metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- szeged_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: hun_wnut_modell
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: szeged_ner
type: szeged_ner
config: business
split: test
args: business
metrics:
- name: Precision
type: precision
value: 0.8590342679127726
- name: Recall
type: recall
value: 0.9004081632653061
- name: F1
type: f1
value: 0.8792347548824233
- name: Accuracy
type: accuracy
value: 0.9881996563884619
hun_wnut_modell
This model is a fine-tuned version of distilbert-base-uncased on the szeged_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0419
- Precision: 0.8590
- Recall: 0.9004
- F1: 0.8792
- Accuracy: 0.9882
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2035 | 1.0 | 511 | 0.0665 | 0.8124 | 0.8343 | 0.8232 | 0.9813 |
0.075 | 2.0 | 1022 | 0.0501 | 0.8280 | 0.8841 | 0.8551 | 0.9847 |
0.0498 | 3.0 | 1533 | 0.0444 | 0.8452 | 0.8914 | 0.8677 | 0.9866 |
0.0354 | 4.0 | 2044 | 0.0417 | 0.8661 | 0.8980 | 0.8818 | 0.9885 |
0.0275 | 5.0 | 2555 | 0.0419 | 0.8590 | 0.9004 | 0.8792 | 0.9882 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3