metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1936
- loss:OnlineContrastiveLoss
widget:
- source_sentence: What are the symptoms of COVID-19?
sentences:
- How to identify COVID-19?
- What is the process for booking a dinner table?
- >-
It is not necessary to include specific fields in a financial report;
nevertheless, it is beneficial to add pertinent financial metrics to
help investors gauge the company's condition.
- source_sentence: How to apply for a scholarship?
sentences:
- Steps to apply for a scholarship
- Advantages of practicing meditation
- >-
When `ignore_metadata` is set to `True`, all metadata and attributes are
stripped from the file prior to processing.
- source_sentence: How to write a novel?
sentences:
- How to write a short story?
- Who wrote 'Macbeth'?
- How to reset a phone
- source_sentence: >-
You can wrap the project in `job.utils.data.JobLoader` and create a
collate function to collate the tasks into batches.
sentences:
- Steps to prepare a steak
- How many people live in Germany?
- >-
You can use `job.utils.data.JobLoader` to encapsulate the project and
define a collate function to group the tasks into batches.
- source_sentence: What is the time now?
sentences:
- How to cook a chicken?
- Current time
- Guide to starting a small business
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9212962962962963
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8385236263275146
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9403508771929825
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8385236263275146
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9370629370629371
name: Cosine Precision
- type: cosine_recall
value: 0.9436619718309859
name: Cosine Recall
- type: cosine_ap
value: 0.9872231100578164
name: Cosine Ap
- type: dot_accuracy
value: 0.9212962962962963
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8385236263275146
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9403508771929825
name: Dot F1
- type: dot_f1_threshold
value: 0.8385236263275146
name: Dot F1 Threshold
- type: dot_precision
value: 0.9370629370629371
name: Dot Precision
- type: dot_recall
value: 0.9436619718309859
name: Dot Recall
- type: dot_ap
value: 0.9872231100578164
name: Dot Ap
- type: manhattan_accuracy
value: 0.9166666666666666
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.658426284790039
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9391891891891893
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.594137191772461
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9025974025974026
name: Manhattan Precision
- type: manhattan_recall
value: 0.9788732394366197
name: Manhattan Recall
- type: manhattan_ap
value: 0.987218816132896
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9212962962962963
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.568278431892395
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9403508771929825
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.568278431892395
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9370629370629371
name: Euclidean Precision
- type: euclidean_recall
value: 0.9436619718309859
name: Euclidean Recall
- type: euclidean_ap
value: 0.9872231100578164
name: Euclidean Ap
- type: max_accuracy
value: 0.9212962962962963
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.658426284790039
name: Max Accuracy Threshold
- type: max_f1
value: 0.9403508771929825
name: Max F1
- type: max_f1_threshold
value: 9.594137191772461
name: Max F1 Threshold
- type: max_precision
value: 0.9370629370629371
name: Max Precision
- type: max_recall
value: 0.9788732394366197
name: Max Recall
- type: max_ap
value: 0.9872231100578164
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9305555555555556
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8569861650466919
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9484536082474226
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8531842827796936
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9261744966442953
name: Cosine Precision
- type: cosine_recall
value: 0.971830985915493
name: Cosine Recall
- type: cosine_ap
value: 0.9898045699188958
name: Cosine Ap
- type: dot_accuracy
value: 0.9305555555555556
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8569861650466919
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9484536082474226
name: Dot F1
- type: dot_f1_threshold
value: 0.8531842231750488
name: Dot F1 Threshold
- type: dot_precision
value: 0.9261744966442953
name: Dot Precision
- type: dot_recall
value: 0.971830985915493
name: Dot Recall
- type: dot_ap
value: 0.9898045699188958
name: Dot Ap
- type: manhattan_accuracy
value: 0.9351851851851852
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.299823760986328
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9517241379310345
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.299823760986328
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9324324324324325
name: Manhattan Precision
- type: manhattan_recall
value: 0.971830985915493
name: Manhattan Recall
- type: manhattan_ap
value: 0.9895380844501982
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9305555555555556
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.534814715385437
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9484536082474226
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5418605804443359
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9261744966442953
name: Euclidean Precision
- type: euclidean_recall
value: 0.971830985915493
name: Euclidean Recall
- type: euclidean_ap
value: 0.9898045699188958
name: Euclidean Ap
- type: max_accuracy
value: 0.9351851851851852
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.299823760986328
name: Max Accuracy Threshold
- type: max_f1
value: 0.9517241379310345
name: Max F1
- type: max_f1_threshold
value: 8.299823760986328
name: Max F1 Threshold
- type: max_precision
value: 0.9324324324324325
name: Max Precision
- type: max_recall
value: 0.971830985915493
name: Max Recall
- type: max_ap
value: 0.9898045699188958
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_11")
# Run inference
sentences = [
'What is the time now?',
'Current time',
'Guide to starting a small business',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9213 |
cosine_accuracy_threshold | 0.8385 |
cosine_f1 | 0.9404 |
cosine_f1_threshold | 0.8385 |
cosine_precision | 0.9371 |
cosine_recall | 0.9437 |
cosine_ap | 0.9872 |
dot_accuracy | 0.9213 |
dot_accuracy_threshold | 0.8385 |
dot_f1 | 0.9404 |
dot_f1_threshold | 0.8385 |
dot_precision | 0.9371 |
dot_recall | 0.9437 |
dot_ap | 0.9872 |
manhattan_accuracy | 0.9167 |
manhattan_accuracy_threshold | 8.6584 |
manhattan_f1 | 0.9392 |
manhattan_f1_threshold | 9.5941 |
manhattan_precision | 0.9026 |
manhattan_recall | 0.9789 |
manhattan_ap | 0.9872 |
euclidean_accuracy | 0.9213 |
euclidean_accuracy_threshold | 0.5683 |
euclidean_f1 | 0.9404 |
euclidean_f1_threshold | 0.5683 |
euclidean_precision | 0.9371 |
euclidean_recall | 0.9437 |
euclidean_ap | 0.9872 |
max_accuracy | 0.9213 |
max_accuracy_threshold | 8.6584 |
max_f1 | 0.9404 |
max_f1_threshold | 9.5941 |
max_precision | 0.9371 |
max_recall | 0.9789 |
max_ap | 0.9872 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9306 |
cosine_accuracy_threshold | 0.857 |
cosine_f1 | 0.9485 |
cosine_f1_threshold | 0.8532 |
cosine_precision | 0.9262 |
cosine_recall | 0.9718 |
cosine_ap | 0.9898 |
dot_accuracy | 0.9306 |
dot_accuracy_threshold | 0.857 |
dot_f1 | 0.9485 |
dot_f1_threshold | 0.8532 |
dot_precision | 0.9262 |
dot_recall | 0.9718 |
dot_ap | 0.9898 |
manhattan_accuracy | 0.9352 |
manhattan_accuracy_threshold | 8.2998 |
manhattan_f1 | 0.9517 |
manhattan_f1_threshold | 8.2998 |
manhattan_precision | 0.9324 |
manhattan_recall | 0.9718 |
manhattan_ap | 0.9895 |
euclidean_accuracy | 0.9306 |
euclidean_accuracy_threshold | 0.5348 |
euclidean_f1 | 0.9485 |
euclidean_f1_threshold | 0.5419 |
euclidean_precision | 0.9262 |
euclidean_recall | 0.9718 |
euclidean_ap | 0.9898 |
max_accuracy | 0.9352 |
max_accuracy_threshold | 8.2998 |
max_f1 | 0.9517 |
max_f1_threshold | 8.2998 |
max_precision | 0.9324 |
max_recall | 0.9718 |
max_ap | 0.9898 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,936 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~35.30%
- 1: ~64.70%
- min: 6 tokens
- mean: 16.19 tokens
- max: 98 tokens
- min: 4 tokens
- mean: 15.75 tokens
- max: 98 tokens
- Samples:
label sentence1 sentence2 1
How do I apply for a credit card?
How do I get a credit card?
1
What is the function of a learning rate scheduler?
How does a learning rate scheduler optimize training?
0
What is the speed of a rocket?
What is the speed of a jet plane?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 216 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 216 samples:
label sentence1 sentence2 type int string string details - 0: ~34.26%
- 1: ~65.74%
- min: 6 tokens
- mean: 15.87 tokens
- max: 87 tokens
- min: 4 tokens
- mean: 15.61 tokens
- max: 86 tokens
- Samples:
label sentence1 sentence2 0
What is the freezing point of ethanol?
What is the boiling point of ethanol?
0
Healthy habits
Unhealthy habits
0
What is the difference between omnivores and herbivores?
What is the difference between omnivores, carnivores, and herbivores?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8705 | - |
0.3279 | 10 | 1.3831 | - | - | - |
0.6557 | 20 | 0.749 | - | - | - |
0.9836 | 30 | 0.5578 | 0.2991 | 0.9862 | - |
1.3115 | 40 | 0.3577 | - | - | - |
1.6393 | 50 | 0.2594 | - | - | - |
1.9672 | 60 | 0.2119 | - | - | - |
2.0 | 61 | - | 0.2753 | 0.9898 | - |
2.2951 | 70 | 0.17 | - | - | - |
2.6230 | 80 | 0.1126 | - | - | - |
2.9508 | 90 | 0.0538 | - | - | - |
2.9836 | 91 | - | 0.3222 | 0.9864 | - |
3.2787 | 100 | 0.1423 | - | - | - |
3.6066 | 110 | 0.066 | - | - | - |
3.9344 | 120 | 0.0486 | 0.3237 | 0.9872 | 0.9898 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}