrlString += properties_tuple["wasDerivedFrom"] + "(" + term + " , " + [key,key[1:] + "_V"][checkImplicit(key)] + ") ^ " else : whereString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> " + [item.wasDerivedFrom + " ",item.wasDerivedFrom[1:] + "_V "][checkImplicit(item.wasDerivedFrom)] swrlString += properties_tuple["wasDerivedFrom"] + "(" + term + " , " + [item.wasDerivedFrom,item.wasDerivedFrom[1:] + "_V"][checkImplicit(item.wasDerivedFrom)] + ") ^ " return [input_tuple, provenanceString, whereString, swrlString] def writeClassWasGeneratedBy(item, term, input_tuple, provenanceString, whereString, swrlString) : if pd.notnull(item.wasGeneratedBy) : provenanceString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> " + convertImplicitToKGEntry(item.wasGeneratedBy) input_tuple["wasGeneratedBy"]=item.wasGeneratedBy if(isSchemaVar(item.wasGeneratedBy)): whereString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> ?" + item.wasGeneratedBy.lower() + "_E " swrlString += properties_tuple["wasGeneratedBy"] + "(" + term + " , " + "?" + item.wasGeneratedBy.lower() + "_E) ^ " elif checkTemplate(item.wasGeneratedBy) : open_index = item.wasGeneratedBy.find("{") close_index = item.wasGeneratedBy.find("}") key = item.wasGeneratedBy[open_index+1:close_index] assertionString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> " + convertImplicitToKGEntry(key) whereString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> ?" + key.lower() + "_E" swrlString += properties_tuple["wasGeneratedBy"] + "(" + term + " , " + [key,key[1:] + "_V"][checkImplicit(key)] + ") ^ " else : whereString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> " + [item.wasGeneratedBy + " ",item.wasGeneratedBy[1:] + "_V "][checkImplicit(item.wasGeneratedBy)] swrlString += properties_tuple["wasGeneratedBy"] + "(" + term + " , " + [item.wasGeneratedBy,item.wasGeneratedBy[1:] + "_V"][checkImplicit(item.wasGeneratedBy)] + ") ^ " return [input_tuple, provenanceString, whereString, swrlString] def writeImplicitEntryTuples(implicit_entry_list, timeline_tuple, output_file, query_file, swrl_file, dm_fn) : implicit_entry_tuples = [] assertionString = '' provenanceString = '' whereString = '\n' swrlString = '' datasetIdentifier = hashlib.md5(dm_fn.encode('utf-8')).hexdigest() output_file.write("<" + prefixes[kb] + "head-implicit_entry-" + datasetIdentifier + "> { ") output_file.write("\n <" + prefixes[kb] + "nanoPub-implicit_entry-" + datasetIdentifier + "> <" + rdf.type + "> <" + np.Nanopublication + ">") output_file.write(" ;\n <" + np.hasAssertion + "> <" + prefixes[kb] + "assertion-implicit_entry-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasProvenance + "> <" + prefixes[kb] + "provenance-implicit_entry-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasPublicationInfo + "> <" + prefixes[kb] + "pubInfo-implicit_entry-" + datasetIdentifier + ">") output_file.write(" .\n}\n\n") col_headers=list(pd.read_csv(dm_fn).columns.values) for item in implicit_entry_list : implicit_tuple = {} if "Template" in col_headers and pd.notnull(item.Template) : implicit_tuple["Template"]=item.Template assertionString += "\n <" + prefixes[kb] + item.Column[2:] + "> <" + rdf.type + "> owl:Class" term_implicit = item.Column[1:] + "_V" whereString += " " + term_implicit + " <" + rdf.type + "> " implicit_tuple["Column"]=item.Column if (hasattr(item,"Label") and pd.notnull(item.Label)) : implicit_tuple["Label"]=item.Label if ',' in item.Label : labels = parseString(item.Label,',') for label in labels : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + label + "\"^^xsd:string" else : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + item.Label + "\"^^xsd:string" else : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + item.Column[2:] + "\"^^xsd:string" implicit_tuple["Label"]=item.Column[2:] if (hasattr(item,"Comment") and pd.notnull(item.Comment)) : assertionString += " ;\n <" + properties_tuple["Comment"] + "> \"" + item.Comment + "\"^^xsd:string" implicit_tuple["Comment"]=item.Comment [implicit_tuple, assertionString, whereString, swrlString] = writeClassAttributeOrEntity(item, term_implicit, implicit_tuple, assertionString, whereString, swrlString) [implicit_tuple, assertionString, whereString, swrlString] = writeClassAttributeOf(item, term_implicit, implicit_tuple, assertionString, whereString, swrlString) [implicit_tuple, assertionString, whereString, swrlString] = writeClassUnit(item, term_implicit, implicit_tuple, assertionString, whereString, swrlString) [implicit_tuple, assertionString, whereString, swrlString] = writeClassTime(item, term_implicit, implicit_tuple, assertionString, whereString, swrlString) [implicit_tuple, assertionString, whereString, swrlString] = writeClassRelation(item, term_implicit, implicit_tuple, assertionString, whereString, swrlString) assertionString += " .\n" provenanceString += "\n <" + prefixes[kb] + item.Column[2:] + ">" provenanceString +="\n <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime" [implicit_tuple, provenanceString, whereString, swrlString] = writeClassWasGeneratedBy(item, term_implicit, implicit_tuple, provenanceString, whereString, swrlString) [implicit_tuple, provenanceString, whereString, swrlString] = writeClassWasDerivedFrom(item, term_implicit, implicit_tuple, provenanceString, whereString, swrlString) provenanceString += " .\n" whereString += ".\n\n" implicit_entry_tuples.append(implicit_tuple) if timeline_tuple != {}: for key in timeline_tuple : assertionString += "\n " + convertImplicitToKGEntry(key) + " <" + rdf.type + "> owl:Class " for timeEntry in timeline_tuple[key] : if 'Type' in timeEntry : assertionString += " ;\n rdfs:subClassOf " + timeEntry['Type'] if 'Label' in timeEntry : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + timeEntry['Label'] + "\"^^xsd:string" if 'Start' in timeEntry and 'End' in timeEntry and timeEntry['Start'] == timeEntry['End']: assertionString += " ;\n <" + sio.hasValue + "> " + str(timeEntry['Start']) # rewrite this as a restriction if 'Start' in timeEntry : if 'Unit' in timeEntry : assertionString += " ;\n <" + rdfs.subClassOf + ">\n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + ">\n [ <" + rdf.type + "> <" + owl.Class + "> ;\n <" + owl.intersectionOf + "> ( [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + str(timeEntry['Start']) +" ;\n <" + owl.onProperty + "> <" + sio.hasValue + "> ] " + str(codeMapper(timeEntry['Unit'])) + " ) ] ;\n <" + owl.onProperty + "> <" + properties_tuple["Start"] + "> ] " else : # update restriction that gets generated if unit is not specified assertionString += " ;\n <" + properties_tuple["Start"] + "> [ <" + sio.hasValue + "> " + str(timeEntry['Start']) + " ]" if 'End' in timeEntry : if 'Unit' in timeEntry : assertionString += " ;\n <" + rdfs.subClassOf + ">\n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.allValuesFrom + ">\n [ <" + rdf.type + "> <" + owl.Class + "> ;\n <" + owl.intersectionOf + "> ( [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + str(timeEntry['End']) +" ;\n <" + owl.onProperty + "> <" + sio.hasValue + "> ] " + str(codeMapper(timeEntry['Unit'])) + " ) ] ;\n <" + owl.onProperty + "> <" + properties_tuple["End"] + "> ] " else : # update restriction that gets generated if unit is not specified assertionString += " ;\n <" + properties_tuple["End"] + "> [ <" + sio.hasValue + "> " + str(timeEntry['End']) + " ]" if 'Unit' in timeEntry : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + str(codeMapper(timeEntry['Unit'])) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["Unit"] + "> ]" #assertionString += " ;\n <" + properties_tuple["Unit"] + "> " + timeEntry['Unit'] if 'inRelationTo' in timeEntry : assertionString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(timeEntry['inRelationTo']) assertionString += " .\n" provenanceString += "\n " + convertImplicitToKGEntry(key) + " <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n" output_file.write("<" + prefixes[kb] + "assertion-implicit_entry-" + datasetIdentifier + "> {") output_file.write(assertionString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "provenance-implicit_entry-" + datasetIdentifier + "> {") provenanceString = "\n <" + prefixes[kb] + "assertion-implicit_entry-" + datasetIdentifier + "> <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n" + provenanceString output_file.write(provenanceString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "pubInfo-implicit_entry-" + datasetIdentifier + "> {\n <" + prefixes[kb] + "nanoPub-implicit_entry-" + datasetIdentifier + "> <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n}\n\n") whereString += "}" #print(whereString) query_file.write(whereString) swrl_file.write(swrlString[:-2]) return implicit_entry_tuples def writeExplicitEntryTuples(explicit_entry_list, output_file, query_file, swrl_file, dm_fn) : explicit_entry_tuples = [] assertionString = '' provenanceString = '' publicationInfoString = '' selectString = "SELECT DISTINCT " whereString = "WHERE {\n" swrlString = "" datasetIdentifier = hashlib.md5(dm_fn.encode('utf-8')).hexdigest() output_file.write("<" + prefixes[kb] + "head-explicit_entry-" + datasetIdentifier + "> { ") output_file.write("\n <" + prefixes[kb] + "nanoPub-explicit_entry-" + datasetIdentifier + "> <" + rdf.type + "> <" + np.Nanopublication + ">") output_file.write(" ;\n <" + np.hasAssertion + "> <" + prefixes[kb] + "assertion-explicit_entry-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasProvenance + "> <" + prefixes[kb] + "provenance-explicit_entry-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasPublicationInfo + "> <" + prefixes[kb] + "pubInfo-explicit_entry-" + datasetIdentifier + ">") output_file.write(" .\n}\n\n") col_headers=list(pd.read_csv(dm_fn).columns.values) for item in explicit_entry_list : explicit_entry_tuple = {} if "Template" in col_headers and pd.notnull(item.Template) : explicit_entry_tuple["Template"]=item.Template term = item.Column.replace(" ","_").replace(",","").replace("(","").replace(")","").replace("/","-").replace("\\","-") assertionString += "\n <" + prefixes[kb] + term + "> <" + rdf.type + "> owl:Class" selectString += "?" + term.lower() + " " whereString += " ?" + term.lower() + "_E <" + rdf.type + "> " term_expl = "?" + term.lower() + "_E" #print(item.Column explicit_entry_tuple["Column"]=item.Column [explicit_entry_tuple, assertionString, whereString, swrlString] = writeClassAttributeOrEntity(item, term_expl, explicit_entry_tuple, assertionString, whereString, swrlString) [explicit_entry_tuple, assertionString, whereString, swrlString] = writeClassAttributeOf(item, term_expl, explicit_entry_tuple, assertionString, whereString, swrlString) [explicit_entry_tuple, assertionString, whereString, swrlString] = writeClassUnit(item, term_expl, explicit_entry_tuple, assertionString, whereString, swrlString) [explicit_entry_tuple, assertionString, whereString, swrlString] = writeClassTime(item, term_expl, explicit_entry_tuple, assertionString, whereString, swrlString) [explicit_entry_tuple, assertionString, whereString, swrlString] = writeClassRelation(item, term_expl, explicit_entry_tuple, assertionString, whereString, swrlString) if "Label" in col_headers and (pd.notnull(item.Label)) : if ',' in item.Label : labels = parseString(item.Label,',') for label in labels : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + label + "\"^^xsd:string" else : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + item.Label + "\"^^xsd:string" explicit_entry_tuple["Label"]=item.Label if "Comment" in col_headers and (pd.notnull(item.Comment)) : assertionString += " ;\n <" + properties_tuple["Comment"] + "> \"" + item.Comment + "\"^^xsd:string" explicit_entry_tuple["Comment"]=item.Comment assertionString += " .\n" provenanceString += "\n <" + prefixes[kb] + term + ">" provenanceString += "\n <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime" [explicit_entry_tuple, provenanceString, whereString, swrlString] = writeClassWasGeneratedBy(item, term_expl, explicit_entry_tuple, provenanceString, whereString, swrlString) [explicit_entry_tuple, provenanceString, whereString, swrlString] = writeClassWasDerivedFrom(item, term_expl, explicit_entry_tuple, provenanceString, whereString, swrlString) provenanceString += " .\n" whereString += " ;\n <" + sio.hasValue + "> ?" + term.lower() + " .\n\n" if "hasPosition" in col_headers and pd.notnull(item.hasPosition) : publicationInfoString += "\n <" + prefixes[kb] + term + "> hasco:hasPosition \"" + str(item.hasPosition) + "\"^^xsd:integer ." explicit_entry_tuple["hasPosition"]=item.hasPosition explicit_entry_tuples.append(explicit_entry_tuple) output_file.write("<" + prefixes[kb] + "assertion-explicit_entry-" + datasetIdentifier + "> {") output_file.write(assertionString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "provenance-explicit_entry-" + datasetIdentifier + "> {") provenanceString = "\n <" + prefixes[kb] + "assertion-explicit_entry-" + datasetIdentifier + "> <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n" + provenanceString output_file.write(provenanceString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "pubInfo-explicit_entry-" + datasetIdentifier + "> {\n <" + prefixes[kb] + "nanoPub-explicit_entry-" + datasetIdentifier + "> <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .") output_file.write(publicationInfoString + "\n}\n\n") #print(selectString) #print(whereString) query_file.write(selectString) query_file.write(whereString) swrl_file.write(swrlString) return explicit_entry_tuples def writeImplicitEntry(assertionString, provenanceString,publicationInfoString, explicit_entry_tuples, implicit_entry_tuples, timeline_tuple, vref_list, v_column, index, row, col_headers) : try : #col_headers=list(pd.read_csv(dm_fn).columns.values) if timeline_tuple != {} : if v_column in timeline_tuple : v_id = hashlib.md5((str(timeline_tuple[v_column]) + str(index)).encode("utf-8")).hexdigest() assertionString += "\n " + convertImplicitToKGEntry(v_column, v_id) + " <" + rdf.type + "> " + convertImplicitToKGEntry(v_column) for timeEntry in timeline_tuple[v_column] : if 'Type' in timeEntry : assertionString += " ;\n <" + rdf.type + "> " + timeEntry['Type'] if 'Label' in timeEntry : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + timeEntry['Label'] + "\"^^xsd:string" if 'Start' in timeEntry and 'End' in timeEntry and timeEntry['Start'] == timeEntry['End']: assertionString += " ;\n <" + sio.hasValue + "> " + str(timeEntry['Start']) if 'Start' in timeEntry : assertionString += " ;\n <" + properties_tuple["Start"] + "> [ <" + sio.hasValue + "> " + str(timeEntry['Start']) + " ]" if 'End' in timeEntry : assertionString += " ;\n <" + properties_tuple["End"] + "> [ <" + sio.hasValue + "> " + str(timeEntry['End']) + " ]" if 'Unit' in timeEntry : assertionString += " ;\n <" + rdfs.subClassOf + "> \n [ <" + rdf.type + "> <" + owl.Restriction + "> ;\n <" + owl.hasValue + "> " + str(codeMapper(timeEntry['Unit'])) + " ;\n <" + owl.onProperty + "> <" + properties_tuple["Unit"] + "> ]" #assertionString += " ;\n <" + properties_tuple["Unit"] + "> " + timeEntry['Unit'] if 'inRelationTo' in timeEntry : assertionString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(timeEntry['inRelationTo'], v_id) if checkImplicit(timeEntry['inRelationTo']) and timeEntry['inRelationTo'] not in vref_list : vref_list.append(timeEntry['inRelationTo']) assertionString += " .\n" for v_tuple in implicit_entry_tuples : if (v_tuple["Column"] == v_column) : if "Study" in v_tuple : continue else : v_id = hashlib.md5((str(v_tuple) + str(index)).encode("utf-8")).hexdigest() if "Template" in v_tuple : template_term = extractTemplate(col_headers,row,v_tuple["Template"]) termURI = "<" + prefixes[kb] + template_term + ">" else : termURI = "<" + prefixes[kb] + v_tuple["Column"][2:] + "-" + v_id + ">" assertionString += "\n " + termURI + " <" + rdf.type + "> <" + prefixes[kb] + v_tuple["Column"][2:] + ">" if "Entity" in v_tuple : if ',' in v_tuple["Entity"] : entities = parseString(v_tuple["Entity"],',') for entity in entities : assertionString += " ;\n <" + rdf.type + "> " + entity else : assertionString += " ;\n <" + rdf.type + "> " + v_tuple["Entity"] if "Attribute" in v_tuple : if ',' in v_tuple["Attribute"] : attributes = parseString(v_tuple["Attribute"],',') for attribute in attributes : assertionString += " ;\n <" + rdf.type + "> " + attribute else : assertionString += " ;\n <" + rdf.type + "> " + v_tuple["Attribute"] # Need to get the right ID uri if we put this in.. Commenting out identifier for now #if "Subject" in v_tuple : # assertionString += " ;\n sio:hasIdentifier <" + prefixes[kb] + v_tuple["Subject"] + "-" + v_id + ">" #should be actual ID if "Label" in v_tuple : if ',' in v_tuple["Label"] : labels = parseString(v_tuple["Label"],',') for label in labels : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + label + "\"^^xsd:string" else : assertionString += " ;\n <" + properties_tuple["Label"] + "> \"" + v_tuple["Label"] + "\"^^xsd:string" if "Time" in v_tuple : if checkImplicit(v_tuple["Time"]) : for vr_tuple in implicit_entry_tuples : if (vr_tuple["Column"] == v_tuple["Time"]) : timeID = hashlib.md5((str(vr_tuple) + str(index)).encode("utf-8")).hexdigest() assertionString += " ;\n <" + properties_tuple["Time"] + "> " + convertImplicitToKGEntry(v_tuple["Time"], timeID) if v_tuple["Time"] not in vref_list : vref_list.append(v_tuple["Time"]) else : assertionString += " ;\n <" + properties_tuple["Time"] + "> " + convertImplicitToKGEntry(v_tuple["Time"], v_id) #should be actual ID if "inRelationTo" in v_tuple : relationToID = None for vr_tuple in implicit_entry_tuples : if (vr_tuple["Column"] == v_tuple["inRelationTo"]) : relationToID = hashlib.md5((str(vr_tuple) + str(index)).encode("utf-8")).hexdigest() if ("Role" in v_tuple) and ("Relation" not in v_tuple) : assertionString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + v_tuple["Role"] + " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(v_tuple["inRelationTo"], relationToID) + " ]" elif ("Role" not in v_tuple) and ("Relation" in v_tuple) : assertionString += " ;\n " + v_tuple["Relation"] + " " + convertImplicitToKGEntry(v_tuple["inRelationTo"],v_id) assertionString += " ;\n " + v_tuple["Relation"] + " " + convertImplicitToKGEntry(v_tuple["inRelationTo"],relationToID) elif ("Role" not in v_tuple) and ("Relation" not in v_tuple) : assertionString += " ;\n <" + properties_tuple["inRelationTo"] + "> " + convertImplicitToKGEntry(v_tuple["inRelationTo"],relationToID) elif "Role" in v_tuple : assertionString += " ;\n <" + properties_tuple["Role"] + "> [ <" + rdf.type + "> " + v_tuple["Role"] + " ]" assertionString += " .\n" provenanceString += "\n " + termURI + " <" + prov.generatedAtTime + "> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime" if "wasGeneratedBy" in v_tuple : if ',' in v_tuple["wasGeneratedBy"] : generatedByTerms = parseString(v_tuple["wasGeneratedBy"],',') for generatedByTerm in generatedByTerms : provenanceString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> " + convertImplicitToKGEntry(generatedByTerm,v_id) if checkImplicit(generatedByTerm) and generatedByTerm not in vref_list : vref_list.append(generatedByTerm) else : provenanceString += " ;\n <" + properties_tuple["wasGeneratedBy"] + "> " + convertImplicitToKGEntry(v_tuple["wasGeneratedBy"],v_id) if checkImplicit(v_tuple["wasGeneratedBy"]) and v_tuple["wasGeneratedBy"] not in vref_list : vref_list.append(v_tuple["wasGeneratedBy"]); if "wasDerivedFrom" in v_tuple : if ',' in v_tuple["wasDerivedFrom"] : derivedFromTerms = parseString(v_tuple["wasDerivedFrom"],',') for derivedFromTerm in derivedFromTerms : provenanceString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> " + convertImplicitToKGEntry(derivedFromTerm,v_id) if checkImplicit(derivedFromTerm) and derivedFromTerm not in vref_list : vref_list.append(derivedFromTerm); else : provenanceString += " ;\n <" + properties_tuple["wasDerivedFrom"] + "> " + convertImplicitToKGEntry(v_tuple["wasDerivedFrom"],v_id) if checkImplicit(v_tuple["wasDerivedFrom"]) and v_tuple["wasDerivedFrom"] not in vref_list : vref_list.append(v_tuple["wasDerivedFrom"]); #if "wasGeneratedBy" in v_tuple or "wasDerivedFrom" in v_tuple : provenanceString += " .\n" return [assertionString,provenanceString,publicationInfoString,vref_list] except Exception as e : print("Warning: Unable to create implicit entry: " + str(e)) def processInfosheet(output_file, dm_fn, cb_fn, cmap_fn, timeline_fn): infosheet_tuple = {} if 'infosheet' in config['Source Files'] : infosheet_fn = config['Source Files']['infosheet'] try : infosheet_file = pd.read_csv(infosheet_fn, dtype=object) except Exception as e : print("Warning: Collection metadata will not be written to the output file.\nThe specified Infosheet file does not exist or is unreadable: " + str(e)) return [dm_fn, cb_fn, cmap_fn, timeline_fn] for row in infosheet_file.itertuples() : if(pd.notnull(row.Value)): infosheet_tuple[row.Attribute]=row.Value # If SDD files included in Infosheet, they override the config declarations if "Dictionary Mapping" in infosheet_tuple : dm_fn = infosheet_tuple["Dictionary Mapping"] if "Codebook" in infosheet_tuple : cb_fn = infosheet_tuple["Codebook"] if "Code Mapping" in infosheet_tuple : cmap_fn = infosheet_tuple["Code Mapping"] if "Timeline" in infosheet_tuple : timeline_fn = infosheet_tuple["Timeline"] datasetIdentifier = hashlib.md5(dm_fn.encode('utf-8')).hexdigest() output_file.write("<" + prefixes[kb] + "head-collection_metadata-" + datasetIdentifier + "> { ") output_file.write("\n <" + prefixes[kb] + "nanoPub-collection_metadata-" + datasetIdentifier + "> <" + rdf.type + "> <" + np.Nanopublication + ">") output_file.write(" ;\n <" + np.hasAssertion + "> <" + prefixes[kb] + "assertion-collection_metadata-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasProvenance + "> <" + prefixes[kb] + "provenance-collection_metadata-" + datasetIdentifier + ">") output_file.write(" ;\n <" + np.hasPublicationInfo + "> <" + prefixes[kb] + "pubInfo-collection_metadata-" + datasetIdentifier + ">") output_file.write(" .\n}\n\n") assertionString = "<" + prefixes[kb] + "collection-" + datasetIdentifier + ">" provenanceString = " <" + prefixes[kb] + "collection-" + datasetIdentifier + "> <http://www.w3.org/ns/prov#generatedAtTime> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime" if "Type" in infosheet_tuple : assertionString += " <" + rdf.type + "> " + [infosheet_tuple["Type"],"<" + infosheet_tuple["Type"] + ">"][isURI(infosheet_tuple["Type"])] else : assertionString += " <" + rdf.type + "> <http://purl.org/dc/dcmitype/Collection>" #print("Warning: The Infosheet file is missing the Type value declaration") #sys.exit(1) if "Title" in infosheet_tuple : assertionString += " ;\n <http://purl.org/dc/terms/title> \"" + infosheet_tuple["Title"] + "\"^^xsd:string" if "Alternative Title" in infosheet_tuple : if ',' in infosheet_tuple["Alternative Title"] : alt_titles = parseString(infosheet_tuple["Alternative Title"],',') for alt_title in alt_titles : assertionString += " ;\n <http://purl.org/dc/terms/alternative> \"" + alt_title + "\"^^xsd:string" else : assertionString += " ;\n <http://purl.org/dc/terms/alternative> \"" + infosheet_tuple["Alternative Title"] + "\"^^xsd:string" if "Comment" in infosheet_tuple : assertionString += " ;\n <http://www.w3.org/2000/01/rdf-schema#comment> \"" + infosheet_tuple["Comment"] + "\"^^xsd:string" if "Description" in infosheet_tuple : assertionString += " ;\n <http://purl.org/dc/terms/description> \"" + infosheet_tuple["Description"] + "\"^^xsd:string" if "Date Created" in infosheet_tuple : provenanceString += " ;\n <http://purl.org/dc/terms/created> \"" + infosheet_tuple["Date Created"] + "\"^^xsd:date" if "Creators" in infosheet_tuple : if ',' in infosheet_tuple["Creators"] : creators = parseString(infosheet_tuple["Creators"],',') for creator in creators : provenanceString += " ;\n <http://purl.org/dc/terms/creator> " + ["\"" + creator + "\"^^xsd:string","<" + creator + ">"][isURI(creator)] else : provenanceString += " ;\n <http://purl.org/dc/terms/creator> " + ["\"" + infosheet_tuple["Creators"] + "\"^^xsd:string","<" + infosheet_tuple["Creators"] + ">"][isURI(infosheet_tuple["Creators"])] if "Contributors" in infosheet_tuple : if ',' in infosheet_tuple["Contributors"] : contributors = parseString(infosheet_tuple["Contributors"],',') for contributor in contributors : provenanceString += " ;\n <http://purl.org/dc/terms/contributor> " + ["\"" + contributor + "\"^^xsd:string","<" + contributor + ">"][isURI(contributor)] else : provenanceString += " ;\n <http://purl.org/dc/terms/contributor> " + ["\"" + infosheet_tuple["Contributors"] + "\"^^xsd:string","<" + infosheet_tuple["Contributors"] + ">"][isURI(infosheet_tuple["Contributors"])] if "Publisher" in infosheet_tuple : if ',' in infosheet_tuple["Publisher"] : publishers = parseString(infosheet_tuple["Publisher"],',') for publisher in publishers : provenanceString += " ;\n <http://purl.org/dc/terms/publisher> " + ["\"" + publisher + "\"^^xsd:string","<" + publisher + ">"][isURI(publisher)] else : provenanceString += " ;\n <http://purl.org/dc/terms/publisher> " + ["\"" + infosheet_tuple["Publisher"] + "\"^^xsd:string","<" + infosheet_tuple["Publisher"] + ">"][isURI(infosheet_tuple["Publisher"])] if "Date of Issue" in infosheet_tuple : provenanceString += " ;\n <http://purl.org/dc/terms/issued> \"" + infosheet_tuple["Date of Issue"] + "\"^^xsd:date" if "Link" in infosheet_tuple : assertionString += " ;\n <http://xmlns.com/foaf/0.1/page> <" + infosheet_tuple["Link"] + ">" if "Identifier" in infosheet_tuple : assertionString += " ;\n <http://semanticscience.org/resource/hasIdentifier> \n [ <" + rdf.type + "> <http://semanticscience.org/resource/Identifier> ; \n <http://semanticscience.org/resource/hasValue> \"" + infosheet_tuple["Identifier"] + "\"^^xsd:string ]" if "Keywords" in infosheet_tuple : if ',' in infosheet_tuple["Keywords"] : keywords = parseString(infosheet_tuple["Keywords"],',') for keyword in keywords : assertionString += " ;\n <http://www.w3.org/ns/dcat#keyword> \"" + keyword + "\"^^xsd:string" else : assertionString += " ;\n <http://www.w3.org/ns/dcat#keyword> \"" + infosheet_tuple["Keywords"] + "\"^^xsd:string" if "License" in infosheet_tuple : if ',' in infosheet_tuple["License"] : licenses = parseString(infosheet_tuple["License"],',') for license in licenses : assertionString += " ;\n <http://purl.org/dc/terms/license> " + ["\"" + license + "\"^^xsd:string","<" + license + ">"][isURI(license)] else : assertionString += " ;\n <http://purl.org/dc/terms/license> " + ["\"" + infosheet_tuple["License"] + "\"^^xsd:string","<" + infosheet_tuple["License"] + ">"][isURI(infosheet_tuple["License"])] if "Rights" in infosheet_tuple : if ',' in infosheet_tuple["Rights"] : rights = parseString(infosheet_tuple["Rights"],',') for right in rights : assertionString += " ;\n <http://purl.org/dc/terms/rights> " + ["\"" + right + "\"^^xsd:string","<" + right + ">"][isURI(right)] else : assertionString += " ;\n <http://purl.org/dc/terms/rights> " + ["\"" + infosheet_tuple["Rights"] + "\"^^xsd:string","<" + infosheet_tuple["Rights"] + ">"][isURI(infosheet_tuple["Rights"])] if "Language" in infosheet_tuple : assertionString += " ;\n <http://purl.org/dc/terms/language> \"" + infosheet_tuple["Language"] + "\"^^xsd:string" if "Version" in infosheet_tuple : provenanceString += " ;\n <http://purl.org/pav/version> " + ["\"" + infosheet_tuple["Version"] + "\"^^xsd:string","<" + infosheet_tuple["Version"] + ">"][isURI(infosheet_tuple["Version"])] provenanceString += " ;\n <http://www.w3.org/2002/07/owl/versionInfo> " + ["\"" + infosheet_tuple["Version"] + "\"^^xsd:string","<" + infosheet_tuple["Version"] + ">"][isURI(infosheet_tuple["Version"])] if "Previous Version" in infosheet_tuple : provenanceString += " ;\n <http://purl.org/pav/previousVersion> " + ["\"" + infosheet_tuple["Previous Version"] + "\"^^xsd:string","<" + infosheet_tuple["Previous Version"] + ">"][isURI(infosheet_tuple["Previous Version"])] if "Version Of" in infosheet_tuple : provenanceString += " ;\n <http://purl.org/dc/terms/isVersionOf> " + ["\"" + infosheet_tuple["Version Of"] + "\"^^xsd:string","<" + infosheet_tuple["Version Of"] + ">"][isURI(infosheet_tuple["Version Of"])] if "Standards" in infosheet_tuple : if ',' in infosheet_tuple["Standards"] : standards = parseString(infosheet_tuple["Standards"],',') for standard in standards : assertionString += " ;\n <http://purl.org/dc/terms/conformsTo> " + ["\"" + standard + "\"^^xsd:string","<" + standard + ">"][isURI(standard)] else : assertionString += " ;\n <http://purl.org/dc/terms/conformsTo> " + ["\"" + infosheet_tuple["Standards"] + "\"^^xsd:string","<" + infosheet_tuple["Standards"] + ">"][isURI(infosheet_tuple["Standards"])] if "Source" in infosheet_tuple : if ',' in infosheet_tuple["Source"] : sources = parseString(infosheet_tuple["Source"],',') for source in sources : provenanceString += " ;\n <http://purl.org/dc/terms/source> \"" + source + "\"^^xsd:string" else : provenanceString += " ;\n <http://purl.org/dc/terms/source> " + ["\"" + infosheet_tuple["Source"] + "\"^^xsd:string","<" + infosheet_tuple["Source"] + ">"][isURI(infosheet_tuple["Source"])] if "File Format" in infosheet_tuple : assertionString += " ;\n <http://purl.org/dc/terms/format> \"" + infosheet_tuple["File Format"] + "\"^^xsd:string" if "Documentation" in infosheet_tuple : # currently encoded as URI, should confirm that it really is one provenanceString += " ;\n <http://www.w3.org/ns/dcat#landingPage> <" + infosheet_tuple["Documentation"] + ">" if "Imports" in infosheet_tuple : if ',' in infosheet_tuple["Imports"] : imports = parseString(infosheet_tuple["Imports"],',') for imp in imports : assertionString += " ;\n <http://www.w3.org/2002/07/owl#imports> " + [imp,"<" + imp + ">"][isURI(imp)] else : assertionString += " ;\n <http://www.w3.org/2002/07/owl#imports> " + [infosheet_tuple["Imports"],"<" + infosheet_tuple["Imports"] + ">"][isURI(infosheet_tuple["Imports"])] assertionString += " .\n" provenanceString += " .\n" output_file.write("<" + prefixes[kb] + "assertion-collection_metadata-" + datasetIdentifier + "> {\n " + assertionString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "provenance-collection_metadata-" + datasetIdentifier + "> {\n <" + prefixes[kb] + "assertion-dataset_metadata-" + datasetIdentifier + "> <http://www.w3.org/ns/prov#generatedAtTime> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n" + provenanceString + "\n}\n\n") output_file.write("<" + prefixes[kb] + "pubInfo-collection_metadata-" + datasetIdentifier + "> {") publicationInfoString = "\n <" + prefixes[kb] + "nanoPub-collection_metadata-" + datasetIdentifier + "> <http://www.w3.org/ns/prov#generatedAtTime> \"" + "{:4d}-{:02d}-{:02d}".format(datetime.utcnow().year,datetime.utcnow().month,datetime.utcnow().day) + "T" + "{:02d}:{:02d}:{:02d}".format(datetime.utcnow().hour,datetime.utcnow().minute,datetime.utcnow().second) + "Z\"^^xsd:dateTime .\n" output_file.write(publicationInfoString + "\n}\n\n") return [dm_fn, cb_fn, cmap_fn, timeline_fn] def processPrefixes(output_file,query_file): prefixes = {} if 'prefixes' in config['Prefixes']: prefix_fn = config['Prefixes']['prefixes'] else: prefix_fn="prefixes.csv" try: prefix_file = pd.read_csv(prefix_fn, dtype=object) for row in prefix_file.itertuples() : prefixes[row.prefix] = row.url for prefix in prefixes : #print(prefix.find(">")) output_file.write("@prefix " + prefix + ": <" + prefixes[prefix] + "> .\n") query_file.write("prefix " + prefix + ": <" + prefixes[prefix] + "> \n") query_file.write("\n") output_file.write("\n") except Exception as e : print("Warning: Something went wrong when trying to read the prefixes file: " + str(e)) return prefixes def processCodeMappings(cmap_fn): unit_code_list = [] unit_uri_list = [] unit_label_list = [] if cmap_fn is not None : try : code_mappings_reader = pd.read_csv(cmap_fn) #Using itertuples on a data frame makes the column heads case-sensitive for code_row in code_mappings_reader.itertuples() : if pd.notnull(code_row.code): unit_code_list.append(code_row.code) if pd.notnull(code_row.uri): unit_uri_list.append(code_row.uri) if pd.notnull(code_row.label): unit_label_list.append(code_row.label) except Exception as e : print("Warning: Something went wrong when trying to read the Code Mappings file: " + str(e)) return [unit_code_list,unit_uri_list,unit_label_list] def processProperties(): properties_tuple = {'Comment': rdfs.comment, 'attributeOf': sio.isAttributeOf, 'Attribute': rdf.type, 'Definition' : skos.definition, 'Value' : sio.hasValue, 'wasDerivedFrom': prov.wasDerivedFrom, 'Label': rdfs.label, 'inRelationTo': sio.inRelationTo, 'Role': sio.hasRole, 'Start' : sio.hasStartTime, 'End' : sio.hasEndTime, 'Time': sio.existsAt, 'Entity': rdf.type, 'Unit': sio.hasUnit, 'wasGeneratedBy': prov.wasGeneratedBy} if 'properties' in config['Source Files'] : properties_fn = config['Source Files']['properties'] try : properties_file = pd.read_csv(properties_fn, dtype=object) except Exception as e : print("Warning: The specified Properties file does not exist or is unreadable: " + str(e)) return properties_tuple for row in properties_file.itertuples() : if(hasattr(row,"Property") and pd.notnull(row.Property)): properties_tuple[row.Column]=row.Property return properties_tuple def processTimeline(timeline_fn): timeline_tuple = {} if timeline_fn is not None : try : timeline_file = pd.read_csv(timeline_fn, dtype=object) try : inner_tuple_list = [] row_num=0 for row in timeline_file.itertuples(): if (pd.notnull(row.Name) and row.Name not in timeline_tuple) : inner_tuple_list=[] inner_tuple = {} inner_tuple["Type"]=row.Type if(hasattr(row,"Label") and pd.notnull(row.Label)): inner_tuple["Label"]=row.Label if(pd.notnull(row.Start)) : inner_tuple["Start"]=row.Start if(
pd.notnull(row.End)
pandas.notnull
import pandas as pd import pathlib from scripts.python.routines.mvals import logit2 import numpy as np path_global = f"E:/YandexDisk/Work/pydnameth/datasets" folder_name = f"GPL13534_Blood_ICD10-V" path = f"{path_global}/meta/tasks/GPL13534_Blood_ICD10-V" pathlib.Path(f"{path}/R/one_by_one").mkdir(parents=True, exist_ok=True) betas =
pd.read_pickle(f"{path}/train_val/betas.pkl")
pandas.read_pickle
import math import warnings import numpy as np import pandas as pd import scipy.signal import matplotlib.pyplot as plt from typing import Optional, Union, List from tqdm import tqdm from signalanalysis.signalanalysis import general from signalanalysis import signalplot from signalanalysis import tools class Egm(general.Signal): """Base class for EGM data, inheriting from :class:`signalanalysis.signalanalysis.general.Signal` See Also -------- :py:class:`signalanalysis.signalanalysis.general.Signal` Methods ------- read(folder) Extract data from unipolar and bipolar DxL files get_n_beats() Supersedes generalised method to calculate n_beats get_at Calculates the activation time of the EGM """ def __init__(self, data_location_uni: str, data_location_bi: str = None, **kwargs): """Sub-method for __init___ Will initialise a EGM signal class TODO: Fix the self.data reference problem (see https://stackoverflow.com/questions/6057130/python-deleting-a-class-attribute-in-a-subclass) See Also -------- :py:meth:`signalanalysis.signalanalysis.general.Signal.__init__ : Base __init__ method :py:meth:`signalanalysis.signalanalysis.general.Signal.apply_filter` : Filtering method :py:meth:`signalanalysis.signalanalysis.general.Signal.get_n_beats` : Beat calculation method Notes ----- This used to break the `Liskov substitution principle <https://en.wikipedia.org/wiki/Liskov_substitution_principle>`_, removing the single `data` attribute to be replaced by `data_uni` and `data_bi`, but now instead (aims to) just point the `.data` attribute to the `.data_uni` attribute """ super(Egm, self).__init__(**kwargs) self.t_peaks = pd.DataFrame(dtype=float) self.n_beats = pd.Series(dtype=int) # delattr(self, 'data') self.data_uni = pd.DataFrame(dtype=float) self.data_bi = pd.DataFrame(dtype=float) self.beats_uni = dict() self.beats = self.beats_uni self.beats_bi = dict() self.at = pd.DataFrame(dtype=float) self.rt = pd.DataFrame(dtype=float) self.ari = pd.DataFrame(dtype=float) self.dvdt = pd.DataFrame(dtype=float) self.qrs_start = pd.DataFrame(dtype=float) self.qrs_end = pd.DataFrame(dtype=float) self.qrs_duration = pd.DataFrame(dtype=float) self.read(data_location_uni, data_location_bi, **kwargs) if self.filter is not None: self.apply_filter(**kwargs) self.data = self.data_uni # self.get_beats(**kwargs) def read(self, data_location_uni: str, data_location_bi: Optional[str] = None, drop_empty_rows: bool = True, **kwargs): """ Read the DxL data for unipolar and bipolar data for EGMs TODO: Add functionality to read directly from folders, rather than .csv from Matlab Parameters ---------- data_location_uni : str Location of unipolar data. Currently only coded to deal with a saved .csv file data_location_bi : str, optional Location of bipolar data. Currently only coded to deal with a saved .csv file. Doesn't need to be passed, default=None drop_empty_rows : bool, optional Whether to drop empty data rows from the data, default=True See Also -------- :py:meth:`signalanalysis.signalanalysis.egm.Egm.read_from_csv` : Method to read data from Matlab csv """ if data_location_uni.endswith('.csv'): if data_location_bi is not None: assert data_location_bi.endswith('.csv') self.read_from_csv(data_location_uni, data_location_bi, **kwargs) else: raise IOError("Not coded for this type of input") if drop_empty_rows: # PyCharm highlights an error below (bool doesn't have a .all() method), but I'll be damned if I can # figure out how to fix it - the below option replaces *all* 0.00 values, so will put NaN in an otherwise # normal trace where it happens to reach 0.00, which is not what we want. # self.data_uni = (self.data_uni.where(self.data_uni != 0, axis=0)).dropna(axis=1, how='all') self.data_uni = self.data_uni.loc[:, ~(self.data_uni == 0).all(axis=0)] if not self.data_bi.empty: self.data_bi = self.data_bi.loc[:, ~(self.data_bi == 0).all(axis=0)] assert self.data_uni.shape == self.data_bi.shape, "Error in dropping rows" return None def read_from_csv(self, data_location_uni: str, data_location_bi: Optional[str], frequency: float): """ Read EGM data that has been saved from Matlab Parameters ---------- data_location_uni : str Name of the .csv file containing the unipolar data data_location_bi : str, optional Name of the .csv file containing the bipolar data frequency : float The frequency of the data recording in Hz Notes ----- It is not technically required to pass the bipolar data, but it is presented here as a required keyword to preserve the usage of calling as `read_from_csv(unipolar, bipolar, frequency)`, rather than breaking the data files arguments up or requiring keywords. The .csv file should be saved with column representing an individual EGM trace, and each row representing a single instance in time, i.e. .. code-block:: egm1(t1), egm2(t1), egm3(t1), ... egm1(t2), egm2(t2), egm3(t2), ... ... egm1(tn), egm2(tn), egm3(tn) Historically, `frequency` has been set to 2034.5 Hz for the importprecision data, an example of which is can be accessed via ``signalanalysis.data.datafiles.EGM_UNIPOLAR`` and ``signalanalysis.data.datafiles.EGM_BIPOLAR``. """ self.data_uni = pd.read_csv(data_location_uni, header=None) interval = (1 / frequency)*1000 end_val = self.data_uni.shape[0] * interval t = np.arange(0, end_val, interval) self.data_uni.set_index(t, inplace=True) if data_location_bi is not None: self.data_bi = pd.read_csv(data_location_bi, header=None) self.data_bi.set_index(t, inplace=True) self.data_source = [data_location_uni, data_location_bi] else: self.data_bi = pd.DataFrame() self.data_source = data_location_uni return None def get_peaks(self, threshold: float = 0.33, min_separation: float = 200, plot: bool = False, **kwargs): """ Supermethod for get_peaks for EGM data, using the squared bipolar signal rather than RMS data See also -------- :py:meth:`signalanalysis.signalanalysis.egm.Egm.plot_signal` : Method to plot the calculated AT """ if self.data_bi.empty: # super(Egm, self).get_peaks() egm_bi_square = np.abs(self.data_uni) else: egm_bi_square = np.square(self.data_bi) i_separation = np.where(self.data_uni.index > min_separation)[0][0] self.n_beats = pd.Series(dtype=int, index=self.data_uni.columns) self.t_peaks = pd.DataFrame(dtype=float, columns=self.data_uni.columns) self.n_beats_threshold = threshold for i_signal in egm_bi_square: i_peaks, _ = scipy.signal.find_peaks(egm_bi_square.loc[:, i_signal], height=threshold*egm_bi_square.loc[:, i_signal].max(), distance=i_separation) self.n_beats[i_signal] = len(i_peaks) # Pad the peaks data or t_peaks dataframe with NaN as appropriate if len(i_peaks) == self.t_peaks.shape[0]: self.t_peaks[i_signal] = self.data_uni.index[i_peaks] elif len(i_peaks) < self.t_peaks.shape[0]: self.t_peaks[i_signal] = np.pad(self.data_uni.index[i_peaks], (0, self.t_peaks.shape[0]-len(i_peaks)), constant_values=float("nan")) elif len(i_peaks) > self.t_peaks.shape[0]: self.t_peaks = self.t_peaks.reindex(range(len(i_peaks)), fill_value=float("nan")) self.t_peaks[i_signal] = self.data_uni.index[i_peaks] if plot: _ = signalplot.egm.plot_signal(self, plot_peaks=True, plot_bipolar_square=True, **kwargs) return None def get_beats(self, reset_index: bool = True, offset_start: Optional[float] = None, offset_end: Optional[float] = None, plot: bool = False, **kwargs): """ Detects beats in individual EGM signals TODO: Replace this with method based on finding AT and RT, then adding buffer round those values Supermethod for EGM beat detection, due to the fact that EGM beats are detected on a per signal basis rather than a universal basis (RMS method) See also -------- :py:meth:`signalanalysis.signalanalysis.general.Signal.get_beats` : Base method """ if self.t_peaks.empty: self.get_peaks(**kwargs) # we'll store these values in data frames later on beat_start_values = np.full_like(self.t_peaks, fill_value=np.NaN) beat_end_values = np.full_like(self.t_peaks, fill_value=np.NaN) self.beats_uni = dict.fromkeys(self.data_uni.columns) self.beats_bi = dict.fromkeys(self.data_uni.columns) all_bcls = np.diff(self.t_peaks, axis=0).T for key, bcls in zip(self.data_uni, all_bcls): # If only one beat is detected, can end here n_beats = self.n_beats[key] if n_beats == 1: self.beats_uni[key] = [self.data_uni.loc[:, key]] self.beats_bi[key] = [self.data_bi.loc[:, key]] continue # Calculate series of cycle length values, before then using this to estimate the start and end times of # each beat. The offset from the previous peak will be assumed at 0.4*BCL, while the offset from the # following peak will be 0.1*BCL (both with a minimum value of 30ms) if offset_start is None: offset_start_list = [max(0.6 * bcl, 30) for bcl in bcls[:n_beats-1]] else: offset_start_list = [offset_start] * (self.n_beats[key] - 1) if offset_end is None: offset_end_list = [max(0.1 * bcl, 30) for bcl in bcls[:n_beats-1]] else: offset_end_list = [offset_end] * (self.n_beats[key] - 1) beat_start = [self.data_uni.index[0]] beat_start.extend(self.t_peaks[key][:n_beats-1].values + offset_start_list) beat_end = [] beat_end.extend(self.t_peaks[key][1:n_beats].values - offset_end_list) beat_end.append(self.data_uni.index[-1]) # we'll store these values in data frames later on column_index = self.t_peaks.columns.get_loc(key) beat_start_values[:n_beats, column_index] = beat_start beat_end_values[:n_beats, column_index] = beat_end signal_beats_uni = np.empty(n_beats, dtype=object) signal_beats_bi = np.empty(n_beats, dtype=object) for beat_index, (t_s, t_p, t_e) in enumerate(zip(beat_start, self.t_peaks[key], beat_end)): if not (t_s < t_p < t_e): raise ValueError("Error in windowing process - a peak is outside of the window for EGM ", key) signal_beats_uni[beat_index] = self.data_uni.loc[t_s:t_e, :] signal_beats_bi[beat_index] = self.data_bi.loc[t_s:t_e, :] if not reset_index: continue zeroed_index = signal_beats_uni[beat_index].index - signal_beats_uni[beat_index].index[0] signal_beats_uni[beat_index].set_index(zeroed_index, inplace=True) signal_beats_bi[beat_index].set_index(zeroed_index, inplace=True) self.beat_index_reset = reset_index self.beats_uni[key] = signal_beats_uni self.beats_bi[key] = signal_beats_bi self.beat_start = pd.DataFrame( data=beat_start_values, index=self.t_peaks.index, columns=self.t_peaks.columns, dtype=float, ) self.beat_end = pd.DataFrame( data=beat_end_values, index=self.t_peaks.index, columns=self.t_peaks.columns, dtype=float, ) if plot: _ = self.plot_beats(offset_end=offset_end, **kwargs) def plot_beats(self, i_plot: Optional[int] = None, **kwargs): """ ..deprecated:: Need to move this to signalanalysis.signalplot.egm (if this even works!) """ # Calculate beats (if not done already) if self.beats_uni is None: self.get_beats(offset_end=None, plot=False, **kwargs) # Pick a random signal to plot as an example trace (making sure to not pick a 'dead' trace) if i_plot is None: weights = (self.n_beats.values > 0).astype(int) i_plot = self.n_beats.sample(weights=weights).index[0] elif self.n_beats[i_plot] == 0: raise IOError("No beats detected in specified trace") n_beats = n_beats = self.n_beats[i_plot] t_peaks = self.t_peaks[i_plot] beat_start = self.beat_start[i_plot] beat_end = self.beat_end[i_plot] ax_labels = ['Unipolar', 'Bipolar'] egm_data = [self.data_uni, self.data_bi] colours = tools.plotting.get_plot_colours(n_beats) fig, axes = plt.subplots(2, 1) fig.suptitle('Trace {}'.format(i_plot)) for index, (ax, data) in enumerate(zip(axes, egm_data)): plt.sca(ax) plt.plot(data.loc[:, i_plot], color='C0') plt.scatter( t_peaks[:n_beats], data.loc[:, i_plot][t_peaks[:n_beats]], marker='o', edgecolor='tab:orange', facecolor='none', linewidths=2, ) plt.ylabel(ax_labels[index]) max_height = np.max(data.loc[:, i_plot]) height_shift = (np.max(data.loc[:, i_plot]) - np.min(data.loc[:, i_plot])) * 0.1 height_val = [max_height, max_height - height_shift] * math.ceil(n_beats / 2) for beat_index, (t_s, t_e) in enumerate(zip(beat_start[:n_beats], beat_end[:n_beats])): plt.axvline(t_s, color=colours[beat_index]) plt.axvline(t_e, color=colours[beat_index]) plt.annotate(text='{}'.format(beat_index+1), xy=(t_s, height_val[beat_index]), xytext=(t_e, height_val[beat_index]), arrowprops=dict(arrowstyle='<->', linewidth=3)) return fig, ax def get_at(self, at_window: float = 30, unipolar_delay: float = 50, plot: bool = False, **kwargs): """ Calculates the activation time for a given beat of EGM data Will calculate the activation times for an EGM signal, based on finding the peaks in the squared bipolar trace, then finding the maximum downslope in the unipolar signal within a specified window of time around those peaks. Note that, if bipolar data are not present, then the squared unipolar signal will be used, which will invariably find the pacing artefact. As such, when unipolar peaks are used, a 'delay' will be applied to the window to avoid the pacing artefact. Parameters ---------- at_window : float, optional Time in milliseconds, around which the activation time will be searched for round the detected peaks, i.e. the EGM trace will be searched in the window t_peak +/- at_window. Default=30ms unipolar_delay : float, optional Time in milliseconds to delay the search window after the peak time, if only unipolar data are being used, to avoid getting confused with the far-field pacing artefact. Will thus have the search window adapted to (t_peak+unipolar_delay) +/- at_window. Default=50ms plot : bool, optional Whether to plot a random signal example of the ATs found, default=False See also -------- :py:meth:`signalanalysis.signalanalysis.egm.Egm.get_peaks` : Method to calculate peaks :py:meth:`signalanalysis.signalanalysis.egm.Egm.plot_signal` : Method to plot the signal """ if self.t_peaks.empty: self.get_peaks() egm_uni_grad_full = pd.DataFrame(np.gradient(self.data_uni, axis=0), index=self.data_uni.index, columns=self.data_uni.columns) # Calculate and adjust the start and end point for window searches if not self.data_bi.empty: unipolar_delay = 0 window_start = self.return_to_index(self.t_peaks.sub(at_window).add(unipolar_delay)) window_end = self.return_to_index(self.t_peaks.add(at_window).add(unipolar_delay)) self.at = self.t_peaks.copy() # Current brute force method from tqdm import tqdm for key in tqdm(window_start, desc='Finding AT...', total=len(window_start.columns)): for i_row, _ in window_start[key].iteritems(): t_s = window_start.loc[i_row, key] if pd.isna(t_s): continue t_e = window_end.loc[i_row, key] self.at.loc[i_row, key] = egm_uni_grad_full.loc[t_s:t_e, key].idxmin() self.dvdt.loc[i_row, key] = egm_uni_grad_full.loc[t_s:t_e, key].min() if plot: _ = signalplot.egm.plot_signal(self, plot_at=True, **kwargs) return None def get_rt(self, lower_window_limit: float = 140, plot: bool = False, **kwargs): """ Calculate the repolarisation time Calculates the repolarisation time of an action potential from the EGM, based on the Wyatt method of the maximum upslope of the T-wave TODO: try to improve on the current brute force method used to find the point of RT Parameters ---------- lower_window_limit : float, optional Minimum time after the AT to have passed before repolarisation can potentially happen, default=150ms plot : bool, optional Whether to plot a random signal example of the ATs found, default=False Returns ------- self.rt : pd.DataFrame Repolarisation times for each signal in the trace self.ari : pd.DataFrame Activation repolarisation intervals for each AT/RT pair References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "Autonomic modulation in patients with heart failure increases beat-to-beat variability of ventricular action potential duration. Frontiers in Physiology, 8(MAY 2017). https://doi.org/10.3389/fphys.2017.00328 """ # Estimate BCL, then calculate the upper and lower bounds within which to search for the repolarisation time if self.at.empty: self.get_at(**kwargs) bcl = general.get_bcl(self.at) # INITIALISE WINDOWS WITHIN WHICH TO SEARCH FOR RT window_start = (bcl.mul(0.75)).sub(125) # Equivalent to 0.75*bcl-125 window_start[window_start < lower_window_limit] = lower_window_limit window_start = self.at+window_start window_end = (bcl.mul(0.9)).sub(50) # Equivalent to 0.9*bcl-50 window_end = self.at+window_end window_end[window_end-window_start < 0.1] = window_start+0.1 # If the end of the search window is within 20ms of the next AT/end of the recording, shorten the end of the # window accordingly # Don't bother looking for RT if the start of the search window is within 40ms of the following AT/the end of # the recording. def window_max_generator(buffer): window_max = self.at - buffer window_max.set_index(window_max.index - 1, inplace=True) window_max.drop(-1, inplace=True) window_max = window_max.append(pd.DataFrame(self.data_uni.index[-1] - buffer, columns=window_max.columns, index=[window_max.index[-1] + 1])) window_max[window_max > self.data_uni.index[-1] - buffer] = \ self.data_uni.index[-1] - buffer window_max.fillna(axis=0, method='bfill', inplace=True) return window_max window_start_max = window_max_generator(40) window_start[window_start > window_start_max] = float("nan") window_start = self.return_to_index(window_start) window_end_max = window_max_generator(20) window_end[window_end > window_end_max] = window_end_max window_end = self.return_to_index(window_end) # Brute force method! egm_uni_grad = pd.DataFrame(np.gradient(self.data_uni, axis=0), index=self.data_uni.index, columns=self.data_uni.columns) self.rt = pd.DataFrame(index=self.at.index, columns=self.at.columns) self.ari = pd.DataFrame(index=self.at.index, columns=self.at.columns) for key in tqdm(window_start, desc='Finding RT...', total=len(window_start.columns)): for i_row, _ in enumerate(window_start[key]): # FIND T-WAVE PEAK # Look for the peak of the unipolar EGM within the search window. If the maximum (+/- 0.03mV) is at the # start/end of the window, shorten the window and check again to try and ensure that the peak # represents the T-wave peak rather than the repolarisation/depolarisation preceding/following the # T-wave. window_error = False negative_t_wave = False t_start = window_start.loc[i_row, key] t_end = window_end.loc[i_row, key] if pd.isna(t_start) or pd.isna(t_end): continue i_ts = np.where(self.data_uni.index.values == t_start)[0] i_te = np.where(self.data_uni.index.values == t_end)[0] uni_start = self.data_uni.loc[t_start, key] uni_end = self.data_uni.loc[t_end, key] uni_peak = self.data_uni.loc[t_start:t_end, key].max() uni_start_diff = abs(uni_start-uni_peak) uni_end_diff = abs(uni_end-uni_peak) while uni_start_diff <= 0.03 or uni_end_diff <= 0.03: while uni_start_diff <= 0.03: i_ts = i_ts+1 try: t_start = self.data_uni.index[i_ts][0] except IndexError: pass if t_start >= t_end: window_error = True break uni_start = self.data_uni.loc[t_start, key] uni_peak = self.data_uni.loc[t_start:t_end, key].max() uni_start_diff = abs(uni_start-uni_peak) if window_error: break while uni_end_diff <= 0.03: i_te = i_te-1 try: t_end = self.data_uni.index[i_te][0] except IndexError: pass if t_start >= t_end: window_error = True break uni_end = self.data_uni.loc[t_end, key] uni_peak = self.data_uni.loc[t_start:t_end, key].max() uni_end_diff = abs(uni_end-uni_peak) # If it is impossible to narrow the search window as above and find a positive peak for the T-wave, # set the window to the original values and assume that the T-wave is negative if window_error or not (egm_uni_grad.loc[t_start:t_end, key] > 0).any(): t_start = window_start.loc[i_row, key] t_end = window_start.loc[i_row, key] t_peak = self.data_uni.loc[t_start:t_end, key].idxmin() negative_t_wave = True else: t_peak = self.data_uni.loc[t_start:t_end, key].idxmax() assert t_start <= t_peak <= t_end, "Problem setting window values" # FIND REPOLARISATION TIME max_grad = -100 t_max_grad = -1 window_data = egm_uni_grad.loc[t_start:t_end, key] t_index_in_uni_data = np.searchsorted(self.data_uni.index.values, window_data.index.values) for (t_window, uni_val), i_tm in zip(window_data.iteritems(), t_index_in_uni_data): # Look for maximum gradient in the search window thus far if uni_val > max_grad: max_grad = uni_val t_max_grad = t_window # Perform check to see if we've exited the current T-wave (if we're after the total max peak # (apex) and have negative gradient) if negative_t_wave: self.rt.loc[i_row, key] = t_max_grad self.ari.loc[i_row, key] = t_max_grad - self.at.loc[i_row, key] else: t1 = self.data_uni.index[i_tm-1] t2 = self.data_uni.index[i_tm+2] # Adding 2 to ensure that the limit is taken at +1, not i_tm if (t_window > t_peak) and (window_data.loc[t1:t2] < 0).all(): self.rt.loc[i_row, key] = t_max_grad self.ari.loc[i_row, key] = t_max_grad - self.at.loc[i_row, key] break if plot: _ = signalplot.egm.plot_signal(self, plot_rt=True, **kwargs) return None def get_ari(self, plot: bool = False, **kwargs): """Dummy function to calculate ARI TODO: check that `plot` keyword is correctly over-ridden (if that is possible) ARI is calculated as part of self.get_rt, so this module serves just as useful syntax. See also -------- :py:meth:`signalanalysis.signalanalysis.egm.Egm.get_rt` : Actual method called """ if self.ari.empty: self.get_rt(plot=False, **kwargs) if plot: signalplot.egm.plot_signal(plot_at=True, plot_rt=True, **kwargs) return None def get_qrsd(self, lower_window: float = 30, upper_window: float = 60, threshold: float = 0.1, plot: bool = True, **kwargs): """Calculates the QRS duration for EGM data TODO: See if this can be improved beyond the current brute force method The start and end of the QRS complex is calculated as the duration for which the energy of the bipolar signal (defined as the bipolar signal squared) exceeds a threshold value. The 'window' over which to search for this complex is defined from the detected activation times, plus/minus specified values (`lower_window` and `upper_window`). Note that, due to the calculation method, this cannot be calculated for instances where no bipolar data are available. Parameters ---------- lower_window, upper_window : float, optional Window before/after AT to search for QRS start/end, respectively, given in milliseconds, default=30/60ms threshold : float, optional Fractional threshold of maximum energy used to define the start and end of the QRS complex, default=0.1 plot : bool, optional Whether or not to plot an example trace Returns ------- self.qrs_duration : pd.DataFrame QRS durations for each signal See also -------- :py:meth:`signalanalysis.signalanalysis.egm.Egm.get_at` : Method used to calculate AT, that uses this method implicitly :py:meth:`signalanalysis.signalplot.egm.plot_signal` : Plotting function, with options that can be passed in **kwargs """ if self.data_bi.empty: raise IOError('Cannot calculate QRSd for unipolar only data') # Sanitise inputs and make sure they make sense if lower_window < 0.5: warnings.warn('Assuming that lWindow has been entered in seconds rather than milliseconds: correcting...') lower_window = lower_window * 1000 if upper_window < 0.5: warnings.warn('Assuming that uWindow has been entered in seconds rather than milliseconds: correcting...') upper_window = upper_window * 1000 assert 0.0 < threshold < 1.0, "threshold must be set between 0 and 1" if self.at.empty: self.get_at(**kwargs) window_start = self.return_to_index(self.at.sub(lower_window)) window_end = self.return_to_index(self.at.add(upper_window)) for key in tqdm(self.at, desc='Finding QRSd...', total=len(self.at.columns)): for i_row, _ in enumerate(self.at[key]): # Only continue if the window values aren't NaN if pd.isna(window_start.loc[i_row, key]) or
pd.isna(window_end.loc[i_row, key])
pandas.isna
import streamlit as st import pandas as pd, seaborn as sns import numpy as np import matplotlib.pyplot as plt import joblib from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import scipy.sparse as sp import pytesseract pytesseract.pytesseract.tesseract_cmd = r"D:\Programming Softwares\New folder\tesseract.exe" import tensorflow as tf import re import nltk from nltk.corpus import stopwords # nltk.download('stopwords') from PIL import Image import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly from plotly import tools stopwords_nltk = stopwords.words("english") new_stopwords = ['filtered','including','every','actual','equivalent', 'less','contains','actual',"concentrate","100","artificial","coloring","simple","medium","chain","flavorings","flavor",""] stopwords_nltk.extend(new_stopwords) #################################################################################################### #############-----------------------------LOAD DATA----------------------------------############### #################################################################################################### @st.cache(show_spinner=False) def load_data(): # rec_path = r"D:\CoderSchool_ML30\FINAL PROJECT\Data\recommendation_df.csv" rec_path = r"D:\CoderSchool_ML30\FINAL PROJECT\Data\rec_df.csv" tfidf_df = pd.read_csv(rec_path) tfidf_df = tfidf_df.drop(columns=["New Ingredients"]) df = pd.read_csv(r"D:\CoderSchool_ML30\FINAL PROJECT\Data\eda.csv") veg_df = pd.read_csv(r"D:\CoderSchool_ML30\FINAL PROJECT\Data\veg_df.csv") veg_df = veg_df[~veg_df.Name.duplicated()] additives_count = pd.read_csv(r"D:\CoderSchool_ML30\FINAL PROJECT\Data\additives_count.csv") additives_count = additives_count.sort_values("Count") add_df =
pd.read_csv(r"D:\CoderSchool_ML30\FINAL PROJECT\Data\OCR_additives.csv")
pandas.read_csv
"""AWS Glue Catalog Module.""" # pylint: disable=redefined-outer-name import itertools import logging import re import unicodedata from typing import Any, Dict, Iterator, List, Optional, Tuple from urllib.parse import quote_plus import boto3 # type: ignore import pandas as pd # type: ignore import sqlalchemy # type: ignore from awswrangler import _data_types, _utils, exceptions _logger: logging.Logger = logging.getLogger(__name__) def delete_table_if_exists(database: str, table: str, boto3_session: Optional[boto3.Session] = None) -> bool: """Delete Glue table if exists. Parameters ---------- database : str Database name. table : str Table name. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- bool True if deleted, otherwise False. Examples -------- >>> import awswrangler as wr >>> wr.catalog.delete_table_if_exists(database='default', name='my_table') # deleted True >>> wr.catalog.delete_table_if_exists(database='default', name='my_table') # Nothing to be deleted False """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) try: client_glue.delete_table(DatabaseName=database, Name=table) return True except client_glue.exceptions.EntityNotFoundException: return False def does_table_exist(database: str, table: str, boto3_session: Optional[boto3.Session] = None): """Check if the table exists. Parameters ---------- database : str Database name. table : str Table name. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- bool True if exists, otherwise False. Examples -------- >>> import awswrangler as wr >>> wr.catalog.does_table_exist(database='default', name='my_table') """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) try: client_glue.get_table(DatabaseName=database, Name=table) return True except client_glue.exceptions.EntityNotFoundException: return False def create_parquet_table( database: str, table: str, path: str, columns_types: Dict[str, str], partitions_types: Optional[Dict[str, str]] = None, compression: Optional[str] = None, description: Optional[str] = None, parameters: Optional[Dict[str, str]] = None, columns_comments: Optional[Dict[str, str]] = None, mode: str = "overwrite", boto3_session: Optional[boto3.Session] = None, ) -> None: """Create a Parquet Table (Metadata Only) in the AWS Glue Catalog. 'https://docs.aws.amazon.com/athena/latest/ug/data-types.html' Parameters ---------- database : str Database name. table : str Table name. path : str Amazon S3 path (e.g. s3://bucket/prefix/). columns_types: Dict[str, str] Dictionary with keys as column names and vales as data types (e.g. {'col0': 'bigint', 'col1': 'double'}). partitions_types: Dict[str, str], optional Dictionary with keys as partition names and values as data types (e.g. {'col2': 'date'}). compression: str, optional Compression style (``None``, ``snappy``, ``gzip``, etc). description: str, optional Table description parameters: Dict[str, str], optional Key/value pairs to tag the table. columns_comments: Dict[str, str], optional Columns names and the related comments (e.g. {'col0': 'Column 0.', 'col1': 'Column 1.', 'col2': 'Partition.'}). mode: str 'overwrite' to recreate any possible existing table or 'append' to keep any possible existing table. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.catalog.create_parquet_table( ... database='default', ... table='my_table', ... path='s3://bucket/prefix/', ... columns_types={'col0': 'bigint', 'col1': 'double'}, ... partitions_types={'col2': 'date'}, ... compression='snappy', ... description='My own table!', ... parameters={'source': 'postgresql'}, ... columns_comments={'col0': 'Column 0.', 'col1': 'Column 1.', 'col2': 'Partition.'} ... ) """ table = sanitize_table_name(table=table) partitions_types = {} if partitions_types is None else partitions_types table_input: Dict[str, Any] = _parquet_table_definition( table=table, path=path, columns_types=columns_types, partitions_types=partitions_types, compression=compression ) _create_table( database=database, table=table, description=description, parameters=parameters, columns_comments=columns_comments, mode=mode, boto3_session=boto3_session, table_input=table_input, ) def _parquet_table_definition( table: str, path: str, columns_types: Dict[str, str], partitions_types: Dict[str, str], compression: Optional[str] ) -> Dict[str, Any]: compressed: bool = compression is not None return { "Name": table, "PartitionKeys": [{"Name": cname, "Type": dtype} for cname, dtype in partitions_types.items()], "TableType": "EXTERNAL_TABLE", "Parameters": {"classification": "parquet", "compressionType": str(compression).lower(), "typeOfData": "file"}, "StorageDescriptor": { "Columns": [{"Name": cname, "Type": dtype} for cname, dtype in columns_types.items()], "Location": path, "InputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat", "Compressed": compressed, "NumberOfBuckets": -1, "SerdeInfo": { "SerializationLibrary": "org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe", "Parameters": {"serialization.format": "1"}, }, "StoredAsSubDirectories": False, "SortColumns": [], "Parameters": { "CrawlerSchemaDeserializerVersion": "1.0", "classification": "parquet", "compressionType": str(compression).lower(), "typeOfData": "file", }, }, } def add_parquet_partitions( database: str, table: str, partitions_values: Dict[str, List[str]], compression: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> None: """Add partitions (metadata) to a Parquet Table in the AWS Glue Catalog. Parameters ---------- database : str Database name. table : str Table name. partitions_values: Dict[str, List[str]] Dictionary with keys as S3 path locations and values as a list of partitions values as str (e.g. {'s3://bucket/prefix/y=2020/m=10/': ['2020', '10']}). compression: str, optional Compression style (``None``, ``snappy``, ``gzip``, etc). boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.catalog.add_parquet_partitions( ... database='default', ... table='my_table', ... partitions_values={ ... 's3://bucket/prefix/y=2020/m=10/': ['2020', '10'], ... 's3://bucket/prefix/y=2020/m=11/': ['2020', '11'], ... 's3://bucket/prefix/y=2020/m=12/': ['2020', '12'] ... } ... ) """ inputs: List[Dict[str, Any]] = [ _parquet_partition_definition(location=k, values=v, compression=compression) for k, v in partitions_values.items() ] _add_partitions(database=database, table=table, boto3_session=boto3_session, inputs=inputs) def _parquet_partition_definition(location: str, values: List[str], compression: Optional[str]) -> Dict[str, Any]: compressed: bool = compression is not None return { "StorageDescriptor": { "InputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat", "Location": location, "Compressed": compressed, "SerdeInfo": { "Parameters": {"serialization.format": "1"}, "SerializationLibrary": "org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe", }, "StoredAsSubDirectories": False, }, "Values": values, } def get_table_types(database: str, table: str, boto3_session: Optional[boto3.Session] = None) -> Dict[str, str]: """Get all columns and types from a table. Parameters ---------- database : str Database name. table : str Table name. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Dict[str, str] A dictionary as {'col name': 'col data type'}. Examples -------- >>> import awswrangler as wr >>> wr.catalog.get_table_types(database='default', name='my_table') {'col0': 'int', 'col1': double} """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) response: Dict[str, Any] = client_glue.get_table(DatabaseName=database, Name=table) dtypes: Dict[str, str] = {} for col in response["Table"]["StorageDescriptor"]["Columns"]: dtypes[col["Name"]] = col["Type"] for par in response["Table"]["PartitionKeys"]: dtypes[par["Name"]] = par["Type"] return dtypes def get_databases( catalog_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None ) -> Iterator[Dict[str, Any]]: """Get an iterator of databases. Parameters ---------- catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Iterator[Dict[str, Any]] Iterator of Databases. Examples -------- >>> import awswrangler as wr >>> dbs = wr.catalog.get_databases() """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) paginator = client_glue.get_paginator("get_databases") if catalog_id is None: response_iterator: Iterator = paginator.paginate() else: response_iterator = paginator.paginate(CatalogId=catalog_id) for page in response_iterator: for db in page["DatabaseList"]: yield db def databases( limit: int = 100, catalog_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None ) -> pd.DataFrame: """Get a Pandas DataFrame with all listed databases. Parameters ---------- limit : int, optional Max number of tables to be returned. catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- pandas.DataFrame Pandas DataFrame filled by formatted infos. Examples -------- >>> import awswrangler as wr >>> df_dbs = wr.catalog.databases() """ database_iter: Iterator[Dict[str, Any]] = get_databases(catalog_id=catalog_id, boto3_session=boto3_session) dbs = itertools.islice(database_iter, limit) df_dict: Dict[str, List] = {"Database": [], "Description": []} for db in dbs: df_dict["Database"].append(db["Name"]) if "Description" in db: df_dict["Description"].append(db["Description"]) else: # pragma: no cover df_dict["Description"].append("") return pd.DataFrame(data=df_dict) def get_tables( catalog_id: Optional[str] = None, database: Optional[str] = None, name_contains: Optional[str] = None, name_prefix: Optional[str] = None, name_suffix: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> Iterator[Dict[str, Any]]: """Get an iterator of tables. Parameters ---------- catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. database : str, optional Database name. name_contains : str, optional Select by a specific string on table name name_prefix : str, optional Select by a specific prefix on table name name_suffix : str, optional Select by a specific suffix on table name boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Iterator[Dict[str, Any]] Iterator of tables. Examples -------- >>> import awswrangler as wr >>> tables = wr.catalog.get_tables() """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) paginator = client_glue.get_paginator("get_tables") args: Dict[str, str] = {} if catalog_id is not None: args["CatalogId"] = catalog_id if (name_prefix is not None) and (name_suffix is not None) and (name_contains is not None): args["Expression"] = f"{name_prefix}.*{name_contains}.*{name_suffix}" elif (name_prefix is not None) and (name_suffix is not None): args["Expression"] = f"{name_prefix}.*{name_suffix}" elif name_contains is not None: args["Expression"] = f".*{name_contains}.*" elif name_prefix is not None: args["Expression"] = f"{name_prefix}.*" elif name_suffix is not None: args["Expression"] = f".*{name_suffix}" if database is not None: dbs: List[str] = [database] else: dbs = [x["Name"] for x in get_databases(catalog_id=catalog_id)] for db in dbs: args["DatabaseName"] = db response_iterator = paginator.paginate(**args) for page in response_iterator: for tbl in page["TableList"]: yield tbl def tables( limit: int = 100, catalog_id: Optional[str] = None, database: Optional[str] = None, search_text: Optional[str] = None, name_contains: Optional[str] = None, name_prefix: Optional[str] = None, name_suffix: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> pd.DataFrame: """Get a DataFrame with tables filtered by a search term, prefix, suffix. Parameters ---------- limit : int, optional Max number of tables to be returned. catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. database : str, optional Database name. search_text : str, optional Select only tables with the given string in table's properties. name_contains : str, optional Select by a specific string on table name name_prefix : str, optional Select by a specific prefix on table name name_suffix : str, optional Select by a specific suffix on table name boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Iterator[Dict[str, Any]] Pandas Dataframe filled by formatted infos. Examples -------- >>> import awswrangler as wr >>> df_tables = wr.catalog.tables() """ if search_text is None: table_iter = get_tables( catalog_id=catalog_id, database=database, name_contains=name_contains, name_prefix=name_prefix, name_suffix=name_suffix, boto3_session=boto3_session, ) tbls: List[Dict[str, Any]] = list(itertools.islice(table_iter, limit)) else: tbls = list(search_tables(text=search_text, catalog_id=catalog_id, boto3_session=boto3_session)) if database is not None: tbls = [x for x in tbls if x["DatabaseName"] == database] if name_contains is not None: tbls = [x for x in tbls if name_contains in x["Name"]] if name_prefix is not None: tbls = [x for x in tbls if x["Name"].startswith(name_prefix)] if name_suffix is not None: tbls = [x for x in tbls if x["Name"].endswith(name_suffix)] tbls = tbls[:limit] df_dict: Dict[str, List] = {"Database": [], "Table": [], "Description": [], "Columns": [], "Partitions": []} for table in tbls: df_dict["Database"].append(table["DatabaseName"]) df_dict["Table"].append(table["Name"]) if "Description" in table: df_dict["Description"].append(table["Description"]) else: df_dict["Description"].append("") df_dict["Columns"].append(", ".join([x["Name"] for x in table["StorageDescriptor"]["Columns"]])) df_dict["Partitions"].append(", ".join([x["Name"] for x in table["PartitionKeys"]])) return pd.DataFrame(data=df_dict) def search_tables(text: str, catalog_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None): """Get Pandas DataFrame of tables filtered by a search string. Parameters ---------- text : str, optional Select only tables with the given string in table's properties. catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Iterator[Dict[str, Any]] Iterator of tables. Examples -------- >>> import awswrangler as wr >>> df_tables = wr.catalog.search_tables(text='my_property') """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) args: Dict[str, Any] = {"SearchText": text} if catalog_id is not None: args["CatalogId"] = catalog_id response: Dict[str, Any] = client_glue.search_tables(**args) for tbl in response["TableList"]: yield tbl while "NextToken" in response: # pragma: no cover args["NextToken"] = response["NextToken"] response = client_glue.search_tables(**args) for tbl in response["TableList"]: yield tbl def get_table_location(database: str, table: str, boto3_session: Optional[boto3.Session] = None) -> str: """Get table's location on Glue catalog. Parameters ---------- database : str Database name. table : str Table name. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- str Table's location. Examples -------- >>> import awswrangler as wr >>> wr.catalog.get_table_location(database='default', name='my_table') 's3://bucket/prefix/' """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) res: Dict[str, Any] = client_glue.get_table(DatabaseName=database, Name=table) try: return res["Table"]["StorageDescriptor"]["Location"] except KeyError: # pragma: no cover raise exceptions.InvalidTable(f"{database}.{table}") def table( database: str, table: str, catalog_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None ) -> pd.DataFrame: """Get table details as Pandas DataFrame. Parameters ---------- database : str Database name. table : str Table name. catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- pandas.DataFrame Pandas DataFrame filled by formatted infos. Examples -------- >>> import awswrangler as wr >>> df_table = wr.catalog.table(database='default', name='my_table') """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) if catalog_id is None: tbl: Dict[str, Any] = client_glue.get_table(DatabaseName=database, Name=table)["Table"] else: tbl = client_glue.get_table(CatalogId=catalog_id, DatabaseName=database, Name=table)["Table"] df_dict: Dict[str, List] = {"Column Name": [], "Type": [], "Partition": [], "Comment": []} for col in tbl["StorageDescriptor"]["Columns"]: df_dict["Column Name"].append(col["Name"]) df_dict["Type"].append(col["Type"]) df_dict["Partition"].append(False) if "Comment" in col: df_dict["Comment"].append(col["Comment"]) else: df_dict["Comment"].append("") for col in tbl["PartitionKeys"]: df_dict["Column Name"].append(col["Name"]) df_dict["Type"].append(col["Type"]) df_dict["Partition"].append(True) if "Comment" in col: df_dict["Comment"].append(col["Comment"]) else: df_dict["Comment"].append("") return
pd.DataFrame(data=df_dict)
pandas.DataFrame