|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-small-patch4-window8-256 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swinv2-small-patch4-window8-256-finetuned-eurosat |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6875 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-small-patch4-window8-256-finetuned-eurosat |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2717 |
|
- Accuracy: 0.6875 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 4 | 0.6579 | 0.6339 | |
|
| No log | 2.0 | 8 | 0.7129 | 0.5 | |
|
| 0.6364 | 3.0 | 12 | 0.6774 | 0.5982 | |
|
| 0.6364 | 4.0 | 16 | 0.6584 | 0.6786 | |
|
| 0.3486 | 5.0 | 20 | 0.6864 | 0.6786 | |
|
| 0.3486 | 6.0 | 24 | 0.8473 | 0.6429 | |
|
| 0.3486 | 7.0 | 28 | 0.9735 | 0.6339 | |
|
| 0.1224 | 8.0 | 32 | 0.8121 | 0.6964 | |
|
| 0.1224 | 9.0 | 36 | 1.2379 | 0.6429 | |
|
| 0.0424 | 10.0 | 40 | 1.1585 | 0.6875 | |
|
| 0.0424 | 11.0 | 44 | 1.5274 | 0.6161 | |
|
| 0.0424 | 12.0 | 48 | 1.1415 | 0.6607 | |
|
| 0.0353 | 13.0 | 52 | 1.4422 | 0.6518 | |
|
| 0.0353 | 14.0 | 56 | 1.6677 | 0.625 | |
|
| 0.0141 | 15.0 | 60 | 1.1960 | 0.6696 | |
|
| 0.0141 | 16.0 | 64 | 1.5515 | 0.625 | |
|
| 0.0141 | 17.0 | 68 | 1.7990 | 0.6161 | |
|
| 0.0135 | 18.0 | 72 | 1.4437 | 0.6607 | |
|
| 0.0135 | 19.0 | 76 | 1.2816 | 0.7054 | |
|
| 0.0073 | 20.0 | 80 | 1.2717 | 0.6875 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|