Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
PIPE_Masks / README.md
navvew's picture
Update README.md
8190635 verified
metadata
license: cc-by-4.0
dataset_info:
  features:
    - name: mask
      dtype: image
    - name: target_img_dataset
      dtype: string
    - name: img_id
      dtype: string
    - name: ann_id
      dtype: string
  splits:
    - name: train
      num_bytes: 2555862476.36
      num_examples: 888230
    - name: test
      num_bytes: 35729190
      num_examples: 752
  download_size: 681492456
  dataset_size: 2591591666.36
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*

Dataset Card for PIPE Masks Dataset

Dataset Summary

The PIPE (Paint by InPaint Edit) dataset is designed to enhance the efficacy of mask-free, instruction-following image editing models by providing a large-scale collection of image pairs and diverse object addition instructions. Here, we provide the masks used for the inpainting process to generate the source image for the PIPE dataset for both the train and test sets. Further details can be found in our project page and paper.

Columns

  • mask: The removed object mask used for creating the inpainted image.
  • target_img_dataset: The dataset to which the target image belongs.
  • img_id: The unique identifier of the GT image (the target image).
  • ann_id: The identifier of the object segmentation annotation of the object removed.

Loading the PIPE Masks Dataset

Here is an example of how to load and use this dataset with the datasets library:

from datasets import load_dataset

data_files = {"train": "data/train-*", "test": "data/test-*"}
dataset_masks  = load_dataset('paint-by-inpaint/PIPE_Masks',data_files=data_files)

# Display an example
example_train_mask = dataset_masks['train'][0]
print(example_train_mask)

example_test_mask = dataset_masks['test'][0]
print(example_test_mask)