MaxiCPM-3x3B-Test
MaxiCPM-3x3B-Test is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- indischepartij/MiniCPM-3B-Hercules-v2.0
- indischepartij/MiniCPM-3B-OpenHermes-2.5-v2
- indischepartij/MiniCPM-3B-Bacchus
🧩 Configuration
base_model: openbmb/MiniCPM-2B-dpo-bf16-llama-format
experts:
- source_model: indischepartij/MiniCPM-3B-Hercules-v2.0
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- source_model: indischepartij/MiniCPM-3B-OpenHermes-2.5-v2
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: indischepartij/MiniCPM-3B-Bacchus
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
dtype: bfloat16
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/MaxiCPM-3x3B-Test"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 53.90 |
AI2 Reasoning Challenge (25-Shot) | 45.99 |
HellaSwag (10-Shot) | 71.74 |
MMLU (5-Shot) | 52.88 |
TruthfulQA (0-shot) | 41.06 |
Winogrande (5-shot) | 66.85 |
GSM8k (5-shot) | 44.88 |
- Downloads last month
- 82
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gmonsoon/MaxiCPM-3x3B-Test
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard45.990
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard71.740
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard52.880
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard41.060
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard66.850
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard44.880