|
--- |
|
license: cc-by-4.0 |
|
dataset_info: |
|
features: |
|
- name: mask |
|
dtype: image |
|
- name: target_img_dataset |
|
dtype: string |
|
- name: img_id |
|
dtype: string |
|
- name: ann_id |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 2555862476.36 |
|
num_examples: 888230 |
|
- name: test |
|
num_bytes: 35729190.0 |
|
num_examples: 752 |
|
download_size: 681492456 |
|
dataset_size: 2591591666.36 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# Dataset Card for PIPE Masks Dataset |
|
|
|
## Dataset Summary |
|
|
|
The PIPE (Paint by InPaint Edit) dataset is designed to enhance the efficacy of mask-free, instruction-following image editing models by providing a large-scale collection of image pairs and diverse object addition instructions. |
|
Here, we provide the masks used for the inpainting process to generate the source image for the PIPE dataset for both the train and test sets. |
|
Further details can be found in our [project page](https://rotsteinnoam.github.io/Paint-by-Inpaint) and [paper](arxiv.org/abs/2404.18212). |
|
|
|
## Columns |
|
|
|
- `mask`: The removed object mask used for creating the inpainted image. |
|
- `target_img_dataset`: The dataset to which the target image belongs. |
|
- `img_id`: The unique identifier of the GT image (the target image). |
|
- `ann_id`: The identifier of the object segmentation annotation of the object removed. |
|
|
|
## Loading the PIPE Masks Dataset |
|
|
|
Here is an example of how to load and use this dataset with the `datasets` library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
data_files = {"train": "data/train-*", "test": "data/test-*"} |
|
dataset_masks = load_dataset('paint-by-inpaint/PIPE_Masks',data_files=data_files) |
|
|
|
# Display an example |
|
example_train_mask = dataset_masks['train'][0] |
|
print(example_train_mask) |
|
|
|
example_test_mask = dataset_masks['test'][0] |
|
print(example_test_mask) |
|
|