MaxiCPM-3x3B-Test / README.md
gmonsoon's picture
Adding Evaluation Results (#1)
38d6dec verified
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - indischepartij/MiniCPM-3B-Hercules-v2.0
  - indischepartij/MiniCPM-3B-OpenHermes-2.5-v2
  - indischepartij/MiniCPM-3B-Bacchus
base_model:
  - indischepartij/MiniCPM-3B-Hercules-v2.0
  - indischepartij/MiniCPM-3B-OpenHermes-2.5-v2
  - indischepartij/MiniCPM-3B-Bacchus
model-index:
  - name: MaxiCPM-3x3B-Test
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 45.99
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 71.74
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 52.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 41.06
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.85
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/MaxiCPM-3x3B-Test
          name: Open LLM Leaderboard

MaxiCPM-3x3B-Test

MaxiCPM-3x3B-Test is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: openbmb/MiniCPM-2B-dpo-bf16-llama-format
experts:
  - source_model: indischepartij/MiniCPM-3B-Hercules-v2.0
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
  - source_model: indischepartij/MiniCPM-3B-OpenHermes-2.5-v2
    positive_prompts:
    - "code"
    - "python"
    - "javascript"
    - "programming"
    - "algorithm"
  - source_model: indischepartij/MiniCPM-3B-Bacchus
    positive_prompts:
    - "storywriting"
    - "write"
    - "scene"
    - "story"
    - "character"
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
dtype: bfloat16

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gmonsoon/MaxiCPM-3x3B-Test"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.90
AI2 Reasoning Challenge (25-Shot) 45.99
HellaSwag (10-Shot) 71.74
MMLU (5-Shot) 52.88
TruthfulQA (0-shot) 41.06
Winogrande (5-shot) 66.85
GSM8k (5-shot) 44.88